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Abstract. In order to reduce both acquisition and reconstruction times,
illumination and detection in fluorescence diffuse optical tomography (FDOT)
have recently evolved from a point-based to a pattern-based approach. The use
of structured illumination, offering the ability to project any pattern of light onto
the object, associated to the compression of the acquired fluorescence images has
paved the way to a new generation of fast reconstruction algorithms for FDOT.
However, the choice of the most appropriate set of source patterns is still an open
problem.

Here, the use of typical source patterns is investigated on experimental data.
Reconstructions of similar qualities are obtained for the different types of source
patterns. We found that the performances of structured illumination are limited
by the required positivity of the source patterns. To alleviate this problem, we
introduce a novel method, namely the virtual source patterns method, which
allows for considering any kind of patterns, e.g., with negative and complex
intensities. This new method provides a significant increase of the contrast of
the reconstruction and also a reduction of the reconstruction error, especially
when virtual wavelet source patterns are considered.

Keywords: Fluorescence tomography, optical tomography, dimensionality reduction,
image compression.
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1. Introduction

In the last years, the rapid development of specifically designed optical markers
and technological improvements of imaging system, has fostered the field of optical
molecular imaging (Cherry, 2004; Ntziachristos et al., 2003). This methodology allows
one to follow, using longitudinal studies, functional processes and disease pathways at
the molecular level in the living animal. The main advantages of optical techniques
are represented by their high sensitivity, low invasiveness and low cost.

The main challenge of optical molecular imaging is to deal with thick tissues for
which the images appear blurred due to scattering. Dealing with animal models,
this aspect is particularly problematic for mice, whose dimensions and optical
properties correspond to a fully diffusive regime, such that transmission imaging
suffers from a lack of depth resolution. Fluorescence diffuse optical tomography
(FDOT), also referred to as fluorescence molecular tomography (FMT), has been
designed to solve these problems allowing to reconstruct the three-dimensional (3-D)
fluorescence distribution in small samples (Milstein et al., 2003; Ntziachristos et al.,
2005; Herv et al., 2007; Montet et al., 2007; Koenig et al., 2008; Kumar et al., 2008;
Klose and Pschinger, 2011).

In classical FDOT, part of the sample surface is illuminated by a point source and
the fluorescent light reemitted by the tissue is acquired by a detector (CCD cameras or
photomultipliers via an optical fibre). Such a measurement is repeated by changing the
input source position and/or rotating the sample. To improve the spatial resolution of
the fluorescence reconstruction, a common strategy consists in using a large amount of
illumination and detection points. However, due to the increase in the size of the data
set, this strategy is not always numerically tractable. Moreover it leads to a significant
increase of the acquisition time. To remain compatible with in vivo measurements,
a trade off between acquisition/reconstruction times and reconstruction performances
must be established.

In the last years, different research groups have begun to study the possibility
to increase the speed of FDOT by reducing the data-set without sacrificing the
reconstruction quality (Cuccia et al., 2005; Bassi et al., 2009; Konecky et al., 2009).
To this end, it has been proposed to reduce the dimension of the measurement space
by implementing two main concepts, often together. First, a series of works have
capitalized on the low-pass filtering of the spatial frequencies of light propagating
in highly scattering medium (Cuccia et al., 2005; Bassi et al., 2008). Fluorescent
images obtained from biological tissue can be compressed to few coefficients
with little degradation using image basis sets such as Fourier (D’Andrea et al.,
2010; Ripoll, 2010) or wavelets (Rudge et al., 2010; Ducros et al., 2010b, 2011).
Knowing the basis functions corresponding to the retained coefficients, referred
to as detection patterns, a compressed version of the inverse problem can be
numerically solved. This leads to a significant reduction in the reconstruction time.
Analytical expressions for reconstruction with large data sets have also been developed
(Markel et al., 2003; Wang et al., 2005) and successfully applied to experimental data
(Panasyuk et al., 2008). However, the latter approach is limited to simple geometries
such as slabs, cylinders, or spheres, for which symmetry properties are available
(Markel and Schotland, 2004).
Second, it has been proposed to adopt patterns of illumination instead of point
sources (Cuccia et al., 2005; Joshi et al., 2006a,b; Konecky et al., 2008; Lukic et al.,
2009; Konecky et al., 2009; Dutta et al., 2010) with a view to reducing the number
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of illuminations. Indeed, few well-chosen patterns can be used to acquire as
much information as a dense raster scanning of a point source (Lukic et al., 2009;
Ducros et al., 2010a). A collateral advantage is that wide field illuminations allow one
to project high light power on the sample without overcoming safety limits based on
power density.
In this context, we have proposed to use both detection and illumination compression.
In this way, fast 3-D reconstructions in arbitrary geometry, has been demonstrated
with experimental data acquired from a slab medium (Ducros et al., 2010a) and from
a cylinder (Ducros et al., 2011). Recently, a similar approach was used to perform
tomographic measurement of small animals in time domain in Chen et al. (2010).

An open problem lies in the choice of the most appropriate set of illumination
patterns to be projected onto the sample. Up to now different types of source patterns
have been proposed. They can be categorized into five groups:

• Uniform or plane wave. It consists in illuminating the object with a spatially
uniform pattern (Joshi et al., 2006b).

• ad hoc. Different type of patterns have been empirically tested. Among
them, moving bars (Joshi et al., 2006b; Bélanger et al., 2010), scanning Gaussians
and diffractive optics patterns (Joshi et al., 2006a), checkerboard Bélanger et al.
(2010).

• Sinusoids. The homogeneous infinite slab being a purely low pass filter, the
sinusoidal illumination patterns have been proposed to detect the presence of
embedded inclusions. This natural candidate has been used for imaging purpose
on the slab (Cuccia et al., 2005), but also for analytical (Konecky et al., 2009) and
numerical (Bassi et al., 2009; D’Andrea et al., 2010; Ripoll, 2010) reconstruction
in simple geometries.

