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Atmospheric visibility is an important input for road and air transportation safety, as well as a good proxy to estimate the air quality. A model-driven approach is presented to monitor the meteorological visibility distance through use of ordinary outdoor cameras. Unlike in previous data-driven approaches, a physics-based model is proposed which describes the mapping function between the contrast in the image and the atmospheric visibility. The model is non-linear, which allows encompassing a large spectrum of applications. The model assumes a continuous distribution of objects with respect to the distance in the scene and is estimated by a novel process. It is more robust to illumination variations by selecting the Lambertian surfaces in the scene. To evaluate the relevance of the approach, a publicly available database is used. When the model is fitted to short range data, the proposed method is shown to be effective and to improve on existing methods. In particular, it allows envisioning an easier deployment of these camera-based techniques on multiple observation sites.

Introduction

In the presence of fog, haze or air pollution, atmospheric visibility is reduced. This constitutes a common and vexing transportation problem for different public authorities in multiple countries throughout the world.

First, low visibility is obviously a problem of traffic safety.

Indeed, the behavior of drivers in fog is often inappropriate (e.g. reduced headways, altered reaction times) but the reasons for these dangerous behaviors are not fully understood [START_REF] Kang | Effects of reduced visibility from fog on car-following performance[END_REF][START_REF] Caro | Can headway 465 reduction in fog be explained by impaired perception of relative motion? 466 Human Factors[END_REF]. A recommendation in order to improve the safety in such situations was to use two rear fog lamps in the vehicles, as far apart as possible [START_REF] Cavallo | Distance perception of vehicle rear 469 lights in fog[END_REF]. It was also suggested that lowering the height of these lamps could lead to reduced headway estimation [START_REF] Buchner | Car backlight position and 457 fog density bias observer-car distance estimates and time-to-collision judg-458 ments[END_REF]. Various countermeasures have been tested on the roadside to reduce the impact of critically reduced visibility [START_REF] Shepard | Reduced Visibility Due to Fog on the Highway[END_REF], among which automated warning systems employing road-side weather stations and visibility meters to provide automated detection [START_REF] Mac Carley | Methods and metrics for evaluation of an automated real-time driver warning system[END_REF].

In addition to the road safety problem, reduced visibility is cause of delays and disruption in air, sea and ground transportation for passengers and freight. On highways, massive pileups create non-recurrent congestions which sometimes force the operator to momentarily close the road. Fog-related road closures are not an uncommon subject for news headlines. Another example is the Heathrow airport which was blocked for three days during Christmas 2006. Such events have important economic impacts [START_REF] Pejovic | Factors affecting the frequency and severity of airport weather delays and the implications of climate change for future delays[END_REF]. According to [START_REF] Perry | Highway Meteorology[END_REF], in 1974 fog was estimated to have cost over roughly £120 millions (at 2010 prices) on the roads of Great Britain. This figure includes the cost of medical treatment, damage to vehicles and property, as well as the adminis-trative costs of police, services and insurance, but they do not 33 include the cost of delays to people not directly involved in the 34 accident.
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Impaired visibility is also a symptom of environmental prob-36 lems because it is evidence of air pollution [START_REF] Hyslop | Impaired visibility: the air pollution people see[END_REF]; in 37 addition, it has been shown that impaired visibility in urban en-38 vironment and mortality are correlated [START_REF] Thach | Daily visibility and mortality: Assessment 546 of health benefits from improved visibility in Hong-Kong[END_REF]. Ac-39 cording to [START_REF] Thach | Daily visibility and mortality: Assessment 546 of health benefits from improved visibility in Hong-Kong[END_REF], visibility provides a useful proxy 40 for the assessment of environmental health risks from ambient 41 air pollutants, and a valid approach for the assessment of the ranges, typically 1-5 km, are usually considered. In the following, we address the whole spectrum of visual ranges, typically 0-10 km.

