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Approximation by Baskakov quasi-interpolants

Paul Sablonnière, INSA & IRMAR, Rennes

October 18, 2013

Abstract

Baskakov operators and their inverses can be expressed as linear differential operators
on polynomials. Recurrence relations are given for the computation of these coefficients.
They allow the construction of the associated Baskakov quasi-interpolants (abbr. QIs).
Then asymptotic results are provided for the determination of the convergence orders of
these new quasi-interpolants. Finally some results on the computation of these QIs and the
numerical approximation of functions defined on the positive real half-line are illustrated
by some numerical examples.

1 Introduction

In the present paper, the general method developed by various authors for the construction of
quasi-interpolants (abbr. QIs) of Bernstein and other types, is applied to Baskakov operators
[2] defined by

Vnf(x) :=
∑

k≥0

fk vk,n(x), fk := f

(

k

n

)

where

vk,n(x) :=

(

n+ k − 1

k

)

xk(1 + x)−(n+k), k ≥ 0

We thus complete the results given by P. Mache and M.W. Müller in [8]. The method also
works for Durrmeyer type Baskakov operators and will be developed elsewhere.
This method can be summarized as follows : let {Qn, n ∈ N} be a sequence of linear operators
defined on some functional space F with values in a finite-dimensional subspace Pn of algebraic
(or trigonometric) polynomials. Assuming that for all n ∈ N, Qn is an isomorphism of Pn

preserving the degree, i.e. Qnp ∈ Pm for any p ∈ Pm, 0 ≤ m ≤ n, very often it admits a
representation in that space as a differential operator of the form

Qn =

n
∑

r=0

β(n)
r Dr

where D is a (simple) linear differential operator, and β
(n)
r (x) is a polynomial of degree at most

r. In most cases, the inverse Pn := Q−1
n of Qn has also a representation of the same form

Pn =
n
∑

r=0

α(n)
r Dr.

1



In general, both families of polynomial coefficients satisfy a recurrence relation. This has been
proved [11] for Bernstein and Szász-Mirakyan operators and their associated Kantorovich and
Durrmeyer versions, and also for Weierstrass operators [14].

Introducing the truncated inverse of order 0 ≤ r ≤ n of Pn

P (r)
n =

r
∑

k=0

α
(n)
k Dk

one can associate with Qn either the left quasi-interpolants {Q
(r)
n , 0 ≤ r ≤ n} defined by

Q(r)
n p := P (r)

n Qnp =

r
∑

k=0

α
(n)
k (x)DkQnp, ∀p ∈ Pn

or the right quasi-interpolants {Q
[r]
n , 0 ≤ r ≤ n} defined by

Q[r]
n p := QnP

(r)
n p =

r
∑

k=0

Qn(α
(n)
k Dkp), ∀p ∈ Pn

By construction, these operators are exact on Pr and, in general, they can be extended to the
functional space F . In virtue of classical theorems in approximation theory, this procedure
greatly improves the convergence order of the initial operator Qn in the space F .
After its introduction in [9, 10] for Bernstein operators (see also [7]), it has been extended
by several authors to various classical linear approximation operators. For example by P.
Mache and M.W. Müller [8] to Baskakov operators, by A.T. Diallo [3, 5, 6] and the author [11]
to Szász-Mirakyan operators, and more recently [14] to Weierstrass operators. This general
method also works for multivariate extensions of these operators (see e.g. [13] for Bernstein
operators on triangles).

Here is a brief outline of the paper. In Section 2, we construct the polynomial coefficients
of the differential operators representing the Baskakov operator and its inverse on the space
of polynomials. Theorem 1 and 2 give the recurrence relations for the computation of these
polynomials and their asymptotic behaviour when n → ∞. In Section 3, some additional

results are given on the norms of Baskakov QIs V
(r)
n and a Voronovskaya type theorem about

their asymptotic convergence orders on smooth functions. Section 4 describes some practical
methods for the effective computation of these operators. Section 5 presents some numerical
examples of approximation of functions by Baskakov quasi-interpolants. Finally, in Section 6,

are listed the polynomial coefficients that are needed for the construction of the QIs V
(r)
n for

5 ≤ r ≤ 11.
We want to emphasize the fact that the function to be approximated is only known by its
values on uniform partitions of step 1/n of the positive real axis R+ = [0,+∞). Therefore
the Baskakov QIs cannot be compared with operators using specific points like e.g. zeros of
orthogonal polynomials or similar systems of abscissas for the evaluation of the function. In a
forthcoming paper [15], we will study the quadrature formulas on R+ generated by integration
of those Baskakov QIs.
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Notations. The rising factorials are written

(n)r =
(n + r − 1)!

(n− 1)!
= n(n+ 1) . . . (n+ r − 1)

The (positive) Stirling numbers of the first kind (see e.g. [1], chapter 1) are defined by

(x)n =

n
∑

k=0

(−1)n−ks(n, k)xk

The falling factorials are written

[n]r =
n!

(n− r)!
= n(n− 1) . . . (n− r + 1)

The (positive) Stirling numbers of the second kind are then defined by

xn =
n
∑

k=0

S(n, k)[x]k

We also use the notations X := x(1 + x), y := x
1+x

and mr(x) := xr for monomials.
P (resp. Pn ) denotes the space of polynomials (resp. of polynomials of degree at most n).

