
HAL Id: hal-00874796
https://hal.science/hal-00874796v1

Submitted on 18 Oct 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Contribution of ambient vibration recordings (Free-field
and buildings) for post-seismic analysis: the case of the

Mw 7.3 MARTINIQUE (French lesser ANTILLES)
earthquake, november 29, 2007

Julie Regnier, Clotaire Michel, Etienne Bertrand, Philippe Gueguen

To cite this version:
Julie Regnier, Clotaire Michel, Etienne Bertrand, Philippe Gueguen. Contribution of ambient vi-
bration recordings (Free-field and buildings) for post-seismic analysis: the case of the Mw 7.3 MAR-
TINIQUE (French lesser ANTILLES) earthquake, november 29, 2007. Soil Dynamics and Earthquake
Engineering, 2013, 50, pp. 162-167. �10.1016/j.soildyn.2013.03.007�. �hal-00874796�

https://hal.science/hal-00874796v1
https://hal.archives-ouvertes.fr


1 

 

 
 

 

CONTRIBUTION OF AMBIENT VIBRATION RECORDINGS 1 

 (FREE-FIELD AND BUILDINGS) FOR POST-SEISMIC ANALYSIS:  2 

THE CASE OF THE MW 7.3 MARTINIQUE (FRENCH LESSER 3 

ANTILLES) EARTHQUAKE, NOVEMBER 29, 2007 4 

 5 

J. Régnier
1
, C. Michel

3
, E. Bertrand

1
 and P. Guéguen

2
 6 

 7 
1 ERA "risque sismique", LRPC Nice, CETE Méditerranée 8 
2 ISTerre, CNRS/IRD/IFSTTAR, Université Joseph Fourier Grenoble 1 9 
3 Swiss Seismological Service, ETH Zürich 10 
 11 
Corresponding author:  12 
Julie Régnier  13 
Tel : 0033 492 008 157 14 
Mail: julie.regnier@developpement-durbale.gouv.fr. 15 
Address: CETE Méditerranée 56 Bd de Stalingrad 06359 Nice, France 16 
 17 

ABSTRACT 18 

Following the Mw 7.3 Martinique earthquake, November 29
th
, 2007, a post-seismic survey was 19 

conducted by the Bureau Central Sismologique Français (BCSF) for macroseismic intensities 20 

assessment. In addition to the inventories, ambient vibration recordings were performed close to the 21 

particularly damaged zones in the free-field and the buildings. The objective of the paper is to show 22 

the relevancy of performing ambient vibration recordings for post-earthquake surveys. The analyses of 23 

the recordings aim at explaining the variability of the damages through site effects, structure 24 

vulnerability or resonance phenomena and to help the characterization of the post-seismic building 25 

integrity. In three sites prone to site effects, we suspect damage to be related to a concordance 26 

between soil fundamental frequency and building resonance frequency. Besides, the recordings of 27 

ambient vibrations at La Trinité hospital before and after the earthquake allow us to quantify the 28 

damage due to earthquake in terms of stiffness loss. 29 

 30 

HIGHLIGHTS:  31 

• We performed ambient vibration recordings in both soil and structure after a damaging 32 

earthquake  33 

• We investigate the sources of damage to buildings 34 

• We compare pre-and post earthquake recordings to evaluate damage grade 35 

• We propose recommendations for the use of such recordings in post seismic survey. 36 

KEYWORDS: Ambient vibrations, site effect, resonance, post-earthquake survey, damage, 37 

Martinique earthquake. 38 

 39 
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INTRODUCTION 40 

A large part of knowledge in the fields of earthquake engineering and engineering seismology has 41 

been accumulated during post-seismic surveys all around the world. These surveys have many 42 

different objectives: (1) estimate the buildings safety right after the earthquake, (2) characterize the 43 

ground motion by establishing macroseismic maps, (3) provide feedback for earthquake engineering 44 

by studying damage features and, eventually (4) help urban planning in defining zones with ground 45 

motion amplification and induced effects (liquefaction, landslides…). However, the knowledge of the 46 

structural damage causes is prior information necessary to relevantly reach these objectives. For a 47 

given deformation capacity, e.g. associated to a building class, damage will only depend on the 48 

building response to the ground motion. The building response depends on the incident seismic 49 

motion (that can be largely affected by the site response) and its representing parameters (maximal 50 

amplitude, frequency content…) with regard to the structure and its dynamic properties (e.g. Clough & 51 

Penzien, 1993). Thus, two key parameters among those influencing the seismic demand can be 52 

considered: 1) the resonance frequencies of the site and 2) the building resonance frequencies. 53 