Two families of methods are proposed in the literature. The first one estimates the maximum distance at which a selected target can be detected. The methods differ depending on the nature of the target and how to estimate the distance. For intelligent vehicles as well as for visual monitoring of highway traffic, a black target at the horizon is chosen and a flat road is assumed. [START_REF] Bush | Wavelet transform for analyzing fog visibility[END_REF] use a wavelet transform to detect the highest edge in the image with a contrast above 5%. Based on a highway meteorology standard, [START_REF] Hautière | Meteorological conditions processing for vision-based traffic monitoring[END_REF] proposed a reference-free roadside camera-based sensor which not only estimates the visibility range but also estimates whether the visibility reduction is caused by fog. For meteorological observations, regions of interest whose distance can be obtained on standard geographic maps are selected manually [START_REF] Bäumer | Determination of the visibility using 461 a digital panorama camera[END_REF]). An accurate geometric calibration of the camera with respect to the scene is necessary to calibrate and operate continuously these methods, which may be understood as direct approaches.

A second family of methods correlates the contrast in the scene with the visual range estimated by reference additional sensors [START_REF] Hallowell | An automated visibility detection algorithm utilizing camera imagery[END_REF]. No accurate geometric calibration is needed. Conversely, a learning phase is needed to estimate the function which maps the contrast in the scene to the visual range. The method proposed in this paper belongs to this second family. Usually, a gradient based on the Sobel filter or a high-pass filter in the frequency domain are used to compute the contrast [START_REF] Liaw | Using sharpness image with haar function for urban atmospheric visibility measurement[END_REF][START_REF] Hagiwara | A method of processing CCTV digital images for poor visibility identification[END_REF]Xie et al., 2008). [START_REF] Luo | Investigation of urban atmospheric visibility by high-frequency extraction: Model development and field test[END_REF] have shown that the visual range obtained with these two approaches are highly correlated. [START_REF] Liaw | Using sharpness image with haar function for urban atmospheric visibility measurement[END_REF] proposed to use a homomorphic filter or a Haar function in addition to the high-pass filter in order to reduce the effects of non-uniform illumination. Once the contrast is computed, a linear regression is performed to estimate the mapping function [START_REF] Hallowell | An automated visibility detection algorithm utilizing camera imagery[END_REF]Xie et al., 2008;[START_REF] Liaw | Using sharpness image with haar function for urban atmospheric visibility measurement[END_REF]. [START_REF] Babari | Vis-452 ibility monitoring using conventional roadside cameras: Shedding light 453 on and solving a multi-national road safety problem[END_REF] propose a method which is robust to illumination variations in the scene by taking into account the physical properties of objects in the scene. Unlike previous methods, a non-linear data regression is performed which allows covering a wider spectrum of applications. Due to the step of data regression, these methods can be seen as data-driven approaches. Nevertheless, the major problem of data-driven methods is the need of a learning phase, which makes this kind of method difficult to deploy massively. Indeed, one must wait for an episode with impaired visibility, so as to collect learning data and compute the fitting parameters.

The direct approaches are very sensitive to the geometric calibration of the camera but no learning phase is necessary to use them. The data-driven approaches do not use any accurate geometric calibration. However, they need episodes with impaired visibility before they are operational. We believe that new techniques can be developed which need neither accurate geometric calibration nor learning phase. In this aim, one must model how the contrast in the scene is altered by the presence of reduced visibility conditions, so as to build an a priori mapping func-tion between the contrast and the atmospheric visibility distance In particular, the model takes into account an a priori 126 distribution of contrasts in the scene. However, a uniform dis-127 tribution of targets is assumed which limits the applicability of 128 the method on any scene. In this article, the method proposed 129 in [START_REF] Hautière | Estimating meteorological visibility using cameras: A probabilistic modeldriven approach[END_REF] The attenuation of luminance through the atmosphere was studied by Koschmieder [START_REF] Middleton | Vision through the atmosphere[END_REF], who derived an equation relating the extinction coefficient of the atmosphere β , which is the sum of the scattering coefficient and of the absorption coefficient, the apparent luminance L of an object located at distance d, and the luminance L 0 measured close to this object:

L = L 0 e -β d + L ∞ (1 -e -β d ) (1) 
(1) indicates that the luminance of the object seen through fog 149

