OATAO

Cipen Archive Toulouse Archive Ouverte

OpenArchive TOULOUSEArchive Ouverte OATAO)

OATAO is an open access repository that collects the work of Toulouse researcl
makes it freely available over the web where possible.

This is an author-deposited version published ittp://oatao.univtoulouse.fr
Eprints ID: 9845

Tolink tothisarticle: DOI:10.1063/1.3518468
URL : http://dx.doi.org/10.1063/1.3518468

To citethisversion : Duran-Matute, Matias and Albagnac, Julie and Kamp, Leon P.J. and Van
Heijst, Gert Jan F. Dynamics and structure of decaying shallow dipolar vortices. (2010) Physi
of Fluids, vol. 22 (n° 11). ISSN 1070-6631

19
(2]

Any correspondance concerning this service should be sent to the re|
administrator; staff-oatao@listes-diff.inp-toulouse.fr




Dynamics and structure of decaying shallow dipolar vortices
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The current work reports on a numerical and experimental study of the evolution of decaying dipolar
vortices in a shallow fluid layer. The dynamics and the structure of such vortices are investigated as
a function of both their Reynolds number Re and the aspect ratio of vertical and horizontal length
scales 8. By quantifying the strength of the secondary motions (vertical motions and nonzero
horizontal divergence) with respect to the swirling motions of the primary vortex cores, it was found
that the three-dimensionality of a shallow (5<< 1) dipolar vortex only depends on a single parameter:
& Re. Depending on the value of this parameter, three flow regimes are observed for shallow
dipolar vortices: (1) a quasi-two-dimensional regime where the structure of the dipolar vortex
remains almost unchanged throughout its lifetime, (2) a transitional regime where the structure
presents some three-dimensional characteristics but remains coherent, and (3) a three-dimensional
regime where the structure of the dipolar vortex acquires a complicated three-dimensional shape

with a persistent spanwise vortex at its front.

I. INTRODUCTION

It is commonly assumed that the small depth of shallow
flows constrains the magnitude of the vertical Velocity,l’2
leading to mainly horizontal quasi-two-dimensional (Q2D)
flows. One of the characteristics of Q2D flows is their self-
organization into large coherent structures. This phenomenon
has been observed in a shallow layer of fluid by, for example,
Sous ef al.** In their studies, an impulsive turbulent jet was
introduced into a fluid initially at rest. For small fluid depths,
it was observed that the vertical motions are damped and that
the turbulent jet evolves into a large coherent dipolar vortex.

However, several recent studies have demonstrated that
shallow dipolar vortices present a complicated three-
dimensional (3D) structure with vertical velocities that do
not scale linearly with the aspect ratio. For instance, Lin
et al.” studied the 3D structure of vortex dipoles generated by
a piston-nozzle arrangement and observed a secondary vor-
tex, which is orthogonal and just ahead of the primary di-
pole. Sous et al.>* also observed the presence of a spanwise
vortex at the front of the dipolar vortex for certain regions of
their parameter space. Akkermans et al.®’ investigated nu-
merically and experimentally the evolution of electromag-
netically forced vortex dipoles. Besides observing a span-
wise vortex in front of the vortex dipole, they also measured
large non-negligible vertical velocities—which impair the
two-dimensionality of the flow—in the vortex cores of the
dipole. A spanwise vortex was also observed by Lacaze
et al..” who performed laboratory experiments on shallow
laminar dipolar vortices generated by two closing flaps. As a
continuation of those experiments, Lacaze and co-workers
have set out to investigate thoroughly the dynamics of the
spanwise vortex (personal communication). That work has
served as an inspiration for the current paper.

The importance of vertical flows—and by continuity,

radial flows—for the evolution of shallow monopolar
vortices has been previously studied using numerical
simulations.”'® These previous studies have shown that in-
deed the small aspect ratio promotes a decrease in the mag-
nitude of vertical motions inside the monopolar vortices. In
addition, it was shown that this magnitude depends also on
the Reynolds number. Moreover, for shallow axisymmetric
swirl flows, only the parameter &> Re—where Re is the Rey-
nolds number and & is the flow aspect ratio—characterizes
the flow."”

In the present paper, we study numerically and experi-
mentally the two-dimensionality of a decaying dipolar vortex
as a function of both the Reynolds number Re and the aspect
ratio 6 of the initial dipole. The aim of the current paper is
twofold: (1) to explain previous seemingly contradictory ex-
perimental results on the two-dimensionality of shallow
flows’—in particular, the results for dipolar vortices, that can
still present complicated 3D structures in very shallow
layers® even if shallowness has been shown to promote its
two-dimensionality;3’4 and (2) to test in a somewhat more
complicated flow, namely, the dipolar vortex structure, the
scaling properties previously obtained for an axisymmetric
monopolar vortex.'”