2 Baskakov operator and its inverse as differential operators

Let us denote

Vn := {vk,n(x) :=

(

n+ k − 1

k

)

xk(1 + x)−(n+k), k ≥ 0}

the set of basic functions of the Baskakov operators

Vnf(x) :=
∑

k≥0

fk vk,n(x), fk := f

(

k

n

)

The images of (Newton) polynomials are monomials of the same degree ([8], Lemma 1.1)

νr,n(x) :=

r−1
∏

i=0

(

x−
i

n

)

=⇒ Vnνr(x) = λn,rmr(x)

where

λn,r =
r−1
∏

i=0

(

1 +
i

n

)

=
(n)r
nr

, mr(x) := xr.

Therefore Vn is degree-preserving for all r ≥ 0. One can write

Vnνr(x) =
∑

k≥r

νr

(

k

n

)

vk,n(x) = n−r(1 + x)−nyr
∑

k≥r

(n+ k − 1)!

(k − r)! (n− 1)!
yk−r

With the change of index k = j + r, the series can be written

∑

j≥0

(n+ j + r − 1)!

j! (n − 1)!
yj =

∑

j≥0

uj

As limj→+∞
uj+1

uj
= limj→+∞

j+n+r
j+1 y = y < 1, the series is always convergent. Moreover, Vn

is exact on P1 since Vnν0(x) = m0(x) = 1 and Vnν1(x) = m1(x) = x.
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2.1 Vn and its inverse on P

Therefore Vn is an isomorphism of the space P of polynomials and both Vn and Un := V−1
n can

be written as differential operators on this space (here D = d/dx):

Vn =
∑

r≥0

θ(n)r Dr Un =
∑

r≥0

η(n)r Dr.

In the following, we often omit the upper index n when the latter is fixed.

2.1.1 Computation of polynomials θp(x)

We begin with computing wn,p := Vnmp, then solving the system of linear equations
∑p

r=2
p!

(p−r)!θr = wn,p−mp in the unknowns θr, with right-hand side the vector with components
Vnmp −mp. As we already know that

mr(x) =
∑

k≥0

[k]r
(n)r

vk,n(x) and kp =

p
∑

r=0

S(p, r)[k]r

where the S(p, r) are the positive Stirling numbers of the second kind, we deduce immediately

wp,n(x) := Vnmp(x) =
1

np

∑

k≥0

kpvk,n(x)

=
1

np

p
∑

r=0

S(p, r)
∑

k≥0

[k]rvk,n(x) =
1

np

p
∑

r=0

S(p, r)(n)rmr(x)

For example

w0(x) = 1, w1(x) = x, w2(x) =
1

n2

2
∑

r=0

S(2, r)(n)rx
r =

1

n
(x+ (n+ 1)x2)

Then w2(x) = m2(x) + 2θ2(x) and θ2(x) =
1
2 (w2(x)− x2) = 1

2nx(1 + x). Similarly

w3(x) :=
1

n3

3
∑

r=0

S(3, r)(n)rmr(x) =
1

n3
(nx+ 3n(n+ 1)x2 + n(n+ 1)(n + 2)x3)

thus

w3(x)−m3(x) =
1

n2
(x+ 3(n + 1)x2 + (3n + 2)x3)

and 6xθ2 + 6θ3 = w3 −m3 gives θ3(x) =
1

6n2x(x+ 1)(2x + 1).

In the general case, we get a linear system in θ2, θ3, . . . , θr whose general equation is the
following

xr−2

(r − 2)!
θ2 +

xr−3

(r − 3)!
θ3 + . . .+ θr = πr(x) :=

1

r!
(wr(x)−mr(x))
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By inverting the matrix, one obtains

θr(x) = πr(x)− xπr−1(x) +
x2

2!
πr−2(x) + . . .+ (−1)r

xr−2

(r − 2)!
π2(x) =

r−2
∑

k=0

(−1)k
xk

k!
πr−k(x)

Example 1: computation of θ4
From the expansion θ4(x) = π4(x)− xπ3(x) +

x2

2! π2(x) where π2(x) =
1
2nx(1 + x),

π3(x) =
1

6n2 (x+ 3(n + 1)x2 + (3n + 2)x3) and π4(x) =
1
4!(w4(x)−m4(x)), with

w4(x) =
1

n4

4
∑

r=0

S(4, r)(n)rmr(x) =
1

n4
(nx+ 7n(n + 1)x2 + 6(n)3x

3 + (n)4x
4)

we deduce

π4(x) =
1

4!
(w4(x)−m4(x)) =

1

4!n3
(x+ 7(n + 1)x2 + 6(n+ 1)(n + 2)x3 + (6n2 + 11n + 6)x4)

and finally we obtain the right polynomial

θ4(x) =
X

24n3
(1 + 3(n + 2)X)

Example 2: computation of θ5
Similarly, from the expansion θ5(x) = π5(x)− xπ4(x) +

x2

2! π3(x)−
x3

3! π2(x) where

w5(x) =
1

n5

5
∑

r=0

S(5, r)(n)rmr(x) =
1

n5
(nx+ 15(n)2x

2 + 25(n)3x
3 + 10(n)4x

4 + (n)5x
5)

from which we derive the expression of π5(x) =
1
5!(w5(x)−m5(x)):

π5(x) =
1

5!n4
(x+ 15(n + 1)x2 + 25(n + 1)2x

3 + 10(n + 1)3x
4 + (10n3 + 35n2 + 50n + 24)x5),

we get

θ5(x) =
x

5!n4
(1 + (10n + 15)x+ (40n + 50)x2 + (50n + 60)x3 + (20n + 24)x4)

which can be factorized as

θ5(x) =
X

5!n4
(2x+ 1)(1 + (10n + 12)X)

2.2 Computation of polynomials η
(n)
r

In [8], one finds

η2(x) = −
1

2

X

n+ 1
, η3(x) =

1

3

(1 + 2x)X

(n+ 1)(n + 2)
, η4(x) = −

1

8

X(2 − (n− 6)X)

(n+ 1)(n + 2)(n+ 3)

From Vn([nx]r) = (n)rmr(x), we deduce Unmr(x) = [nx]r/(n)r and, using the expansion

Un =
∑

r≥0 η
(n)
r Dr, we see that η = (ηk) is solution of the linear system

ηk +

k−1
∑

i=0

xk−i

(k − i)!
ηi = ρk :=

1

k!