On the basis of this equation, Duntley developed a contrast attenuation law [START_REF] Middleton | Vision through the atmosphere[END_REF], stating that a nearby object exhibiting contrast C 0 with the fog in the background will be perceived at distance d with the following contrast:

C = L 0 -L ∞ L ∞ e -β d = C 0 e -β d (2) 
This expression serves to base the definition of a standard dimension called meteorological visibility distance V , i.e. the greatest distance at which a black object (C 0 = -1) of a suitable dimension can be seen on the horizon, with the threshold contrast set at 5% (CIE, 1987). It is thus a standard parameter that characterizes the opacity of a fog layer. This definition yields the following expression:

V ≈ 3 β (3)
tention in the computer vision community, e.g. (Narasimhan 151 and Nayar, 2003;[START_REF] Hautière | Towards fog-free in-vehicle vision systems through contrast restoration[END_REF][START_REF] Tan | Visibility in bad weather from a single image[END_REF][START_REF] He | Single image haze removal using dark channel prior[END_REF] Assuming a linear response function of the camera, the intensity I of a distant point located at distance d in an outdoor scene is given by Koschmieder's model ( 1):

I = Re -β d + A ∞ (1 -e -β d ) (4)
where R is the intrinsic intensity of the pixel, i.e. the intensity corresponding to the intrinsic luminance value of the corresponding scene point and A ∞ is the background sky intensity.

Two points located at roughly the same distance d 1 ≈ d 2 = d with different intensities I 1 I 2 form a distant target whose normalized contrast is given by:

C = I 2 -I 1 A ∞ = R 2 -R 1 A ∞ e -β d = C 0 e -β d (5) 
In this equation, the contrast C of a target located at distance d depends on V = 3 β and on its intrinsic contrast C 0 . If we now assume that the surface of the target is Lambertian, the luminance L at each point i of the target is given by:

L = ρ i E π (6)
where E denotes the global illumination and ρ i denotes the albedo at i. Moreover, it is a classical assumption to set L ∞ = E π so that (5) finally becomes:

C = (ρ 2 -ρ 1 )e -β d ≈ (ρ 2 -ρ 1 )e -3d V = ∆ρe -3d V (7)
Consequently, the contrast of a distant Lambertian target only 163 depends on its physical properties and on its distance to the sen- Let us consider an outdoor scene where targets are distributed continuously at increasing distances from the camera. Let us denote φ the probability density function of observing a contrast C in the scene:

P(C < X ≤ C + dC) = φ (C)dC (8)
The expectation of the contrast m in the image is expressed as:

m = E[C] = 1 0 Cφ (C)dC (9)
Based on (7), C is a random variable which depends of the two random variables d and ∆ρ. These two variables are assumed to be independent, which allows expressing (9) as:

m = E ∆ρ E e -3d V = ∆ρ +∞ 0 ψ(d)e -3d V dd (10)
where ∆ρ denotes the mean albedo difference between the ob- 

179 m u = V ∆ρ 3d max 1 -exp - 3d max V (11) 
This assumption may be useful when the scene is not known 180 a priori but may limit the applicability of the method on any 188

Assuming a Gaussian distribution of parameters µ and σ , the density of targets is given by:

ψ G (d) = 1 σ √ 2π exp - 1 2 d -µ σ 2 (12) 
(10) then has an analytical solution m g ,which is given by:

m G (V ) = ∆ρ 2 exp 9σ 2 2V 2 - 3µ V erfc 1 σ √ 2 3σ 2 V -µ
(13) where erfc denotes the complementary error function:

erfc(z) = 2 √ π ∞ z exp(-ζ 2 )dζ (14) 
In the same way, assuming a Rayleigh distribution of param- Finally, assuming an exponential distribution of parameter ν:

189 eter σ : 190 ψ R (d) = d σ 2 exp -d 2 2σ 2 (15) m R (V ) = 1 - 3σ ∆ρ V exp 9σ 2 2V 2 π 2 erfc 3σ V √ 2 (16)
ψ e (d) = ν exp -νd (17) m e (V ) = ν∆ρ ν + 3 V (18)
Other types of distributions can be tested, such as the lognormal distribution. However, mathematical solutions are not easy to find and then to handle, apart from the uniform and exponential distributions.