High-resolution 3D numerical simulations, together with
the use of the so-called N\, vortex detection criterion,'?
have revealed the full 3D structure of the dipole, providing
new insight into the dynamics of shallow flows. Of special
interest is the effect that secondary motions have on the 3D
structure of the dipolar vortex as the parameter &° Re is in-
creased. Furthermore, results from laboratory experiments
show good agreement with the numerical simulations and
give confidence on the robust character of the numerical
results.

The paper is organized as follows. In Sec. II, the prob-



lem is formulated and the nondimensional parameters char-
acterizing the flow are defined. Section III is devoted to the
numerical study of an initially Q2D dipolar vortex, where,
first, the numerical simulations are described. In Sec. III A
the strength of the 3D motions are quantified. Then, Sec.
III B presents the three different flow regimes observed in
the range of parameters studied. Finally, in Sec. IV the labo-
ratory experiments are presented and qualitatively compared
with the numerical results. A discussion of the results and
some conclusions are presented in Sec. V.

Il. STATEMENT OF THE PROBLEM

We study a decaying symmetric dipolar vortex—a com-
pact structure consisting of two counter-rotating vortex cores
with equal strength and size—in a shallow fluid layer. Due to
the strong interaction of the vortex cores, this structure
propagates along a straight line."

The flow is considered to be governed by the Navier—
Stokes equation,
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and the continuity equation for an incompressible fluid,
V-v=0, (2)

with v the velocity of the fluid, ¢ the time, p the density of
the fluid, P the pressure, and v the kinematic viscosity of the
fluid. The motion of the fluid is described in Cartesian coor-
dinates x=(x,y,z) with x the direction of propagation of the
dipole, y the spanwise direction, and z the vertical direction.
The velocity and vorticity vectors are then written as
v=(u,v,w) and @=V Xv=(0,,0,,0,), respectively.

To nondimensionalize Egs. (1) and (2), the following
nondimensional variables, which are denoted by primes, are
defined:

v R U, P
v =—, /=_()w, = 0[’ P’=_2,
U() U() R() pUO
®3)
x’_i ! l Z’_£
- R09 y _RO’ _H,

where U, is the initial propagation speed of the dipole, R is
the initial radius of the dipole, and H is the depth of the fluid
layer. Then, substituting Eq. (3) into Egs. (1) and (2) yields
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and where the Reynolds number
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H
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are the two nondimensional parameters characterizing the
flow. To simplify notation, the primes will be omitted from
here on, and only the nondimensional variables will be used.

lll. NUMERICAL SIMULATIONS

In the present study, the governing Egs. (1) and (2) are
solved numerically using a finite-element code (see Ref. 14).
The numerical domainis -9=x=21,0=y=15,0=z=1.1t
has been previously observed that this domain size is large
enough as not to affect the results of the simulations due to
the effect of lateral boundaries.’

As boundary conditions, a no-slip boundary condition is
imposed at the bottom, whereas the surface is stress-free, flat,
and rigid so that free-surface deformations are excluded. A
stress-free condition is implemented for all lateral boundaries
in order to further reduce the possible influence of these
boundaries.

The flow is initialized in the horizontal plane with a
Lamb—Chaplygin dipolar vortex'” with unit radius and a
Poiseuille-like vertical structure according to

J J
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where the streamfunction ¢ is defined as
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with J, and J; the zeroth and first order Bessel functions of
the first kind and p, the first zero of J;. Note that x
=rcos @ and y=r sin 6 so that r=Vx*>+y? and @=tan~'(y/x).

The Lamb—Chaplygin vortex dipole was chosen because
of its resemblance to horizontal slices of experimentally cre-
ated dipolar vortices.**!%™"® The vertical Poiseuille-like
structure was chosen since it seems to be a realistic profile
for time-dependent shallow flows.”

Due to the symmetry with respect to the vertical plane
y=0, only the evolution of one half of the dipole (y>0) is
simulated. However, for visualization purposes, the full di-
polar vortex is reconstructed in the figures shown in this
section.

The spatial resolution was checked by performing sev-
eral simulations for two points in the (Re, 8) parameter space
with increasing resolution until no significant differences
were observed. This check resulted in a computational do-
main discretized with approximately 43 000 unstructured
mesh elements. A finer mesh was used in regions where high
velocity gradients were expected. In addition, mesh elements
in the vertical direction are between three and nine times




TABLE 1. Values of the Reynolds number Re and the aspect ratio 6 used in
the numerical simulations.

S Re

0.1 200, 300, 400, 800

0.2 50, 70, 100, 150, 200, 260, 500, 1000
0.3 25, 40, 50, 89, 100, 200, 222, 260
0.7 4, 8, 16, 40, 70, 90, 145

smaller than the ones in the horizontal direction to resolve
vertical gradients with sufficient resolution. In this way, the
equations were solved for approximately 955 000 degrees of
freedom.