• Wavelets bases. For more complex geometries wavelet bases have been proposed
(Ducros et al., 2010a, 2011) for their well known compression ability.

• Optimal patterns. A fundamental step has been made by Dutta et al. (2010) who
provided optimal source patterns for a slab, a cylinder, and a numerical phantom
simulating the optical properties of animal models (Digimouse).

However, a comparative study among the different patterns is still missing. In
particular, it remains unclear how the choice of the source pattern translates in terms
of reconstruction quality when experimental data are considered.

The goal of this paper is twofold. The first goal is to experimentally compare
the typically-used source patterns in term of reconstruction quality. In particular,
it will be shown that even if different patterns are used the reconstruction quality is
similar to that obtained with a uniform illumination. Since physically realisable source
distributions are necessarily positive, a second goal of this paper is to introduce the
virtual source patterns (VSP) method which is a general method able to determine
the diffusive sample response to any negative or complex pattern and therefore to
fully take advantage of the structured illumination. In Section 2, we first give the
main equations formulating the forward problem of FDOT. Then, a method enabling
to consider arbitrary patterns is presented. Last, the four steps of our reconstruction
algorithm are described. In Section 3, we present five case studies. The first three
case studies deal with actual sources patterns and the last two implement virtual
source patterns. In Section 4, we discuss the reconstruction results that show a clear
advantage in implementing the VSP method. Finally, our conclusions are reported in
Section 5.
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Table 1. Mathematical notations

Variable Meaning Dimension

I Number of views 1
J Number of actual source patterns 1

J̃ Number of virtual source patterns 1
K Number of retained components 1
N Number of voxels 1
Ω Volume of the medium R3

∂Ω Surface of the medium R2

∂Ωe Illumination surface R2

∂Ωm Detection surface R2

Σe Illumination plane R2

Σm Detection plane R2

φ Photon density C(Ω)
d Detection pattern C

f Discrete fluorescence distribution RN

m measured image R
Nccd
+

m̃ virtually measured image CNccd

s source pattern R
Ndmd
+

s̃ virtual source pattern CNdmd

B Boundary condition operator C(Ω) → C(Ω)
M Measurement operator C(∂Ωm) → C(∂Σm)
P Propagation operator C(Ω) → C(Ω)
X Illumination operator C(∂Σe) → C(∂Ωe)

2. Method

In this paper, italic letters (a, α or A) indicate functions or constants. Vectors are
denoted by lowercase bold italic letters (a or α) and matrices by capital bold italic
letters (A or Φ). We denote 〈f, g〉Ω =

∫
r∈Ω

f(r)g(r) dr the inner product between
two functions f and g, A∗ the adjoint of operator A, and x the complex conjugate of
x. A summary of the notation used throughout the paper is provided in table 1.

2.1. Forward Problem

As depicted in figure 1, we consider a device, e.g. a digital micromirror device (DMD),
able to illuminate a portion ∂Ωe of the surface ∂Ω of the medium Ω embedding a
fluorescence distribution f(r). The fluorescence light emitted from the surface ∂Ωm

is recorded by a CCD camera. The forward problem consists in determining the
fluorescence image acquired by the CCD knowing the source pattern s loaded on the
DMD and the fluorescence distribution f .

Within the medium, the photon density φ (W.m−2) obeys the following coupled
equations (Arridge and Schotland, 2009):

Peφe = 0 in Ω and Beφe = Xs on ∂Ω, (1a)

P fφf = φeημf
a in Ω and Bfφf = 0 on ∂Ω. (1b)

where P is the propagation operator, B is an operator accounting for boundary
conditions, and X is a mapping from the DMD plane Σe to the surface object ∂Ωe.
Equation (1a) describes the propagation of light at the excitation wavelength λe while
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Figure 1. Principle of acquisition and notations

(1b) describes propagation at the fluorescence wavelength λf . In (1b), the source term
ημf

aφ
e (W.m−3) represents the part of the photons absorbed at λe that are remitted

at λf , with η the quantum yield of the fluorescent marker and μf
a its absorption

coefficient. In what follows, we denote f = ημf
a the fluorescence distribution, which is

to be recovered. In this paper, we consider the diffusion approximation together with
partial boundary conditions, which leads to (Ishimaru, 1977)

P = −∇[D(r)∇] + μa(r), and (2a)

B = I −AD(r)n̂ · ∇, (2b)

where D is the diffusion constant of the medium and μa its absorption coefficient. In
(2b), I stands for the identity operator, A is a constant that depends on the index
mismatch, and n̂ indicates the outward-pointing normal to the surface ∂Ω.

The fluorescence image acquired by the CCD ism = M[φf ] whereM is a mapping
from the object surface ∂Ωm to the CCD plane Σm. In our approach we compress the
acquired image

m � m̂ =

K∑
k=1

m̂kdk (3)

where the dk are the basis of the image compression method; in analogy to the source
compression basis used herein, we consider the image compression basis vectors as
detection patterns.

