
HAL Id: hal-00874652
https://hal.science/hal-00874652v1

Submitted on 18 Oct 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Probabilistic Decision Trees using SVM for Multi-class
Classification

Juan Sebastian Uribe, Nazih Mechbal, Marc Rébillat, Karima Bouamama,
Marco Pengov

To cite this version:
Juan Sebastian Uribe, Nazih Mechbal, Marc Rébillat, Karima Bouamama, Marco Pengov. Probabilis-
tic Decision Trees using SVM for Multi-class Classification. 2nd International Conference on Control
and Fault-Tolerant Systems, Oct 2013, France. �hal-00874652�

https://hal.science/hal-00874652v1
https://hal.archives-ouvertes.fr

Science Arts & Métiers (SAM)
is an open access repository that collects the work of Arts et Métiers ParisTech

researchers and makes it freely available over the web where possible.

This is an author-deposited version published in: http://sam.ensam.eu
Handle ID: .http://hdl.handle.net/10985/7401

To cite this version :

Juan Sebastian URIBE, Nazih MECHBAL, Marc RÉBILLAT, Karima BOUAMAMA, Marco
PENGOV - Probabilistic Decision Trees using SVM for Multi-class Classification - - 2013

Any correspondence concerning this service should be sent to the repository

Administrator : archiveouverte@ensam.eu

http://sam.ensam.eu
http://hdl.handle.net/10985/7401
mailto:archiveouverte@ensam.eu

Abstract— In the automotive repairing backdrop, retrieving
from previously solved incident the database features that
could support and speed up the diagnostic is of great
usefulness. This decision helping process should give a fixed
number of the more relevant diagnostic classified in a
likelihood sense. It is a probabilistic multi-class classification
problem. This paper describes an original classification
technique, the Probabilistic Decision Tree (PDT) producing a
posteriori probabilities in a multi-class context. It is based on a
Binary Decision Tree (BDT) with Probabilistic Support Vector
Machine classifier (PSVM). At each node of the tree, a bi-class
SVM along with a sigmoid function are trained to give a
probabilistic classification output. For each branch, the outputs
of all the nodes composing the branch are combined to lead to a
complete evaluation of the probability when reaching the final
leaf (representing the class associated to the branch). To
illustrate the effectiveness of PDTs, they are tested on
benchmark datasets and results are compared with other
existing approaches.

I. INTRODUCTION

With more and more complex vehicle architectures,
failure possibilities have grown increasingly and fixing
solutions are becoming harder to find quickly. During a car
repairing session, a useful diagnosis method consists in
applying to the damaged vehicle a technical solution
corresponding to a previously solved incident. Hence,
collecting known incidents and storing them is a key issue to
improve the after-sales services. However, the strategy to
use in order to deal effectively with an unknown (and
possibly unreferenced) failure is still an open problem in the
diagnosis step. As some data regarding past failures are
available, we can expect that an automatic classifier could
give, knowing some information about the encountered
failure and with a level of confidence, the more relevant
procedures that could be followed to repair the vehicle.
Formally, we are interested in solving a multi-class data
classification problem in a manner that produces confidence
probabilities associated to each possible class.

Actually, there exist two main types of classifiers: hard
and soft [1, 2]. Hard classifiers, such as support vector
machine (SVM) and all the associated multi-class
techniques, build a frontier between classes. They only label

1 J. S. Uribe, N. Mechbal and M. Rebillat are with the PIMM UMR CNRS,
Arts et Métiers ParisTech, 151 boulevard de l'Hôpital, 75013 Paris France.
(juan-sebastian.uribe-echeverri@ensam.eu ; nazih.mechbal@ensam.eu ;
marc.rebillat@ensam.eu)
2 K. Bouamama and M. Pengov are with PSA Peugeot Citroën, Route de
Gisy, CC VV1404, 78940 Vélizy-Villacoublay.
(karima.bouamama1@mpsa.com ; marco.pengov@mpsa.com)

new unknown points with the class associated to the side of
the frontier in which they fall, without giving any idea of the
certitude of the decision or the degree of membership to that
class. These classifiers are very appealing, because in
general they tend to give very accurate predictions. On the
opposite, soft classifiers like Logistic Regression (LR) [3]
are able to build probability estimations for the belonging to
all the classes, and then with this information they choose
the most likely class. We are thus interested, in a multi-class
context, by the probabilities estimation offered by soft
classifiers while keeping the hard classifiers proved
performances [4].

