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Abstract— In the automotive repairing backdrop, retrieving 
from previously solved incident the database features that 
could support and speed up the diagnostic is of great 
usefulness. This decision helping process should give a fixed 
number of the more relevant diagnostic classified in a 
likelihood sense. It is a probabilistic multi-class classification 
problem. This paper describes an original classification 
technique, the Probabilistic Decision Tree (PDT) producing a 
posteriori probabilities in a multi-class context. It is based on a 
Binary Decision Tree (BDT) with Probabilistic Support Vector 
Machine classifier (PSVM). At each node of the tree, a bi-class 
SVM along with a sigmoid function are trained to give a 
probabilistic classification output. For each branch, the outputs 
of all the nodes composing the branch are combined to lead to a 
complete evaluation of the probability when reaching the final 
leaf (representing the class associated to the branch). To 
illustrate the effectiveness of PDTs, they are tested on 
benchmark datasets and results are compared with other 
existing approaches. 

I. INTRODUCTION 

With more and more complex vehicle architectures, 
failure possibilities have grown increasingly and fixing 
solutions are becoming harder to find quickly. During a car 
repairing session, a useful diagnosis method consists in 
applying to the damaged vehicle a technical solution 
corresponding to a previously solved incident. Hence, 
collecting known incidents and storing them is a key issue to 
improve the after-sales services. However, the strategy to 
use in order to deal effectively with an unknown (and 
possibly unreferenced) failure is still an open problem in the 
diagnosis step. As some data regarding past failures are 
available, we can expect that an automatic classifier could 
give, knowing some information about the encountered 
failure and with a level of confidence, the more relevant 
procedures that could be followed to repair the vehicle. 
Formally, we are interested in solving a multi-class data 
classification problem in a manner that produces confidence 
probabilities associated to each possible class. 

Actually, there exist two main types of classifiers: hard 
and soft [1, 2]. Hard classifiers, such as support vector 
machine (SVM) and all the associated multi-class 
techniques, build a frontier between classes. They only label 
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new unknown points with the class associated to the side of 
the frontier in which they fall, without giving any idea of the 
certitude of the decision or the degree of membership to that 
class. These classifiers are very appealing, because in 
general they tend to give very accurate predictions. On the 
opposite, soft classifiers like Logistic Regression (LR) [3] 
are able to build probability estimations for the belonging to 
all the classes, and then with this information they choose 
the most likely class. We are thus interested, in a multi-class 
context, by the probabilities estimation offered by soft 
classifiers while keeping the hard classifiers proved 
performances [4]. 

To reach this objective, hard classifiers need to be first 
adapted to a multi-class context. Support Vector Machines 
(SVM) are a powerful tool for data classification [5]. 
Unfortunately, they were originally designed for bi-class 
decision problems and their extension to multi-class 
problems is not straightforward and is still an on-going 
research issue [6]. Classic SVM multi-class approaches such 
as "one-against-one" (OvO) [7], "one-against-all" (OvA) [8] 
or Diagram Acyclic Graph (DAG) [9] have shown adequate 
results but don’t take into account the structure and the 
distribution of the data when separating the classes. To 
overcome this drawback, Madzarov [10] came up with a 
simple and intuitive approach based on building a binary 
decision tree. By selecting specific features, such as the 
distance between gravity centers of the different classes, an 
automatic graph is generated where at each node a bi-class 
SVM is trained. However, such multi-class hard classifiers 
only provide one predicted class without any associated 
score indicating the confidence of the classification. 

In order to compute confidence probabilities in a bi-class 
context, Logistic Regression can be an adequate choice. This 
soft classifier is widely used in economics [11] and biology 
[12]. This method is simpler to use than SVM because it 
does not have parameters to adjust and it also has the 
advantage of providing direct probability outputs. But in 
general, Logistic Regression based classifiers are less 
accurate than well-tuned SVM classifiers. Nevertheless, it is 
also possible to introduce confidence probabilities into hard 
classifiers. In a bi-class context, Platt [4] proposed a method 
for extracting probabilities �(�����|�	�
�) from SVM 
outputs to be used for classification post-processing. The 
approach consists in training the parameters of a sigmoid 
function to map the SVM outputs into probabilities. The 
underlying idea of Probabilistic SVM classifier (PSVM) is 
that as the distance from an example to the frontier is larger, 
the example is closer to that class, which implies that the 
example will very likely belong to that class. Adapting 

Probabilistic Decision Trees using SVM for Multi-class 
Classification  

Juan Sebastian Uribe1, Nazih Mechbal1, Marc Rébillat1, Karima Bouamama2, Marco Pengov2 



  

Platt’s method to a multi-class context, it is thus in principle 
possible to build the confidence index that we need while 
keeping the demonstrated performances of hard classifiers.  