Given a fluorescence distribution f(r), the components m̂k can be obtained by
means of an integral operator with kernel w. Mathematically:

m̂k = 〈w(s,dk), f〉Ω , (4)

where the integration kernel w only depends on the source and detection pattern s
and dk. It can be shown that (see appendix A for proof)

w(s,dk) = Ge[u]Gf∗[vk], (5)
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where Ge (resp. Gf) is the Green’s operator for (1a) (resp. (1b)), u = X [s] is the source
pattern mapped onto surface ∂Ωe, and vk is the adjoint detection pattern defined on
surface ∂Ωm. The adjoint detection pattern is defined by

vk = M∗[dk] (6)

In a general problem, the object is rotated and multiple-illumination acquisitions
are performed. We denote I the number of rotation angles and J the number of source
patterns that are projected onto the object for each view. Such a process results in the
acquisition of a set of IJ images. Each of them is compressed to K components, which
leads to a total number of Ktot = IJK image components. Discretizing the volume
Ω in N voxels, the forward problem given in (4) simplifies to the discrete product

m̂ =Wf . (7)

where m̂ ∈ C
Ktot is the measurement vector containing the retained image

components, W ∈ C
Ktot×N is a matrix referred to as the weight matrix, and f ∈ R

N

is the discrete concentration vector. We denote by wi,j,k the discretised kernel of (5)
for the kth detection pattern of the jth source and ith rotation, with k the fastest
varying index, followed by j, and with i the slowest varying index. Equation (7) can
be written:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

m̂1,1,1

...
m̂1,1,k

...
m̂1,j,k

...
m̂i,j,k

...
m̂I,J,K

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

w1,1,1
1 . . . w1,1,1

n . . . w1,1,1
N

...
...

w1,1,k
1 . . . w1,1,k

n . . . w1,1,k
N

...
...

w1,j,k
1 . . . w1,j,k

n . . . w1,j,k
N

...
...

wi,j,k
1 . . . wi,j,k

n . . . wi,j,k
N

...
...

wI,J,K
1 . . . wI,J,K

n . . . wI,J,K
N

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

·

⎛
⎜⎜⎜⎜⎜⎜⎝

f1
...
fn
...
fN

⎞
⎟⎟⎟⎟⎟⎟⎠

(8)

2.2. Virtual source patterns method

Here we describe a simple approach, namely the virtual source pattern (VSP) method,
that offers the possibility to exploit the response of the diffusive sample to any negative
or complex pattern, although only patterns with positive intensities can be projected
on the sample. The method capitalize on the linearity of the forward problem.

Let S̃ = [s̃1 . . . s̃J̃ ] represent the J̃ (desired) virtual source patterns. Our approach

consist in finding J actual source patterns S = [s1 . . . sJ ] and a J̃ × J (possibly
complex) matrix T such that

S̃T = TST. (9)

The matrix T is referred to as transformation matrix. As a consequence of linearity,
the same transformation can be applied to the actual measurementsM = [m1 . . .mJ ]
so as to get the virtual measurements M̃ = [m̃1 . . . m̃J̃ ]. The virtual images would

have been measured if the virtual patterns S̃ were projected onto the medium.
Formally:

M̃T = TMT. (10)
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2.3. Virtual wavelet patterns

In this section, we describe how to generate wavelet patterns by means of the virtual
source method. The reader can refer to the work of Mallat (1989) for a general
discussion on wavelet bases.

The wavelet functions (mother wavelets) can be derived from the so-called scaling
functions (father wavelets). In dimension 2, at a given resolution, the i)M vertical
wavelets {qV}, ii)M horizontal wavelets {qH}, and iii)M diagonal wavelets {qD} can
be constructed from the 4M scaling functions {p} taken at a higher resolution. Hence,
to obtain virtual wavelet patterns S̃ in (9), the actual source patterns S can be chosen
as scaling functions and the transformation matrix T can be constructed accordingly.
We choose:

S̃ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

qV1
qH1
qD1
...
qVM
qHM
qDM

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

T =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

tV1,1 . . . tV1,4M
tH1,1 . . . tH1,4M
tD1,1 . . . tD1,4M
...

...
tVM,1 . . . tVM,4M

tHM,1 . . . tHM,4M

tDM,1 . . . tDM,4M

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

S =

⎛
⎜⎝

p1
...

p4M

⎞
⎟⎠ (11)

As detailed in Appendix A.2, each row of T contains the coefficients of a 2D vertical,
horizontal or diagonal high-pass filter, reshaped into a 4M × 1 vector. Hence, any DC
component added to the scaling functions S cancels out after multiplication with T .
This guarantees that any wavelet pattern can be generated even if the corresponding
scaling functions contain negative value. The technical details to computing T are
reported in appendix Appendix A.2.

2.4. FDOT reconstruction algorithm

The sketch of our algorithm is presented in figure 2. The different steps are detailed
below. We denote mi,j the fluorescence image measured at the ith view after
illumination of the object with the jth source pattern sj .

Step 1 The IJ̃ virtual fluorescence images m̃i,j are calculated from the IJ

fluorescence images mi,j according to (10). The same way, the J̃ virtual source
patterns s̃j are calculated from the J actual source patterns sj according to (9).
The virtual source patterns are mapped from the DMD plane Σe onto the object
surface ∂Ωe

i and the resulting ũi,j = Xis̃j are concatenated to form the virtual

source matrix Ũ = [ũ1,1 . . . ũi,j . . . ũI,J̃ ] ∈ C
N×IJ̃ .

Step 2 Each of the IJ̃ virtual fluorescence image m̃i,j is wavelet transformed and
retaining the Ki,j (absolute value) largest components leads to the compressed
image

m̂i,j =

Ki,j∑
k=1

m̂i,j,kdk . (12)

The retained components m̂i,j,k are stacked into the vector m̂ ∈ C
Ktot . In this

paper, the detection patterns dk are chosen from a Daubechie 4 basis.
Next, the adjoint detection patterns vi,j,k, defined on the object surface ∂Ωm

i ,
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Vitual source pattern method 
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Wavelet Compression 
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Tikhonov regularization 
(step 4) 

m 

s 

s 

Figure 2. Sketch of the FDOT reconstruction algorithm.

are calculated from the detection patterns dk, defined on the CCD plane Σm.
According to (6), we have vi,k = M∗

i [dk]. For our problem, it is sufficient to
consider the L non-redundant detection patterns v̂�, with L < Ktot, which reduces
the computational cost of using multiple source patterns. Finally, all the adjoint
detection patterns are concatenated into a single matrix V̂ = [v̂1 . . . v̂� . . . v̂L] ∈
C

N×L.