To reach this objective, hard classifiers need to be first
adapted to a multi-class context. Support Vector Machines
(SVM) are a powerful tool for data classification [5].
Unfortunately, they were originally designed for bi-class
decision problems and their extension to multi-class
problems is not straightforward and is still an on-going
research issue [6]. Classic SVM multi-class approaches such
as "one-against-one" (OvO) [7], "one-against-all" (OvA) [8]
or Diagram Acyclic Graph (DAG) [9] have shown adequate
results but don’t take into account the structure and the
distribution of the data when separating the classes. To
overcome this drawback, Madzarov [10] came up with a
simple and intuitive approach based on building a binary
decision tree. By selecting specific features, such as the
distance between gravity centers of the different classes, an
automatic graph is generated where at each node a bi-class
SVM is trained. However, such multi-class hard classifiers
only provide one predicted class without any associated
score indicating the confidence of the classification.

In order to compute confidence probabilities in a bi-class
context, Logistic Regression can be an adequate choice. This
soft classifier is widely used in economics [11] and biology
[12]. This method is simpler to use than SVM because it
does not have parameters to adjust and it also has the
advantage of providing direct probability outputs. But in
general, Logistic Regression based classifiers are less
accurate than well-tuned SVM classifiers. Nevertheless, it is
also possible to introduce confidence probabilities into hard
classifiers. In a bi-class context, Platt [4] proposed a method
for extracting probabilities �(�����|�	�
�) from SVM
outputs to be used for classification post-processing. The
approach consists in training the parameters of a sigmoid
function to map the SVM outputs into probabilities. The
underlying idea of Probabilistic SVM classifier (PSVM) is
that as the distance from an example to the frontier is larger,
the example is closer to that class, which implies that the
example will very likely belong to that class. Adapting

Probabilistic Decision Trees using SVM for Multi-class
Classification

Juan Sebastian Uribe1, Nazih Mechbal1, Marc Rébillat1, Karima Bouamama2, Marco Pengov2

Platt’s method to a multi-class context, it is thus in principle
possible to build the confidence index that we need while
keeping the demonstrated performances of hard classifiers.

On the basis of Madzarov [10] and Platt [4] algorithms,
we present Probabilistic Decision Trees (PDT) as an original
approach to the multi-class probabilistic classification
problem. The proposed PDT algorithm takes advantage of
the decision tree architecture and of the classification
posterior probability provided by PSVM. The PDT will
provide fast classification (logarithmic complexity) along
with associated posterior probabilities �(�����|�	�
�). At
each node of the PDT, SVM classification associated with a
sigmoid function is performed to estimate the probability of
membership to each sub-group. A probability function is
then built for each leaf, by following the path that the PDT
has generated for it. In the context of automobile diagnosis,
the PDT is used to generate a decision diagnostic tree where
from known incidents database the most probable failure
will be provided. The performances of the PDT will be
measured on samples from benchmark databases and on an
artificial database emulating actual car breakdown reports
database. These tests show that the proposed technique is
suitable for the automotive problem.

The article is organized as follows. In section II we
present the methodology of automotive diagnosis. In section
III we review probabilistic classification methods, including
the related work and the techniques that inspired our
approach. In section IV we present the PDT algorithm and in
section V some applications conducted with artificial and
actual databases are described. Finally, the conclusions and
perspectives of our method are outlined in section VI.

II. INFORMATION RETRIEVAL IN AUTOMOTIVE DIAGNOSIS

A useful diagnosis method commonly used in car
workshops is to apply to the damaged vehicle a technical
solution corresponding to a previously solved incident. For
that purpose, troubleshooting and repair information are
stored in specific databases that are frequently updated. The
objective of the present work is to elaborate an efficient
algorithm that extract from these databases features that
could support and speed up the diagnostic. This decision
helping process should give a fixed number of the more
relevant diagnostics classified in a maximum likelihood
sense. The strategy to use in order to deal efficiently with an
unknown (and possibly unreferenced) failure is an open
problem in the diagnosis step that needs to be addressed.

PSA Peugeot Citroën databases are very rich and a lot of

information may be extracted from them. But at the same
time they are very large and thus difficult to process. For this
reason an automatic classifier is the most convenient method
to exploit these databases. Feature selection is a very
important pre-processing step in data mining. Clustering the
problem according to the damage location (electronical
system, mechanical system, etc) is very helpful and may
potentially simplify the classification task. An automatic
classifier that is able to do so should thus be very efficient.

