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Velocity-jump processes with a finite number of speeds

and their asymptotically parabolic nature

October 18, 2013

Corrado MASCIA
1

Abstract. The paper examines a class of first order linear hyperbolic systems, proposed as

a generalization of the Goldstein–Kac model for velocity-jump processes and determined

by a finite number of speeds and corresponding transition rates. It is shown that the

large-time behavior is described by a corresponding scalar diffusive equation of parabolic

type, defined by a diffusion matrix for which an explicit formula is given. Such repre-

sentation takes advantage of a variant of the Kirchoff’s matrix tree Theorem applied to

the graph associated to the system and given by considering the velocities as verteces

and the transition rates as weights of the arcs.

Keywords. Velocity-jump process, Hyperbolic diffusion, Graph theory.
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1. Introduction

The Goldstein–Kac model for correlated random walk ([6], [13]) consists in a first

order linear hyperbolic system for the couple (f, g) = (f, g)(x, t) given by










∂f

∂t
− ν

∂f

∂x
= −µf + µg

∂g

∂t
+ ν

∂g

∂x
= µf − µg

where (x, t) ∈ R × (0,∞) and ν, µ are positive constants. Variables f and g represent

“densities” of individuals moving, respectively, toward the left and toward the right of

a one-dimensional line with velocity ν. The linear term at the right-hand side describes

the fact that reversal of speed is possible with a transition rate µ. For such a reason,

the model is considered a differential description of a velocity-jump process. The

Goldstein–Kac model was originally motivated by G.I. Taylor [21] in what M. Kac describes

as “an abortive, or at least not very successful, attempt to treat turbulent diffusion.”,

see [13]. Even if perhaps unproductive in its original intent, the model gained a lot of

attention because of its quality of being located at the crossroads of amenability and

significance. The former emerges from its hyperbolic and linear structure, giving raise to

well-posedness and preservation of smoothness, and its quasi-monotonicity, guaranteeing

the validity of a comparison principle (see [18]). “Significance” stems mainly from the

fact that the Goldstein–Kac is considered as a prototype for a differential description of

transport mechanisms and, because of its nature, a paradigm for hyperbolic diffusion.

Such fact is even more evident observing that the sum u = f + g satisfies the telegraph
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equation (or damped wave equation in one space dimension),

2µ
∂u

∂t
+

∂2u

∂t2
− ν2

∂2u

∂x2
= 0,

often believed as a diffusion model with finite propagation speed, alternative to the tradi-

tional parabolic heat equation, which, on the contrary, mantains the inherent paradox of

infinite speed of spreading (among others, see the interesting contribution [14]).

The aim of this article is to analyze a class of first order linear hyperbolic systems

in several space dimensions extending the Goldstein–Kac model, and still preserving the

basic target of describing a process where individuals may change velocity of propagation

at a given rate. The main topic under investigation is to show how and at which extent

the corresponding hyperbolic diffusion mechanism is related to a corresponding parabolic

one. To enter the details, let R
d be the ambient space for the space variable x and let

a fixed finite set of speeds {v1, . . . ,vn} ⊂ R
d be given. Finally, in order to describe the

possibility of changing from one velocity to the other, let µij, for i, j ∈ {1, . . . , n} and

i 6= j, be a set of non-negative constants measuring the rate of transition from speed vi

to speed vj . Then, we consider the system for the unknown f = (f1, . . . , fn) given by

(1)
∂fi
∂t

+ vi · ∇xfi +
∑

j 6=i

(

µij fi − µji fj
)

= 0, i = 1, . . . , n,

The Goldstein–Kac model corresponds to the one-dimensional case with two speeds,

namely d = 1, n = 2, {v1 = −ν,v2 = +ν} ⊂ R
1, and with µ12 = µ21 = µ > 0.

Model (1) can also be regarded as a discrete velocity version of the model treated in [11]

or as a linearization of a discrete velocity Boltzmann system. In this latter connection,

system (1) fits into the class considered in [20].

Similarly to the destiny of the Goldstein–Kac model, system (1) can be considered as a

backbone for more complicated models taking into account the dependencies on external

signals, as in the case of chemotaxis (see [12, 7]), or the presence of reaction/reproduction

mechanisms (see [9, 15]). Endorsing the interest of such kind of generalizations, one-

dimensional versions of (1) has already been considered in [4, 5] in the description of

transport along axons.

In what follows, the model (1) is examined under the assumption that the transition

rates are symmetric, µij = µji, the meaning of which in term of the velocity-jump process

is immediate. The non-symmetric case is still very interesting and natural in the modeling

of phenomena where the transport is guided by the gradient of some substance (as in the

chemotaxis models) and it is left for future investigation. No specific restriction is made

on the number and on the choice of the propagation velocities vi.

In Section 2, the basic properties of (1) are discussed. In particular, a brief description

on how the model can be formally derived starting from a correlated random walk is given,

following the lines of what it is usually done for the Goldstein–Kac model. Then, it is

showed that any convex function from R to R can be used to define a Lyapunov functional
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for the system. Such demanding structure implies that Lp−norm are preserved and that

a form of comparison principle holds.

Section 3 can be considered the hub of the paper. Applying the usual Laplace–Fourier

transform, the hyperbolic system is converted into its dispersion relation, which encodes

the different modes supported by the model. In particular, the analysis of the dispersion

relation close to the origin in the frequency space, is supposed to describe the large time

behavior of the solutions. A detailed analysis provides two crucial informations which are

described in a somewhat informal way here. Comprehensive presentation and rigorous

statements can be found in Section 3.

Firstly, under the assumption of symmetry of the transition rates, the large time be-

havior of the variable u =
∑

i fi senses a drift speed v
drift

that is the arithmetic average

of the speeds vi, viz.

v
drift

=
1

n

n
∑

i=1

vi

(see Theorem 3.7). In the non-symmetric case, the drift velocity does not coincide with

the average of the speeds, in general.

Secondly, in a frame moving with speed v
drift

, the dynamics of the cumulative variable u

is related to the one of a linear constant-coefficient parabolic diffusion equation determined

by a real d× d matrix D

(2)
∂w

∂t
= div (D∇xw)

The diffusion matrix D is symmetric, non-negative definite; additionally, it is possible to

provide an explicit formula for the matrix D, based on an associated (undirected) graph,

whose vertices are the velocities vi and whose arcs are weighted by the transition rates

µij (see Theorem 3.11). Such representation formula is based in a fundamental way on

a variant of a well-known result in graph theory, the so-called Kirchoff’s matrix tree

Theorem.