On the basis of Madzarov [10] and Platt [4] algorithms, 
we present Probabilistic Decision Trees (PDT) as an original 
approach to the multi-class probabilistic classification 
problem. The proposed PDT algorithm takes advantage of 
the decision tree architecture and of the classification 
posterior probability provided by PSVM. The PDT will 
provide fast classification (logarithmic complexity) along 
with associated posterior probabilities �(�����|�	�
�). At 
each node of the PDT, SVM classification associated with a 
sigmoid function is performed to estimate the probability of 
membership to each sub-group. A probability function is 
then built for each leaf, by following the path that the PDT 
has generated for it. In the context of automobile diagnosis, 
the PDT is used to generate a decision diagnostic tree where 
from known incidents database the most probable failure 
will be provided. The performances of the PDT will be 
measured on samples from benchmark databases and on an 
artificial database emulating actual car breakdown reports 
database. These tests show that the proposed technique is 
suitable for the automotive problem. 

The article is organized as follows. In section II we 
present the methodology of automotive diagnosis. In section 
III we review probabilistic classification methods, including 
the related work and the techniques that inspired our 
approach. In section IV we present the PDT algorithm and in 
section V some applications conducted with artificial and 
actual databases are described. Finally, the conclusions and 
perspectives of our method are outlined in section VI. 

II. INFORMATION RETRIEVAL IN AUTOMOTIVE DIAGNOSIS 

A useful diagnosis method commonly used in car 
workshops is to apply to the damaged vehicle a technical 
solution corresponding to a previously solved incident. For 
that purpose, troubleshooting and repair information are 
stored in specific databases that are frequently updated. The 
objective of the present work is to elaborate an efficient 
algorithm that extract from these databases features that 
could support and speed up the diagnostic. This decision 
helping process should give a fixed number of the more 
relevant diagnostics classified in a maximum likelihood 
sense. The strategy to use in order to deal efficiently with an 
unknown (and possibly unreferenced) failure is an open 
problem in the diagnosis step that needs to be addressed. 

 
PSA Peugeot Citroën databases are very rich and a lot of 

information may be extracted from them. But at the same 
time they are very large and thus difficult to process. For this 
reason an automatic classifier is the most convenient method 
to exploit these databases. Feature selection is a very 
important pre-processing step in data mining. Clustering the 
problem according to the damage location (electronical 
system, mechanical system, etc) is very helpful and may 
potentially simplify the classification task. An automatic 
classifier that is able to do so should thus be very efficient. 

III. PROBABILISTIC CLASSIFICATION 

In this section we introduce the classification methods that 
give a notion of probability like Logistic regression and 
Probability-SVM. Then we present some methods for 
solving multiclass problems, and specially the binary 
decision tree. 
 
1) Logistic Regression 

This regression method models the probability of 
membership to a class � ∈ {−1,1} with a sigmoid function 
whose inputs are linear combinations of the example � 
attributes [3].  

 �(� = −1|�) = ����1 + ���� 
(1) 

 �(� = 1|�) = 1 − �(� = 0|�) (2) 

The model selection is conducted by searching for the 
coefficients vector � which maximizes the likelihood 
function, defined as: 

�(�) = � �(��) !(1 − �(��))"# !$%% &$'$
()"  (3) 

where �(��) is defined as in Equation 1. 

In general, Logistic Regression (LR) is an easy-to-use 
method as it doesn’t have parameters to adjust. We will use it 
as a benchmark method, to validate the results provided by 
our technique. Given that LR is a bi-class classifier, we will 
associate it to a binary decision tree (BDT) technique [10] to 
solve the multi-class problem. We have called this technique 
LR-BDT. We will present the binary decision tree afterwards 
in this same section. 