[nx]k
(n)k
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whose solution can be written under the form

ηk =

k
∑

j=0

(−1)j
xj

j!
ρk−j.

Example: computation of η4
We have

η4 =
4
∑

j=0

(−1)j
xj

j!
ρ4−j , ρk :=

1

k!

[nx]k
(n)k

for k = 0, . . . , 4, which gives

ρ0 = 1, ρ1 = x, ρ2 =
1

2

nx(nx− 1)

n(n+ 1)

ρ3 =
1

6

nx(nx− 1)(nx− 2)

n(n+ 1)(n + 2)
, ρ4 =

1

24

nx(nx− 1)(nx− 2)(nx− 3)

n(n+ 1)(n + 2)(n + 3)

Therefore

η4 = ρ4 − xρ3 +
x2

2
ρ2 −

x3

6
ρ1 +

x4

24

Substituting the polynomials ρk by their expressions and factorizing, we get

η4(x) = −
1

8

X(2− (n− 6)X)

(n+ 1)(n + 2)(n + 3)

as desired. However, the polynomials θr and ηr are more easily calculated by using the recur-
rence formulas of the next theorem.

2.3 Recurrence on polynomials β and α

Theorem 1. The polynomials θr and ηr satisfy the following recurrence relations:

n(r + 1)θr+1(x) = X(Dθr(x) + θr−1(x)), θ0 = 1, θ1 = 0.

(n+ r)(r + 1)ηr+1(x) = −r(1 + 2x)ηr(x)−Xηr−1(x), η0 = 1, η1 = 0.

Proof. For the polynomials θr, the recurrence relation is already given in Lemma 1.1 of [8].
For the polynomials ηr, the proof is rather technical, so we omit some details in calculations.
The idea is to show that Er =

∑r
k=2

xr−k

(r−k)!Ak = 0 where

Ak := k(n + k − 1)ηk + (k − 1)(2x + 1)ηk−1 +Xηk−2, k ≥ 2.

Moreover, as we have seen above, η = (ηk) is solution of the linear system

ηk +
k−1
∑

i=0

xk−i

(k − i)!
ηi = ρk :=

1

k!

[nx]k
(n)k

and it can thus be written under the form

ηk =

k
∑

j=0

(−1)j
xj

j!
ρk−j
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Substituting the polynomials ηj for their expansion in terms of polynomials ρj in the expression

Er =
r
∑

k=2

xr−k

(r − k)!
{k(n+ k − 1)ηk + (k − 1)(2x+ 1)ηk−1 +Xηk−2}

we obtain

Er =
r−2
∑

k=0

xk

k!
{akρr−k + bk(2x+ 1)ρr−k−1 +Xckρr−k−2}

where

ak :=
k
∑

i=0

(−1)i
(

k

i

)

(r − k + i)(n + r − k + i− 1)

bk :=
k
∑

i=0

(−1)i
(

k

i

)

(r − 1− k + i), ck :=
k
∑

i=0

(−1)i
(

k

i

)

For k = 0, 1, 2, we get respectively c0 = 1, b0 = r − 1, a0 = r(n + r − 1), c1 = 0, b1 = −1,
a1 = −(n+2r−2) and c2 = b2 = 0, a2 = 2. For k ≥ 3, it is easy to prove that ak = bk = ck = 0,
therefore it only remains

Er = r(n+ r−1)ρr+(r−1)(2x+1)ρr−1+Xρr−2− (n+2r−2)xρr−1−x(2x+1)ρr−2+x2ρr−2

which, using the definition of polynomials ρr and ρr−1 and after simplification, gives the desired
result:

Er = r(n+ r − 1)ρr − (nx− (r − 1))ρr−1 = 0

Now, it is easy to check that A2 = 0. Then, by induction on r, assuming that Ak = 0 for
k = 2, . . . r − 1 and using the fact that Er = 0, we immediately deduce that Ar = 0, q.e.d. �

2.4 Asymptotic behaviour of θ and η

From the above results, we deduce, when n → ∞:

limnθ
(n)
2 =

1

2
X, limn2θ

(n)
3 =

1

6
(1 + 2x)X, limn2θ

(n)
4 =

1

8
X2, limn3θ

(n)
5 =

1

12
(1 + 2x)X2

limnη
(n)
2 = −

1

2
X, limn2η

(n)
3 =

1

3
(1+2x)X, limn2η

(n)
4 =

1

8
X2, limn3η

(n)
5 =

1

6
(1+2x)X2

More generally, using the recurrence relations of Theorem 1, one obtains, by induction on r:

Theorem 2.The following limits hold, when n → +∞

limnrθ
(n)
2r−1 = θ̄2r−1 =

1

3 · 2r−1(r − 2)!
(1 + 2x)Xr−1, limnrθ

(n)
2r = θ̄2r =

1

2rr!
Xr

limnrη
(n)
2r−1 = η̄2r−1 =

(−1)r

3 · 2r−2(r − 2)!
(1 + 2x)Xr−1, limnrη

(n)
2r = η̄2r =

(−1)r

2rr!
Xr

7



Proof. The result being already true for r = 1, 2, we assume the limits hold for r and we prove

them for r+1. We only give the proof for polynomials η
(n)
2r+1 and η

(n)
2r+2, the one for θ

(n)
2r+1 and

θ
(n)
2r+2 being similar. We start respectively from

(n + 2r)nr(2r + 1)η
(n)
2r+1(x) = −2r(1 + 2x)nrη

(n)
2r (x)−Xnrη

(n)
2r−1(x)