Time steps were determined by the numerical code using
variable-order variable-step-size backward differentiation
formulas'* with the time resolution computed from the rela-
tive and absolute error tolerances. The values for such error
tolerances were deduced by performing several simulations
with decreasing tolerance until no significant difference be-
tween the simulations was observed.

The parameter space was explored by performing sev-
eral numerical simulations for different values of the Rey-
nolds number Re and the aspect ratio & as shown in Table L.

A. Quantitative characterization of the flow

As the dipolar vortex is left to evolve freely, secondary
motions arise in the form of upwelling or downwelling in the
vortex cores™’ and in the form of a spanwise vortex at the
front of the dipole.3’6_8 To quantify the strength of these sec-
ondary motions, we consider the following quantities: (1) the
normalized horizontal divergence at the surface (z=1),

Ja, |V - 00y, 1,0)|dxdy

A(r) =
" Ja lk -V X v(x,y,1,1)|dxdy

(10)

(as previously used by Akkermans et al’) and (2) the nor-
malized kinetic energy of the vertical velocity component in
the vertical symmetry plane y=0,

fAVWZ(x,O,Z,t)dxdz
a7 (x,0,2,0)dxdz

0.(1) (11)

(as previously used by Sous et al.®), where Ay is the hori-
zontal area of the numerical domain, Ay is the area of the
vertical symmetry plane, and k is the unit vector in the
z-direction. In particular, we focus on the maximum in time
of these two quantities: max(A) and max(Q.).

The surface z=1 was chosen to evaluate the horizontal
divergence A since w=0 on this plane, and hence, the diver-
gence is the only signature of the secondary motions. Simi-
larly, in the vertical symmetry plane (y=0), the vertical ve-
locity is the only signature of the secondary motions.

To quantify the strength of the secondary motions in an
axisymmetric monopolar vortex, the flow can be easily de-
composed, using cylindrical coordinates, into the primary
motion in the azimuthal direction and secondary motions in
the radial directions (see, e.g., Refs. 9 and 10). For the case
of the monopolar vortex, the horizontal divergence is related
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FIG. 1. Strength of the secondary motions as compared to the primary
motions: (a) maximum of the normalized horizontal divergence at the sur-
face as a function of & Re; (b) maximum of the normalized kinetic energy
of the vertical velocity component in the vertical symmetry-plane as a func-
tion of & Re. The symbols denote simulations for different values of Re and
6=0.1 (0), 6=0.2 (X), 6=0.3 (*), and §=0.7 (0O). The solid lines represent
the different scalings.

to the radial velocity, and hence, it only depends on &* Re for
6<<1. On the other hand, the magnitude of the vertical ve-
locity only depends on & Re (see Ref. 10).

Figure 1(a) shows the maximum of the normalized hori-
zontal divergence, max(A), as a function of & Re. A collapse
of the curves for 6=0.1, 6=0.2, and less clearly for 6=0.3 is
observed. This collapse indicates—as for the monopolar
vortex'"—that shallow dipoles are characterized by only one
nondimensional parameter: & Re, provided that §<1. In-
deed, the results given by simulations with 6=0.7 do not
collapse with the curves described by the results for simula-
tions with 6=0.1 and 0.2 since §=0.7 is not small enough
(i.e., the flow is not shallow enough) for the flow evolution
to depend solely on the parameter &° Re. In addition, the
graph clearly shows the existence of a scaling regime for
& Re =6, where max(A) = & Re. From a comparison with a
monopolar vortex, the scaling max(A)= & Re implies that
the flow is dominated by viscosity in this regime and that the
secondary motions can be neglected. On the other hand, in-
ertia dominates over viscous forces outside this regime.

In Fig. 1(b), the maximum of the normalized kinetic en-
ergy associated with the vertical velocity max(Q,) is plotted
as a function of & Re. Again, a collapse is observed for the
curves described by the results of the numerical simulations
with 6=0.1, 0.2, and 0.3, indicating that the magnitude of the
vertical velocity depends only on & Re. In contrast, the re-
sults from the simulations with 6=0.7 do not collapse to the
same curve. As for the monopolar vortex,'? a scaling regime
is found for & Re=1 although the exponent is somewhat
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FIG. 2. Numerically obtained kinetic energy decay at the surface z=1 for
three different simulations with 8=0.2: Re=50 (O), Re=200 (J), and
Re=500 (O).

0.4

larger for the dipolar vortex. Outside this scaling regime, the
secondary motion cannot be neglected, and hence the flow
must be considered as 3D.