Finally, Section 4 is devoted to prove a rigorous result supporting the fact that the

parabolic equation (2) gives the asymptotic description of (1). Specifically, chosen an

initial datum f0 ∈ [L1 ∩ L2(Rd)]n for (1) and denoted by u the cumulative variable
∑

i fi

and by upar the solution to (2) with initial datum u0(x) :=
∑

i f0,i, there holds

|u− upar |L2 (t) ≤ C t−
1
4
d− 1

2 |f0|
L1∩L2

(see Theorem 4.1). The rate of the L2−decay for (2) with data in L1 ∩ L2 is t−d/4, thus

the above estimate shows that the hyperbolic variable u and its parabolic counterpart upar

get closer one to the other in a time-scale shorter than the one of their ultimate decay

to zero. This kind of estimate fits into a wide research stream exploring asymptotically

parabolic nature of hyperbolic equations, which dates back at least to J. Hadamard, [8].

Additional bibliographical description on the subject is given in Section 4.
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2. Velocity-jump processes with a finite number of speeds

Let d ≥ 1 and consider a family of n velocities v1, . . . ,vn ∈ R
d, with components

vi = (vij), together with parameters µij ≥ 0 for i, j = 1, . . . , n, i 6= j, describing the

transition rate from speed vi to speed vj . In all of the paper, the transition rates µij

are assumed to be symmetric, i.e.

(3) µij = µji ∀i 6= j.

Given a population with total density u = u(x, t), all the individuals are allowed to move

with one of the speeds v1, . . . ,vn ∈ R
d. Denoted by fi = fi(x, t) the density for the

portion of the total population proceeding with velocity vi and assuming that the speed

change is described by the rates µij, the dynamics is dictated by the first order linear

system of hyperbolic type

(4)
∂fi
∂t

+ vi · ∇xfi +
∑

j 6=i

(

µij fi − µji fj
)

= 0, i = 1, . . . , n,

or, in vector form, with f = (f1, . . . , fn),

∂f

∂t
+

d
∑

j=1

Aj
∂f

∂xj
+ Bf = 0

where Aj = diag (vij) and B = (−µij) with µii := −∑
j 6=i

µji. If the coefficient µij is zero for

some i, j, then there is no direct transition from the speed vi to speed vj .

Matrix B, referred to as the transition matrix, is symmetric by assumption (3) and

singular since the sum of its columns is zero. The total density u =
∑

fi satisfies the

homogeneous transport equation

∂u

∂t
+ div j = 0,

where the flux j is
∑

i fiv
i.

The Cauchy problem for (4) determined by the initial condition

(5) fi(x, 0) = f0,i(x) x ∈ R
d, i = 1, . . . , n

has a unique (mild) solution continuously dependent on the initial data whenever the

initial datum f0 = (f0,i) is chosen in an appropriate functional space. Later on, we will

concentrate on the case f0 ∈ [L1 ∩ L2(Rd)]n; for the moment, we continue the discussion

with choices of initial data depending case by case.

Derivation from a correlated random walk. System (4) can be heuristically derived

from a correlated random walk, in the same spirit of what is usually done for the Goldstein–

Kac model. Given the velocities {v1, . . . ,vn} ⊂ R
d and the transition rates µij, with

i, j ∈ {1, . . . , n}, i 6= j, let dt > 0 be such that

pi := 1−
∑

j 6=i

µijdt ≥ 0 for any i = 1, . . . , n.
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Then, let X be the set of points in R
d, defined by

X :=
{

x =
n
∑

i=1

ci v
idt : c1, . . . , cn ∈ N

}

.

Assume that each particle of a given finite set is located at the initial time t = 0 at some

x ∈ X and it has a given state i ∈ {1, . . . , n}, corresponding to a “preferential” speed.

The set of particles with state i will be denoted by Fi. At each time interval dt, the

displacement of every particle in Fi amounts to dx = vidt with a probability pi and to

dx = vjdt with a probability µijdt. In the latter case, the particle changes state from i

to j.

Denoting by fi(x, n dt) the fraction of particles with state i that at time t = n dt are at

position x, the relation between the values fi at step n and n+ 1 is

fi(x, (n + 1)dt) = pifi(x− vidt, n dt) +
∑

j 6=i

µjifj(x− vidt, n dt)dt

Adding and subtracting the term fi(x+ vidt, n), we obtain

fi(x+ vidt, (n + 1)dt)− fi(x+ vidt, n dt) + fi(x+ vidt, n dt)− fi(x, n dt)

=
(

∑

j 6=i

µij

)

fi(x, n dt)dt +
∑

j 6=i

µjifj(x, n dt)dt

For time interval dt small, assuming fi to be smooth with respect to its first argument,

we may approximate the difference fi(x+ vidt, n dt)− fi(x, n dt) with the scalar product

between the gradient of f with respect to x and the increment vidt, getting the relation

1

dt

{

fi(x+ vidt, (n + 1)dt)− fi(x+ vidt, n dt)
}

+ vi · ∇xfi +
∑

j 6=i

(

µijfi − µjifj
)

= 0.

Passing to the limit dt → 0, we formally obtain (4).

Properties of the first order linear system. The special structure of the zero-th order

term in (4) triggers a number of additional properties for the solutions to the system.

Proposition 2.1. Assume (3). Let η be a Lipschitz continuous and convex function from

R to R. Then, each solution f to (4) is such that, whenever the right-hand side is finite,

(6)

n
∑

i=1

∫

Rd

η(fi)(x, t2) dx ≤
n
∑

i=1

∫

Rd

η(fi)(x, t1) dx

for any t1 < t2.

Proof. Let us consider the case of a smooth initial datum f0 so that the solution f is also

smooth. The general case can be obtained by applying a density argument.

Given a Lipschitz continuous function η, multiplying (4) by η′(fi) and summing up with

respect to i, we infer

∂

∂t

n
∑

i=1

η(fi) +
d
∑

ℓ=1

∂

∂xℓ

(

n
∑

i=1

vℓi η(fi)

)

+
n
∑

i=1

∑

j 6=i

η′(fi)
(

µji fi − µij fj
)

= 0,
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Given t1 < t2, integrating with respect to (x, t) in R
d × [t1, t2], we get

n
∑

i=1

∫

Rd

η(fi)(x, t2) dx+

∫

Rd

I[f ] dx dt =
n
∑

i=1

∫

Rd

η(fi)(x, t1) dx,

where the function I is defined by

I[f ] :=
n
∑

i=1

∑

j 6=i

η′(fi)
(

µji fi − µij fj
)

.

Since µij = µji, there holds

(7)

I[f ] =
n
∑

i,j=1

η′(fi)
(

µji fi − µij fj
)

=
n
∑

i,j=1

µji

(

η′(fi)− η′(fj)
)

fi

=
1

2

n
∑

i,j=1

µji

(

η′(fi)− η′(fj)
)

fi +
1

2

n
∑

i,j=1

µij

(

η′(fj)− η′(fi)
)

fj

=
1

2

n
∑

i,j=1

µij

(

η′(fi)− η′(fj)
)

(fi − fj) ≥ 0,

for η′ increasing and µij ≥ 0. �

In particular, the solution semigroup of (4) is such that the Lp−norms are not increasing

in time for any p ≥ 1. Additionally, also a comparison principle holds as a consequence of

Proposition 2.1.