Model Inversion and Error Estimation

The different models are all increasing functions of V and share the same limits towards 0 and ∞, see Eqs. (11,13,16,18):

lim V -→0 m = 0 lim V -→∞ m = 1 (19)
which are obvious physical bounds that data-driven approaches do not always respect. The models of contrast expectation presented in the previous section are plotted as functions of the meteorological visibility distance V in Fig. 1. As one can see, these models have roughly the same shape.

In [START_REF] Hautière | Estimating meteorological visibility using cameras: A probabilistic modeldriven approach[END_REF], the solution for the uniform case was found to be invertible:

V (m u ) = 3m u d max 1 + m u W e -1/m u m u ( 20 
)
where W denotes the Lambert function, which is a transcendental function defined by solutions of the equation W (x)e W (x) = x [START_REF] Corless | On the Lambert W function[END_REF]. Given the complexity of the equation, it is somehow difficult to compute the partial derivatives of the model and express error bounds of the model. In the case of the Gaussian and Rayleigh distributions, it is also possible to find analytical solutions to invert the models, but these ones are not detailed here for the sake of readability of the article. Fortunately in the case of an exponential distribution, a simpler solution is available:

V (m e , ν) = 3m e ν(1 -m e ) (21) 
With this model, the partial derivatives of V with respect to m 202 and ν (22) can be obtained and an upper bound of the error of 203 the model ( 23) is derived:

204 dV = ∂V (m e , ν) ∂ m e dm e + ∂V (m e , ν) ∂ ν dν (22) ∆V ≤ 3∆m e ν(1 -m e ) 2 + 3m e ∆ν ν 2 (1 -m e ) (23) 
At this stage, we can make a comparison with the charging/discharging of a capacitor. Assuming a uniform distribution, (11) can be expressed as following:

m u = ∆ρ V τ 1 -exp - τ V (24) 
where τ = 3d max . When V = τ, we have m u = 1e -1 ≈ 0.63.
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This is the same constant as the one used to characterize the 206 charging speed of a capacitor. Fig. 2 shows the curve obtained when plotting (24) with respect to the ratio V τ .

In the general case, the capacitance of the system is determined by the distribution of distances in the scene, the texture of the objects in the scene and the quality (MTF, resolution) of the camera along with the response of the image processing filter (e.g. the Sobel filter). The smaller the capacitance of the system, the faster the curves go to 1. We thus define an indicator τ of the system quality which is the meteorological visibility distance at which 0.63 of the "capacitance" is reached.

Estimation of the Distribution of Targets

The direct computation of m and V strongly depends on the distribution ψ. Thus, an important task is to guess which distribution is best suited for a given scene. Following the method proposed by [START_REF] Narasimhan | Contrast restoration of weather degraded images[END_REF], the scene structure can be approximated from two weather conditions 1 and 2 thanks to Koschmieder's law (1):

(β 2 -β 1 )d = -log A ∞ 2 -I 2 A ∞ 1 -I 1 -log A ∞ 1 A ∞ 2 (25)
Using this method, it is possible to roughly estimate a depth for each pixel of the scene image. Starting from [START_REF] Narasimhan | Contrast restoration of weather degraded images[END_REF], we used landmarks of known depth and we adjusted the sky intensities A ∞ 1 and A ∞ 2 so as to improve the accuracy of the global map.

Second, due to the noise of the camera sensor, a simple computation of the depth distribution is useless. Soft-voting is often used to obtain reliable data from multiple uncertain data sources [START_REF] Latif-Shabgahi | A taxonomy for software voting algorithms used in safety-critical systems[END_REF]. In computer vision and pattern recognition, this process is often used to deduce a global information from local information, e.g. the Hough transform [START_REF] Duda | Use of the hough transformation to detect lines and curves in pictures[END_REF], the fast radial symmetry transform [START_REF] Loy | Fast radial symmetry for detecting points of interest[END_REF] or the v-disparity transform [START_REF] Labayrade | Real time obstacle detection in stereovision on non flat road geometry through v-disparity representation[END_REF]. In a similar way, the distribution of Lambertian targets can be estimated using a Parzen's like approach [START_REF] Parzen | On estimation of a probability density function and mode[END_REF].