A few simulations with different initial vertical profiles,
including a vertical profile which is independent of the ver-
tical coordinate, were performed. It was observed that the
scaling in the viscosity-dominated regime is independent of
the initial vertical velocity profile. In contrast, the trend out-
side this regime depends on the initial vertical velocity pro-
file. However, the viscous regime and the inertia-dominated
regime never show the same scaling, implying that the two
regimes are easily distinguishable.

To further characterize the flow, we calculate the typical
decay time 7, by fitting an exponential decay to the normal-
ized kinetic energy associated with the horizontal velocity
components at the surface z=1,

E(?) fAH[uz(x,y, 1,0) + v*(x,y,1,1)]dxdy
Ey  [aJu*(x.y.1.0) +v2(x.y,1,0)Jdxdy’

(12)

The decay time 7 is then compared with the Rayleigh decay
time,

=35 Re (13)
[equivalent to 4H?/(7?v) in dimensional units] being the
typical decay time for shallow flows dominated by bottom
friction.”"”

Figure 2 shows the normalized kinetic energy as a func-
tion of time (normalized by the Rayleigh decay time 73) for
simulations with 6=0.2 and Re=50, 200, and 500 detailed in
Sec. III B.

By fitting an exponential curve to the evolution of the
kinetic energy, it can be seen that for small Reynolds
numbers (e.g., Re=50), the characteristic decay time
T~ Tx/ 1.2 is close to the Rayleigh decay time. However, as
the Reynolds number increases and the flow becomes 3D,
the decay time becomes much shorter: 7~ 7;/1.4 for Re
=200 and 7, ~ 7/2.2 for Re=500. For Re=50 the difference
between 7, and 75 is probably due to horizontal diffusion,
which enhances the viscous decay. However, for larger val-
ues of Re the difference between 7, and 73 is due to the 3D
dynamics of the flow: the advection of fluid by the secondary

FIG. 3. (Color online) Evolution of a dipolar vortex at the surface (z=1) for
a simulation with Re=50 and §=0.2 (8> Re=2) at times r=0.5,1 and 2. Top
row: the color/shade denotes the vertical vorticity component w,, and the
black contour denotes the boundary of the vortex cores given by the \,=0
isoline. Lower row: the color/shade denotes the horizontal divergence and
the black lines denote the flow lines tangential to the horizontal velocity
components in the reference frame comoving with the vortex dipole.

motion toward a thin boundary layer at the bottom.>* This
advection increases the damping rate, like the Ekman bound-
ary layers do for flows subjected to background rotation; see,
for example, Ref. 2.

B. Flow regimes for shallow dipolar vortices

For the simulations of shallow dipoles (6=0.1,0.2,0.3),
three qualitatively different flow regimes were observed in
the range of Re-values investigated. Since the characteristics
of shallow dipoles depend exclusively on the value of & Re,
we base the description of the different regimes on the simu-
lations with 6=0.2, which are characteristic for simulations
with other aspect ratios much smaller than unity (e.g.,
8=0.1 and 0.3). As & approaches unity (e.g., =0.7), the
characteristics of the flow depend both on the values of § and
Re; it is not within the scope of the current work to analyze
such cases.

The description of the three flow regimes for shallow
dipolar vortices is mainly based on the 3D structure of dipo-
lar vortex. To determine this structure, we used the \, vortex
detection criterion proposed by Jeong and Hussain'' that al-
lows to find the locations of local pressure minima in the
flow that correspond to the presence of vortices. This detec-
tion criterion consists in calculating the real eigenvalues
N =\, =\, of the symmetric tensor S2+ €2, where S and
are the symmetric and antisymmetric components of Vo, re-
spectively. Then, the sectional pressure minimum induced by
a vortex corresponds to regions where the second eigenvalue
of §2+Q7? is negative: \,<<0. Hence, the 3D boundary of a
vortical structure is given by the isosurface N,=0. For more
details, see also Ref. 12.
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FIG. 4. (Color online) Evolution of the flow in the vertical symmetry plane
(y=0) for a simulation with Re=50 and §=0.2 (§* Re=2) at times 7=0.5, 1,
and 2. The color/shade denotes the spanwise vorticity component w,.




FIG. 5. (Color online) 3D structure of half of the dipolar vortex (y>0) for
two simulations at time r=1. (a) Re=50 and 6=0.2 (6> Re=2). (b) Re=25
and 6=0.3 (8 Re=2.25). The structure is given by the isosurface \,=0
following the \,-criterion.