Corollary 2.2. Let f and g be two solutions to (4) corresponding to the initial conditions

f(x, 0) = f0(x) and g(x, 0) = g0(x), respectively. If the initial data f0 and g0 are such that

f0,i ≤ g0,i ∀i = 1, . . . , n

then the same ordering relation holds for any positive time, i.e.

fi(x, t) ≤ gi(x, t) ∀i = 1, . . . , n

for any t > 0.

Proof. The linearity of the equation permits to restrict the attention to the case g0 = 0.

Choosing η(s) = [s]+ in (6), we deduce

n
∑

i=1

∫

Rd

[fi(x, t)]+ dx ≤
n
∑

i=1

∫

Rd

[fi(x, 0)]+ dx.

In particular, if fi ≤ 0 for any i at time t = 0, then fi ≤ 0 for any t ≥ 0 for any i. �

Property (6) indicates a form a weak dissipation. If the transition matrix B is irreducible

(see [1], Chap.2, Sect.2) and an appropriate additional assumption on the velocities vi

holds, the Shizuta–Kawashima dissipativity condition is valid (see [20] and, for a

discussion on its limits of validity, see [17]).
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Proposition 2.3. Let the matrix B be irreducible and assume

(8) span {vi − vj : i, j = 1, . . . , n} = R
d

Then for any F ∈ kerB there holds

λF +

n
∑

j=1

kjAjF 6= 0

for any λ ∈ R and any k = (k1, . . . , kd) with k 6= 0.

Proof. The specific structure of the matrix B and its irreducibility together imply that

kerB is one-dimensional and generated by the vector 1 = (1, . . . , 1). Since
(

Aj1
)

i
= vij ,

we infer

λ+
n
∑

j=1

kj
(

Aj1
)

i
= λ+

n
∑

j=1

kjv
i
j = λ+ k · vi i = 1, . . . , n.

If λ+ k · vi = 0 is null for any i, then

k · (vi − vj) = 0 ∀i, j

and thus k = 0 as a consequence of (8). �

The role of the two hypotheses in Proposition 2.3 can be clarified showing that un-

der these assumptions, invoking the LaSalle Invariance Principle, the solution to the

Cauchy problem (4)–(5) decayes to zero as t → +∞ for integrable initial datum in some

Lp. Indeed, the ω−limit of a given trajectory is contained in the largest invariant region

for which the functional
∑
∫

η(fi) is constant. For η′ strictly increasing, the final repre-

sentation of I[f ] in (7) together with the requirement of the irreducibility of the matrix

B, shows that

I[f ] = 0 ⇐⇒ fi = fj ∀ i, j.
Hence, solutions preserving the value of

∑
∫

η(fi) are such that fi = g for some scalar

function g satisfying the homogeneous system

∂g

∂t
+ vi · ∇xg = 0, i = 1, . . . , n.

which gives

(vi − vj) · ∇xg = 0, i, j = 1, . . . , n.

Thus, as a consequence of (8), g is constant.

A rigorous application of the principle requires some compactness of the trajectories,

guaranteed by Sobolev estimates at the price of some additional regularity requirements on

the initial data. Indeed, taking again advantage of the dissipation described by Proposition

2.1 and the linear structure of the equation, one easily obtains
n
∑

i=1

|fi(·, t)|p
Wk,p

≤
n
∑

i=1

|f0,i(·, t)|p
Wk,p

for any k ≥ 0, p ≥ 1.
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All the above arguments concur in showing that the system (4) shares a number of

properties with scalar linear diffusion equations. Our next aim is to show that the connec-

tion between the two classes is much stronger than that and that it is possible to identify

a specific linear diffusion equation of paraboic type describing the large-time behavior of

the solution of the hyperbolic system (4).

3. Drift velocity and diffusion matrix

Given a square matrix A of dimension n × n and k indeces i1, . . . , ik, let A(i1, . . . , ik)

be the principal minor that results from deleting sets of k rows and columns with inde-

ces i1, . . . , ik. By definition, we set A(1, . . . , n) := 1. Morevor, given n column vectors

w1, . . . , wn in R
n, let

w1 ∧ · · · ∧ wn := det(w1 . . . wn).

Applying Laplace–Fourier transform, that is converting time derivatives with multiplica-

tion by λ ∈ R and space derivatives with scalar multiplication by k ∈ iRd,

(∂t,∇x) 7→ (λ,k)·

the partial differential equation (4) is converted into the linear system

(λ+ vi · k)f̂i +
n
∑

j=1

µij f̂j = 0 i = 1, . . . , n,

where f̂i = f̂i(λ,k) is the transform of f . Hence, the dispersion relation of the system

(4) is the polynomial relation in λ and k

p(λ,k) := det(λ I+ diag (vi · k) + B) = 0.

Denoting by Bi the columns of the matrix B, the dispersion relation can be written in

compact form as

p(λ,k) = V1(λ,k) ∧ · · · ∧ Vn(λ,k) = 0.

where V i(λ,k) :=
(

λ + vi · k
)

Ei + Bi and Ei = (δij)j=1,...,n is the i-th element of the

canonical basis of Rn.

Given k, the main target of the analysis is to determine the location of the values

λ = λ(k) such that the dispersion relation p(λ,k) = 0 is satisfied. In particular, being

interested in the large-time behavior of the solutions, the attention is mainly directed to

the region of k with |k| small.

Proposition 3.1. Let B be a real n× n singular matrix such that

I1(B) :=

n
∑

i=1

detB(i) 6= 0.
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Then, there is a smooth function k 7→ λ(k) defined in a neighborhood of 0 such that

p(λ,k) = 0 if and only if λ = λ(k). Moreover, there hold

first order:
∂λ

∂kℓ
(0) = − 1

I1(B)

n
∑

i=1

viℓ detB(i),

second order:
∂2λ

∂kj∂kℓ
(0) = − 1

I1(B)

∑

{h,k :h 6=k}
(vjh v

ℓ
k)B(h, k) if ∇kλ(0) = 0.

Proof. Since detB = 0, the couple (0,0) satisfies the dispersion relation. Since

∂p

∂λ
(λ,k) =

∂V1

∂λ
∧ V2 ∧ · · · ∧ Vn + · · · + V1 ∧ · · · ∧ Vn−1 ∧

∂Vn

∂λ
= E1 ∧ V2 ∧ · · · ∧ Vn + · · · + V1 ∧ · · · ∧ Vn−1 ∧ En,

there holds

∂p

∂λ
(0,0) = E1 ∧B2 ∧ · · · ∧Bn + · · ·+B1 ∧ · · · ∧Bn−1 ∧En = I1(B)

and the existence of the function λ follows from the Implicit function Theorem.