Seismic noise recordings in free-field and ambient vibration recordings in buildings are robust and low 54 

cost methods for estimating the soil and structure low-strain resonance frequencies. Since the 1990s 55 

and the widespread studies for site effects based upon the Horizontal to Vertical Noise Spectral Ratio 56 

(HVNSR), several papers have shown the relevancy of HVSNR to partially explain damage locations 57 

and/or grades (e.g., Anderson et al., 1986; Guéguen et al, 1998; Duval et al, 2006; Theodoulidis, 58 

2008). However, other studies show that HVNSR alone cannot be directly linked to damage 59 

distribution (Mucciarelli et al, 1998, 1999; Trifunac et al, 2000; Tertulliani, A. et al., 2012) and the 60 

damage variability can also be related to the building capacity rather than the site characteristics 61 

(Chatelain and Guillier, 2008).  62 

Besides, ambient vibration recordings in buildings have gained more and more interest for last 63 

decades, for earthquake engineering and civil engineering applications. The elastic fundamental 64 

frequency is a key-parameter in earthquake engineering for building response assessment (e.g. 65 

Michel et al., 2010a, 2010b) and structural health monitoring (e.g. Carden and Fanning, 2004, Dunand 66 

et al., 2004).  67 

The joint approach (i.e. free-field and building investigation) can be relevant for post-seismic 68 

evaluation of the origin of the damage variability and building integrity. Gallipoli et al (2004), Gosar et 69 

al. (2009) and Mucciarelli et al. (1999, 2010) showed by ambient vibrations applications that soil-70 

structure resonance could play a major role in damage location. 71 

Following the 29th November 2007 Mw=7.3 Martinique earthquake, a post-seismic survey was set up 72 

to collect macroseismic data by the Bureau Central Sismologique Français in charge of the definition 73 
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of the macroseismic intensities after earthquakes (Schlupp et al., 2008). During this survey, the 74 

authors performed ambient vibration recordings in highly damaged zones.  75 

The scope of this paper is to show a case study of the usefulness of the joint utilisation of ambient 76 

vibration recordings in free-field and building to (1) improve the evaluation of the damages, (2) 77 

understand the origins of the damage variability by understanding the low-strain response of the soil 78 

and building and (3) show the relevancy of these information to complete a macroseismic study such 79 

as the one led by the BCSF. 80 

DESCRIPTION OF THE CASE STUDY 81 

The 29th November 2007 Martinique earthquake occurred at rather great depth (152 km) with a 82 

moment magnitude of 7.3 (Guéguen, 2012) located in the northwest at 30 km of the island. The 83 

French Accelerometric network (RAP http://www-rap.obs.ujf-grenoble.fr, Pequegnat et al., 2008) 84 

recorded ground motions due to the main shock in 34 stations in Martinique (Fig. 1). The horizontal 85 

Peak Ground Accelerations (PGA) is ranging from 0.3 to 4 m.s
-2

 through the island. The local 86 

variability is large, e.g. in Fort-de-France from 0.4 to 2 m.s
-2

 over several hundreds meters, indicating 87 

the importance of local soil conditions. Macroseismic intensities using EMS98 (Grünthal et al., 1998) 88 

on the island were estimated between V and VI-VII (Fig. 1). We performed ambient vibration 89 

recordings in free-field and in buildings in three sites (Fig. 1), selected for the high level of structural 90 

damages compared to the macroseismic intensities estimated in the town.  91 

 92 

Figure 1 93 

 94 

Site 1. In Le Francois, damage due to the earthquake did not exceed grade 2 (EMS98) except for two 95 

school buildings, which suffered damage up to grade 3. The building A of Anne Marc school (Fig. 2) is 96 

a two-storey building with reinforced concrete (RC) frames built in 1973 without earthquake-resistant 97 

design on ancient mangrove, sedimentary deposit prone to site effects (Guéguen et al., 2011). It 98 

exhibits a low lateral stiffness in the longitudinal direction and a soft story at the ground floor. After the 99 

earthquake, we observed cracks at the bottom of several columns of the ground floor as well as 100 

numbers of cracks in partition walls and falls of mortar (damage grade 3 EMS98).  101 

 102 

Site 2. In La Trinité, the AFPA buildings (E and H) were strongly damaged. Both structures, built in the 103 

1970s without earthquake-resistant design, were studied but this paper focuses on building E. It is a 104 

two-storey building with RC frames and a soft ground floor (Fig. 2). This building is divided by thin 105 

filled joints into 4 L-shaped blocks, sensitive to torsion due to the eccentricity of the rigidities. 106 