Step 3 The computation of the weight matrixW ∈ C
Ktot×N requires the calculation

of ϕi,j ∈ C
N and ψi,k ∈ C

N that are the vectorised versions of Ge[u] and Gf∗[vk]
in (5), respectively. The source density ϕi,j is needed for all couples (i, j), while
the adjoint detection density ψi,k must be obtained for any couple (i, k). This
may be done in one shot inverting the matrix equations

P eΦ = Ũ and P fΨ̂ = V̂ . (13)

The matrix Φ = [ϕ1,1 . . .ϕi,j . . .ϕI,J̃ ] ∈ C
N×IJ̃ contains the source densities

ϕi,j and the matrix Ψ̂ = [ψ̂1 . . . ψ̂� . . . ψ̂L] ∈ C
N×L contains the non-redundant

adjoint detection densities ψ̂�. Any vector ψi,k can be obtained by picking up

the appropriate ψ̂� in Ψ̂ . In the latter equation, P e and P f are two N × N
sparse matrices that result from the discretization of the propagation operator
Pe and P f and account for the boundary conditions. Here, P e and P f have been
computed thanks to the Matlab TOAST package (Schweiger and Arridge, 2010).
The weight matrix W is finally built up row by row, according to (5). Precisely,
the row of W corresponding to the triplet (i, j, k) is given by

wi,j,k = ϕi,j ◦ψi,k, (14)

where ◦ stands for the entrywise (Hadamard) product.
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Step 4 The inverse problem in FDOT is well-known to be ill-posed and requires
regularization to ensure the stability of the solution f� in the presence of noise.
Here, the inverse problem is efficiently solved considering the underdetermined
Tikhonov solution

f� =WT(WWT + αI)−1m̂ (15)

where α is the regularization parameter that enforces the stability of the solution.
The procedure for choosing its value is detailed in Section 2.6.

2.5. Sample and Experimental set-up

We consider a cylindrical phantom mimicking the dimensions and optical properties
of the mouse. The phantom is an epoxy resin cylinder of radius 20 mm and height 45
mm. Its optical properties at λe = 630 nm have been measured with a time-resolved
spectroscopy system (Bassi et al., 2007) and the following values have been obtained:
μa = 0.022 mm−1 μ′

s = 1.35 mm−1. The geometry of the fluorescent inclusions are
represented at figure 3b.

The experimental set-up has been reported in detail in D’Andrea et al. (2010).
It is based on three main components: illumination device, detection system and
rotational stage sample holder. Light is emitted by a He:Ne laser source (05LHP991,
Melles Griot) at wavelength of 633 nm with optical power of about 10 mW coupled
to an optical fiber guide (LLG0538-4, Thorlabs). Then, the light is focused by a lens
and, through a total internal reflection prism, is delivered to a Digital Micromirror
Device (DMD) (Discovery 1100 - ALP1, Vialux). DMD consists of a matrix of titlable
mirrors (720 × 521), whose reflecting elements can be independently controlled. By
uploading the image of the desidered spatial pattern, the arrangement of the tiltable
mirrors and the light beam reflected by the DMD change accordingly. Through the
control of the duty cycle, patterns with a dynamic range of 8 bits can be generated by
the DMD. Finally, the pattern is magnified and projected on the cylindrical phantom
by means of an a projection lens. The illumination area ∂Ωe is a rectangle of width
�x = 13 mm and height �y = 26 mm, 2.5 mm apart from the top of the cylinder. The
sample holder is mounted on a motorized rotational stage in order to perform multiple
view measurements.

The light exiting the opposite side of the cylindrical phantom is imaged by an
objective lens (f = 50 mm, f#= 2.8, Nikon Co.) on a low noise high sensitivity
16 bit CCD camera (Versarray 512, Princeton Instruments,) cooled to −40˚C. The
detection area ∂Ωm is a rectangle of width 16 mm and height 32 mm. The illumination
and detection area are depicted in figure 3a. In order to select the fluorescence signal,
a combination of an interference filter (XF 3076, Omega) and a high pass filter RG-
695, Schott) is placed in front of the objective lens. The signal at the excitation
wavelength can be acquired by removing the filters. The system is placed in a light-
proof cabinet in order to prevent stray light. Particular attention has been devoted to
the automatization of the measurements system, which is fully computer controlled,
in order to reduce the acquisition time.

2.6. Comparison of the reconstructions

In order to fairly compare the reconstructions obtained from different types and
numbers of illumination patterns, the choice of the regularization parameter is
crucial. The proposed approach is inspired by Ducros et al. (2009), where the
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Figure 3. a) Source surface ∂Ωe (13 × 26 mm2, red line) and detection surface
∂Ωm (16 × 32 mm2, yellow line) superimposed on the cylinder. b) Cylindrical
phantom (height 45 mm, diameter 20 mm). The three inclusions are cylinders
with radius 2 mm. Thirty slices are displayed from z = −9.5 mm to z = 19.5
mm. The fluorophore concentration is about 10−4 M of Nile Blue in Ethylene
Glycol. The concentration has been chosen in order to achieve a peak signal of
about 5×104 electrons per pixel in the camera sensor.

regularization parameter is set by imposing the reconstruction variability. Here, the
regularization parameter is set by maximizing the contrast-to-noise ratio (CNR) of
the reconstructed fluorescence distribution f�. The CNR is a figure of merit that
indicates how well structures of interest are rendered in a reconstruction (Song et al.,
2004; Baritaux et al., 2010). It is defined by

CNR =
μroi − μback

(wroiσ2
roi + wbackσ2

back)
1/2

, (16)

where μroi (μback) and σroi (σback) are respectively the average and standard deviation
of f� in the ROI (background). The weights wroi and wback are the volume ratios
wroi = Vroi/Vtot and wback = Vback/Vtot. Here, the region of interest (ROI) refers to
the volume occupied by the fluorescence inclusions and the background refers to the
rest of the volume.