In this aim, a cumulative histogram of depth h(d) is computed for d ∈ [0, d max ] which takes into account a bandwidth parameter. This one is related to the confidence u i on the estimation of the distance associated to each pixel. For each pixel, a normal distribution N (d|d i , u i ) is cumulated in the histogram with center d i and standard deviation u i . In addition to the standard Parzen's approach, we also use a weighting parameter w i which accounts for the contribution of each data to the histogram. This histogram of depth is then expressed by:

h(d) = P ∑ i=1 w i N i (d|d i , u i ) (26) 
where P denotes the total number of pixels. The confidence u is obtained by computing the sensitivity of (25) to its parameters: 27) becomes: where f i is given by:

u ∝ ∑ ∂ d ∂ (A ∞ 1,2 , I 1,2 ) d(A ∞ 1,2 , I 1,2 ) 2 (27) Assuming dA ∞ 1 ≈ dA ∞ 2 ≈ dI 1 ≈ dI 2 = dI, (
u ∝ f 1 + f 2 (β 2 -β 1 ) 2 dI 2 (28)
f i=1,2 = 1 A ∞ i 2 + 2 1 (A ∞ i -I i ) 2 + 1 A ∞ i (A ∞ i -I i ) (29) 
In section 4.4, we apply this method to actual data issued from a ranges from 100 m to 35,000 m and the luminance ranges from 0 to 6,000 cd.m -2 . This database made of 150 images grabbed every ten minutes is available on the LCPC's web site http://www.lcpc.fr/en/produits/matilda/ for research purpose.

Location of Lambertian surfaces

To estimate m and thus V , the normalized gradient is computed on the Lambertian surfaces of the scene as proposed in section 3. Locating the Lambertian surfaces in the images is thus needed. Following the method proposed in Babari et al.

(2010), the Pearson coefficient, denoted P L i, j , is computed between the intensity of pixels in image series where the position of the sun changes and the value of the background luminance estimated by the luminancemeter. The closer P L i, j is to 1, the stronger the probability that the pixel belongs to a Lambertian surface. This technique provides an efficient way to locate the Lambertian surfaces in the scene. For the MATILDA database, the density map of Lambertian surfaces is shown in Fig. 4. The redder the pixel, the higher the probability that the surface is Lambertian.

Contrast Estimator

Having located the Lambertian surfaces, the gradients in the scene are estimated by means of the module of the Sobel filter. For each pixel, the gradient ∇ i, j is normalized by the intensity of the background A ∞ . Since the camera is equipped with an auto gain control, the background intensity A ∞ is most of the time equal to 2 8 -1, so that this step can be skipped. Each gradient is then weighted by P L i, j , the probability that a pixel (i, j) belongs to a Lambertian surface. Consequently, only relevant areas of the image are used for the visibility estimation, and the scene need not be totally Lambertian. Finally, the estimated contrast in the scene m is given by: m = 1

N ∑ i, j ∆ρ i, j exp - 3d i, j V P L i, j = 1 N ∑ i, j ∇ i, j A ∞ (30)
where ∆ρ i, j is the intrinsic contrast of a pixel (7) and N denotes 297 the number of pixels of the image. given by ( 28) and it is controlled by the value of dI which is 

Results
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As in [START_REF] Babari | Vis-452 ibility monitoring using conventional roadside cameras: Shedding light 453 on and solving a multi-national road safety problem[END_REF], m is computed for the collection 317 of 150 images of the MATILDA database using (30). The ex- [START_REF] Babari | Vis-452 ibility monitoring using conventional roadside cameras: Shedding light 453 on and solving a multi-national road safety problem[END_REF] 10.4% 22.5% 23.4% 29.9% 41.9% Uniform distribution [START_REF] Hautière | Estimating meteorological visibility using cameras: A probabilistic modeldriven approach[END_REF] 12 We estimated a capacitance of the scene τ ≈ 950m≈ 3d max as expected. We invert the fitted model using ( 21 
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In the previous results, all the data have been used to fit the 350 models. This is the principle underlying the data-driven ap-351 proach. Conversely, this approach should not be followed for 352 the model-driven approach, since the model may not be valid 
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The confidence in the fitting is higher (R 2 = 0.97). The fitted 360 curve is shown in Fig. 7. Second, the model is extrapolated on 361 the range τ -15000 m. The mean relative error is then com-362 puted between the adjusted model and the ground truth data.