III. PROBABILISTIC CLASSIFICATION

In this section we introduce the classification methods that
give a notion of probability like Logistic regression and
Probability-SVM. Then we present some methods for
solving multiclass problems, and specially the binary
decision tree.

1) Logistic Regression

This regression method models the probability of
membership to a class � ∈ {−1,1} with a sigmoid function
whose inputs are linear combinations of the example �
attributes [3].

 �(� = −1|�) = ����1 + ����
(1)

 �(� = 1|�) = 1 − �(� = 0|�) (2)

The model selection is conducted by searching for the
coefficients vector � which maximizes the likelihood
function, defined as:

�(�) = � �(��) !(1 − �(��))"# !$%% &$'$
()" (3)

where �(��) is defined as in Equation 1.

In general, Logistic Regression (LR) is an easy-to-use
method as it doesn’t have parameters to adjust. We will use it
as a benchmark method, to validate the results provided by
our technique. Given that LR is a bi-class classifier, we will
associate it to a binary decision tree (BDT) technique [10] to
solve the multi-class problem. We have called this technique
LR-BDT. We will present the binary decision tree afterwards
in this same section.

2) Probabilistic Support Vector Machines
Classic support vector machines (SVM) have proved to be

a very effective classification method [13]. They are binary
linear classification techniques [14] which search for the
hyper plane (in the hyperspace of attributes) that separates
two classes in a training set. This hyper plane is found by
maximizing the so-called margin, which is the distance from
the hyper plane to the closest points, denoted support
vectors. A common variant of classic SVM, is called soft
margin and it consists of admitting some misclassified
points in the training set for preventing the over fitting
problem. Although, we want to avoid too many points being
misclassified, thus we impose a penalty * that will penalize
every misclassified example. * can take values in the range 0 < * ≤ ∞. A high value of * means a strict classifier that
doesn’t admit many misclassified points. On the opposite, a
small * means a very flexible classifier. Formally, we have a
training set {(�., /.), … , (�1, /1)}, where every point �� = (��., … , ��2) has m attributes and one of the two
possible labels /� = {−1 ,1}. A soft margin SVM classifier
will label a new unknown point �3 according to the decision
function:

 �(4') = ��5	((�. �') + �7) (4)

where � and 8 are the hyper plane parameters obtained from
the minimization of the cost function in Equation 7 on the
training set.

In SVM, kernels are used to project the data into a virtual
space where it might be easier to separate them [8]. The
main advantage of kernel functions is that the only operation
needed to be defined in the new virtual space is the inner
product 9:�(, �;< = =�(, �;> . Several kernel functions are
used [15]:

- Linear: 9:��, �;< = �(?�;
- Polynomial: 9:��, �;< = (@�(?�; + A)&

- Gaussian : 9:�(, �;< = exp(#E��#�FEGHIG)
Applying a kernel function, the soft margin and the Wolfe

dual formulation [16], the SVM problem is presented as:
 �(4') = ��5	(J(�3)) (5)

where J(�) is defined as:

 J(�) = K L(
(9(�(, �) + �7M()" (6)

the values of LN and
(are found solving the following
constrained optimization problem:

⎩⎪⎨
⎪⎧maxU! VK L(− 12 K L(L;
(
;9(��, �F) M(,;)"M()" X 0 ≤ L(≤ *, � = 1, … , YK L(
(M()" = 0 (7)

In the PDT approach, and for its use in the car diagnostic

classification, we choose to use the Gaussian kernel. It only
has ZH as parameter. A small value of ZH will lead to curved
hyper plans and a high value will force the hyper plans to be
straighter. In [17] it is showed that from some combinations
of the hyperparameters (*, ZH), the Gaussian kernel tends
towards the linear kernel, which makes the Gaussian kernel
the most general method and one that will work for a large
range of datasets. The hyper parameters (*, ZH) have to be
optimized for every classification problem. In [17] an
effective technique that we implemented is proposed.

As stated before, SVM produce a value that is not a
probability. Indeed, SVM only give a class prediction output
that will be either +1 or -1. In order to extract associated
probabilities from SVM outputs several approaches have
been proposed [4, 8, 18]. We will focus on Platt’s approach
[4]. Platt [4] proposed a technique that has been largely used
in the literature. He builds a sigmoid function between the
outputs J(�) of the SVM and the probability of membership �(� = �|�) to a class �, given the attributes of �. A simple bi-
class example is shown in Figure 1.