Moreover, differentiating with respect to kℓ for ℓ ∈ {1, . . . , n}, we obtain.

(9)

∂p

∂kℓ
(λ,k) =

∂V1

∂kℓ
∧ V2 ∧ · · · ∧ Vn + · · ·+ V1 ∧ · · · ∧ Vn−1 ∧

∂Vn

∂kℓ

= v1ℓE1 ∧ V2 ∧ · · · ∧ Vn + · · ·+ V1 ∧ · · · ∧ Vn−1 ∧ vnℓ En;

and thus, calculating at (0,0), we infer

∂p

∂kℓ
(0,0) = v1ℓE1 ∧B2 ∧ · · · ∧Bn + · · ·+B1 ∧ · · · ∧Bn−1 ∧ vnℓ En

=

n
∑

i=1

viℓ detB(i)

which gives the first order expansion.

Differentating with respect to kℓ and then with respect to kj the relation p(λ(k), k) = 0,

we get the equality

∂2p

∂λ2

∂λ

∂kℓ

∂λ

∂kj
+

∂2p

∂λ∂kj

∂λ

∂kℓ
+

∂p

∂λ

∂2λ

∂kj∂kℓ
+

∂2p

∂λ∂kℓ

∂λ

∂kj
+

∂2p

∂kj∂kℓ
= 0.

Calculating at (0,0), since ∂λp(0,0) = I1(B) and ∇kλ(0) = 0, we obtain

∂2λ

∂κj∂κℓ
(0,0) = − 1

I1(B)

∂2p

∂κj∂κℓ
(0,0).

Upon differentiation of (9), we deduce

∂2p

∂kj ∂kℓ
(λ,k) =

∂

∂kj

(

vℓ1E1 ∧ V2 ∧ · · · ∧ Vn

)

+ · · · + ∂

∂kj

(

V1 ∧ · · · ∧ Vn−1 ∧ vℓnEn

)

=
∑

{h,k :h 6=k}
(vjh v

ℓ
k)V1 ∧ · · · ∧ Eh ∧ · · · ∧ Ek ∧ · · · ∧ Vn.
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Therefore, calculating at (0,0), we end up with

∂2p

∂κj ∂κℓ
(0,0) =

∑

{h,k :h 6=k}
(vjh v

ℓ
k)B1 ∧ · · · ∧ Eh ∧ · · · ∧ Ek ∧ · · · ∧Bn

=
∑

{h,k :h 6=k}
(vjh v

ℓ
k)B(h, k),

that gives the second order derivatives of λ = λ(k) in the origin. �

Condition I1(B) 6= 0 is satisfied if the matrix B is irreducible. From now on, we will

consider such assumption to be satisfied.

The expressions for the first and second order term in the expansion of the function λ

at k = 0 can be restyled. The gradient of λ can be rewritten as

∇kλ(0) = − 1

I1(B)

(

(B(1), . . . ,B(n)) · (v1j , . . . , vnj )
)

j=1,...,d

Also, when the gradient of λ at k = 0 is null, the hessian matrix of λ at the same point is

D2λ(0) = − 2

I1(B)

∑

h<k

B(h, k) (vh ⊗ vk)∗

where ⊗ is the usual tensor product of vectors and ∗ denotes the symmetric part of a

matrix.

With a terminology that will be fully motivated in the subsequent Section, we define

the drift velocity of the system (4) to be the vector

(10) v
drift

:= −∇kλ(0) =
1

I1(B)

(

(detB(1), . . . ,detB(n)) · (v1j , . . . , vnj )
)

j=1,...,d

and the diffusion matrix of the system (4) as

(11) D := D2λ(0) = − 2

I1(B)

∑

i<j

B(i, j) (vi ⊗ vj)∗.

In a frame moving with speed v
drift

, the velocities vi in the system are modified in vi−v
drift

and coherently, the gradient of λ at 0 is null. Thus, without loss of generality, we may

assume that the conditions

(detB(1), . . . ,detB(n)) · (v1j , . . . , vnj ) = 0 ∀j = 1, . . . , d

henceforth holds.

Example 3.2. [Goldstein–Kac model] The simplest example needs only two velocities and

a transition matrix of the form

B =

(

µ12 −µ21

−µ12 µ21

)

.

for some positive values µ12, µ21. Since B(1) = µ21 and B(2) = µ12, the drift velocity of

the system is

v
drift

=
µ21v

1 + µ12v
2

µ21 + µ12
.



11

Since detB(1, 2) = 1, if µ21v
1 + µ12v

2 = 0, there holds

D = − 2

µ21 + µ12
(v1 ⊗ v2)∗ =

2µ21/µ12

µ21 + µ12
(v1 ⊗ v1)

When the symmetry condition µ21 = µ12 holds, v
drift

is the algebraic mean of v1 and v2

and the diffusion matrix D reduces to (v1 ⊗ v1)/µ12.

Example 3.3. Going a step further, let us consider the symmetric case with n = 3 given

by the symmetric transition matrix

B =





b+ c −c −b
−c a+ c −a
−b −a a+ b



 .

so that
detB(1) = detB(2) = detB(3) = ab+ ac+ bc,

detB(1, 2) = a+ b, detB(1, 3) = a+ c, detB(2, 3) = b+ c.

Therefore, the drift velocity is the average of v1,v2,v3

1

2

3

c

a

b

Figure 1. Schematic represenation of the transitions in Examples 3.3.

v
drift

=
1

3

(

v1 + v2 + v3
)

,

and, for v
drift

= 0, the diffusion matrix is

D = − 2

3(ab+ bc+ ca)

{

(a+ b)(v1 ⊗ v2)∗ + (a+ c)(v1 ⊗ v3)∗ + (b+ c)(v2 ⊗ v3)∗
}

= − 2

3(ab+ bc+ ca)

{

a
[

(v1 ⊗ v2)∗ + (v1 ⊗ v3)∗
]

+ b
[

(v1 ⊗ v2)∗ + (v2 ⊗ v3)∗
]

+ c
[

(v1 ⊗ v3)∗ + (v2 ⊗ v3)∗
]}

=
2

3(ab+ bc+ ca)

{

av1 ⊗ v1 + bv2 ⊗ v2 + cv3 ⊗ v3
}

Example 3.4. Next, consider four velocities with symmetric transition rates

B =









∗ −µ12 0 −µ14

−µ12 ∗ −µ23 0
0 −µ23 ∗ −µ34

−µ14 0 −µ34 ∗









,
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where the diagonal entries are the sums of the column element changed by sign. Then,

there hold for i ∈ {1, 2, 3, 4}

detB(i) = µ12µ14µ23 + µ12µ14µ34 + µ12µ23µ34 + µ14µ23µ34

and, for the second order principal minors,

detB(1, 2) = µ14µ23 + µ14µ34 + µ23µ34

detB(1, 3) = µ12µ14 + µ12µ34 + µ14µ23 + µ23µ34

detB(1, 4) = µ12µ23 + µ12µ34 + µ23µ34

detB(2, 3) = µ12µ14 + µ12µ34 + µ14µ34

detB(2, 4) = µ12µ23 + µ12µ34 + µ14µ23 + µ14µ34

detB(3, 4) = µ12µ14 + µ12µ23 + µ14µ23

Since detB(i) is independent of i, the drift velocity is the average of the speeds

v
drift

=
1

4

(

v1 + v2 + v3 + v4
)

.