(n+ 2r + 1)nr(2r + 2)η
(n)
2r+2(x) = −(2r + 1)(1 + 2x)nrη

(n)
2r+1(x)−Xnrη

(n)
2r (x)

Taking the limits, which exist, when n → +∞, we get

(2r + 1)η̄2r+1 = −2r(1 + 2x)η̄2r −Xη̄2r−1

(2r + 2)η̄2r+2 = −Xη̄2r

whence the respective polynomials:

η̄2r+1 = −
2r

2r + 1
(1 + 2x)η̄2r −

X

2r + 1
η̄2r−1

= (−1)r+1(1 + 2x)Xr 1

2r + 1

(

1

2r−1(r − 1)!
+

1

3 · 2r−2(r − 2)!

)

= (−1)r+1(1 + 2x)Xr 1

3 · 2r−1(r − 1)!

η̄2r+2 = −
1

(2r + 2)
Xη̄2r =

(−1)r+1

2r+1(r + 1)!
Xr+1

which completes the proof. �

3 Baskakov quasi-interpolants: norm and convergence

Baskakov left quasi-interpolants are defined [8] by

V(r)
n f(x) = U (r)

n Vnf(x) =

r
∑

k=0

η
(n)
k (x)DkVnf(x).

(However in that paper the authors do not give the recurrence relation of Theorem 1 on the
coefficients η). Baskakov right quasi-interpolants are defined by

V [r]
n f(x) = VnU

(r)
n f(x) =

r
∑

k=0

Vn(η
(n)
k

Dkf)(x).

They seem to be less interesting than the left ones since they need the knowledge of derivatives
of the function f to be approximated. Therefore, we do not study them in the present paper.
In the rest of the paper, the QIs are thus left QIs.
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3.1 Norms of Baskakov quasi-interpolants

The (left) Baskakov QIs can also be represented in the quasi-Lagrange form

V(r)
n f(x) =

∑

j≥0

f

(

j

n

)

v
(r)
j,n(x),

where the quasi-Lagrange basic functions are defined by

v
(r)
j,n(x) :=

r
∑

k=0

η
(n)
k (x)Dkvj,n(x)

This form allows to express the infinite norm of the operator V
(r)
n as the max norm of the

associated Lebesgue function

‖V(r)
n ‖∞ = |Λ(r)

n |∞ = max
x≥0





∑

j≥0

|v
(r)
j,n(x)|





The following result is proved in [8] (Lemma 2.3):

Theorem 3. For all r ≥ 0, there exists a constant Cr > 0 such that

‖V(r)
n ‖∞ ≤ Cr ∀n ≥ r

The following table gives the first values of the norms and estimations of the expected values
of Cr.

n\r 2 3 4 5 6 7 8 9

8 1.10 1.32 1.72 2.34 3.30 4.90 7.50

16 1.12 1.34 1.77 2.44 3.50 5.20 8.00 13.0

24 1.128 1.345 1.79 2.46 3.54 5.31 8.26 13.3

32 1.131 1.350 1.80 2.48 3.58 5.38 8.38 13.5

40 1.133 1.352 1.80 2.50 3.60 5.42 8.46 13.7

48 1.134 1.353 1.80 2.50 3.62 5.44 8.51 13.8

Cr 1.15 1.4 1.9 2.6 3.7 5.6 8.8 14

At first sight, it can be observed that the norms have reasonable values for 1 ≤ r ≤ 7 and
much higher ones when r ≥ 8.

3.2 Asymptotic convergence order

From Theorems 1 and 2, we may immediately deduce the asymptotic convergence order of QIs
for polynomials.

Theorem 4. Let p be a polynomial of degree m ≥ 2r + 1, then

limnr+1(p(x)− V(2r)
n p(x)) = η̄2r+1D

2r+1p(x) + η̄2r+2D
2r+2p(x)

limnr+1(p(x)− V(2r+1)
n p(x)) = η̄2r+2D

2r+2p(x)

9



Proof. For p ∈ Pm, with m ≥ 2r + 1, one can write

p(x)− V(2r)
n p(x) = (Un − U (r)

n )Vnp(x) =
m
∑

k=2r+1

η
(n)
k

(x)DkVnp(x)

Remind that limnr+1η
(n)
2r+1 = (−1)r+1

3·2r−1(r−1)! (1 + 2x)Xr, limnr+1η
(n)
2r+2 = (−1)r+1

2r+1(r+1)!X
r+1 and

limnr+1η
(n)
k = 0 for k ≥ 2r + 3. Moreover, limDkVnp(x) = Dkp(x), therefore

limnr+1
m
∑

k=2r+1

η
(n)
k

(x)DkVnp(x) = limnr+1η
(n)
2r+1D

2r+1p(x) + limnr+1η
(n)
2r+2D

2r+2p(x).

The proof is similar for V
(2r+1)
n . �

In other terms

p(x)− V(2r)
n p(x) = O(n−(r+1)) p(x)− V(2r+1)

n p(x) = O(n−(r+1))

This result can be extended, via Taylor’s formula, to functions which are differentiable enough.