1. Q2D flow regime (&* Re=<6)

Figure 3 shows the evolution of the dipolar vortex for a
simulation corresponding to Re=50 and 6=0.2 (& Re=2).
In the top row of Fig. 3, colors/shades denote the magnitude
of the vertical vorticity w. and the black contour denotes the
boundary of the vortex dipole as given by \,-criterion for
t=0.5, 1, and 2 at the surface (z=1). As can be seen from the
vertical vorticity w. distribution, the structure of the vortex
dipole remains coherent. This is also reflected by the bound-
ary of each vortex core, which describes approximately a
circle throughout the flow evolution. In fact, only a weak
increment, due to diffusion, in the size of the structure can be
perceived.

In the lower row of Fig. 3, the colors/shades denote the
horizontal divergence (du/dx+dv/dy) and the black lines in-
dicate the instantaneous flow lines tangential to the horizon-
tal velocity components in the reference frame comoving
with the dipolar vortex. By comparing the top and lower
rows in Fig. 3, it can be observed that, at the surface (z=1),
the positions of the primary vortex cores delineated by the
N\,=0 isoline correspond to areas of positive horizontal di-
vergence. It is already known that a vortex with its rotation
axis normal to a solid bottom induces an upwelling from the
Bodewadt boundary layer into the vortex core.”’ Then, this
upwelling induces a radial diverging flux at the surface.
Downwelling areas are associated with converging fluxes,
which are found close to the saddle type stagnation points at
the front and at the rear of the dipolar vortex on its symmetry
axis.

t =0.5

In the lower row of Fig. 3, the flow lines tangential to the
horizontal velocity components define quasi-closed loops
around two focal points corresponding to the vertical vortic-
ity extrema. This suggests that the flow is mainly horizontal
and that the upwelling is negligible when compared to the
motions associated with the primary dipole. Thus, the flow at
the surface suggests that the dipolar vortex with Re=50 and
6=0.2 remains Q2D during its lifetime.

Figure 4 shows the spanwise vorticity w, in the vertical
symmetry plane of the dipolar vortex (y=0) at times 7=0.5,
1, and 2 for the simulation with Re=50 and 6=0.2 (&* Re
=2). From the contours of w,, it can be seen that the flow
structure in the vertical symmetry plane barely changes in
time. Only at early times (£=0.5), a small deviation from the
initial shape is observed.

In Fig. 5, the 3D structure of half of the vortex dipole is
illustrated by the \,=0 isosurface at time ¢t=1 for two simu-
lations: (a) one simulation with Re=50 and 6=0.2 (&* Re
=2) and (b) one for Re=25 and 6=0.3 (&* Re=2.25). In this
figure, it is clear that the vortex structure is 2D (independent
of the vertical coordinate) even though the velocity field it-
self is 3D. All along its evolution, the dipolar vortex main-
tains this 2D structure. The described characteristics can also
be observed for other small values of & and similar values of
& Re, as shown, for example, in Fig. 5 for the simulation
with 6=0.3 and &° Re=2.25.

2. Transitional flow regime (6 < 5* Re<15)

Figure 6 shows the evolution of the dipolar vortex for a
simulation with Re=200 and 6=0.2 (&* Re=8). Color/shade
coding and black lines have the same meaning as in Fig. 3.
As can be observed, the vorticity extrema no longer corre-
spond with the primary vortex centroids. Instead, they are
found at the front of the dipolar vortex and close to its sym-
metry axis. In the frontal region, the vertical vorticity ex-
trema extend along the boundary of the dipolar vortex spe-
cially at late times (e.g., /=1 and r=2). However, the area
bounded by the \,=0 isoline remains coherent.

In the lower row of Fig. 6, it can be seen that, as for the
Q2D regime, there exist patches of positive divergence at the
cores of the dipolar vortex. The presence of this horizontal
divergence can be observed in the form of the flow lines
spiraling out of the primary vortex centroids, suggesting the
existence of a secondary flow that cannot be neglected. In
addition, there exist two patches of converging flow (nega-
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FIG. 6. (Color online) Same as in Fig. 3, except for a simulation with Re=200 and 6=0.2 (&* Re=8).
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FIG. 7. (Color online) Same as in Fig. 4, except for the simulation with
Re=200 and 6=0.2 (6° Re=8). The black contour denotes the \,=0 isoline.

tive horizontal divergence) corresponding to downwelling ar-
eas. These areas are found along the axis of the dipolar vor-
tex as well as in front of the dipole. In the positive
divergence areas, vertical vortex tubes just below the surface
are compressed, while in the negative divergence areas, the
vertical vortex tubes are stretched by the secondary motion.
This stretching/compression mechanism is responsible for
the local vorticity maxima in the negative divergence area.