In addition to the CNR, we consider other two figures of merit, namely the
contrast resolution and the reconstruction error. The contrast resolution C is defined
by

C =
μroi − μback

μroi + μback
. (17)

It measures the ability to tell the difference between the ROI and the background in
terms of mean values. The higher the contrast resolution, the better.
Finally, we consider the reconstruction error Er. Expressed in decibels, the following
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Figure 4. Some of the source patterns considered in the five cases.

definition is retained:

Er(dB) = 20 log ‖f�μ
true
roi

μroi
− ftrue‖ − 20 log ‖ftrue‖. (18)

where μtrue
roi is the average of ftrue in the ROI. The smaller the reconstruction error,

the better.

3. Results

We present five experiments for five different types of source patterns. The first
three experiments implement real source patterns while the last two implement
virtual source patterns. The profiles of some source patterns are displayed for each
experiment in figure 4. The five experiments have been performed in the same
conditions. Every source pattern has been projected onto the the cylindrical phantom
for Δt = 35 s. Sixteen rotation angles from 0˚to 337.5˚have been considered. For
objective comparison among reconstruction qualities, the three performance metrics
are calculated for each experiment and reported in table 2. Some reconstruction
profiles for the five experiments are provided at figure 10. Another important aspect
is the amount of time required to perform FDOT. In table 3 both acquisition and
reconstruction times are reported for each experiment.
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Figure 5. Fluorescence images acquired at θ = 0˚, 90˚, 180˚, 270˚, from
right to left. A uniform illumination pattern is considered. Original images are
represented in the top row while the compressed images are represented in the
bottom row. The colorbar indicates the number of counts.
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Figure 6. a) Reconstructions obtained for three different regularization
parameters. Six slices are displayed from z = 17.5 mm to z = −7.5 mm.
Central column: optimal regularization parameter αopt as defined in Section 2.6;
Left-hand column: under-regularized situation for which α = αunder < αopt,
; Right-hand column: over-regularized situation for which α = αover > αopt.
The maximum and minimum value of each colorbar have been set to 1.5μroi and
−0.5μroi, respectively. b) Graph of the CNR of the reconstruction with respect
to the regularization parameter α. The blue asterisk indicates αunder, the red
dot αopt, and the black triangle αover.
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3.1. Case 1 – Uniform illumination

The first experiment is performed loading onto the DMD a constant image whose
intensity level is set to the maximum value (255). This experiment is considered as
the reference experiment. First, because it enables for measuring the highest signal
in transmission. Indeed, the zero spatial frequency is the less attenuated one (see for
example Bassi et al. (2007)). Second, since a DMD intrinsically cuts light off, this
experiment benefits from the highest amount of light available.
The fluorescence images experimentally acquired are depicted in figure 5. The choice
of the regularization parameter follows the rule given in Section 2.6. In figure 6a
we present some reconstruction slices corresponding to three different regularization
parameters: a small α, the optimal α, and a large α. The graph of the CNR
with respect to the regularization parameter is given in figure 6b. The whole set of
reconstruction slices for the optimal reconstruction parameter is depicted in figure 7a.

3.2. Case 2 – Sinusoids

In this experiment, we considered sinusoidal patterns of the form cos 2π(nx x/�x +
ny y/�y)+1, where nx and ny are the numbers of cycles along x and y, respectively. In
diffuse optics, the considered media behave as low-pass filters. Though source patterns
of increasing spatial frequencies could increase the spatial resolution of reconstructions,
such frequencies are increasingly attenuated and cannot be experimentally measured.
Thus, a common strategy consists in considering few low frequency patterns. In this
case, patterns up to 1 cycle along x (the smallest dimension) and up to 3 cycles along
y (the largest dimension) are regarded. Precisely, a set of 8 bi-dimensional frequencies
is considered: nx ∈ {0, 1} and ny ∈ {0, 1, 2, 3}. Note that this experiment includes
the uniform pattern of case 1, i.e., (nx, ny) = (0, 0). Note also that, apart from this
pattern, all the other patterns lead to an illumination of half the amount of total light.
The resulting reconstructed fluorescence distribution is presented in figure 7b.

3.3. Case 3 – Haar scaling functions

In this experiment, we consider the 2-D scaling functions of a wavelet basis. It is well
known that such functions can provide a multiresolution approximation of images
(Unser and Blu, 2003). Since there is generally no closed form for these functions,
they are more easily obtained from the inverse wavelet transform. Let As denotes
the wavelet transform of s at a given resolution. The matrix A may be written
A = [Aa,Ad] where Aas provides an approximation of s, while Ads give the details
of s. Henceforth, the scaling patterns may be simply obtained as s = A−1

a ŝ where ŝ
is a unit vector chosen from the natural basis {ei}.
In this experiment, we consider the Haar wavelet. At the resolution we consider, the
patterns simplify to height black images containing a white square of side �x/2 = �y/4.
The reconstructed fluorescence distribution obtained from eight Haar scaling patterns
is presented at figure 7c.