Theorem 5 (Voronovskaya) Let f ∈ C2r+4(R+) be a function with D2r+4f bounded, then
for all x ≥ 0

limnr+1(f(x)− V(2r)
n f(x)) = η̄2r+1D

2r+1f(x) + η̄2r+2D
2r+2f(x)

limnr+1(f(x)− V(2r+1)
n f(x)) = η̄2r+2D

2r+2f(x)

Proof. We only give the proof for the second limit, the one for the first limit being similar.

limnr+1(f(x)− V(2r+1
n f(x)) = η̄2r+2D

2r+2f(x)

By Taylor’s formula, for x fixed and for all t, there exists xt between x and t such that

f(t) = f(x) +

2r+3
∑

k=0

1

k!
(t− x)kDkf(x) +

1

(2r + 4)!
(t− x)2r+4D2r+4f(xt)

Therefore, as V
(2r+1)
n is exact on P2r+1:

V(2r+1)
n f(x)− f(x) =

1

(2r + 2)!
D2r+2f(x)V(2r+1)

n (t− x)(2r+2)

+
1

(2r + 3)!
D(2r+3)f(x)V(2r+1)

n (t− x)(2r+3) +
1

(2r + 4)!
V(2r+1)
n [(t− x)(2r+4)D(2r+4)f(xt)]

First, we get V
(2r+1)
n [(t− x)(2r+2)] = V

(2r+1)
n m2r+2 −m2r+2 = −η2r+2D

(2r+2)Vnm2r+2 since by
definition

V(2r+2)
n m2r+2 = m2r+2 = V(2r+1)

n m2r+2 + η2r+2(x)D
(2r+2)Vnm2r+2

10



Moreover, as limD2r+2Vnm2r+2 = D2r+2m2r+2 = (2r + 2)! and limnr+1η2r+2(x) = η̄2r+2(x),
we obtain

limnr+1

(

1

(2r + 2)!
D(2r+2)f(x)(V(2r+1)

n m2r+2 −m2r+2)

)

= −η̄2r+2(x)D
2r+2f(x)

Second, we will prove that limnr+1V
(2r+1)
n [(t− x)2r+3] = 0. We first obtain

V(2r+1)
n [(t− x)2r+3] = (V(2r+1)

n m2r+3 −m2r+3)− (2r + 3)x(V(2r+1)
n m2r+2 −m2r+2)

We already know that limnr+1(V
(2r+1)
n m2r+2 −m2r+2) = −(2r+2)!η̄2r+2(x). Then, using the

fact that V
(2r+3)
n m2r+3 = m2r+3, we get

nr+1(V(2r+1)
n m2r+3 −m2r+3) = −nr+1η2r+2(x)D

2r+2Vnm2r+3 − nr+1η2r+3(x)D
2r+3Vnm2r+3

As limD2r+2Vnm2r+3 = D2r+2m2r+3 = (2r + 3)!x, limD2r+3Vnm2r+3 = D2r+3m2r+3 = (2r +
3)!, limnr+1η2r+2(x) = η̄2r+2(x) and limnr+1η2r+3(x) = 0, we obtain

limnr+1(V(2r+1)
n m2r+3 −m2r+3) = −(2r + 3)!x η̄2r+2(x)

and finally

limnr+1V(2r+1)
n [(t− x)2r+3] = −(2r + 3)!x η̄2r+2(x) + (2r + 3)x (2r + 2)! η̄2r+2(x) = 0

It remains to prove that limnr+1R(x) = 0 , where R is the quantity

R := V(2r+1)
n [(t− x)2r+4D2r+4f(xt)] =

∑

j≥0

f (2r+4)(xj)

(

j

n
− x

)2r+4

v
(2r+1)
n,j (x)

where the quasi-Lagrange functions are defined by

v
(2r+1)
n,j (x) := vn,j(x) +

2r+1
∑

k=2

ηk(x)D
kvn,j(x)

We have seen above that

X2D2vn,j(x) = p2(x)vn,j(x), where |p2(x)| ≈ n2x2

X3D3vn,j(x) = p3(x)vn,j(x), where |p3(x)| ≈ n3x3

More generally, it is easy to prove that

XkDkvn,j(x) = pk(x)vn,j(x),where |pk(x)| ∼ nkxk

We then obtain

|v
(2r+1)
n,j (x)| ≤ vn,j(x)

(

1 +
2r+1
∑

k=2

X−k|ηk(x)||pk(x)|

)

From Theorem 2, we deduce

|ηk(x)| ∼ n−lη̄k(x), for k = 2l − 1 or k = 2l

11



thus
|η2l−1(x)||p2l−1(x)| ∼ nl−1x2l−1η̄2l−1(x), |η2l(x)||p2l(x)| ∼ nlx2lη̄2l(x),

Therefore the parenthesis in the upper bound on |v
(2r+1)
n,j (x)| is equivalent, when n → ∞, to

X−2r|η2r(x)||p2r(x)|+X−(2r+1)|η2r+1(x)||p2r+1(x)| ∼ nr
(

X−2rη̄2r(x) +X−(2r+1)η̄2r+1(x)
)

Let us introduce the two following subsets of indices, for a given a > 0:

J1 := {j ∈ N : |j/n − x| < n−a}, J2 := {j ∈ N : |j/n − x| ≥ n−a}

We can write

R ≤ ‖f (2r+4)‖∞





∑

j∈J1

(

j

n
− x

)2r+4

|v
(2r+1)
n,j (x)|+

∑

j∈J2

(

j

n
− x

)2r+4

|v
(2r+1)
n,j (x)|





In R1 :=
∑

j∈J1

(

j
n
− x
)2r+4

|v
(2r+1)
n,j (x)|, we have

∣

∣

∣

j
n
− x
∣

∣

∣

2r+4
< n−(2r+4)a

and
∑

j∈Z |v
(2r+1)
n,j (x)| ≤ ‖V

(2r+1)
n ‖∞ ≤ C2r+1, whence nr+1R1 ≤ C2r+1n

r+1−2(r+2)a and

limnr+1R1 = 0 if we take a > r+1
2(r+2) .