363

The results are given in the last line of Tab. 1. Since the model 364 has been fitted to short visibility data, the results are improved 365 at short ranges. At higher ranges, the errors are reduced as well, 366 which illustrates the benefits of performing a data fitting pro-367 cess only on reliable data. In this way, we are able to obtain a correct estimate of the me- and could be reduced using the image processing filter proposed 399 by [START_REF] Liaw | Using sharpness image with haar function for urban atmospheric visibility measurement[END_REF]. A second solution consists in chang-400 ing the location of the camera and for example increasing its 401 mounting height, so as to get a better perspective. A comple-402 mentary solution consists in using a camera of better quality, so 403 as to get less noisy images. We aim at exploring these different 
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  in the scene. This constitues a model-driven approach. Hau-123 tière et al. (2010) propose such a probabilistic model-driven ap-124 proach which allows computing a physics-based mapping func-125 tion.

144

  is attenuated by e -β d (Beer-Lambert law); it also reveals a lu-145 minance reinforcement of the form L ∞ (1-e -β d ) resulting from 146 daylight scattered by the slab of fog between the object and the 147 observer, the so-called airlight. L ∞ is the atmospheric lumi-148 nance.

164

  sor and on the meteorological visibility distance, and no longer 165 on the illumination. These surfaces are robust to strong illumi-166 nation variations in the computation of the contrast in the scene.

  181 scene. The problem has received little consideration in the liter-182 ature. Torralba and Oliva (2002) proposed some a priori depth 183 distributions in natural or man-made scenes which are Gaussian 184 distributions. To circumvent this problem, a solution is to esti-185 mate the actual distribution and to solve m for this distribution. 186 Let us first examine if mathematical solutions exist for classical 187 statistical distributions.

Figure 1 :

 1 Figure 1: Plots of the different contrast expectation models assuming (a) a uniform distribution (d max ∈ [100; 1000]); (b) an exponential distribution of targets density (ν ∈ [0.01; 0.1]); (c) a Rayleigh distribution of targets density (σ ∈ [10; 100]); (d) a Gaussian distribution of targets density (σ = 10 and µ ∈ [50; 150]).

Figure 2 :

 2 Figure2: Analogy between the charge/discharge of a capacitor and the shape of the contrast expectation (blue curve) with respect to the meteorological visibility. The red curve denotes the tangent at the origin.

Figure 3 :

 3 Figure 3: Samples of data collected in winter 2008-2009: (a) images with strong illumination conditions and presence of shadows; (b) cloudy conditions; (c) foggy weather situation; (d) meteorological visibility distance data and (e) background luminance data collected in the field test during two days.

Figure 4 :

 4 Figure 4: Map of Lambertian surfaces on the field test:The redder the pixel is, the higher the probability that the surface is Lambertian.

  we have proposed a methodology to estimate 300 the distribution ψ in a scene. In this section, we apply this 301 method to the test site of the MATILDA database. Having the 302 contrast estimator (see previous paragraph), we are now able to 303 derive a relevant weight w i . Based on (30), the contribution of a 304 data to the histogram is its weighted gradient ∇ i, j P L i, j computed 305 in good weather conditions, which leads to choose it as weight 306 w i , see (26). The confidence u i on the depth of each pixel is 307

Figure 5 :

 5 Figure5: Histogram of weighted contrasts versus depth. The estimated distribution is shown using the green plot (dI = 0.1), the purple plot (dI = 0.5) and the black curve (dI = 1). The fitted exponential distribution is plotted in red.

  318 ponential distribution model (18) has been fitted to all the data 319 using a robust non-linear least squares fitting technique (R 2 = 320 0.91), namely the Levenberg-Marquardt algorithm. We have 321 also fitted upper and lower bound curves which comprise 99% 322 of the data points. The different curves are plotted in Fig. 6(a).