2) Probabilistic Support Vector Machines 
Classic support vector machines (SVM) have proved to be 

a very effective classification method [13]. They are binary 
linear classification techniques [14] which search for the 
hyper plane (in the hyperspace of attributes) that separates 
two classes in a training set. This hyper plane is found by 
maximizing the so-called margin, which is the distance from 
the hyper plane to the closest points, denoted support 
vectors. A common variant of classic SVM, is called soft 
margin and it consists of admitting some misclassified 
points in the training set for preventing the over fitting 
problem. Although, we want to avoid too many points being 
misclassified, thus we impose a penalty * that will penalize 
every misclassified example. * can take values in the range 0 < * ≤ ∞. A high value of * means a strict classifier that 
doesn’t admit many misclassified points. On the opposite, a 
small * means a very flexible classifier. Formally, we have a 
training set {(�., /.), … , (�1, /1)}, where every point �� = (��., … , ��2) has m attributes and one of the two 
possible labels /� = {−1 ,1}. A soft margin SVM classifier 
will label a new unknown point �3 according to the decision 
function:  

 �(4'  ) = ��5	((�. �'  ) + �7)   (4) 



  

where � and 8 are the hyper plane parameters obtained from 
the minimization of the cost function in Equation 7 on the 
training set. 

In SVM, kernels are used to project the data into a virtual 
space where it might be easier to separate them [8]. The 
main advantage of kernel functions is that the only operation 
needed to be defined in the new virtual space is the inner 
product 9:�( , �;< = =�( , �;> . Several kernel functions are 
used [15]: 

- Linear:        9:��, �;< = �(?�;  
- Polynomial:     9:��, �;< = (@�(?�; + A)&  

- Gaussian :      9:�( , �;< = exp(#E��#�FEGHIG )  
Applying a kernel function, the soft margin and the Wolfe 

dual formulation [16], the SVM problem is presented as:  
 �(4') = ��5	(J(�3)) (5) 

where J(�) is defined as: 

 J(�) = K L(
(9(�( , �) +  �7M()"  (6) 

the values of LN and 
( are found solving the following 
constrained optimization problem: 

 

⎩⎪⎨
⎪⎧maxU! VK L( − 12 K L(L;
(
;9(��, �F) M(,;)"M()" X 0 ≤ L( ≤ *,   � = 1, … , YK L(
(M()" = 0 (7) 

 
In the PDT approach, and for its use in the car diagnostic 

classification, we choose to use the Gaussian kernel. It only 
has  ZH as parameter. A small value of  ZH will lead to curved 
hyper plans and a high value will force the hyper plans to be 
straighter. In [17] it is showed that from some combinations 
of the hyperparameters (*, ZH), the Gaussian kernel tends 
towards the linear kernel, which makes the Gaussian kernel 
the most general method and one that will work for a large 
range of datasets. The hyper parameters (*, ZH) have to be 
optimized for every classification problem. In [17] an 
effective technique that we implemented is proposed. 

As stated before, SVM produce a value that is not a 
probability. Indeed, SVM only give a class prediction output 
that will be either +1 or -1. In order to extract associated 
probabilities from SVM outputs several approaches have 
been proposed [4, 8, 18]. We will focus on Platt’s approach 
[4]. Platt [4] proposed a technique that has been largely used 
in the literature. He builds a sigmoid function between the 
outputs J(�) of the SVM and the probability of membership �(� = �|�) to a class �, given the attributes of �. A simple bi-
class example is shown in Figure 1. 

The sigmoid will have the following parametric 
expression: 

 � (� = 1|J(�)) =  11 + �$[(�)\] (8) 

 
Figure 1 SVM and probability estimation for a 2D binary problem 

where � and 8 are parameters computed from the 
minimization of the negative log-likelihood function [4] 

 − K �(  log �(J(��)) + (1 − �(  ) log(1 − �(J(��)) (  (9) 

and �( is the new label of the classes. 1 becomes �\ and -1 
becomes �#. This relabeling procedure is conducted so that 
the sigmoid fit will be softer. These new labels are computed 
using the expressions: 

 �\ = a\ + 1a\ + 2             �# = 1a# + 2 (10) 

where a\ and a# are the number of points that belong to 
class 1 and class 2 respectively. 

