High Temperature, Smart Power Module for Aircraft Actuators

Khalil EL FALAHI, Stanislas HASCOËT, Cyril BUTTAY, Pascal BEVILACQUA, Luong-Viet PHUNG, Dominique TOURNIER, Bruno ALLARD, Dominique PLANSON

Laboratoire Ampère, Lyon, France

8/7/13

[Introduction](#page-2-0)

[Selection of Power Devices](#page-5-0)

[Custom Gate Drive](#page-15-0)

[Prototype and Test Setup](#page-21-0)

[Results](#page-26-0)

[Conclusion](#page-43-0)

[Introduction](#page-2-0)

[Selection of Power Devices](#page-5-0)

[Custom Gate Drive](#page-15-0)

[Prototype and Test Setup](#page-21-0)

[Results](#page-26-0)

[Conclusion](#page-43-0)

The More Electric Aircraft

- Increase in on-board electric power:
	- \triangleright More than 1 MW for the B787
	- \triangleright Need for higher voltage network: 540 V DC
- \blacktriangleright Electric actuators in harsh environment:
	- \blacktriangleright Jet engine controls
		- (e.g. thrust reverser controls)
	- \blacktriangleright Electric brakes

Requirements:

- \triangleright Strong thermal cycling (-55/+200°C)
- \blacktriangleright Long operating life (target 30 years)
- \blacktriangleright Excellent reliability

High Temperature Inverter building blocks

Power module:

- \triangleright 6 JFETs in an hermetic package
- \blacktriangleright $T_A = 200^\circ C$, $I_{out} = 6$ *A* per phase, 20 *kHz* < *FSW* < 300 *kHz*

Gate drivers

- \blacktriangleright Integrated technology (SOI)
- \triangleright Development of many functions
	- \triangleright Output buffer, signal conditionning
	- \blacktriangleright Safety functions
	- \blacktriangleright Temperature compensation

EMI filter

- \triangleright Characterization of passives for wide temperature operation (25/250°C)
- \blacktriangleright Evaluation of long-term ageing (>1000 h at 200°C)

[Introduction](#page-2-0)

[Selection of Power Devices](#page-5-0)

[Custom Gate Drive](#page-15-0)

[Prototype and Test Setup](#page-21-0)

[Results](#page-26-0)

[Conclusion](#page-43-0)

Overview of SiC Power Devices

MOSFET

- \blacktriangleright Easy to drive, much like a silicon MOSFET
- ► "Normally-off" device
- \triangleright Gate oxide reliability issues at high temperature

Overview of SiC Power Devices

MOSFET

- \blacktriangleright Easy to drive, much like a silicon MOSFET
- ► "Normally-off" device
- \triangleright Gate oxide reliability issues at high temperature

JFET

- \blacktriangleright "Mature" device
- \triangleright No gate oxide, making it very reliable at high temperature
- \triangleright The chosen device is a "Normally-on" device

Overview of SiC Power Devices

MOSFET

- \blacktriangleright Easy to drive, much like a silicon MOSFET
- ► "Normally-off" device
- \triangleright Gate oxide reliability issues at high temperature

JFET

- \blacktriangleright "Mature" device
- \triangleright No gate oxide, making it very reliable at high temperature
- \triangleright The chosen device is a "Normally-on" device

BJT

- \blacktriangleright Reliability affected by substrate material quality
- \blacktriangleright "Normally-off"
- \triangleright Driving not as simple as with FET devices

Forward characteristic of the SiCED JFET

 $I_D(V_{DS})$ characteristic for $V_{GS} = 0$ *V*

- 4.08×4.08 mm² SiC die
- \blacktriangleright Purchased in 2009
- \blacktriangleright Manufactured by SiCED
- \triangleright Normally-on (off for *Vgs* < −21 *V*)
- \blacktriangleright Tested up to 300 °C

VGS is limited by punch-through

 \blacktriangleright Depends on current capability of the driver

VGS is limited by punch-through

- \triangleright Depends on current capability of the driver
- To block the JFET we need
	- $V_{GS} < V_{th}$

- *VGS* is limited by punch-through
	- \triangleright Depends on current capability of the driver
- To block the JFET we need
	- $V_{GS} < V_{th}$

- *VGS* is limited by punch-through
	- \triangleright Depends on current capability of the driver
- To block the JFET we need
	- $V_{GS} < V_{th}$
- No damage observed on the JFET, even for $I_G > 10$ mA

- *VGS* is limited by punch-through
	- \blacktriangleright Depends on current capability of the driver
- To block the JFET we need
	- $V_{GS} < V_{th}$
- No damage observed on the JFET, even for $I_G > 10$ *mA*

A driver that can source 1 mA continuously ensures safe turning off up to very high temperature, with a wide V_{GS} margin

[Introduction](#page-2-0)

[Selection of Power Devices](#page-5-0)

[Custom Gate Drive](#page-15-0)

[Prototype and Test Setup](#page-21-0)

[Results](#page-26-0)

[Conclusion](#page-43-0)

10 / 26

Silicon on Insulator (SOI) is an established technology, which can be used for high temperature electronics:

Honeywell (["Extreme Design: Developing integrated circuits for -55 degC to +250°C"](http://www.honeywell.com/sites/servlet/com.merx.npoint.servlets.DocumentServlet?docid=D68327A99-8E8D-E47E-7296-3298F97A9008), nov 2008)

Design of the Gate Driver

Driving requirements for SiCED JFETs:

 \triangleright On: 0 V

- \triangleright Off: \approx -24 V with 1 mA quiescent and \approx 1 A peak
- **Commercial IGBT drivers can't be used**
- Chosen technology: Smartis-1 (ATMEL):
	- \triangleright 0.8 μ m Bipolar-CMOS
	- ▶ Partially-depleted SOI
	- \triangleright 3 AlSiCu metal layers
	- \triangleright Ti/AlSiCu/TiN interconnects

- \triangleright Functions: input signal conditionning, dead time, push-pull output
- Other blocks (UVLO, short circuit protection...) are not used here
- \triangleright No external insulation provided for power supply and driving signal

Example of Function Design for Wide Temp. Range

Dead-time generation

- Delay generation uses RC networks
- Delay can be adjusted by using 1..4 capacitors
- \triangleright Use of a Negative Temperature Coefficient resistor to oppose the increase in resistance with temperature

Example of Function Design for Wide Temp. Range

Dead-time generation

- Delay generation uses RC networks
- Delay can be adjusted by using 1..4 capacitors
- \triangleright Use of a Negative Temperature Coefficient resistor to oppose the increase in resistance with temperature

[Introduction](#page-2-0)

[Selection of Power Devices](#page-5-0)

[Custom Gate Drive](#page-15-0)

[Prototype and Test Setup](#page-21-0)

[Results](#page-26-0)

[Conclusion](#page-43-0)

What's Inside and What's Not?

16 / 26

What's Inside and What's Not?

- \blacktriangleright Isolation functions (signal and power)
- \blacktriangleright PWM signal generation
- \blacktriangleright Large value decoupling capacitor (1 μ F)

Pictures of the power module

- \triangleright CuMo leadframe / NiFe frame case
- \triangleright ceramic substrate (AIN) ≈ 20 × 30 *mm*²
- \triangleright high temperature passives (Vishay, Presidio)
- \triangleright Al wedge Wirebonds, except Au ball for driver
- \blacktriangleright Bonding: silver sintering

The Test Setup

No encapsulation used

 \rightarrow *V*_{DC} limited to 200 V

Power module attached to a hotplate \rightarrow test from ambient to 315 °C

External components at room temp.

- \rightarrow signal and power isolation
- \rightarrow large DC capacitor

Continuous operation on resistor

[Introduction](#page-2-0)

[Selection of Power Devices](#page-5-0)

[Custom Gate Drive](#page-15-0)

[Prototype and Test Setup](#page-21-0)

[Results](#page-26-0)

[Conclusion](#page-43-0)

- $V_{DC} = 200 V (no)$ encapsulation)
- \blacktriangleright *R*_{load} = 50 Ω
- \blacktriangleright *F*_{switch} = 10 *kHz*

$$
\blacktriangleright \ \ t_{dead-time} = 1.2 \ \mu s
$$

- $V_{DC} = 200 V (no)$ encapsulation)
- \blacktriangleright *R*_{load} = 50 Ω
- \blacktriangleright *F*_{switch} = 10 *kHz*

$$
\blacktriangleright \ \ t_{dead-time} = 1.2 \ \mu s
$$

- $V_{DC} = 200 V (no)$ encapsulation)
- \blacktriangleright *R*_{load} = 50 Ω
- \blacktriangleright *F*_{switch} = 10 *kHz*

$$
\blacktriangleright \ \ t_{dead-time} = 1.2 \ \mu s
$$

- $V_{DC} = 200 V (no)$ encapsulation)
- \blacktriangleright *R*_{load} = 50 Ω
- \blacktriangleright *F*_{switch} = 10 *kHz*

$$
\blacktriangleright \ \ t_{dead-time} = 1.2 \ \mu s
$$

- $V_{DC} = 200 V (no)$ encapsulation)
- \blacktriangleright *R*_{load} = 50 Ω
- \blacktriangleright *F*_{switch} = 10 *kHz*

$$
\blacktriangleright \ \ t_{dead-time} = 1.2 \ \mu s
$$

- $V_{DC} = 200 V (no)$ encapsulation)
- \blacktriangleright *R*_{load} = 50 Ω
- \blacktriangleright *F*_{switch} = 10 *kHz*

$$
\blacktriangleright \ \ t_{dead-time} = 1.2 \ \mu s
$$

- $V_{DC} = 200 V (no)$ encapsulation)
- \blacktriangleright *R*_{load} = 50 Ω
- \blacktriangleright *F*_{switch} = 10 *kHz*

$$
\blacktriangleright \ \ t_{dead-time} = 1.2 \ \mu s
$$

- $V_{DC} = 200 V (no)$ encapsulation)
- \blacktriangleright *R*_{load} = 50 Ω
- \blacktriangleright *F*_{switch} = 10 *kHz*