Then, assuming v
drift

= 0, the expression for the diffusion matrix can be rearranged by

collecting the term multiplied by the same product of transition rates, obtaining

D = − 2

detB(i)

{

µ23µ34

(

(v2 + v3 + v4)⊗ v1
)∗

+ µ14µ34

(

(v1 + v3 + v4)⊗ v2
)∗

+ µ12µ14

(

(v1 + v2 + v4)⊗ v3
)∗

+ µ12µ23

(

(v1 + v2 + v3)⊗ v4
)∗

+ µ12µ34

(

(v1 + v2)⊗ (v3 + v4)
)∗

+ µ14µ23

(

(v1 + v4)⊗ (v2 + v3)
)∗
}

.

Since v1 + v2 + v3 + v4 = 0, the matrix D can be rewritten as

D =
2

detB(i)

{

µ23µ34(v
1 ⊗ v1) + µ14µ34(v

2 ⊗ v2) + µ12µ14(v
3 ⊗ v3) + µ12µ23(v

4 ⊗ v4)

+ µ12µ34

(

(v1 + v2)⊗ (v1 + v2)
)

+ µ14µ23

(

(v1 + v4)⊗ (v1 + v4)
)

}

.

showing, in particular, that the diffusion matrix is non-negative definite.

Example 3.5. As a final example, let us consider a case with 5 velocities and admissible

transitions only between v1 and vj for j = 2, 3, 4, 5. The transition matrix is

B =













∗ −µ12 −µ13 −µ14 −µ15

−µ12 ∗ 0 0 0
−µ13 0 ∗ 0 0
−µ14 0 0 ∗ 0
−µ15 0 0 0 ∗













.

where the diagonal entries are the sums of the column element changed by sign. A direct

computation shows that detB(i) = µ12µ13µ14µ15 for any i ∈ {1, 2, 3, 4, 5}. The second
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order principal minors are

detB(1, 2) = µ13µ14µ15 detB(1, 3) = µ12µ14µ15

detB(1, 4) = µ12µ13µ15 detB(1, 5) = µ12µ13µ14

detB(2, 3) = µ12µ14µ15 + µ13µ14µ15 detB(2, 4) = µ12µ13µ15 + µ13µ14µ15

detB(2, 5) = µ12µ13µ14 + µ13µ14µ15 detB(3, 4) = µ12µ13µ15 + µ12µ14µ15

detB(3, 5) = µ12µ13µ14 + µ12µ14µ15 detB(4, 5) = µ12µ13µ14 + µ12µ13µ15.

As in the previous cases, being detB(i) is independent of i, the drift velocity is the average

of the speeds. Then, setting v
drift

= 0, the diffusion matrix turns to be

D =
2

µ12
(v2 ⊗ v2) +

2

µ13
(v3 ⊗ v3) +

2

µ14
(v4 ⊗ v4) +

2

µ15
(v5 ⊗ v5).

Note, in this case, the absence of the dependency of D on the velocity v1.

From all the examples, in the case of symmetric transition matrix B, two specific features

come evident: firstly, the drift speed is the average of the elements in the speed set

{v1, . . . vn}; secondly, the diffusion matrix is described as a linear combination with non-

negative coefficients of tensor of the form w⊗w. This latter property, in particular, implies

that the matrix D is non-negative definite.

In what follows, we show that the same hallmark is shared by any system (4) if the

matrix B is symmetric as a consequence of the special structure of its principal minors.

Proposition 3.6. If the transition matrix B is symmetric, then detB(i) = detB(j) for

any i, j ∈ {1, . . . , n}.

Proof. Substituting the first row with the sum of all the rows, using symmetry and, then,

the first column with the sum of all the columns

detB(1) = det











∑

j 6=2

µj2 −µ23 . . .

−µ32
∑

j 6=3

µj3 . . .

...
...

. . .











= det









µ12 µ13 . . .
−µ32

∑

j 6=3

µj3 . . .

...
...

. . .









= det









µ12 µ13 . . .
−µ23

∑

j 6=3

µj3 . . .

...
...

. . .









= det











∑

j 6=1

µ1j µ13 . . .

µ13
∑

j 6=3

µj3 . . .

...
...

. . .











= − det











−
∑

j 6=1

µ1j −µ13 . . .

µ13
∑

j 6=3

µj3 . . .

...
...

. . .











= det











∑

j 6=1

µ1j −µ13 . . .

−µ13
∑

j 6=3

µj3 . . .

...
...

. . .











= detB(2).

The proof is complete. �
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As a consequence of the independency of the principal minors of order 1 of the matrix B,

as suggested by the previous examples, the form of the drift velocity becomes particularly

simple.

Theorem 3.7. If the transition matrix B is symmetric, there holds

(12) v
drift

=
1

n

n
∑

i=1

vi.

Proof. The proof is straightforward. Thanks to Proposition 3.6, detB(i) is independent

on i and thus I1(B) = n detB(i). Then, from (10) follows

(v
drift

)j =
detB(i)

n detB(i)

(

1 · (v1j , . . . , vnj )
)

=
1

n

n
∑

i=1

(vi)j

where 1 = (1, . . . , 1). �

In order to get a deeper understanding on the structure on the diffusion matrix D

relative to (4), it is needed a more precise understanding of the form of the principal

minors of the transition matrix B. In this direction, a fundamental tools is provided by

a generalization, proved in [3], of the Kirchoff’s matrix tree Theorem, a well-known

result in graph theory.

1

2

3

4

µ12µ23

µ34 µ14

1 2

3

4

5

µ12

µ13

µ14

µ15

Figure 2. The graph relative to the Examples 3.4–3.5.

In its original version, this result affirms that the number of spanning trees of a given

graph coincides with the determinant of an appropriate matrix associated to the graph.

Here, we use this fascinating connection the other way round: given the transition matrix

B, we consider a corresponding graph and determine the values of its minors by means

of trees contained in the graph. Indeed, the velocity changes dictated by the transition

matrix B can be equivalently represented by means of a directed graph, usually shortly

called a digraph, whose vertices are the speeds vi, and with arcs from the i-th to the j-th

node weighted by the transition rate µij. The symmetry assumption on B translates into

the fact that the graph is actually undirected with weights given by the common values

of the transition rates. In this respect, Example 3.3 correspond to the graph depicted in
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Figure 1 and Examples 3.4–3.5 to the graphs in Figure 2. Also, irreducibility of the matrix

B is equivalent to the connectedness of the associated graph.