Figure 7 shows the distribution of spanwise vorticity w,
in the vertical symmetry plane of the vortex dipole (y=0) at
times r=0.5, 1, and 2 for the simulation with Re=200 and
5=0.2 (8* Re=38). In this flow regime, we observe a viscous
boundary layer with high spanwise vorticity close to the bot-
tom which is generated by the dipolar vortex propagating
above the solid bottom. Then, fluid with high spanwise vor-
ticity from the boundary layer is entrained toward the front
of the dipole and forms a frontal circulation at mid-depth. In
the current regime, this region of spanwise vorticity exists
during most of the evolution, and at intermediate times
(r=1), a spanwise vortex is detected by the \,-criterion. The
formation of the spanwise vortex can be partly attributed to
vortex stretching in the spanwise direction, wydv/dy, which
is of particular importance at the front of the dipole along its
separatrix. Shortly after its appearance, the spanwise vortex
vanishes as viscous effects start to dominate over vortex
stretching due to decay of the dipolar vortex. At =2, a patch
of spanwise vorticity remains at the front of the dipole, but
this vorticity patch is no longer a vortex.

Figure 8 shows the isosurface of the 3D \,-criterion for
two simulations with 6> Re=8 and two different values of &
[(a) 6=0.2 and (b) 6=0.3] at time #=1. Here, the structure
defined by the \,-criterion contains both the primary vortex
and the spanwise vortex at the front of the dipole. In Fig. 8,
the \,=0 isosurface is a coherent column as for the Q2D
regime. However, the circular horizontal cross section is dis-
torted due to the presence of the spanwise vortex and other
3D effects. In this figure, apparently, the flow structure is
similar for different small values of & and the same value of
& Re.

3. 3D flow regime

Figure 9 shows the evolution of the dipolar vortex for
the simulation with Re=500 and 6=0.2 (8* Re=20). Color/
shade coding and black lines have the same meaning as in
Fig. 3. For this regime, as in the transitional one, the local
vorticity extrema are found close to the symmetry axis of the

FIG. 8. (Color online) Same as in Fig. 5, except for the simulations with (a)
Re=200 and 6=0.2 (6* Re=8) and with (b) Re=89 and 6=0.3 (&> Re=8).

dipolar vortex and at its front where they extend along its
boundary. However, due to the stronger concentration of vor-
ticity at the edges of the dipole, the A,=0 isoline at the
surface loses its circular shape. In contrast, the boundary
given by the \,-criterion becomes first an annulus and then
an elongated structure which surrounds the centroids of the
dipolar vortex. In this regime, the boundary of the vortices at
the surface, given by the \,=0 isoline, indicates an important
modification of the primary structure in comparison with the
previous regimes.

In the lower row of Fig. 9, it can be seen that the hori-
zontal divergence field is again composed of two patches of
positive divergence in the cores of the dipolar vortex and two
patches of converging flow: one along the axis of the dipolar
vortex dipole and another at its front. As in the previous
regime, the presence of this horizontal divergence can be
observed in the form of the flow lines spiraling out of the
primary vortex centroids, suggesting the existence of a sec-
ondary flow that cannot be neglected.

Figure 10 shows the distribution of spanwise vorticity
in the vertical symmetry plane (y=0) of the vortex dipole at
times r=0.5, 1, and 2 for the simulation with Re=500 and
5=0.2 (8* Re=20). The magnitude of the spanwise vorticity
in the vertical symmetry plane is much higher than the ver-
tical vorticity of the primary vortex. As in the transitional
regime, there is a viscous boundary layer close to the bottom
below the primary vortex and a patch of spanwise vorticity
o, at the front of the dipole at approximately mid-depth. The
\,-criterion detects the presence of a spanwise vortex which
develops after some time (see time =1 and 2 in Fig. 10). In
comparison to the transitional regime, the spanwise vortex is
present for a longer time since viscous effects outside the
boundary layer are negligible as compared with inertia forces
for a longer time.

Figure 11 shows the N,=0 isosurface, outlining the
boundary of the dipolar vortex for y=0 at time t=1 for two
simulations with & Re=20 and two different values of &[(a)
6=0.2 and (b) 6=0.3]. For both simulations, the volume de-
fined by the \,=0 isosurface contains again both the primary
dipolar vortex and the spanwise vortex located at its front. It
can be seen that in this regime, the 3D structure of the vortex
depends strongly on the vertical direction: the shape is modi-
fied by the presence of the spanwise vortex at mid-depth, and
at the top, the vortex core is hollow.
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FIG. 9. (Color online) Same as in Fig. 3, except for a simulation with Re=500 and 6=0.2 (&* Re=20).