Moreover, infill brick walls are not symmetrically distributed. It suffered slight structural damage (small 107 

cracks in columns at the ground floor) and moderate non-structural damage (large cracks in partition 108 
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walls). According to soil studies during the construction, these buildings are founded on sedimentary 109 

deposits. 110 

 111 

Site 3. The hospital of La Trinité is a RC infilled frames structure built in 1974. Excluding low-rise 112 

aisles, three high-rise blocks (called A, B and C) are respectively 9, 8 and 7 stories above the ground 113 

level and separated by 5 cm joints filled by Styrofoam (Fig. 2). After the earthquake, small cracks 114 

appeared in the structural system, larger cracks and plaster falls in the infill walls and false ceiling 115 

pieces fell down, associated to moderate damage (grade 2). 116 

 117 

Figure 2 118 

EXPERIMENTS, PROCESSING AND RESULTS 119 

Ambient vibration recordings in free field and in structures were at least 15 min. long with 120 

seismometers (Lennartz 3D 5s and LITE) and a 24-bits Cityshark digitizer (Chatelain et al., 2000) at a 121 

sampling frequency of 150 Hz to 200 Hz. The N component of sensors, were oriented in one of the 122 

main direction of the studied building. The free-field recordings were analyzed using Horizontal to 123 

Vertical Noise Spectral Ratio (HVNSR) method where the Fourier Transforms of at least 30 s windows 124 

selected with an anti-triggering STA/LTA (Short Term Averaging, Long Term Averaging) algorithm are 125 

averaged and smoothed following Konno and Ohmachi (1998) procedure (b=40). The HVNSR is given 126 

by the ratio of the quadratic mean of the horizontal spectra by the vertical one and interpreted 127 

following the SESAME project recommendations (Bard, 2004). If the SESAME criteria are fulfilled, the 128 

frequency of the peak is likely to be related to the fundamental frequency of the site. 129 

Depending on the importance of the building, on the complexity of the structure and on the severity of 130 

the damages, one must adapt the experimental procedure. Ambient vibrations in buildings were 131 

recorded with one or two sensors simultaneously. Several processing techniques were used 132 

depending on the number and position of the recording points. For single station recordings at the 133 

building top, the Power Spectral Density (PSD) spectra have been estimated (square of the Fourier 134 

Transform amplitude) using the same procedure as for the ground without smoothing. Interpretation of 135 

these spectra in terms of building dynamic properties may be ambiguous and were done with caution. 136 

For simultaneous recordings at different points, the Frequency Domain Decomposition (FDD, Brincker, 137 

2001) is used as in Michel et al. (2010a). Peaks in the first singular values can be interpreted as 138 

resonance frequencies and singular vectors as modal shapes. The knowledge of modal shapes is 139 

crucial for the interpretation of structural modes, but their quality depends on the number and position 140 

of recording points. 141 

For both ground and structure, the resonance frequencies obtained from ambient vibration recordings 142 

are valid for low strains. During strong motion, nonlinear response of the soil (e.g. Régnier et al., 143 
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2012), the building (e.g. Michel and Guéguen, 2010) and the soil–structure interaction can temporarily 144 

make the observed natural frequencies shifting to lower frequencies. Nonetheless, Puglia et al. (2011) 145 

showed that the frequencies variations due to nonlinear soil behavior were not relevant (during the 146 

l’Aquila earthquake for which acceleration up to 0.7 g were recorded) from building design standpoint. 147 

In this article, we study the link between damage and the similarity in the natural linear frequencies of 148 

the soil and the structure. 149 

 150 

In the Anne Marc School (site 1), both soil and structure recordings were performed to evaluate and 151 

compare the soil and structure responses. The analysis of the recordings (Fig. 3) shows that the peak 152 

frequency of the HVNSR in free field (1.75 Hz) and the first peaks of the PSD in the structure in both 153 

directions (1.6 and 1.8 Hz in the longitudinal and transverse directions, respectively) are very close. It 154 

indicates that the structure is sensitive at low strain to the 1D resonance frequency of the soil and, 155 

thus, that a resonance between soil and structure eventually occurred during the Martinique 156 

earthquake, inducing higher damage. 157 

 158 

Figure 3 159 

 160 

In the AFPA building (site 2), the same procedure was followed but with more recording points. Free-161 

field recordings were performed at different ground levels (S1, 3 m from the building at the same level, 162 