The collection of velocities vi with arcs weighted by the rate µij will be referred to as

the graph associated to (4). Let us stress that the graph representation of the vertex is

not directly related with the effective value of the velocity vi as vector in R
d. The content

of the graph is only illustrative on the admissibile speed transitions.

To proceed, let us also recall that a tree is an undirected graph in which any two

vertices are connected by exactly one simple path. Equivalently, a tree is a connected

graph without simple cycles. A forest is a disjoint union of trees. Finally, given a forest

F in the graph Γ, we denote by µF the product of the weights of all the arcs in F and

we call it weight of the forest. By definition, if F is composed by a single vertex, its

weight is equal to 1.

We are ready to state a (facilitated) version of the (All minors) matrix tree theorem

proved in [3].

Theorem 3.8. Let Γ = (vi, µij) be the graph associated to (4). Let the transition matrix

B be symmetric and let I = {i1 < · · · < ik} be a set of indeces in {1, . . . , n}. Then

detB(I) =
∑

F∈F
µF

where F is the set of forests F in Γ such that

i. all the verteces in Γ are contained in F ;

ii. F contains exactly k trees;

iii. each tree in F contains exactly one vertex vi with i ∈ I.

1

2

3

4

5

6

7

8

µ12

µ23µ34

µ45

µ56

µ67 µ78

µ18

Figure 3. The graph relative to the Example 3.9 in the case n = 8.

Formulas (10) and (11) can be now re-interpreted taking advantage of Theorem 3.8 in

the cases k = 1 and k = 2. Indeed, to compute the value detB(i) (which is independent

on i thanks to Proposition 3.6) it is sufficient to consider all the trees composed by all the
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verteces vi and contained in the graph associated to (4) and to compute the sum of the

weights of such trees.

Example 3.9. As an explicative example, let us consider the case of n velocities vi with

rate µij symmetric and positive if and only if, for i < j, either j = i + 1 or i = 1 and

j = n (see Figure 3). The graph associated to such choice is a cycle and all of its trees

containing all of the n vertices are obtained by removing a single arc. Thus

detB(i) =

n
∑

j=1

µ12µ23 . . . µn−1,nµn1

µj,j+1

where µn,n+1 = µn1.

Example 3.10. Somewhat oppositely with respect to Example 3.9, we can consider a

matrix B such that transitions are possibile only from and towards a given specific speed,

say v1, i.e. µij > 0 for i < j if and only if i = 1 (see Figure 4). The graph is in this case

1 2

3

4

5

6

7

8

9

µ12

µ13
µ14

µ15

µ16

µ17 µ18

µ19

Figure 4. The graph relative to the Example 3.9 in the case n = 9.

a tree. Hence, detB(i) is the product of all the rates µ1j with j ∈ {2, . . . , n}.

Next, we take advantage of Theorem 3.8 to give a different representation of the diffusion

matrix D defined in (11). Given the graph Γ associated to (4), we set

F2 := {forests F partitioning the vertex of Γ into two trees}.

Any element F in F2 is composed by two trees, T 1 and T 2, ordered according to the size

of the smallest node in each tree. Additionaly, given indeces i, j, with i < j, we use the

notation

F2(i, j) := {F = {T 1, T 2} ∈ F2 : i and j are verteces of T 1 and T 2, respectively}.
Then, given indeces i and j, there holds

detB(i, j) =
∑

F2(i,j)

µ
T1µT2 .
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and thus, for v
drift

= 0,

D = − 2

I1(B)

∑

h<k

∑

F2(h,k)

µ
T1µT2 (v

h ⊗ vk)∗.

Reversing the order of the sums, we infer

D = − 2

I1(B)

∑

F2

µ
T1µT2

∑

h∈T 1

∑

k∈T 2

(vh ⊗ vk)∗

= − 2

I1(B)

∑

F2

µ
T1µT2





∑

h∈T 1

vh ⊗
∑

k∈T 2

vk





∗

Thanks to Proposition 3.6, v
drift

= 0 if and only if the sum of the velocities vi is null.

As a consequence, we obtain the proof of the following statement, the more intriguing

contribution of the present paper, giving an explicit formula for the diffusion matrix in

the symmetric setting.

Theorem 3.11. Let the transition matrix B be symmetric. Then, denoting by w(T ) the

sum of the velocities vi in a given tree T of the graph associated to (4), the diffusion

matrix relative to (4) is

(13) D =
2

I1(B)

∑

F2

µ
T1µT2 (w(T1)⊗w(T1)) .

In particular, the matrix D is non-negative definite.

To get acquainted with formula (13), let us consider some of the previous Examples.

Example 3.12. For what concerns the system of Example 3.4, the set F2 is composed

by six elements, obtained by removing two arcs of the corresponding graph (see Figure

5). Each of the element F = {T 1, T 2} in F2 gives the coefficient of an appropriate matrix

of the form w ⊗ w in the formula for the diffusion matrix B. The vector w is obtained

by summing the verteces of the tree T 1, or of the tree T 2. These two sum of verteces

coincides because of the requirement v
drift

= 0. The final expression of D has been given

in Example 3.4.

Example 3.13. Example 3.9 generalizes the previous one. The family F2 is completely

described by the trees T 1 containing a given vertex, say v1. Since such threes are composed

by path of k consecutive arcs, for k = 1, . . . , n − 1, there are exactly k of such threes

containing the vertex. Therefore, the family F2 is composed by n(n−1)
2 elements. The

diffusion matrix D is the sum of weighted matrix w ⊗ w where w is the sum of the

verteces in the tree T 1 and the weights is the product of the arcs in T 1 and in T 2 (thus

the product of all the coefficients µij with the exception of the one corresponding to the

two arcs not in T 1 and T 2).

Example 3.14. The situation for Example 3.10 is particularly simple. Indeed, the set F2

is composed by n−1 element each of which correspond to the forest of a tree composed by a
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1
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µ23

µ34

1

2

3

4

µ14

µ34

1

2

3

4

µ12

µ14

1

2

3

4

µ12µ23

1

2

3

4

µ12

µ34

1

2

3

4

µ23

µ14

Figure 5. The six elements of F2 for the graph of the Example 3.4.

single vertex vi, i ∈ {2, . . . , n} and the tree, denoted by T (i) composed by the remaining

part of the graph excluding both the vertex vi and the arc from v1 to vi. Thus, the

diffusion matrix takes the form

D =
2

µ12 . . . µ1n

n
∑

i=2

µ
T (i)

(

vi ⊗ vi
)

=

n
∑

i=2

2

µ1i

(

vi ⊗ vi
)

.

Apparently, the formula for D does not depend on the choice of v1, but it should be always

kept in mind that formula (13) gives the diffusion matrix when the drift term v
drift

has

been set to zero by applying a change in the reference frame. Thus, the speed v1 cannot

be chosen independently on the other speeds.