The PSVM as proposed by Platt [4] uses first a SVM 
classifier that has to be trained with a training set s". Then the 
sigmoid parameters (�, 8) have to be found. To do so, it is 
recommended [4] to use a second training set �H. The 
sigmoid fit requires the inputs J(�) and the labels �(. We use �H as a test set for the classifier. Thus we obtain the output 
values J(�H). Knowing the labels of �H (how many positives 
ones and how many negatives ones) we can calculate �\ 
and �# for this sub-training set. With values (J(�H), �((�H)) 
we then find (�, 8) by optimizing Eq. (9) using a Newton’s 
method with backtracking, as proposed by [19]. After these 
two steps, we have an a posteriori probability estimator to the 
bi-class problem. We can then classify new points and give 
them an associated probability of belonging to class 1 or 2. 

3) From bi-class to multi-class problems 
SVM were originally designed for bi-class classification 

problems, the passage to multi-class problems is still an on-
going research area [6]. There are two major approaches to 
solve this type of problems. 

The first and the one that could be more intuitive consist in 
formulating a cost function with c hyperplanes (being c the 
number of classes in our problem) [5].  

 

⎩⎪⎨
⎪⎧ min�,f  12 K (�2. �2) + * K K g(MMh !

%
()"

i
M)"  

 
:�/� . ��< + 8 ! ≥ (�2. ��) + 8M + 2 − g(Mg(M ≥ 0,      � = 1, … , �     Y ∈ {1, … , c} \ �(

 (11) 

 

For this formulation, the decision is given by 

 J(�) = maxl (��. ��) + 8(  ,      � = 1, … , c (12) 



  

This method suffers from the problem that an optimization 
with so many variables is more difficult to solve for the 
algorithm, can give slower results and even in some 
occasions may not converge [6]. 

Another approach is to divide the multi-class problem in 
several binary sub-problems. There are numerous methods 
that do the division. The most popular are One against one 
[7], One against all [8] , Diagram Acyclic Graph (DAG) [9] 
and Binary decision Trees (BDT) [10]. For sake of shortness, 
we will only focus on the BDT method, because it is the one 
we will use. 

In [10], they proposed to build a binary tree in which at 
every node the remaining classes separated in two subgroups 5" and 5H. A SVM classifier decides to which subgroup the 
new point belongs, so in which direction to move. In order to 
build the tree (the first step in the classification procedure) a 
clustering algorithm divides all the c classes into 5" and 5H. 
The algorithm calculates the gravity centers of all classes, the 
two classes with the biggest Euclidean distance from each 
other are assigned to each of the sub-groups. Then the 
algorithm checks the closest class to one of the sub-groups, 
this class is assigned to that sub-group, their gravity center is 
recalculated with the new points that have just been added. 
This is repeated until all classes have been assigned to one of 
the groups. In the example of Figure 2 we can see that 5" = {2,3,4,7} and 5H = {1,5,6}. For each sub-group the 
clustering algorithm is repeated until there is no more than 
one class per sub-group. Those sub-groups will be called the 
leaves of the tree and a point that falls there will be assigned 
with the class of the leaf. 

 
Figure 2 Illustration of SVM-BDT [10] 

It is important to note that BDT testing time is smaller than 
other methods because the depth of the decision tree is of 
order logH c since at every level the tree eliminates 
approximately half of the remaining classes. The testing 
time is an important characteristic that must be taken into 
account when choosing a classifier. 

IV. PROBABILISTIC DECISION TREES (PDT) 

1) Probability construction 
In this paper, we propose to build a binary decision tree 

following the idea introduced by Madzarov [10], but instead 
of using a simple SVM classifier in each node, we use a 
SVM classifier associated with a sigmoid function (PSVM) 
to estimate the probability of membership to each sub-group 
in the node, as shown in Figure 3. The tree may be built using 
different criteria, for example the Euclidian distance between 

the gravity centers, the margin obtained by pairwise SVM 
[20] or some physical or functionalities criteria (mechanical, 
electrical, etc.). This is very interesting because in this way 
we introduce previous knowledge from an expert that might 
help the classification task. We can then build a probability 
function for each leaf, knowing the path that a point has to 
follow to reach it.  

 
Figure 3 Example of a probability decision tree 

Note that there is only one way to get to a leaf, so the 
probability functions are unique for a trained tree. 