IV. LABORATORY EXPERIMENTS
A. Experimental setup

The experimental setup, shown schematically in Fig. 12,
consists of a water tank with a base of 50X 50 cm?. The
tank is filled with a salt solution with a 178 g/l concentration
up to a depth of 0.5 cm. To force the flow, two titanium
electrodes are placed along two opposite sides of the tank,
and one cylindrical magnet with a 2.5 cm diameter is placed
underneath the tank bottom. An electric current is forced
through the fluid using a power supply. Due to the interaction
of this electric current and the magnetic field of the magnet,
a Lorentz force is generated,

F=JXB, (14)

with J the current density and B the magnetic field, by which
the fluid is set in motion. In the current study, the fluid is
forced for 1 s, and then it is left to evolve freely. The initial
time r=0 is taken to be at the end of the forcing period. A
similar forcing method has been previously used successfully
to create dipolar vortices in a shallow fluid layer,("7 which
have an initial radius similar to the diameter of the magnet:
Rp=2.5 cm. In this way, the aspect ratio of the dipoles is
6=0.2 for our experiments.

We consider the electric current to be homogeneous and
running only in the y-direction, while the main component of
the magnetic field above the center of the magnet is in the
z-direction. Hence, the principal component of the Lorentz
force is in the x-direction, thus forcing a dipolar vortex that
propagates in this direction.

Particle image velocimetry (PIV) is used to measure the
horizontal velocity field of the flow in a horizontal plane 3
mm above the bottom. The fluid is seeded with
106—150 um polymethylmethacrylate particles which are
illuminated with a double pulsed Nd:YAG laser sheet. Im-
ages of a 12X9 cm? area of the tank are taken using a
Megaplus digital camera with a resolution of 1600
X 1200 pixels. Images at different time intervals are chosen,
depending on the maximum velocity of the flow. These are
then cross-correlated using PIV software from PIVTEC
GmbH, Gottingen, Germany to calculate the horizontal ve-
locity field.

In the current paper, results for three experiments are
presented. These experiments were performed with three dif-
ferent magnitudes of the electric current, which resulted in
three different values of the strength of the dipolar vortex.

For the experiment with the lowest electric current, a picture
was taken every 200 ms. Then, each picture was correlated
with the following picture using the PIV software. For the
experiments with moderate and strong forcing, a pair of im-
ages was taken every 1/15 s, with a time interval between
each picture of 10 or 25 ms, depending on the magnitude of
the electric current. Then each image pair was correlated.
The three experiments presented in this paper correspond to
Re=50, 160, 390 and they are representative of each of the
three regimes described in the numerical study.

B. Experimental results

Figure 13 shows the vertical vorticity in the horizontal
plane z=0.6 for three experiments at #=1. In this figure, the
vortex dipole can be easily distinguished. However, the pri-
mary vortex dipole is surrounded by weak vorticity regions,
which are typical of the forcing method employed and which
are not found in the numerical simulations. Due also to the
forcing method, the initial vertical profile of the horizontal
velocity is not Poiseuille-like as in the simulations. Instead,
the horizontal velocities are stronger close to the bottom than
at the surface since the forcing is stronger closer to the mag-
net at the bottom.® In spite of these differences, the resulting
evolution of the dipolar vortex in the laboratory experiments
is in good agreement with the evolution of the dipolar vortex
in the numerical simulations. This agreement indicates that
the observed characteristics of the flow evolution do not de-
pend critically on the precise form of the initial vertical pro-
file. For example, it can be observed that the dipolar vortex
remains coherent for small values of 8* Re (6> Re=2.0), i.e.,
in the viscosity-dominated regime. For intermediate values
of & Re (&8* Re=~6.4), a slight elongation of the dipolar vor-
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FIG. 10. (Color online) Same as in Fig. 4, except for a simulation with
Re=500 and 8=0.2 (8> Re=20). The black contour denotes the \,=0
isoline.
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FIG. 11. (Color online) Same as in Fig. 5, except for the simulations with
(a) Re=500 and 6=0.2 (& Re=20) and (b) Re=222 and 6=0.3 (& Re
=20).

tex can be observed with bands of vertical vorticity maxima
close to the symmetry axis of the dipole. Finally, for large
values of &* Re (8 Re= 15.6), the dipolar vortex is fully di-
vided into a band of high vorticity at the front and patches of
high vorticity close to the symmetry axis of the dipole.

Figure 14 shows the flow lines tangential to the horizon-
tal velocity components in the reference frame comoving
with the dipole and the horizontal divergence at t=1 for
same three experiments as shown in Fig. 13. For & Re
~12.0, the horizontal divergence is very small and beyond the
accuracy of our measurements. Therefore, the horizontal di-
vergence field is very noisy. On the other hand, for interme-
diate values of & Re (8 Re=~6.4), two patches of positive
horizontal divergence in the primary vortex cores indicate an
upwelling area as in the numerical simulations. Downwelling
is clearly observed at the front and close to the symmetry
axis of the dipolar vortex. For large values of & Re (&° Re
~ 15.6), the horizontal divergence distribution is the same as
for intermediate values, except in the frontal region of the
dipolar vortex. In this region, two narrow bands of horizontal
divergence with opposite sign indicate the presence of a
spanwise vortex. In addition, the flow lines clearly spiral out
from the primary vortex centroids, indicating the presence of
non-negligible secondary motions.

