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Abstract

We present a modified definition of the Electron Pair LocailimaFunction (EPLF), ini-
tially defined within the framework of quantum Monte Carlgpapaches [A. Scemama, M.
Caffarel, and P. Chaquih Chem. Phys121, 1725 (2004)] to be used in Density Functional
Theories (DFT) andab initio wave function-based methods. This modified version of the
EPLF —while keeping the same physical and chemical contengsbuilt to be analytically
computable with standard wave functions or Kohn-Sham sgmtations. It is illustrated that
the EPLF defines a simple and powerful tool for chemical preation via selected applica-

tions including atomic and molecular closed-shell systesmand 1T bonds, radical and singlet
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open-shell systems, and molecules having a strong muifigaerational character. Some ap-
plications of the EPLF are presented at various levels ajrthand compared to Becke and
Edgecombe’s Electron Localization Function (ELF). Ourmgeurce parallel software im-
plementation of the EPLF opens the possibility of its use grge community of chemists

interested by the chemical interpretation of complex etgit structures.

1 Introduction

Nowadays, when dealing with theoretical chemical intagiren, quantum chemists rely on two
main strategies. The first consists in the traditional direterpretation of the wave function
through its projection onto molecular orbitals (MO) or vate bond (VB) structures (the so-called
Hilbert space partitioning). The second uses a geometticatt-space description in order to
partition the electronic density into domains within thdioary 3D-space. The design of such in-
terpretative techniques, initiated by Daudelas popularized by Bader who introduced the Quan-
tum Theory of Atoms in Molecules (QTAIM$.Along with QTAIM, Bader introduced the concept
of topological analysis, offering an atom-based partitddbrthe molecular space grounded on the
gradient dynamical system theory and using a local functieme the Laplacian of the electron
density. Through years, many efforts have been devotedetalelsign of alternative local func-
tions. For example, Becke and Edgebombe introduced thér&tecocalization Function (ELF)
offering an access to chemically intuitive domains beyotminéc centers encompassing bonds,
lone pairsetc Ever since, its usefulness has been demonstrated by 8idvBavirf who exten-
sively developed its topological analysis, although ndipian of space is uniqué.

The problematic of an accurate description of chemical bangets more and more difficult as
the complexity of the wave function goes beyond the singterdginant approximatiofi. There-
fore, an additional natural orbital approximation was atltiethe ELF formalism to extend it
to the correlated level, but its general applicabilityatty quantum chemical method is still sub-
ject to intense development. In that context, other metheste introduced such as the electron

localizability indicator (ELI, se and references therein), the analysis of electronic piitityab
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distributions?1%and the Electron Pair Localization Function (EPLE).

In this work, we shall focus on this latter function, EPLF,agle main feature is to give direct
access to the local (spatial) electronic correlations betwspin-like and spin-unlike electronic
pairs. The EPLF has been first introduced within the fram&wbquantum Monte Carlo (QMC)
approaches where introducing simple and direct estimafasch local electronic correlations is
particularly easy. In practice, it has been proposed talkanl indicator —the electron pair local-
ization function— based on a suitable combination of theaye distances between an electron
of a given spin located at poimtand the closest spin-like and spin-unlike electrons. EP&§ h
been shown to be particularly interesting to get new insighto the nature of the pairing and
localization of electrons and, particularly, to understarore deeply the role of the dynamical and
non-dynamical near-degeneracy correlation effé&fsFrom a fundamental point of view, such a
result is not surprising since the EPLF is actually relatethé conditional probabilities of finding
an electron at point, with spin o or g, knowing that an electron of a given spinis located at
some pointr1. Indeed, having such quantities at our disposal is knowretsufficient to define
an exact electronic structure theog:d, theexactexchange-correlation energy of DFT can be in
principle derived from such conditional probabilitiesegeg4). The advantage of having defined
the EPLF within a QMC computational scheme is that such atiomcan be easily calculated at
various levels of approximation. Indeed, by generating Qdi@bability densities associated with
various trial wavefunctions, the average distances betwésctrons and, thus the EPLF function,
can be evaluated at the Hartree-Fock, DFT, CASSCF, CI, B, letels of approximation. It is
also possible to evaluate the EPLF at the Fixed-Node Ddfusilonte Carlo level, a particularly
accurate QMC approximation recovering the major part dicstéand dynamical correlation effects,
even if in some cases the quality of the fixed-node error issnaasy to assess, seg. Ref.1°
Beside these advantages, the main drawback of calcul&gngRLF with QMC is that simulations
need to be rather intensive to decrease sufficiently thisttal errors on the values of the EPLF at
each point of the grid employed. Indeed, a minimal resolution is neddatistinguish the subtle

changes in local properties.