The sigmoid will have the following parametric
expression:

 � (� = 1|J(�)) = 11 + �$[(�)\] (8)

Figure 1 SVM and probability estimation for a 2D binary problem

where � and 8 are parameters computed from the
minimization of the negative log-likelihood function [4]

 − K �(log �(J(��)) + (1 − �() log(1 − �(J(��)) ((9)

and �(is the new label of the classes. 1 becomes �\ and -1
becomes �#. This relabeling procedure is conducted so that
the sigmoid fit will be softer. These new labels are computed
using the expressions:

 �\ = a\ + 1a\ + 2 �# = 1a# + 2 (10)

where a\ and a# are the number of points that belong to
class 1 and class 2 respectively.

The PSVM as proposed by Platt [4] uses first a SVM
classifier that has to be trained with a training set s". Then the
sigmoid parameters (�, 8) have to be found. To do so, it is
recommended [4] to use a second training set �H. The
sigmoid fit requires the inputs J(�) and the labels �(. We use �H as a test set for the classifier. Thus we obtain the output
values J(�H). Knowing the labels of �H (how many positives
ones and how many negatives ones) we can calculate �\
and �# for this sub-training set. With values (J(�H), �((�H))
we then find (�, 8) by optimizing Eq. (9) using a Newton’s
method with backtracking, as proposed by [19]. After these
two steps, we have an a posteriori probability estimator to the
bi-class problem. We can then classify new points and give
them an associated probability of belonging to class 1 or 2.

3) From bi-class to multi-class problems
SVM were originally designed for bi-class classification

problems, the passage to multi-class problems is still an on-
going research area [6]. There are two major approaches to
solve this type of problems.

The first and the one that could be more intuitive consist in
formulating a cost function with c hyperplanes (being c the
number of classes in our problem) [5].

⎩⎪⎨
⎪⎧ min�,f 12 K (�2. �2) + * K K g(MMh !

%
()"

i
M)"

:�/� . ��< + 8 ! ≥ (�2. ��) + 8M + 2 − g(Mg(M ≥ 0, � = 1, … , � Y ∈ {1, … , c} \ �(

 (11)

For this formulation, the decision is given by

 J(�) = maxl (��. ��) + 8(, � = 1, … , c (12)

This method suffers from the problem that an optimization
with so many variables is more difficult to solve for the
algorithm, can give slower results and even in some
occasions may not converge [6].

Another approach is to divide the multi-class problem in
several binary sub-problems. There are numerous methods
that do the division. The most popular are One against one
[7], One against all [8] , Diagram Acyclic Graph (DAG) [9]
and Binary decision Trees (BDT) [10]. For sake of shortness,
we will only focus on the BDT method, because it is the one
we will use.

In [10], they proposed to build a binary tree in which at
every node the remaining classes separated in two subgroups 5" and 5H. A SVM classifier decides to which subgroup the
new point belongs, so in which direction to move. In order to
build the tree (the first step in the classification procedure) a
clustering algorithm divides all the c classes into 5" and 5H.
The algorithm calculates the gravity centers of all classes, the
two classes with the biggest Euclidean distance from each
other are assigned to each of the sub-groups. Then the
algorithm checks the closest class to one of the sub-groups,
this class is assigned to that sub-group, their gravity center is
recalculated with the new points that have just been added.
This is repeated until all classes have been assigned to one of
the groups. In the example of Figure 2 we can see that 5" = {2,3,4,7} and 5H = {1,5,6}. For each sub-group the
clustering algorithm is repeated until there is no more than
one class per sub-group. Those sub-groups will be called the
leaves of the tree and a point that falls there will be assigned
with the class of the leaf.

Figure 2 Illustration of SVM-BDT [10]

It is important to note that BDT testing time is smaller than
other methods because the depth of the decision tree is of
order logH c since at every level the tree eliminates
approximately half of the remaining classes. The testing
time is an important characteristic that must be taken into
account when choosing a classifier.