S2, 15 m from the building downhill, Fig. 2). Frequency peaks are clearly observed at 2.4 and 2.8 Hz 163 

in the HVNSR for S1 and S2, respectively (Fig. 4), the difference of the frequencies being certainly 164 

due to the variation of the deposit thickness.  165 

In three of the 4 L-shaped blocks of the building (named L1, L2 and L3), we recorded ambient 166 

vibrations simultaneously at the ground floor, the first and the second stories. The chosen sensor 167 

placement, however, did not allow to fully understand the dynamic behaviour of the building. The 168 

fundamental modes appear between 2.7 and 4.3 Hz and include bending and torsion. These modes 169 

are quite close to the fundamental frequency of the ground found previously (2.4 to 2.8 Hz). However, 170 

the other AFPA building (building H), not detailed here, has higher resonance frequencies (3.5 to 4.5 171 

Hz) and was therefore less prone to resonate with the ground but was more damaged than building E 172 

(damage grade 3) also with typical damage due to torsion. In this case, the design of the structure 173 

(lack of symmetry in the load bearing system) was therefore probably the main cause of damage 174 

during the earthquake. 175 

 176 

 177 

Figure 4 178 

 179 
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Finally, in the hospital building (site 3), full-scale ambient vibration recordings have been performed 180 

several months before the event. After the Martinique earthquake, we recorded ambient vibrations in 181 

the building to analyse the evolution of its dynamic behaviour related to damage.  182 

As illustrated in Fig.5, the soil at his site is prone to site effect with a clear peak at 2.4 Hz. The Fourier 183 

transform of the recordings at the top of the block A shows that the building resonance frequencies are 184 

close to the HVNSR peak around 2.5 Hz. 185 

 186 

Figure 5 187 

 188 

Data recorded in 93 points of the structure before the earthquake has been reprocessed using FDD 189 

technique (Brincker et al., 2001) (Fig. 6). In this dataset, two close clear peaks carried by the 2 first 190 

singular values indicate the presence of 2 modes around 2.5 Hz. The first mode at 2.45±0.03 Hz is the 191 

first longitudinal bending mode of the whole building (Fig. 6). The second mode at 2.56±0.03 Hz is the 192 

first transverse bending mode of the structure. The modal shape indicates that these modes are partly 193 

coupled to torsion but with differences for each block. The amplitudes of the higher modes are lower 194 

and are not detailed here. 195 

 196 

Figure 6 197 

 198 

The PSD of the ambient vibration recordings in the structure at the same position before and after the 199 

earthquake have been calculated (Fig. 7). Assuming only a moderate frequency decrease, the 200 

knowledge of the pre-earthquake structural behaviour allows interpreting the peaks of the post-201 

earthquake recordings. The first longitudinal mode has shifted from 2.45±0.03 Hz to 2.00±0.05 Hz, i.e. 202 

18±4% frequency drop. Moreover, the first transverse mode has shifted from 2.56±0.03 Hz to 203 

2.15±0.05 Hz, i.e. 16±4% frequency drop. Dunand et al. (2004) already used this technique at a larger 204 

scale after the Mw=6.8 Boumerdes, Algeria earthquake  (May 21, 2003) and suggests a value of 40% 205 

frequency drop as a limit for the building to be impossible to retrofit (difference between orange and 206 

red classification). The observed damage is therefore noticeable but not critical as denoted by the 207 

assigned damage grade 2 EMS. However, such comparisons are still lacking in the literature to 208 

propose a relationship between frequency drop and damage grade.  209 

Ambient vibration recordings in free field were as well performed before and after the earthquake. The 210 

soil fundamental frequency at 2.4 Hz is found to be the same. The resonance of the building before 211 

the earthquake (2.45 Hz for the first mode) is very close from the soil fundamental frequency. 212 

Resonance between the soil and the building response increased the seismic demand of the structure, 213 

which explains most probably the damage.  214 

 215 

Figure 7 216 
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CONCLUSIONS 218 

Through these examples, we illustrated how to use ambient vibration recordings in soil and structure 219 

in post seismic survey. This approach helps to understand the possible causes of damaged zones 220 

distribution. Moreover, ambient vibrations recordings are low cost and can be rapidly set up after an 221 

earthquake. 222 

With soil recordings, we investigated the possibility of soil to be prone to site effect. Link with damage 223 

is however not straightforward: site effect only increases the seismic demand around the soil 224 

resonance frequency. However, using both soil and structure recordings, the sensitivity of the 225 

structure to the 1D linear soil resonance can be checked. Thus, conclusions can be made on the 226 

possibility of having a resonance between soil and structure, which increases the seismic demand in 227 

the building and can induce higher damage.  228 

In the three study-sites, the free field ambient vibration recordings indicate the occurrence of site 229 

effects. We found similarities between soil and structures resonance frequencies. It appears that 230 

resonance played a role in damage distribution.  231 

In the La Trinité hospital, the fundamental frequency suffered a shift of 15-20% during the earthquake. 232 