The second sum is equivalent, up to the rational factor X−2rη̄2r(x) +X−(2r+1)η̄2r+1(x), to

R2 = nr
∑

j∈J2

(

j

n
− x

)2r+4

vn,j(x)

and we have to prove that limnr+1R2 = limn2r+1
∑

j∈J2

(

j
n
− x
)2r+4

vn,j(x) = 0.

As j ∈ J2, |j/n − x| ≥ n−a implies |j − nx|2p ≥ n2p(1−a), thus 1 ≤ n2p(a−1)|j − nx|2p, whence

∑

j∈J2

(j − nx)2r+4vn,j(x) ≤ n2p(a−1)
∑

j∈J2

(j − nx)2r+2p+4vn,j(x)

From the recurrence relation of Theorem 1, we already know that θ2r+2p+4(x) ≤ Cn−(r+p+2),
thus

∑

j∈Z

(j − nx)2r+2p+4vn,j(x) = n2r+2r+2p+4
∑

j∈Z

(j/n − x)2r+2p+4vn,j(x) ≤ Cnr+p+2

This gives

n2r+1
∑

j∈J2

(

j

n
− x

)2r+4

vn,j(x) ≤ Cn−3n2p(a−1)nr+p+2 = Cn2pa+r−p−1

and the limit will be equal to 0 provided a < p+1−r
2p . Finally, we must have the following

bounds on a:
r + 1

2(r + 2)
< a <

p+ 1− r

2p

This is possible if r+1
r+2 < p+1−r

p
, i.e. if we choose p > (r − 1)(r + 2). �

12



4 Computation of Baskakov quasi-interpolants

We give more explicit expressions of Baskakov quasi-interpolants V
(r)
n f(x) for the first orders

1 ≤ r ≤ 11, which can be useful for their practical evaluation. The general case can be treated
in the same way.

4.1 Baskakov operator

The problem is to compute, for a given N large enough,

Vnf(x) :=
N
∑

k=0

fkvk,n(x), vk,n(x) :=

(

n+ k − 1

k

)

xk(1 + x)−(n+k)

Recalling the notations fk := f
(

k
n

)

and y = x
1+x

, one gets

Vnf(x) := (1 + x)−n

N
∑

k=0

fk

(

n+ k − 1

k

)

yk = (1 + x)−nPN (y)

As PN (y) is a polynomial of degree at most N in the variable y, it can be evaluated in O(N)
operations.

For the results below, we need the following lemma whose proof is technical, but straightforward

Lemma. (i) For given pairs (p, j) and (n, k), with 0 ≤ j ≤ p and 0 ≤ k ≤ n, there holds

xj(1 + x)p−jvk,n(x) = ωp,j(n, k)vk+j,n−p(x)

where

ωp,j(n, k) :=
(n+ k − 1) . . . (n+ k − p+ j)(k + 1) . . . (k + j)

(n − 1) . . . (n− p)

(ii) For all p ≥ 1, denoting as usual ∆uk := uk+1 − uk, there holds

Dpvk,n = (−1)p(n)p∆
pvk−p,n+p

therefore

DpVnf(x) = (n)p
∑

k≥0

(∆pfk) vk,n+p(x)

4.2 Baskakov QI: r = 2

We have to compute

V(2)
n f(x) := Vnf(x) + η

(n)
2 (x)D2Vnf(x),

with η
(n)
2 (x) = − X

2(n+1) and

D2Vnf(x) = n(n+ 1)
N−2
∑

k=0

(∆2fk) vk,n+2(x)

13



Using the above lemma

x(1 + x)vk,n+2(x) =

(

n+ k + 1

k

)

xk+1(1 + x)−(n+k+1),

we obtain

η
(n)
2 (x)D2Vnf(x) = −

n

2
(1 + x)−ny

∑

k≥0

(

n+ k + 1

k

)

(∆2fk)y
k

4.3 Baskakov QI: r = 3

We have to compute

V(3)
n f(x) := V(2)

n f(x) +
(1 + 2x)X

3(n+ 1)(n + 2)
D3Vnf(x)

As (1 + 2x)X = x(1 + x)2 + x2(1 + x) and

D3Vnf(x) = n(n+ 1)(n+ 2)

N−3
∑

k=0

(∆3fk) vk,n+3(x)

we obtain, using (1 + 2x)X = (1 + x)3y(1 + y):

V(3)
n f(x) := V(2)

n f(x) +
n

3
(1 + x)−ny(1 + y)

N−3
∑

k=0

(

n+ k + 2

k

)

(∆3fk) y
k

4.4 Baskakov QI: r = 4

In a similar way, we compute

V(4)
n f(x) := V(3)

n f(x) + η
(n)
4 (x)D4Vnf(x), η

(n)
4 (x) = −

X(2− (n− 6)X)

8(n + 1)(n+ 2)(n + 3)

Using the auxiliary variable z = y + 1/y, the numerator of η4(x) can be written

2X − (n− 6)X2 = 2x(1 + x)2 − (n− 2)x2(1 + x)2 + 2x3(1 + x)

= (1 + x)4y2(2/y − (n− 2) + 2y) = (1 + x)4y2(2z − (n− 2)).