Figure 6 :

 6 Figure 6: Model fitting: (a) Data fitting with the exponential distribution model in black. The upper bound is plotted in blue and the lower bound in magenta. (b) Plot of estimated visibility distances versus reference visibility distances.

  ) and estimate the meteorological visibility distance based on the contrast expectation m. Finally, we plot the estimated meteorological visibility distance versus the reference meteorological visibility distance in Fig. 6(b). From the same experimental data, Babari et al. (2010) fit an empirical logarithmic model, whereas Hautière et al. (2010) fit the contrast expectation of a uniform distribution (11). The mean relative errors are compared in Tab. 1. Since the applications are very different depending on the range of meteorological visibility distances, the relative error for various applications are computed: road safety, meteorological observation and air quality. Compared to data-driven approaches, one can see that the 338 error remains low with model-driven approaches for critical 339 safety applications, increases for higher visibility ranges, and 340 becomes huge for visibility distances above 7 km. On the test 341 site, using the actual target distribution, i.e. the exponentiel 342 model, improves the previous results obtained with the uniform 343 distribution (Hautière et al., 2010) and covers a large spectrum 344 of applications with a limited error. Due to the unbalanced 345 data fitting process, the error is slightly higher for low visibil-346 ity ranges (<1.000 m) using the data-driven approach (Babari 347 et al., 2010) despite the weighting introduced by the authors. It 348 remains limited for higher visibility ranges (>5000 m).
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  for the whole ranges of visibility. According to section 4.4, we 354 are sure that the model is valid in the range 0 -τ, i.e. 0-1000 355 m in our case. A new data fitting process is deduced. First, the 356 exponential distribution model (18) has been fitted to the data 357 in the range 0-1000 m using a robust non-linear least squares 358 fitting technique, namely the Levenberg-Marquardt algorithm.

368

  Finally, according to metrology practices in the field of visi-369 bility observations, a measurement device is considered as cor-370 rect if the error is smaller than 20% in 90% of the cases. The 371 10% worst cases are thus excluded from the error computation.

  372

375

  The data-driven approach requires visibility data for its cal-376 ibration and implementation. Both model-driven approaches 377 need only to determine the type of targets distribution in the 378 scene. The distributions used in this article, namely uniform 379 and exponential, are parameterized by a single parameter d max

Figure 7 :

 7 Figure 7: Enhanced data fitting process with the exponential distribution model on short visibility data and extrapolated on higher visibility ranges. The data are plotted in blue. The fitted model is plotted in red.

  398

  to results shown in this article, we be-406 lieve that an ordinary camera is able to monitor the atmospheric 407 visibility whatever the envisaged application: road safety, aero-408 nautic and air quality. This allows envisioning the development 409 of multipurpose environmental monitoring cameras.

  methods are being developed to estimate the 412 atmospheric visibility. However, the methods are either dedi-

  170jects in the scene and ψ denotes the p.d.f. of there being an 171 object at the distance d in the scene. To compute m, a realistic 172 expression for the density of objects ψ in the scene is needed.

	173
	3.2. Expectation of the Contrast

174

Choosing a suitable target distribution ψ allows us comput-175 ing the expectation of the contrast (10) with respect to the me-176 teorological visibility distance. In

[START_REF] Hautière | Estimating meteorological visibility using cameras: A probabilistic modeldriven approach[END_REF]

, (

10

) 177 was solved assuming a uniform distribution of targets between 178 0 and d max , which leads to the following solution:

Table 1 :

 1 Mean relative errors of meteorological visibility distance estimation with respect to the envisioned applications.

		.6%	18.1%	29.7%	∞	∞
	Exponential distribution	10.0%	16.2%	29%	60%	373%
	Exponential distribution + enhanced fitting	9.7%	11.2%	33%	50%	63.5%
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spatial information systems could be used to estimate a more 390 accurate depth distribution at a camera location, so as to get cated to road safety (low visibility ranges) or to air quality mon-414 itoring (high visibility ranges).
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In this article, a generic model-driven approach is presented,