Besides, the permanent frequency shift was related to a loss of stiffness of the structure that can be 233 

associated to a damage grade 2 EMS 98. To analyse temporary frequency shift, structure permanent 234 

monitoring is necessary.  235 

 236 

According to this case study, we can make some recommendations for the use of these recordings in 237 

post seismic survey. These recommendations should be adapted to the building importance, damage 238 

level and the objectives of the recordings. In our experience, such post-seismic survey should be 239 

focused on important buildings (importance class III and IV in Eurocode 8). 240 

 241 

• Objective 1: Looking at potential concordance between soil and structure frequencies. In this 242 

case only one recording at the top of the structure and one on the free field (in the same 243 

geological context as the soil under the structure) are sufficient. Such measurements are 244 

interesting to understand the sources of damage. Analysis of such measurements could be 245 

used as one support (among others) to make decision on whether the building should be 246 

retrofitted (so as the resonance frequency of the building is different from the soil one).  247 

 248 

• Objective 2: Having the modal shape associated to the predominant frequency. It requires 249 

simultaneous recordings at different storeys of the building. Such information could be very 250 

useful to constrain the numerical simulation of the dynamic behaviour of the structure and to 251 

test retrofitted solutions. Besides it can also be used to evaluate the evolution of the 252 

damaged structure behaviour during the aftershock sequences.  253 



8 

 

 
 

 

 254 

• Objective 3: Evaluate the stiffness loss of the structure and evaluate damage grade. It 255 

requires recordings at the top of the building before and after the earthquake. It is very useful 256 

in crisis management and is a support to emergency diagnosis of the building and visual 257 

screening of damages state. It is a quantitative measurement that is complementary to 258 

expert advises. Such measurements should be performed for high stake buildings of class IV 259 

in Eurocode 8. 260 

 261 

For risk mitigation and to anticipate post earthquake crisis management, recordings of ambient 262 

vibrations should be performed in structures of high importance. Although permanent monitoring has a 263 

heavy cost, it should be considered for a small number of typical buildings. 264 

 265 
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FIGURES 353 

 354 

Figure 1 Map of the macro seismic intensity at the Martinique island after the 28
th
 November 2007 355 

earthquake. The circles indicate the position of the RAP stations that recorded the earthquake (size 356 

scale is function of the maximal PGA on the three components in cm/s
2
), and location of the sites that 357 

were studied.  358 

 359 

 360 

Figure 2: (a) Site 1- Location of the recordings performed at the Anne-Marc school in Le François. The 361 

building ambient vibration recording is performed at the second floor half length. (b) Site 2- AFPA 362 

Bulding E at the Trinité district. (c) Site 3 - The La Trinité Hospital site (aerial view) with study-blocks 363 

A, B and C. The Sensors were oriented in the transverse direction of the buildings (the N component 364 

of the sensors is called Ns) 365 

 366 
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Figure 3: Site 1 – Top: Normalized Power 

Spectral Density of the recordings in the structure 

(solid lines) and the recordings in the soil 

(dashed lines) in the 3 directions East (E) North 

(N) and Vertical (Z). Bottom: HVNSR of the free 

field recording (mean, 16 and 84 percentiles). 

 

 

Figure 4: Site 2 - Top: Normalized Power 

Spectral Density of the recordings in the structure 

(solid lines) and the recordings in the soil 

(dashed lines) in the 3 directions East (E) North 

(N) and Vertical (Z). Bottom: HVNSR of the free 

field recording (mean, 16 and 84 percentiles). 

 

Figure 5: Site 3 - Top: Normalized Power 

Spectral Density of the recordings in the structure 

(solid lines) and the recordings in the soil 

(dashed lines) in the 3 directions East (E) North 

(N) and Vertical (Z) of the recording at the top of 

the block A. Bottom: HVNSR of the free field 

recording the mean, 16 and 84 percentiles. 
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 372 

Figure 6: Site 3 - Pre-earthquake modal analysis results. a) FDD spectrum, b) Modal shapes of the 373 

first transverse and longitudinal modes at 2.56 and 2.45 Hz, respectively. 374 

 375 

 376 

Figure 7: Site 3 – Pre- and post-earthquake PSD spectra in block A in the longitudinal (left) and 377 

transverse (right) directions.  378 