3.4. Case 4 – Phasor methods

The phasor method has been extensively used for demodulation in communications
systems (Carlson et al., 2002) where it is known under square-law detection. Referred
to as phase shifting technique, it has been a method of choice in profilometry
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(Srinivasan et al., 1984) and was successfully applied in confocal microscopy
(Neil et al., 1997). In diffuse optics, it was first introduced by Cuccia et al. (2005)
for filtering out the DC component in the measured images. The phasor method
consists in i)projecting onto the medium a set of P shifted source patterns s[p] =
cos 2π(nx x/�x + ny y/�y + p/P ) + 1, with p ∈ {0, P − 1}, p/P being the phase shift
and ii) post processing the resulting P images m to obtain a demodulated image
m̃ =

∑
pm[p] exp(i2πp/P ).

From the VSP point of view, the phasor method can be interpreted as the use
of some actual source patterns s to gain the response to a virtual source pattern
s̃ = exp[i2π(nx x/�x + ny y/�y)]. Note the virtual source pattern no longer contain
additive DC component. For a given pair of frequencies (nx, ny) and choosing P = 3,
the transformation matrix defined in Section 2.2 simplifies to:

T =

(
1 − 1

2 − 1
2

0 1 −1

)
. (19)

The patterns used in experiment 2, with nx ∈ {0, 1} and ny ∈ {0, 1, 2, 3}, are used
together with three phase shifts p ∈ {0, 1, 2}, which results in a set of twenty-four
actual source patterns. It is worth noting that after processing the measurements not
only the real part, but also the imaginary part of the virtual fluorescence image are
available.
The reconstruction of the fluorescence distribution obtained from the phasor method
is available in figure 9a.

3.5. Case 5 – Virtual Haar wavelets

While scaling functions are used in case 3, wavelet functions are desired in this
experiment. Wavelet functions possess a higher frequency content than scaling
functions and provide details (at different resolution level) in image compression.
Implementing such patterns requires the VSP method since wavelets contain negative
values. Interestingly, wavelet functions at a given resolution level are easily obtained
from scaling functions at a finer resolution level (see Section 2.3). Capitalizing on this
property, the measurements of case 3 can serve in this experiment to get the response to
Haar wavelet patterns at a lower resolution. Considering the two filters h = 1√

2
[1, 1]T

and g = 1√
2
[1, −1]T and following the four step described in Section Appendix A.2

leads to the following transformation matrix:

T =
1

2

⎛
⎜⎜⎜⎜⎜⎜⎝

1 1 0 0 −1 −1 0 0
1 −1 0 0 1 −1 0 0
1 −1 0 0 −1 1 0 0
0 0 1 1 0 0 −1 −1
0 0 1 −1 0 0 1 −1
0 0 1 −1 0 0 −1 1

⎞
⎟⎟⎟⎟⎟⎟⎠

. (20)

The virtual source patterns, i.e., the columns of S̃ = TS are displayed in figure 8
together with the associated virtual measurements.
The reconstruction of the fluorescence distribution from the virtual Haar wavelets is
available in figure 9b.
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(a) (b)

(c)

Figure 7. Reconstructions from actual illumination patterns: a) Plane wave
(case 1); b) Sinusoids (case 2); c) Wavelet scaling functions (case 3). For each
reconstruction, thirty slices are displayed from z = 19.5 mm to z = −9.5 mm.
Reconstructions are given in arbitrary units. For fair comparison between the
different reconstructions, the maximum and minimum value of each colorbar have
been set to 1.5μroi and −0.5μroi, respectively.

Table 2. Performance metrics for the different illumination patterns

Case CNR C Er (dB)

1 2.10 0.77 -17.2
2 2.09 0.77 -18.3
3 2.13 0.78 -18.1
4 2.49 0.83 -18.6
5 2.76 0.87 -19.0
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Figure 8. Acquisitions using the virtual illumination patterns of case 5. First
row, virtual illumination patterns s̃ on the DMD. The colorbar indicates gray
levels. Second row, virtual fluorescence images m̃ on the CCD. Third row, virtual
fluorescence images after compression m̂. The colorbar indicates the numbers of
counts.

(a) (b)

Figure 9. Reconstructions from virtual illumination patterns. a) sinusoid by
means of the phasor method (case 4); b) wavelets functions (case 5). For each
reconstruction, thirty slices are displayed from z = 19.5 mm to z = −9.5 mm.
Reconstructions are given in arbitrary units. For fair comparison between the
different reconstructions, the maximum and minimum value of each colorbar have
been set to 1.5μroi and −0.5μroi, respectively.
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Figure 10. Profiles of reconstruction for the cases 1 to 5. a) Reconstruction
profiles along line L1, i.e., through inclusions 1 and 3 at z = 17.5 mm. b)
Reconstruction profiles along line L2, i.e., through inclusions 2 and 3 at z = 7.5
mm. The two lines L1 and L2 are defined at figure 3b.

4. Discussion

Using only a uniform illumination, the overall quality of the reconstruction is quite
good since the contours of the three inclusions can be recovered. Inclusion 2 is
reconstructed with a correct localization in the xy plane as well as along z. However,
the reconstruction of inclusions 1 and 3 is of lower quality, especially in top slices
down to z = 9.5 mm, where inclusion 1 joins inclusion 3. Reconstructed fluorescence
is observed to vanish in the first top slices (from z = 19.5 mm to z = 17.5 mm,
in particular). The latter effect is a typical problem that can be attributed to the
vicinity of boundary. It must be outlined that the top slices also suffer from receiving
a limited amount of light since the illumination area starts 3 mm underneath the
cylinder summit.
The reconstructions obtained from cases 1, 2, and 3 indicate the performance of the
real source patterns. First of all, note that only one source pattern is considered in
case 1 while height source patterns are considered in both cases 2 and 3. Hence, the
reconstruction quality is expected to be higher in case studies 2 and 3 than in case 1
(at an extra cost in terms of acquisition and computation times). By visual inspection
of the reconstruction slices displayed in figure 7, the benefit of using 8 source patterns
appears limited. To get a better picture of the situation, it is informative to refer to
the figures of merit reported in table 2 and to the reconstruction profiles of figure 10.
An improvement is found with a diminution of the reconstruction error for both case
studies 2 and 3. While case 3 also exhibits a slight improvement in terms of CNR and
contrast, case 2 stands at a CNR of 0.77 and decreases in terms of contrast.