In this work, we propose a modified form for the EPLF allowitgxactcomputation (no sta-
tistical error) for the standard wave functions of compotadl chemistry written as determinantal
expansions built from molecular orbitals expressed in sGaessian basis set. The approach can
also be naturally applied to DFT calculations based on a Kaiham density expressed in a deter-
minantal form. As we shall see, the proposed modificatiomefEPLF does not alter its chemical
content. Using this modified expression, the EPLF is muchemapid to compute since its cal-
culation requires only the evaluation of mono-electroniegrals (see, below). In particular, it
avoids the use of a Monte Carlo sampling which can be rath&i-@ensive for large systems
opening the possibility to perform full topological anadgsin the near future. Accordingly, once
introduced into standard computational chemistry package believe that the EPLF will be-
come a very useful and powerful tool for chemical interpietaaccessible to a wide community

of chemists.

2 EPLF: The original definition

In the original definition of the EPLF, Retl the motivation was to define a function Bf mea-
suring locally the electron pairing in a molecular systern.db that, the following definition of
electron pairing has been first introduced: An electréocated atr; is said to be paired to an
electronj located at j if electronj is the closest electron toHaving defined such a pairing, it has

been proposed to define the amount of electron pairing at pamterms of a quantity inversely

d(r) = <LIJ __ZN(S(r —ri)rJn;inrij \IJ> (1)

whered(r) can be interpreted as the average of the shortest eledegomes distance at W(r1,,rn)

proportional to

being theN-electron wave function, angj = |rj —r;|.

Two different types of electron pairs are to be defined: R#isdectrons having the same spin



o, and pairs of electrons with opposite spiosd). Hence, two quantities need to be introduced:

‘P> ()

The electron pair localization function is bounded in thé, 1] interval and is defined as

dog(r) = <W .7ZN6(r—ri).min rij

J;0i1#£0j

dgo(r) —dga(r)
EPLA) = Goo(D)  doo(r)

(4)

When the pairing of spin-unlike electrons is predominaliz (r) > dys(r) and EPLKr) > 0.
When the pairing of spin-like electrons is predominalgt; (r) < dy5(r) and EPLREr) < 0. When
the electron pairing of spin-like and spin-unlike elecs@mequivalent, EPL{) ~ O.

This localization function does not depend on the type ofevanction, and can therefore
measure electron pairing using any kind of representatifamtree-Fock (HF), Kohn-Sham (KS),
Configuration Interaction (Cl), Multi-Configurational $€onsistent-Field (MCSCF) as well as
Slater-Jastrow, Diffusion Monte Carlo (DMC), Hylleraaswsdunctionsgetc Due to the presence
of the Min function in the definition ofl;4(r) anddg(r) these quantities cannot be evaluated in
an analytical way and quantum Monte Carlo (QMC) approacppsa to be the most efficient way
of computing the three-dimensional EPLF grids via a siatissampling of~ W2(r,,ry) in the
case of Variational Monte Carlo (VMC)-type calculations~oM(r1,,rn)®o(r1,,rn) (Po fixed-
node ground-state wave function) in the case of the moreractrixed-Node Diffusion Monte
Carlo (FN-DMC)-type calculatiori$=13-15(for a detailed presentation of these various versions of

QMC approaches, seegl?).