IV. PROBABILISTIC DECISION TREES (PDT)

1) Probability construction
In this paper, we propose to build a binary decision tree

following the idea introduced by Madzarov [10], but instead
of using a simple SVM classifier in each node, we use a
SVM classifier associated with a sigmoid function (PSVM)
to estimate the probability of membership to each sub-group
in the node, as shown in Figure 3. The tree may be built using
different criteria, for example the Euclidian distance between

the gravity centers, the margin obtained by pairwise SVM
[20] or some physical or functionalities criteria (mechanical,
electrical, etc.). This is very interesting because in this way
we introduce previous knowledge from an expert that might
help the classification task. We can then build a probability
function for each leaf, knowing the path that a point has to
follow to reach it.

Figure 3 Example of a probability decision tree

Note that there is only one way to get to a leaf, so the
probability functions are unique for a trained tree.

 �(� = �|�) = � �rs&t (u,%)%t$[
u)"

(13) ℎ is the level of the tree and ℎ = 1 is the root node. The
previous expression states that the probability of
membership of an element to the class � is calculated as the
product of the probabilities of the decisions taken in all the
nodes visited until arriving to the leaf. By 	wx�(ℎ, �) we
mean the � node in the ℎ level. Note that those functions are
analytical, because in each node we will have an equation
like 8, which only depends of � and the parameters (�, 8)
which are calculated before. Once the tree is built we will
also have the c probability functions, one for each class.
When classifying future unknowing cases we will just have
to evaluate the c analytical functions and then chose the
class with the highest score. However, we don’t have to
settle with just one predicted class. One of the most
interesting things of the PDT is that we can have more than
one prediction for one subject. We can have a list of all the
possible classes, ordered after their plausibility, which is
measured with the probabilities estimation. So, instead of
having one predicted class like classic SVM multi-class
methods, we will have several options. This will be useful
for an example where the first prediction won’t be correct.
In classical multi-class no further information will be
provided if the predicted class is not correct, because we will
have a set of c − 1 classes left, all of them equally
plausible. Although with PDT, if the first choice wasn’t the
right one, we could try the second one and so on. We know
that the next one will be the class with the highest
probability among those that remain. Our experiments
showed that in most of the datasets, the right answer is in the
first choices.

2) Algorithm
To summarize the method’s algorithm, the steps for

building a PDT are:

Step 1 Learning phase (construction of the classifier)

Inputs: Training set �" and �H
Outputs: c probability functions (one for each class)

1. Build a binary decision tree using �1.
2. Train a SVM classifier for each node of the tree,

model selection has to be done to guarantee
good performance.

3. Fit a sigmoid to every SVM classifier trained in
step 2 using �2, according to Platt’s method [4]
and Lin algorithm [19]. Obtaining a probability
function for the node.

4. For each leaf, build the probability function as
the product of all the probability functions
traversed (nodes)

End step 1
Step 2 Generalization phase (usage by the final user)

Input: An unclassified example �
Output: A list of the proposed classes and their
corresponding probability.

1. Evaluate all the probability functions obtained is
Step 1 for the new unclassified example.

2. Sort the classes according to the probabilities
End step 2

3) Application to automotive diagnosis
PDT could be a very powerful decision helping tool in

automotive diagnosis thanks to the scores associated to the
predictions. As a matter of fact, when an assistant is facing a
new unclassified case, the PDT will propose him a list of
possible solutions, sorted by their likelihood. The assistant
will try first the most likely solution. If it is not the right
answer (we admit that sometimes the classifier might not
sort the right answer in the first place, but the results of the
applications in section V suggest that those are rare cases)
the assistant will try next the second most likely solution and
so on. This approach is a time saving tool to the workshop
because only the more likely solutions have to be tried.

V. APPLICATIONS

The classification algorithm was coded in MATLAB,
based on a SVM Toolbox [21]. Benchmark was conducted
against the well-known SVM library LIBSVM [15] using
One-against-one (OvO), Diagram Acyclic Graph (DAG) and
LR-BDT. Classification tests were performed on datasets
from the UCI Machine Learning Repository [22] and we
have also built an artificial database that emulates the
diagnosis car data. This database is constituted by 8 classes
with 2 features. Each class is generated by a normal
distribution in a 2D space. Some points of different classes
actually are mixed. This allows us to test the sensibility of
the classifiers as they have tendencies for over-fitting or not.