 �(� = �|�) = � �rs&t (u,%)%t$[
u)"  

(13) ℎ is the level of the tree and ℎ = 1 is the root node. The 
previous expression states that the probability of 
membership of an element to the class � is calculated as the 
product of the probabilities of the decisions taken in all the 
nodes visited until arriving to the leaf. By 	wx�(ℎ, �) we 
mean the � node in the ℎ level. Note that those functions are 
analytical, because in each node we will have an equation 
like 8, which only depends of � and the parameters (�, 8) 
which are calculated before. Once the tree is built we will 
also have the c probability functions, one for each class. 
When classifying future unknowing cases we will just have 
to evaluate the c analytical functions and then chose the 
class with the highest score. However, we don’t have to 
settle with just one predicted class. One of the most 
interesting things of the PDT is that we can have more than 
one prediction for one subject. We can have a list of all the 
possible classes, ordered after their plausibility, which is 
measured with the probabilities estimation. So, instead of 
having one predicted class like classic SVM multi-class 
methods, we will have several options. This will be useful 
for an example where the first prediction won’t be correct. 
In classical multi-class no further information will be 
provided if the predicted class is not correct, because we will 
have a set of c − 1 classes left, all of them equally 
plausible. Although with PDT, if the first choice wasn’t the 
right one, we could try the second one and so on. We know 
that the next one will be the class with the highest 
probability among those that remain. Our experiments 
showed that in most of the datasets, the right answer is in the 
first choices.  

2) Algorithm 
To summarize the method’s algorithm, the steps for 

building a PDT are: 



  

 
Step 1 Learning phase (construction of the classifier) 

Inputs: Training set �" and �H 
Outputs: c probability functions (one for each class) 
 

1. Build a binary decision tree using �1. 
2. Train a SVM classifier for each node of the tree, 

model selection has to be done to guarantee 
good performance.  

3. Fit a sigmoid to every SVM classifier trained in 
step 2 using �2, according to Platt’s method [4] 
and Lin algorithm [19]. Obtaining a probability 
function for the node. 

4. For each leaf, build the probability function as 
the product of all the probability functions 
traversed (nodes) 

End step 1 
Step 2 Generalization phase (usage by the final user) 

Input: An unclassified example � 
Output: A list of the proposed classes and their     
corresponding probability. 
 

1. Evaluate all the probability functions obtained is 
Step 1 for the new unclassified example. 

2. Sort the classes according to the probabilities 
End step 2 

3) Application to automotive diagnosis 
PDT could be a very powerful decision helping tool in 

automotive diagnosis thanks to the scores associated to the 
predictions. As a matter of fact, when an assistant is facing a 
new unclassified case, the PDT will propose him a list of 
possible solutions, sorted by their likelihood. The assistant 
will try first the most likely solution. If it is not the right 
answer (we admit that sometimes the classifier might not 
sort the right answer in the first place, but the results of the 
applications in section V suggest that those are rare cases) 
the assistant will try next the second most likely solution and 
so on. This approach is a time saving tool to the workshop 
because only the more likely solutions have to be tried. 

V. APPLICATIONS 

The classification algorithm was coded in MATLAB, 
based on a SVM Toolbox [21]. Benchmark was conducted 
against the well-known SVM library LIBSVM [15] using 
One-against-one (OvO), Diagram Acyclic Graph (DAG) and 
LR-BDT. Classification tests were performed on datasets 
from the UCI Machine Learning Repository [22] and we 
have also built an artificial database that emulates the 
diagnosis car data. This database is constituted by 8 classes 
with 2 features. Each class is generated by a normal 
distribution in a 2D space. Some points of different classes 
actually are mixed. This allows us to test the sensibility of 
the classifiers as they have tendencies for over-fitting or not. 