The generation mechanism used in the experiments does
not seem to have a large effect on the overall characteristics
of the flow evolution. For example, Lacaze et al® performed
one experiment where the dipole was generated using two
closing flaps with 6=0.3 and &® Re=20 (this is the same
value of & Re used in the simulations presented for the 3D
flow regime). In this experiment, the vorticity extrema were
found in bands at the front of the dipole and close to its
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FIG. 12. (Color online) Schematic representation of the experimental setup.
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FIG. 13. (Color online) Vertical vorticity field in the horizontal plane z
=0.6 (3 mm above the bottom) for three experiments at r=1. The color/
shade denotes the vertical vorticity w.. The parameters for each experiment
are shown above each panel.

symmetry axis, and a strong spanwise vortex developed like
also observed in our experiments and numerical simulations.
We further characterize the flow by comparing the decay
time 75, of the vortex dipole with the Rayleigh decay time 7,
in the same way as it was done for the numerical simulations
(see Fig. 15). The decay time for the Q2D flow (Re= 50,
& Re=~20) is close to the Rayleigh decay time: 7
~ 7/ 1.2. However, as the Reynolds number increases and
the flow becomes 3D, the decay time becomes much shorter:
T~ Tx/ 1.6 for Re= 160 and 7~ 74/2.2 for Re=390.

V. DISCUSSION AND CONCLUSIONS

In the last decade, several studies have shown different
results about effect of shallowness on the two-dimen-
sionalization of flows. A good example is found in the case
of dipolar vortices.>**7 On one side, shallowness seems to
reduce vertical motions, but on the other side, complicated
three-dimensional structures have been observed even for
very shallow flows.

In the present work, we explain the apparently contra-
dictory results from previous studies by performing a de-
tailed exploration of the parameter space (Re,d) both nu-
merically and experimentally. It was found that the three-
dimensionality of shallow dipolar vortices strongly depends
on both the Reynolds number Re and the aspect ratio ¢ of the
flow. However, for small values of & (i.e., for shallow layers
of fluid), the relative strength of the secondary motion only
depends on the product & Re. This dependence on & Re and
the existence of different flow regimes are in agreement with
previous results for monopolar vortices.'’

For shallow (8<<1) dipolar vortices, we observed three
different regimes.

(1) Q2D flow regime. For low values of & Re (6 Re=<6),
the flow is dominated by viscous effects and the second-
ary motions can be neglected. Note that, even if the

FIG. 14. (Color online) Horizontal divergence and flow lines tangential to
the horizontal velocity components in the horizontal plane z=0.6 for three
experiments at t=1. The color/shade denotes the horizontal divergence
dul dx+dv/dy. The parameters for each experiment are shown above each
panel.
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FIG. 15. Normalized kinetic energy in the horizontal plane z=0.6 as a
function of time for the three experiments with §=0.2, and Re=50 (O),
Re= 160 (O), and Re=390 (< ). The solid lines are exponential fits.

velocity field is z-dependent, the three-dimensional
structure of the dipolar vortex, given by the \,-criterion,
is clearly 2D in this regime (see Fig. 5).

(2) Transitional regime. For intermediate values of
& Re (6= & Re=<15), even if the vortex remains a co-
herent structure, secondary motions cannot be neglected
since they modify the primary dipolar vortex. In addi-
tion, a spanwise vortex is observed at the front of the
dipolar vortex. However, this spanwise vortex is not
strong enough to endure the viscous effects for a long
time.

(3) 3D regime. For large values of & Re (8 Re=15), the
distribution of the vertical vorticity component is intrin-
sically modified. The initial coherent horizontal distribu-
tion of vertical vorticity becomes “hollow,” with the vor-
ticity extrema close to the symmetry axis of the dipole
and at its front. The overall structure of the dipole be-
comes three-dimensional due to strong secondary mo-
tions (both in the primary vortex cores and in the span-
wise vortex located at the front of the dipole) which
cannot be neglected.

The different initial conditions in both numerical and
laboratory experiments result in small quantitative differ-
ences in the position of the transition regime in the parameter
space. However, there is a strong qualitative similarity be-
tween experimentally and numerically obtained shallow
(8<1). This similarity suggests that the existence of the dif-
ferent regimes that depend only on the value of the param-
eter & Re is a robust property of shallow dipolar vortices,
irrespective of the initial condition. A similar conclusion was
reached for shallow monopolar vortices.'” Tn this way, the
three-dimensionalization of shallow flows depending on the

parameter &° Re seems to be valid for numerous kinds of
shallow vortical flows.
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