Regarding now the two cases implementing the VSP method, it can be seen that
the reconstruction quality is greatly improved with respect to the other three cases.
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Table 3. Acquisition and reconstruction times (in sec.) for the different case
studies

Case J Acquisition time (s) J̃ L Reconstruction time (s)
Step 2 Step 3 Step 4 Total

1 1 35 1 1024 6.1 19 2 28
2 8 280 8 1189 6.5 44 54 110
3 8 280 8 1352 6.7 44 54 112
4 24 840 16 1705 8.5 93 206 329
5 8 280 6 2220 9.7 54 30 97

Indeed, the best reconstruction obtained with actual source patterns, namely case 3, is
outperformed by both VSP reconstructions of case studies 4 and 5 (compare figure 7a
to figure 9a and b and the profiles at figure 10). In particular, inclusion 1 is nicely
individuated. Moreover, in spite of the lack of illumination light, the first three slices
show little blurring. These visual observations are confirmed by the figures of merits
reported in table 2. Among the two VSP implementations, the wavelet approach offers
the best performance, whether in terms of CNR, contrast, or reconstruction error.

Very similar reconstruction qualities have been obtained from different types of
actual source patterns. However, the VSP method results in a better reconstruction
quality. For a given set of fluorescence images, the interest of combining real images
to form virtual ones prior to reconstructing is demonstrated (compare case 2 to case
4 and also case 3 to case 5). A key feature of the VSP method lies in its ability
to remove the DC components in the fluorescence images. This advantage is shown
comparing case studies 1, 2, and 4. First, note that each pattern of case 2 contains a
DC component plus an AC component. Hence, the similarity of reconstruction 1 and
2 can indicate that the DC components in case 2 overwhelm the potentially useful
AC components. This is confirmed by the results of case 4 that show a significant
improvement of the reconstruction quality in the absence of the DC component. It
must be outlined that removing the DC component is likely to be further profitable
in experimental scenarios since it also permits to cancel out undesirable light. To
capitalize on this important feature, a satisfying transformation matrix must high-
pass filter the actual fluorescence images. Hence, the coefficient of the columns of T
must satisfy

J∑
j=1

tj̃,j = 0, ∀j̃ ∈ {1, .., J̃}, (21)

where the tj̃,j ’s are the matrix elements of T .
The superiority of the VSP method is also clearly shown comparing cases 3 and

5, that exploit the same data set. Note that the transformation matrix of case 5 (see
(20)) is chosen to satisfy the previous condition (21). To further test the importance
of removing DC components, we have also built the virtual wavelet patterns of case 5
choosing a transformation matrix that does not verify condition (21). This results in
a poor reconstruction quality (results not shown), which support our interpretation.
Although it exploits fewer patterns, the virtual wavelet approach outperforms the
phasor method. An interpretation is that the phasor method, which works in the
Fourier space, only exploits the frequency resolution of the source patterns and it is
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known that high frequencies are increasingly damped. On the other hand, the wavelet
approach offers a trade-off between the spatial and frequency resolution of the source
patterns. In this sense, the wavelet approach provide a trade-off between the point-
source approach and the phasor-method approach.
Another important aspect is the noise amplification. The virtual fluorescence images
are by construction noisier than the actual fluorescence images they results from.
Despite this, the reconstruction quality is improved using virtual patterns, which
indicates the applicability of the method on real data.

While satisfying condition (21), there are many ways to choose T and S so as to
get the desired S̃ . An important aspect of this choice is the cost of the VSP method
in terms of extra measurements, which can be indicated through the ratio J̃/J . The
most straightforward approach for obtaining a negative pattern s is to separate its
positive part s+ from its negative part s− and to consider s̃ = s+−s−, which leads to
J̃/J = 1/2. The phasor method provides a more efficient approach for sinusoids with a
ratio J̃/J of 2/3 > 1/2. In Section 2.3, a method is given that enables for building 3M
wavelets from 4M scaling functions. With this approach, we have: J̃/J = 3/4 > 2/3,
which is a better ratio than for phasor method. Note that even if the scaling functions
contain negative values, the approach of Section 2.3 can still be used provided an
appropriate background is added to the scaling functions.

The speed of our FDOT algorithm can be evaluated by means of table 3. We
limit the discussion to the case 4 and 5 for which the gain of reconstruction quality
is substantial. Since the acquisition time is proportional to the number of real source
patterns J̃ , the phasor method requires an acquisition 3 times longer than the virtual
wavelet approach. As far as the reconstruction time is concerned, the reduction of
the set of detection patterns at step 3 allows for a great speed-up of the algorithm
and the use of different source patterns for a given view comes at a limited extra cost.
Anyway, the wavelet approach is about three times faster than the phasor method.