Datasets are described in Table 1, and one can appreciate 
how different they are. The number of attributes (dimensions 

for the SVM classifier) and the number of classes vary in a 
wide range, which makes the benchmark experiment very 
interesting and complete. Each feature was scaled between [-
1, 1]. For each SVM method we conducted a model 
selection based on the algorithm proposed in [17]. Every 
score is the mean of the results obtained using a 5-fold cross 
validation. This eliminates the influence of randomly 
splitting a training and testing subset from the data  

TABLE 1 DATASETS DESCRIPTION 

Dataset # attributes # instances  # of 
classes 

Iris3 4 150 3 
Wine 

Quality3 
11 1600 10 

Ecopli3 7 336 8 
Artificial 

base4 
2 200 8 

 
The results are show in Table 2. Only the test accuracy is 

shown because it is the variable that best represents the 
generalization capacity of classifiers. In bold the best results 
for each dataset are highlighted. Note that for PDT and LR-
BDT the test accuracy has to be interpreted as the number of 
times the first prediction (the class with the highest 
probability) was the right class. 

TABLE 2 ACCURACY COMPARISONS (�w5*; �w5ZH) 

Dataset 
Test accuracy (%) 

LIBSVM 
OvO 

LIBSVM 
DAG PDT RL-BDT 

Iris3 98.67 
(4;3) 

98.67 
(3.5;2) 

98 
(2.5;1) 97.33 

Wine 
Quality3 

63.97 
(0;-1) 

59.94 
(1.5;2) 

61.74 
(12.5;0) 59.38 

Ecopli3 
86.57 
(5;5) 

85.14 
(2;0) 

88.57 
(6.5;7) 86.29 

Artificial 
base4 

92.87  
(-1;2) 

92.87 
(-7;1) 

92.75 
(2.5;2) 91.75 

Going further in PDT and LR-BDT predictions, we 
wanted to analyze the distribution of the right class among 
all the predictions made by both methods. The idea is to 
count how many times the right answer was the first 
predicted class or the second predicted class and so on. In 
Table 3 we show the results obtained for the five datasets. It 
is good to see that in all the cases we have the majority of 
classes well predicted on the first attempt. When the first 
answer isn’t the right one, the second one is, in almost all the 
occasions. We only have a very small number of examples 
for which the correct class is one of the last predictions.  

VI. CONCLUSION 

In this paper, we have proposed a probabilistic binary 
decision tree as a response to features retrieving for car 
diagnosis. 

 
3 Datasets taken from the UCI Machine Learning Repository [22] 
 
4 Artificial base created by the authors 



  

TABLE 3 ACCURACY OF PDT PREDICTIONS 

Dataset 1st 2nd 3rd 4th 5th 6th 7th-
11th 

Iris3  

by SVM 
98 2 0     

Iris3  

by RL 
97.33 2 0.67     

Wine 
Quality3 

by SVM 
61.74 15.96 8.57 7.20 2.98 3.54 0.01 

Wine 
Quality3 

by RL 
59.38 30  7.02    2.48    0.99 0.06 0.07 

Ecopli3 

by SVM 
88.57 6.57 2 1.14 0.29 1.14 0.29 

Ecopli3 

by RL 
86.29 9.43 1.14 0.29 0.29 2 0.56 

Artificial 
base4 by 
SVM 

92.75 7.25 0 0 0 0 0 

Artificial 
base4 by 
RL 

91.75 8.25 0 0 0 0 0 

In this industrial context, the extraction of breakdown 
previous solution should be time saving and associated to a 
calibrated probability.  The approach is based on the use of a 
binary decision tree structure with PSVM classifiers 
associated in the nodes to estimate the probability of 
membership to each sub-group. We can then build a 
probability function for each leaf, knowing the path that a 
point has to follow to reach it.  

This original method has proved to be effective when 
tested in real word problems. It is very useful to have a score 
associated to a class prediction, because it allows further 
analysis of the results. The results showed that the PDT is an 
efficient and accurate method, comparable with the classic 
multi-class methods. In addition to that, the subsidiary 
predictions are a useful tool for the cases where the apparent 
first solution is not correct. This is an important advantage 
compared to the other approaches. PDT also showed to be 
more accurate than LR-BDT which is the other method that 
gives probability estimations. We may then consider the PDT 
as a complete method in terms of accuracy, multiple outputs 
and at the same time, giving a confidence index for each 
output. The application of PDT to an actual diagnosis 
database is in progress, where the performances of the PDT 
are tested in view of the size of the databases and the 
difficulties that it implies for processing them. 

As perspectives we see many application fields for the 
proposed technique. Indeed, it can be used in any 
classification problem that may need more than one 
predicted class and scores associated. In particular, we are 
planning to implement for structural damage detection. 
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