Datasets are described in Table 1, and one can appreciate
how different they are. The number of attributes (dimensions

for the SVM classifier) and the number of classes vary in a
wide range, which makes the benchmark experiment very
interesting and complete. Each feature was scaled between [-
1, 1]. For each SVM method we conducted a model
selection based on the algorithm proposed in [17]. Every
score is the mean of the results obtained using a 5-fold cross
validation. This eliminates the influence of randomly
splitting a training and testing subset from the data

TABLE 1 DATASETS DESCRIPTION

Dataset # attributes # instances # of
classes

Iris3 4 150 3
Wine

Quality3
11 1600 10

Ecopli3 7 336 8
Artificial

base4
2 200 8

The results are show in Table 2. Only the test accuracy is

shown because it is the variable that best represents the
generalization capacity of classifiers. In bold the best results
for each dataset are highlighted. Note that for PDT and LR-
BDT the test accuracy has to be interpreted as the number of
times the first prediction (the class with the highest
probability) was the right class.

TABLE 2 ACCURACY COMPARISONS (�w5*; �w5ZH)

Dataset
Test accuracy (%)

LIBSVM
OvO

LIBSVM
DAG PDT RL-BDT

Iris3 98.67
(4;3)

98.67
(3.5;2)

98
(2.5;1) 97.33

Wine
Quality3

63.97
(0;-1)

59.94
(1.5;2)

61.74
(12.5;0) 59.38

Ecopli3
86.57
(5;5)

85.14
(2;0)

88.57
(6.5;7) 86.29

Artificial
base4

92.87
(-1;2)

92.87
(-7;1)

92.75
(2.5;2) 91.75

Going further in PDT and LR-BDT predictions, we
wanted to analyze the distribution of the right class among
all the predictions made by both methods. The idea is to
count how many times the right answer was the first
predicted class or the second predicted class and so on. In
Table 3 we show the results obtained for the five datasets. It
is good to see that in all the cases we have the majority of
classes well predicted on the first attempt. When the first
answer isn’t the right one, the second one is, in almost all the
occasions. We only have a very small number of examples
for which the correct class is one of the last predictions.

VI. CONCLUSION

In this paper, we have proposed a probabilistic binary
decision tree as a response to features retrieving for car
diagnosis.

3 Datasets taken from the UCI Machine Learning Repository [22]

4 Artificial base created by the authors

TABLE 3 ACCURACY OF PDT PREDICTIONS

Dataset 1st 2nd 3rd 4th 5th 6th 7th-
11th

Iris3

by SVM
98 2 0

Iris3

by RL
97.33 2 0.67

Wine
Quality3

by SVM
61.74 15.96 8.57 7.20 2.98 3.54 0.01

Wine
Quality3

by RL
59.38 30 7.02 2.48 0.99 0.06 0.07

Ecopli3

by SVM
88.57 6.57 2 1.14 0.29 1.14 0.29

Ecopli3

by RL
86.29 9.43 1.14 0.29 0.29 2 0.56

Artificial
base4 by
SVM

92.75 7.25 0 0 0 0 0

Artificial
base4 by
RL

91.75 8.25 0 0 0 0 0

In this industrial context, the extraction of breakdown
previous solution should be time saving and associated to a
calibrated probability. The approach is based on the use of a
binary decision tree structure with PSVM classifiers
associated in the nodes to estimate the probability of
membership to each sub-group. We can then build a
probability function for each leaf, knowing the path that a
point has to follow to reach it.

This original method has proved to be effective when
tested in real word problems. It is very useful to have a score
associated to a class prediction, because it allows further
analysis of the results. The results showed that the PDT is an
efficient and accurate method, comparable with the classic
multi-class methods. In addition to that, the subsidiary
predictions are a useful tool for the cases where the apparent
first solution is not correct. This is an important advantage
compared to the other approaches. PDT also showed to be
more accurate than LR-BDT which is the other method that
gives probability estimations. We may then consider the PDT
as a complete method in terms of accuracy, multiple outputs
and at the same time, giving a confidence index for each
output. The application of PDT to an actual diagnosis
database is in progress, where the performances of the PDT
are tested in view of the size of the databases and the
difficulties that it implies for processing them.

As perspectives we see many application fields for the
proposed technique. Indeed, it can be used in any
classification problem that may need more than one
predicted class and scores associated. In particular, we are
planning to implement for structural damage detection.

REFERENCES

[1] Y. Liu, H. H. Zhang and Y. Wu, Hard or soft classification?

large-margin unified machines, vol. 106, Taylor & Francis, 2011,
pp. 166-177.