From

D4Vnf(x) = (n)4

N−4
∑

k=0

(∆4fk) vk,n+4(x)

we deduce the following expression

η
(n)
4 (x)D4Vnf(x) = −

n

8
(1 + x)−ny2(2z − (n− 2))

∑

k≥0

(

n+ k + 3

k

)

(∆4fk)y
k
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4.5 Baskakov QI: r ≥ 5

In the same way, we get successively

r = 5 : η
(n)
5 (x)D5Vnf(x) =

4n

5!
(1 + x)−nτ5(y)

∑

k≥0

(

n+ k + 4

k

)

(∆5fk) y
k

r = 6 : η
(n)
6 (x)D6Vnf(x) = −

5n

6!
(1 + x)−nτ6(y)

∑

k≥0

(

n+ k + 5

k

)

(∆6fk) y
kπ4(z)

where

τ5(y) = y2(1 + y)(6z − 5n), τ6(y) = y3(24z2 − (26n − 24)z + (3n2 − 34n− 24))

r = 7 : η
(n)
7 (x)D7Vnf(x) =

6n

7!
(1 + x)−nτ7(y)

∑

k≥0

(

n+ k + 6

k

)

(∆7fk) y
k

where
τ7(y) = y3(1 + y)(120z2 − 154nz + 5(7n2 − 14n − 120))

r = 8 : η
(n)
8 (x)D8Vnf(x) = −

7n

8!
(1 + x)−nτ8(y)

∑

k≥0

(

n+ k + 7

k

)

(∆8fk) y
k

where

τ8(y) = y4(720z3 − 36(29n − 20)z2 + 4(85n2 − 152n − 110)z − 5(3n3 − 100n2 + 340n + 544))

r = 9 : η
(n)
9 (x)D9Vnf(x) =

8n

9!
(1 + x)−nτ9(y)

∑

k≥0

(

n+ k + 8

k

)

(∆9fk) y
k

where
τ9(y) = y4(1 + y)(7!z3 − γ2z

2 + γ1z − γ0)

with
γ2 = 36(223n + 120), γ1 = 4(826n2 − 1197n − 360),

γ0 = 5(63n3 − 490n2 − 1152n + 1152)

5 Approximation by Baskakov quasi-interpolants: examples

In practice, one can only compute an approximation of V
(r)
n f(x) involving N terms of the

series, for N large enough

V
(r)
n,Nf =

r
∑

s=0

η(n)s DsVn,Nf Vn,Nf =

N
∑

k=0

fk vk,n

We often choose N = mn where m = 5, 6 for example: this gives a reasonable approximation
on the intervals [0, 2] or [0, 3]. Of course, the results depend very much both on the function
to be approximated and on the interval in which one needs this approximation.
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Notations: In the following tables, the first line contains the orders of quasi-interpolants: in

column (2r + 1), we write the error ‖f − V
(2r+1)
n f‖∞.

Example 1. f(x) = exp(−x), N = 5n, errors on the interval [0, 2].

n 1 3 5 7 9 11

10 4.0(-2) 2.8(-3) 3.2(-4) 2.5(-5) 1.9(-5) 1.2(-5)

20 2.1(-2) 1.0(-3) 4.8(-6) 4.0(-6) 8.0(-7) 5.6(-7)

30 1.4(-2) 5.2(-4) 4.2(-6) 1.8(-7) 7.6(-8) 6.8(-8)

40 1.0(-2) 3.2(-4) 3.3(-6) 5.4(-8) 2.3(-8) 3.5(-9)

50 8.4(-3) 2.1(-4) 2.2(-6) 1.5(-8) 2.1(-9) 1.8(-9)

Example 2. f(x) = 1
1+x2 , N = 5n, errors on the interval [0, 2].

n 1 3 5 7 9 11

10 7.2(-2) 7.0(-3) 2.0(-3) 1.7(-3) 2.8(-4)

20 3.0(-2) 2.6(-3) 2.8(-4) 1.8(-4) 5.2(-5) 1.2(-5)

30 2.0(-2) 1.0(-3) 1.4(-4) 3.2(-5) 1.4(-5) 2.3(-6)

40 1.5(-2) 8.5(-4) 8.0(-5) 7.4(-6) 4.0(-6) 8.0(-7)

50 1.2(-2) 5.6(-4) 4.8(-5) 2.3(-6) 1.2(-6) 2.9(-7)

Example 3. f(x) = exp(−x2), N = 5n, errors on the interval [0, 2].

n 1 3 5 7 9 11

10 1.0(-1) 1.7(-2) 6.4(-3) 5.0(-3) 1.3(-3)

20 6.0(-2) 6.8(-3) 1.2(-3) 8.0(-4) 2.4(-4) 5.4(-5)

30 4.2(-2) 3.6(-3) 6.8(-4) 1.8(-4) 6.8(-5) 6.4(-6)

40 3.2(-2) 2.2(-3) 3.8(-4) 5.8(-5) 2.1(-5) 2.3(-6)

50 2.6(-2) 1.5(-3) 2.4(-4) 2.2(-5) 7.6(-6) 9.2(-7)

Example 4. f(x) = ln(1 + x), N = 5n, errors on the interval [0, 2].

n 1 3 5 7 9 11

10 3.5(-2) 1.0(-3) 8.6(-3) 1.6(-3) 7.4(-3) 4.0(-3)

20 1.7(-2) 6.8(-4) 7.2(-4) 4.6(-4) 2.8(-4) 2.1(-4)

30 1.1(-2) 3.0(-4) 4.2(-5) 9.4(-5) 1.3(-5) 1.9(-5)