5. Conclusions

This work addresses the problem of the choice of the source patterns in fluorescence
optical tomography considering experimental measurements. We have shown that
different types of actual source patterns, which are limited to positive intensities,
provides very similar reconstruction qualities. A positive pattern can be considered
as a uniform illumination (DC component) summed to a non-uniform pattern (with
positive and negative intensities). The presence of the DC component limits the
advantage of using structured light. Due to the inherent tissue response, the DC
component is much less attenuated than the higher spatial frequencies of the pattern.
Therefore, the fluorescence images obtained with high spatial frequencies illumination
are very similar to those obtained with uniform illuminations and the reconstruction
quality is slightly improved by the use of patterned illumination. To alleviate
this problem, the so-called virtual source pattern (VSP) method, which allows for
considering any source pattern, has been introduced. Implementing this method,
virtual source patterns with no DC components are shown to improve significantly the
reconstruction. In particular, patterns belonging to 2-D wavelet bases offer the best
performance. It is worth outlining that the VSP method has the ability to reject the
undesirable sources of light. This is a key feature in experimental scenarios for which
the illumination of the object is unavoidably corrupted by some light background.
Even though the results of this paper have been verified in FDOT experiments, we
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believe that many aspects of the results and discussion can be translated to optical
system based on photon migration, such as diffuse optical tomography and lifetime
tomography. In future work, we will investigate the benefit of the proposed method
in small animal imaging.

Appendix

Appendix A.1. Integration kernel of the forward operator

The retained component mk can be expressed as the projection of the measured image
m onto the detection pattern dk. Generally speaking we have:

mk = 〈m,dk〉Σm (A.1)

Substituting m = Mφf in the previous equation lead to:

mk =
〈Mφf ,dk

〉
Σm (A.2)

=
〈MGf [φef ],dk

〉
Σm . (A.3)

By definition of the adjoint operator, we have:

mk =
〈Gf∗[φef ],M∗dk

〉
∂Ωm (A.4)

=
〈
φef,Gf∗[M∗dk]

〉
Ω
. (A.5)

Isolating f that is the quantity of interest, we obtain

mk =
〈
f, φeGf∗[M∗dk]

〉
Ω

(A.6)

=
〈
φeGf∗[M∗dk], f

〉
Ω

(A.7)

and finally

mk =
〈
Ge[Is]Gf∗[M∗dk], f

〉
Ω

(A.8)

�

Appendix A.2. Derivation of Matrix T

Any wavelet basis is associated to a pair of high-pass and low pass filters, denoted
h and g, respectively. We denote L the length of the filters, MV the number of
desired wavelets along the first direction (vertical), and MH the number of desired
wavelets along the second direction (horizontal). The matrix T , which is of size
3MVMH × 4MVMH, can be derived from the pair of filters following the steps:

(i) Resizing 1-D filters. We first build two filters of size MV × 1 denoted hV and gV.
If L < MV, the filters are obtained by padding h and g with zeros so as to get
the desired length. If L > MV, the filters are ’periodised’ with a period MV, i.e.
hV[i] =

∑
k=0 h[i+ kMV] and gV[i] =

∑
k=0 g[i+ kMV] are considered.

The same way, we build hH and gH that are two filters of size MH × 1.
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(ii) Computing 2-D filters. The vertical, horizontal and diagonal 2-D filters, denoted
GV, GH, and GD, respectively, are obtained by:

GV = hV(gH)T, GH = gV(hH)T, and GD = gV(gH)T. (A.9)

(iii) Circularly shifting 2-D filters. The 2-D filters obtained at the previous step must
be circularly shifted by multiples of 2. We denote Gi,j the 2-D filter resulting
from a circular shift ofG by i elements along its first dimension and by j elements
along its second dimension. The following shifted version of GV, GH, and GD

are required:

GV
2i,2j , G

H
2i,2j , and GD

2i,2j for (i, j) ∈ {0, ...,MV − 1}× {0, ...,MH − 1}. (A.10)

(iv) Vectorising. Each of the shifted 2-D filter is vectorised to provide a row of T .
Noting vect(G) the vectorised version of G, we have:

T =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

vect(GV
0,0)

T

vect(GH
0,0)

T

vect(GD
0,0)

T

vect(GV
0,1)

T

vect(GH
0,1)

T

vect(GD
0,1)

T

...
vect(GV

MV−1,MH−1)
T

vect(GH
MV−1,MH−1)

T

vect(GD
MV−1,MH−1)

T

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(A.11)

Example In the Haar case, we have the following low-pass and hight-pass filters:

h =
1√
2
[1, 1]T and g =

1√
2
[1, −1]T. (A.12)

Choosing MV = 2 and MH = 1, we build (step i):

hV =
1√
2
[1, 1, 0, 0]T, gV =

1√
2
[1, −1, 0, 0]T,

hH =
1√
2
[1, 1]T, gH =

1√
2
[1, −1]T. (A.13)

From the previous four 1-D filters, we build the following three 2-D filters (step ii):

GV =

⎛
⎜⎜⎝
1 −1
1 −1
0 0
0 0

⎞
⎟⎟⎠ , GH =

⎛
⎜⎜⎝

1 1
−1 −1
0 0
0 0

⎞
⎟⎟⎠ , GD =

⎛
⎜⎜⎝

1 −1
−1 1
0 0
0 0

⎞
⎟⎟⎠ . (A.14)
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Next, we have to shift the 2-D filters (step iii):

GV
0,0 =

⎛
⎜⎜⎝
1 −1
1 −1
0 0
0 0

⎞
⎟⎟⎠ , GH

0,0 =

⎛
⎜⎜⎝

1 1
−1 −1
0 0
0 0

⎞
⎟⎟⎠ , GD

0,0 =

⎛
⎜⎜⎝

1 −1
−1 1
0 0
0 0

⎞
⎟⎟⎠ ,

GV
1,0 =

⎛
⎜⎜⎝
0 0
0 0
1 −1
1 −1

⎞
⎟⎟⎠ , GH

1,0 =

⎛
⎜⎜⎝

0 0
0 0
1 1
−1 −1

⎞
⎟⎟⎠ , GD

1,0 =

⎛
⎜⎜⎝

0 0
0 0
1 −1
−1 1

⎞
⎟⎟⎠ . (A.15)

Vectorising the previous six matrices, we obtain the matrix T as given in (20) (step
iv).
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