To conclude the Section let us consider a specific case for which the expression of the

diffusion matrix simplifies further, involving only term of the form vi ⊗ vi.

Proposition 3.15. Let B be a symmetric matrix and assume:

i. either n = 2k for some k and v2ℓ = −v2ℓ−1 for any ℓ ∈ {1, . . . , k};
ii. or n = 2k + 1 for some k, v2ℓ = −v2ℓ−1 for any ℓ ∈ {1, . . . , k} and v2k+1 = 0.

If the transition matrix B is such that

(14) B(2i− 1, j) = B(2i, j) for any i = 1, . . . , k, j = 1, . . . , n,

then there holds

(15) D = − 2

I1(B)

m
∑

i=1

∑

F2(2i−1,2i)

µ
T1µT2 (v

2i ⊗ v2i)
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Proof. Let us deal with case i., the other one being similar. The proof consists in showing

that formula (11), under assumption (14), can be rearranged as

D = − 2

I1(B)

k
∑

i=1

B(2i− 1, 2i) (v2i ⊗ v2i).

Let us proceed by induction. For k = 1, there holds

1

2
I1(B)D = −B(1, 2) (v1 ⊗ v2)∗ = B(1, 2)(v2 ⊗ v2)

Then, assuming that the thesis holds for k − 1, we infer

1

2
I1(B)D = −

∑

j>1

B(1, j) (v1 ⊗ vj)∗ −
∑

j>2

B(2, j) (v2 ⊗ vj)∗ −
∑

2<i<j

B(i, j) (vi ⊗ vj)∗

= −B(1, 2) (v1 ⊗ v2)∗ +
∑

j>2

(

B(1, j) − B(2, j)
)

(v2 ⊗ vj)∗ −
∑

2<i<j

B(i, j) (vi ⊗ vj)∗

= B(1, 2) (v2 ⊗ v2)∗ +
k
∑

i=2

B(2i− 1, 2i) (v2i ⊗ v2i) =
k
∑

i=1

B(2i− 1, 2i) (v2i ⊗ v2i),

that gives the conclusion. �

In term of transitions, hypothesis (14) asserts that the probability to jump on/from

velocity v2j or −v2j to a different given speed vℓ is the same. Such assumption is mean-

ingful either when each couple of speeds v2j−1,v2j corresponds to a cartesian direction or

also in the case of “undirected” motion in the sense that the two directions on the same

line have same probability of success after transition. As an example, the latter situation

is of interest in the modeling of undirected tissues as considered in [10] in the modeling of

mesenchymal motion.

4. Asymptotically parabolic behavior

To corroborate the analysis of the previous Section, we now show that the representation

of the diffusion matrix D is indeed significant for the description of the large-time behavior

of solutions to (4)–(5).

As mentioned in the Introduction, the main result of this Section fits into a well-

estabilished research strand, whose main target is to quantify the large-time parabolic

behavior of solutions of a class of dissipative hyperbolic equations. Specifically, the main

point of the analysis is to show that the distance of the hyperbolic solution and some

solution to a corresponding parabolic problem, decayes to zero faster than the decay of

each separate term, showing that the dissipation mechanism is asymptotically of the same

type. Being, usually, the parabolic behavior preferred for regularity reasons, it is usually

stated that the hyperbolic equation has an asymptotically parabolic nature.

To quote some contributions, without any intention of completeness, let us mention

the direction that explores the form of the Green function with ref.[24], motivated by

nonequilibrium gasdynamics, and ref. [2], where a general class of relaxation systems is

explored in details; the L∞-bound in ref. [23] and the Lp−Lq estimates in reff. [16, 19] (and
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descendants) relative to the prototypical case of the relation between heat and telegraph

equation; the analysis L2-asymptotic expansions of the solutions for the heat and the

damped wave equation proposed in ref. [22], which clearly shows how the diffusive behavior

is the effect of the cancellation of leading order terms.

Concerning the diffusive behavior of system (4) as t → +∞, we state and prove the

following result.

Theorem 4.1. Assume the transition matrix B to be symmetric with strictly positive

diagonal elements and the diffusion matrix D to be positive definite. Let f be the solution

to (4)–(5), u be the sum of the components fi, i.e. u := 1 · f , and upar be the solution to

∂w

∂t
= div (D∇xw) w(x, 0) = 1 · f0.

Then, if f0 ∈ [L1 ∩ L2(Rd)]n, there holds

(16) |u− upar |L2 (t) ≤ C t−
1
4
d− 1

2 |f0|
L1∩L2

for some C > 0 (independent of t and f0).

Hypotheses on the matrices B and D are satisfied when the conditions required in

Proposition 2.3 hold, namely

B irreducible and span {vi − vj : i, j = 1, . . . , n} = R
d.

Indeed, if the matrix B is irreducible (or, equivalent, if the graph associated to the system

(4) is connected), the diagonal elements are strictly positive. Moreover, since in [20] it is

proved that the property in Proposition 2.3 is equivalent to the bound

Reλ ≤ − c0|k|2
1 + |k|2

for some c0 > 0 and for any (λ,k) satisfying the dispersion relation, the matrix D is forced

to be positive definite, whenever the differences vi − vj generates all of Rd.

To prove Theorem 4.1, we applying Fourier transform to (4). Denoting by û the Fourier

transform of function u, we obtain a system of ordinary differential equations for the

frequency variables f̂ = f̂(k, t)

(17)
∂f̂i
∂t

+ (vi · k)f̂i +
∑

j 6=i

(

µij f̂i − µji f̂j
)

= 0, i = 1, . . . , n,

with initial conditions

(18) f̂i(k, 0) = f̂0,i(k) k ∈ R
d, i = 1, . . . , n

Denoting by f̂ and f̂0 the vectors of components f̂i and f̂0,i, respectively, the solution to

(17)–(18) is given by

f̂(k, t) = exp
{

−
(

diag (vi · k) + B
)

t
}

f̂0(k)

where the symbol B denotes the same matrix of Section 3. Let us consider the functions

û(k, t) = 1 · exp
{

−
(

diag (vi · k) + B
)

t
}

f̂0(k) and ûpar(k, t) = e(k·Dk)tû0(k)
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where û0 = 1 · f̂0. We are interested in estimating the L2-norm of the difference û− ûpar .

Let ε0 > 0 to be chosen. Then, there holds

(19) |û− ûpar |2
L2
(t) ≤ I1(t) + I2(t)

where

I1(t) :=

∫

|k|<ε0

∣

∣

∣
1 · exp

{

−
(

diag (vi · k) + B
)

t
}

f̂0(k)− e(k·Dk)t(1 · f̂0)(k)
∣

∣

∣

2
dk

I2(t) :=

∫

|k|≥ε0

{

|û|2 + |ûpar |2
}

(k, t) dk

The dispersion relation of (4) in the limit k → 0 has been explored in Section 3. In

particular, in this regime, it is possible to identify the branch of solution of p(λ,k) = 0

passing through the origin (0,0) and to describe its behavior by means of a scalar-valued

function λ = λ(k) for which the following second-order expansion holds

λ(k) = k · Dk+ o(|k|2) as k → 0.