[2] G. Wahba, "Soft and hard classification by reproducing kernel
Hilbert space methods," Proceedings of the National Academy of

Sciences, vol. 99, no. 26, pp. 16524-16530, 2002.
[3] J. David W. Hosmer and S. Lemeshow, Applied Logistic

Regression, Wiley, 2004.
[4] J. Platt, "Probabilistic outputs for support vector machines and

comparison to regularized likelihood methods.," in Advances in
Large Margin Classifiers, Cambridge, MIT Press, 2000.

[5] J. Weston and C. Watkins, "Multi-class support vector machines
Weston, J., & Watkins, C. (1998). Multi-class support vector
machines. Technical Report CSD-TR-98-04," Department of
Computer Science, Royal Holloway, University of London,
London, 1998.

[6] C.-W. Hsu and C.-J. Lin, "A comparison of methods for
multiclass support vector machines," Neural Networks, IEEE
Transactions on, vol. 13, no. 2, pp. 415-425, 2002.

[7] J. Friedman, "Another approach to polychotomous classifcation,"
Stanford University, Department of Statistics, Stanford, 1996.

[8] V. Vapnik, Statistical learning theory. 1998, Wiley, New York,
1998.

[9] J. C. Platt, N. Cristianini and J. Shawe-Taylor, "Large margin
DAGs for multiclass classification," Advances in neural
information processing systems, vol. 12, no. 3, pp. 547-553, 2000.

[10] G. Madzarov, D. Gjorgjevikj, I. Chorbev and others, "A multi-
class svm classifier utilizing binary decision tree," Informatica,
vol. 33, no. 2, pp. 233-241, 2009.

[11] Z. Hu and C. Lo, "Modeling urban growth in Atlanta using
logistic regression," Computers, Environment and Urban Systems,
vol. 31, no. 6, pp. 667-688, 2007.

[12] P. Leung and L. T. Tran, "Predicting shrimp disease occurrence:
artificial neural networks vs. logistic regression," Aquaculture,
vol. 187, no. 1, pp. 35-49, 2000.

[13] Y. Lee, Y. Lin and G. Wahba, "Multicategory support vector
machines (preliminary long abstract) Technical Report 1040,"
Department of Statistics, University of Wisconsin, Madison, WI,
2001.

[14] T. Fletcher, "Support vector machines explained," 2009. [Online].
Available: http://www.tristanfletcher.co.uk/. [Accessed January
2013].

[15] C.-C. Chang and C.-J. Lin, "LIBSVM: A library for support
vector machines," ACM Transactions on Intelligent Systems and
Technology, vol. 2, pp. 27:1--27:27, 2011.

[16] R. Fletcher, Practical methods of optimization, John Wiley &
Sons, Inc., 1987.

[17] S. S. Keerthi and C.-J. Lin, "Asymptotic behaviors of support
vector machines with Gaussian kernel," Neural computation, vol.
15, no. 7, pp. 1667-1689, 2003.

[18] T. Hastie and R. Tibshirani, "Classification by pairwise coupling,"
The annals of statistics, vol. 26, no. 2, pp. 451-471, 1998.

[19] H.-T. Lin, C.-J. Lin and R. C. Weng, "A note on Platt's
probabilistic outputs for support vector machines," Mach. Learn.,
vol. 68, no. 3, pp. 267-276, oct 2007.

[20] T. K. Chalasani, A. M. Namboodiri and C. Jawahar, "Support
vector machine based hierachical classifieds for large class
problems," in Proceedings of the sixth International Conference
on Advances in Pattern Recognition, Kolkata, India, 2007.

[21] S. Canu, A. Rakotomamonjy, Y. Grandvalet and V. Guigue,
"SVM and Kernel Methods Toolbox," 2007. [Online]. Available:
http://www.mloss.org/software/view/33/. [Accessed January
2013].

[22] K. Bache and M. Lichman, "UCI Machine Learning Repository,"
2013. [Online]. Available:
http://archive.ics.uci.edu/ml/index.html. [Accessed March 2013].

	I. INTRODUCTION
	II. Information retrieval in automotive diagnosis
	III. Probabilistic classification
	1) Logistic Regression
	2) Probabilistic Support Vector Machines
	3) From bi-class to multi-class problems

	IV. Probabilistic decision trees (PDT)
	1) Probability construction
	2) Algorithm
	3) Application to automotive diagnosis

	V. Applications
	VI. Conclusion
	References