40 8.4(-3) 1.8(-4) 4.3(-6) 8.0(-6) 8.8(-6) 1.3(-6)

50 6.8(-3) 1.2(-4) 3.0(-6) 3.5(-7) 9.2(-7) 5.8(-7)

Example 5. f(x) = sin(6x)/(1 + x2), N = 5n, errors on the interval [0, 2].
This function is oscillating and more difficult to approximate by Baskakov QIs.

n 1 3 5 7 9 11

10 0.64 0.44 0.32 0.30 0.24 0.23

20 0.43 0.28 0.18 0.15 9.6(-2) 5.0(-2)

30 0.36 0.20 0.11 6.8(-2) 4.0(-2) 1.2(-2)

40 0.30 0.16 6.8(-2) 3.2(-2) 1.8(-2) 4.7(-3)

50 0.23 0.13 4.6(-2) 1.5(-2) 8.0(-3) 2.2(-3)
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Remarks.
1) Some comments on the above computations:

• We are aware of the fact that this numerical study is neither complete nor sufficient and
that we should compare with other approximation methods. However, this was not the
main aim of this paper.

• For smooth and decreasing functions, the results are as expected with an improvement
in the approximation order. The numerical convergence orders tend to the actual ones,
predicted in Theorem 5, but we observe that the convergence is slow for higher orders.

• It is a little bit surprising that example 3 (f(x) = exp(−x2)) does not give as good results
as example 1 (f(x) = exp(−x)). Maybe this is due to the change of convexity of the
former. Example 5 shows that the approximation deteriorates for an oscillating function
and the observed convergence orders are not the predicted ones.

2) It is of course possible to approximate functions on wider intervals. In that case, one has
to increase the value of N in order to have a good approximation. The convenient choice of N
is still an open problem.
3) In forthcoming papers, we plan to study some techniques allowing a better approximation
of series (by using e.g. convergence acceleration methods) involved in the computation of
Baskakov quasi-interpolants and to give some applications to numerical analysis.

6 A table of the first polynomials θ
(n)
r and η

(n)
r

For the reader’s convenience, we give tables of the first polynomials θ
(n)
r and η

(n)
r involved in

the differential representations of Vn and its inverse as differential operators on polynomials.
We recall that X := x(x+ 1) and (n+ 1)r := (n+ 1) . . . (n+ k).
Using the recurrence relation of Theorem 1, Section 2, we obtain successively

6.1 Polynomials theta

θ6(x) =
X

6!n5
(1 + 5((n + 6)X + (3n2 + 26n+ 24)X2)

θ7(x) =
X

7!n6
(2x+ 1)(1 + 4(14n + 15)X + 3(35n2 + 154n + 120)X2)

θ8(x) =
X

8!n7
(1 + a1X + a2X

2 + a3X
3)

a1 = 119n + 126, a2 = 490n2 + 2156n + 1680

a3 = 105n3 + 2380n2 + 7308n + 5040

θ9(x) =
X

9!n8
(2x+ 1)(1 + c1X + c2X

2 + c3X
3)

c1 = 246n + 252, c2 = 1918n2 + 6948n + 5040

c3 = 1260n313216n2 + 32112n + 20160
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θ10(x) =
X

10!n9
(1 + d1X + d2X

2 + d3X
3 + d4X

4)

d1 = 501n + 510, d2 = 6825n2 + 24438n + 17640

d3 = 9450n3 + 99120n2 + 240840n + 151200

d4 = 945n4 + 44100n3 + 303660n2 + 623376n + 362880

θ11(x) =
X

11!n10
(2x+ 1)(1 + e1X + e2X

2 + e3X
3 + e4X

4)

e1 = 1012n + 1020, e2 = 22935n2 + 75834n + 52920

e3 = 56980n3 + 465960n2 + 1013760n + 604800

e4 = 17325n4 + 352660n3 + 1839420n2 + 3318480n + 1814400

6.2 Polynomials eta

η5(x) :=
X

30(n + 1)4
(2x+ 1)(6− (5n − 12)X)

η6(x) := −
x

144(n + 1)5
(24 − 2(13n − 60)X + (3n2 − 86n+ 120)X2)

η7(x) =
X

840(n + 1)6
(2x+ 1)(120 − (154n − 480)X + (35n2 − 378n + 360)X2)

η8(x) = −
X

5760(n + 1)7
(720 + a1X + a2X

2 + a3X
3)

a1 = −1044n + 5040, a2 = 340n2 − 5784n + 10080

a3 = −15n3 + 1180n2 − 7092n + 5040.

η9(x) =
X

45360(n + 1)8
(2x+ 1)(5040 + c1X + c2X

2 + c3X
3)

c1 = −8028n + 30240, c2 = 3304n2 − 36900n + 50400,

c3 = −315n3 + 9058n2 − 35928n + 20160.

η10(x) = −
X

403200(n + 1)9
(40320 + d1X + d2X

2 + d3X
3 + d4X

4)

d1 = −69264n + 362880, d2 = 33740n2 − 528912n + 1088640

d3 = −4900n3 + 199640n2 − 1214880n + 1209600

d4 = 105n4 − 17500n3 + 273420n2 − 787824n + 362880

η11(x) = −
X

3991680(n + 1)10
(362880 + e1X + e2X

2 + e3X
3 + e4X

4)
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e1 = −663696n + 2903040, e2 = 367884n2 − 4424112n + 7620480

e3 = −70532n3 + 1854072n2 − 8680320n + 7257600,

e4 = 3465n4 − 207284n3 + 2096028n2 − 4664880n + 1814400.
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