$$
\blacktriangleright \ \ t_{dead-time} = 1.2 \ \mu s
$$

- $V_{DC} = 200 V (no)$ encapsulation)
- \blacktriangleright *R*_{load} = 50 Ω
- \blacktriangleright *F*_{switch} = 10 *kHz*

$$
\blacktriangleright \ \ t_{dead-time} = 1.2 \ \mu s
$$

- $V_{DC} = 200 V (no)$ encapsulation)
- \blacktriangleright *R*_{load} = 50 Ω
- \blacktriangleright *F*_{switch} = 10 *kHz*

$$
\blacktriangleright \ \ t_{dead-time} = 1.2 \ \mu s
$$

- $V_{DC} = 200 V (no)$ encapsulation)
- \blacktriangleright *R*_{load} = 50 Ω
- \blacktriangleright *F*_{switch} = 10 *kHz*

$$
\blacktriangleright \ \ t_{dead-time} = 1.2 \ \mu s
$$

- $V_{DC} = 200 V (no)$ encapsulation)
- \blacktriangleright *R*_{load} = 50 Ω
- \blacktriangleright *F*_{switch} = 10 *kHz*

$$
\blacktriangleright \ \ t_{dead-time} = 1.2 \ \mu s
$$

\blacktriangleright The module stopped working at 315 °C

- \triangleright Operation resumed once the temperature was reduced
- \triangleright "Clean" waveforms
	-
	-
- \blacktriangleright Test at limited power:
	-
	-
- \triangleright No sign of damage, change in color

- \blacktriangleright The module stopped working at 315 °C
	- \triangleright Operation resumed once the temperature was reduced
- \blacktriangleright "Clean" waveforms
	- ^I Fast turn-on (≈ 15 *ns*)
	- Slow turn-off due to large dead-time and resistive load
- \blacktriangleright Test at limited power:
	-
	-
- \triangleright No sign of damage, change in color

- \blacktriangleright The module stopped working at 315 °C
	- \triangleright Operation resumed once the temperature was reduced
- \blacktriangleright "Clean" waveforms
	- ^I Fast turn-on (≈ 15 *ns*)
	- \triangleright Slow turn-off due to large dead-time and resistive load
- \blacktriangleright Test at limited power:
	- ▶ 200 V (target 540 V bus)
	- \triangleright 4 A peak (target ≈ 10 A at 200 °C ambient)
- \triangleright No sign of damage, change in color

- \blacktriangleright The module stopped working at 315 °C
	- \triangleright Operation resumed once the temperature was reduced
- \blacktriangleright "Clean" waveforms
	- ^I Fast turn-on (≈ 15 *ns*)
	- \triangleright Slow turn-off due to large dead-time and resistive load
- \blacktriangleright Test at limited power:
	- ▶ 200 V (target 540 V bus)
	- \triangleright 4 A peak (target ≈ 10 A at 200 °C ambient)
- \triangleright No sign of damage, change in color

[Introduction](#page-2-0)

[Selection of Power Devices](#page-5-0)

[Custom Gate Drive](#page-15-0)

[Prototype and Test Setup](#page-21-0)

[Results](#page-26-0)

22 / 26

Conclusion

\blacktriangleright Inverter leg with integrated gate drive and passives

- ► Based on SiC JFETs
- \triangleright Using custom-designed driver IC

\triangleright Nearest temperature limits

- -

Conclusion

 \blacktriangleright Inverter leg with integrated gate drive and passives

- \triangleright Based on SiC JFFTs
- \triangleright Using custom-designed driver IC

Short term operation demonstrated up to 310 °C

- \blacktriangleright Fast and "clean" waveforms due to proximity with gate drive and decoupling capacitor
- ► Derating to 200 V

\triangleright Nearest temperature limits

Conclusion

- Inverter leg with integrated gate drive and passives
	- \triangleright Based on SiC JFFTs
	- \triangleright Using custom-designed driver IC

Short term operation demonstrated up to 310 °C

- \blacktriangleright Fast and "clean" waveforms due to proximity with gate drive and decoupling capacitor
- \triangleright Derating to 200 V
- \triangleright Nearest temperature limits
	- \triangleright Capacitors (260 °C-rated capacitors available)
	- \triangleright Silicone Gel (250 °C-rated, but ages very quickly)

Choice of encapsulation scheme

- \blacktriangleright Hermetic sealing
- \blacktriangleright Silicone
- **Parylene HT**

Integration of signal & power isolation

- \blacktriangleright Development of high temperature transformers
- \triangleright HT converters and signal conditionning

Actuator Integration

- \triangleright Development of a complete 3-phase inverter
- \triangleright Direct attachment to a high temperature motor

Thank you for your attention,

cyril.buttay@insa-lyon.fr

25 / 26

- \triangleright picture of the Airbus A350: airbus
- \blacktriangleright picture of the thrust reverser: Hispano-Suiza <http://www.hispano-suiza-sa.com/spip.php?rubrique48>

26 / 26