Taking advantage of this relation, we are able to state a result concerning the bound of

I1.

Lemma 4.2. Let the vectors vi be such that
∑

i v
i = 0 and let the matrix D be positive

definite. If f0 ∈ L1 ∩ L2(Rd), then there exist ε0, C, c > 0 such that

(20) I1(t) ≤ C
(

t−
1
2
d−1|f0|2

L1
+ e−ct|f0|2

L2

)

.

for any t > 0.

Proof. Denoting by P(k) the spectral projector relative to λ = λ(k), we deduce that for

ε0 sufficiently small the matrix there holds

exp
{

−
(

diag (vi · k) + B
)

t
}

= eλ(k)tP(k) +O(e−θt)

for some θ > 0 uniform with respect to k such that |k| ≤ ε0. Then, the term I1 can be

estimated by

I1(t) ≤
∫

|k|<ε0

∣

∣

∣

(

eλ(k)t1P(k)− e(k·Dk)t1
)

· f̂0(k)
∣

∣

∣

2
dk+O(e−2θt)

∫

|k|<ε0

∣

∣f̂0(k)
∣

∣

2
dk.

The projection P(k) has the form r(k) ⊗ ℓ(k) where ℓ and r are, respectively, left and

right eigenvectors of diag (vi · k) + B relative to the eigenvalue λ(k), normalized so that

the condition ℓ(k) · r(k) = 1 holds. Since the sum of columns and rows of B is zero, by

assumption, there holds

r(0) = ℓ(0) =
1√
n
1.

In particular, the zero-th order expansion for P(k) is

P(k) =
1

n
(1⊗ 1) +O(k) as k → 0.

Therefore, the term I1 is bounded by

I1(t) ≤ I11(t) + I12(t) +O(e−2θt)|f̂0|2
L2
,
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with

I11(t) := o(1)

∫

|k|<ε0

e2(k·Dk)t|k|4
∣

∣û0(k)
∣

∣

2
dk,

I12(t) := O(1)

∫

|k|<ε0

e2Reλ(k)t|k|2|f̂0(k)|2 dk

Since, for v ∈ L1(Rd), there holds
∫

|k|<ε0

e−2θ|k|2t|k|2ℓ|v̂(k)|2 dk ≤ |v|2
L1

∫

|k|<ε0

e−2θ|k|2t|k|2ℓ dk

= |v|2
L1

t−
1
2
d−ℓ

∫

|y|<ε0
√
θt
e−2|y|2 |y|2ℓ dk ≤ C|v|2

L1
t−

1
2
d−ℓ.

Collecting, we end up with

I1(t) ≤ C
(

t−
1
2
d−2|u0|2

L1
+ C t−

1
2
d−1|f0|2

L1
+ e−2θt|f0|2

L2

)

,

which gives (20). �

Concerning the term I2, relative to value of k at positive distance from the origin 0,

the following estimate holds true.

Lemma 4.3. Let vi be such that
∑

i v
i = 0 and let the matrix B be such that µii > 0 for

any i = 1, . . . , n. If f0 ∈ L2(Rd), then for any ε0 > 0 there exist C, c > 0 such that

(21) I2(t) ≤ C e−ct|f0|2
L2
,

for any t > 0.

Proof. Since D is positive definite, from the definition of ûpar it follows
∫

|k|≥ε0

|ûpar |2 dk ≤
∫

|k|≥ε0

e−2c0|k|2t|û0(k)|2 dk ≤ e−2c0ε20t|û0|2
L2

= e−2c0ε20t|1 · f0|2
L2
.

for some c0 >. Thus, estimate (21) is proved if we show that there exists θ > 0 such that

(22) Reλ ≤ −θ < 0

for any λ such that det(λ I+ diag (vi · k) + B) = 0 for some |k| > ε0.

The description of the dispersion relation given in Section 3 guarantees that property

Reλ < 0 holds for k 6= 0 and small.

Next, we show that the system does not support pure imaginary value of λ corresponding

to purely imaginary values of k. Let F be such that

(23) (λ+ vi · k)Fi +

n
∑

j=1

µij Fj = 0 i = 1, . . . , n.

By multiplying for the complex conjugate F̄i and summing with respect to i, we get

n
∑

i=1

(λ+ vi · k)|Fi|2 +
n
∑

i,j=1

µij F̄i Fj = 0
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Since the matrix B is symmetric, the last term is real; hence, for λ,k purely imaginary,

n
∑

i=1

(λ+ vi · k)|Fi|2 =
n
∑

i,j=1

µij F̄i Fj = 0

Since F ∈ kerB, then F = C1 for some C ∈ R and thus

λ = − 1

n

n
∑

i=1

vi · k = 0

At the moment, (22) holds for |k| ∈ [ε0,M ] for any 0 < ε0 < M for some θ = θ(ε0,M).

The last step of the proof concerns with the high frequency regime k ∈ iRd with |k| → ∞.

To this aim, let us consider the eigenvalue problem (23) with k = ε−1h, |h| = 1 and

λ = ε−1ν, that is

(24) (µ+ vi · h)Fi + ε
n
∑

j=1

µij Fj = 0 i = 1, . . . , n

in the limit ε → 0. Setting

ν = ν0 + ε ν1 + o(ε), F = F0 + εF1 + o(ε)

plugging into (24) and collecting the terms with same power of ε, we get the relations

(ν0 + vi · h)F0,i = 0 and (ν0 + vi · h)F1,i + ν1F0,i +

n
∑

j=1

µij F0,j = 0

Hence, we infer for the 0-th order coefficients

ν0 = −vi · h and F0,i = Ei

where Ei denotes the i-th element of the canonical base of Rn. Plugging into the 1-st

order relation, we get the formula for the first coefficient in the expansion of ν,

ν1 = −µii.

Coming back to the original variables λ and k, the asymptotic expansions reads

λ(k) = −vi · k− µii + o(1) as |k| → ∞.

Since the diagonal values µii are assumed to be strictly positive, the bound (22) can be

prolunged to m → +∞, changing, if necessary, the value of the constant θ. �

By means of the results of Lemmas 4.2–4.3, the completion of the proof of Theorem 4.1

is at hand. Indeed, resuming from (19) and using (20)–(21), we obtain

|û− ûpar |2
L2
(t) ≤ C

(

t−
1
2
d−1|f0|2

L1
+ e−ct|f0|2

L2

)

≤ C t−
1
2
d−1|f0|2

L1∩L2

that gives (16) passing to the square roots and invoking Plancherel identity.
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