3 EPLF: A modified definition suitable for DFT and wave function-
based methods

Following preliminary development$ we propose here to introduce a modified definition of the
EPLF which —in contrast with the original definition— can nbe analytically computable for
standard wave functions of quantum chemistry, thus avgithie need for statistical sampling. To
do that, we propose to express thién function appearing in the average distances in terms of

Gaussian functions. More precisely, we introduce the Yalg exact representation

1
= lim ([—=Inf(yr; 5
minrij = fim_y /= Infvrii) (5)
with
fyirij) = ;e_y”zi (6)
1A

Now, our basic approximation consists in replacing,)f¢teirge, the integrals

<LIJ _ié(r—rﬁ( —%/Inf(y,r@) \IJ> (7

J—In< Zér—r. (virij) > (8)

The expectation values of the minimum distances are nowndiye

appearing in Eq. (1) by

In foa (v:r) 9)

In foa (v:r) (10)

~<||—\ ~<||—\

dGU y Iarge

dUU y Iarge \/



with the two-electron integrals:
— N N 2
foo(yir) = (W Zlé(r—ri) Z e MNi—Til" | w (11)
i= j#i,0i=0;

fos(yir) = <w ié(r—n)é e nnif w> (12)
1= 1,0i#0j

When the wave functio has a standard form (sum of determinants built from molecatagrals

@'s) such integrals can be easily obtained in terms of thefwhg elementary contributions

A& [ ' r)ae " (13)

which in turn can be evaluated as generalized overlap ialkegr
Let us now discuss our basic approximation consisting img&iom Eq. (7) to Eq. (8). This
approximation can be written in a more compact way as

NaTuR large 1 (14)

where the symbolQ) denotes the integration 64?2 over all-particle coordinates except thth
one. For a given electronic configuratigm, ...,ry) andy large enoughf is dominated by a single
exponential, namely‘y‘”‘riminF, where|r; —r; . | is the distance between the reference electron
i located atr and the closest electron labellggi,. The validity of our basic approximation is
directly related to the amount of fluctuations of the quantitwhen various electronic configu-
rations are considered. Note that for a given electréhe distancedr; —r;| can vary a lot but

it is much less the case for; —rj,...| where the electron numbgk,, can be different from one
configuration to another. When these fluctuations are sthalratio in Eq. (14) is close to one

and the approximation is of good quality. To see what hapfmrarger fluctuations let us write

f = foin+ Of. (15)



A simple calculation leads to

—=1+0[(5f)7] (16)

showing that at first order in the fluctuations the ratio i stjual to one, illustrating the validity
of our approximation.

A last point to discuss is the value pto be chosen in practice. Because of our approximation,
the limit y — +o0 cannot be taken since the ratio in Eq. (14) goes to 2&fherefore, the value of
y has to be large enough to discriminate between the closest@h located atj,, from the other
ones located at larger distances of electravhile staying in the regime where the ratio in Eq. (14)
stays close to one. We have found that a valugagpending om and chosen on physical grounds
allows to recover systematically the essential featureah@EPLF images calculated with QMC,
that is to say, with the exact expression of Mim function. To be effective, the discrimination of
the closest electron with the other ones must be properlyeimgnted. To do that, the value of
y is adapted to keep the leading exponerftli';i’l‘”*rimin‘2 significantly larger than the sub-leading
exponentiale_‘"“_”nextfmin‘2 associated with the second closest eleciiRr_min. First, we define
a sphereQ(rj) centered om; with a radiusdg(ri). Then, locally, we represent our system made
of the electron located at and its two closest neighbors by a model system of three eignt
particles. If one calculates the probability of finding &létthree particles inside the sphere, one

finds
3
) = (5., &er)) 7)

If the densityp(r) is supposed constant and equapi; ), the radiuslg(r;) of the sphere can be

set such thalg is equal to a fixed value

-1/3
do(ri) = (%Tpg—lﬁp(m) (18)

Then,y(r;) is chosen in order to set a constant ratibetween the width o6 and the radius



of the sphere

K = /2y(ri)dq(ri) (29

We obtain an expression gfr;) which depends on the electron density:

2 2/3
yir) =% (“gPa 0(r) ) (20)

In our simulations, we have found that the EPLF images obthinith QMC are properly

recovered usingq = 0.001 andk = 50.

4 Some applications

As discussed previously, the modified form of the EPLF preskhere is aimed to provide the
same chemical information as the original QMC-based EPlieme, but without the statisti-
cal noise inherited from the QMC approach. Therefore, ther@sted reader can refer to exist-
ing recent publications that deal with the QMC-EPLF analysicovalent, ionic and multicenter
bonds11-13.16.2Qp/e focus in this section on some illustrative applicatioighlighting the specific

capabilities of the EPLF as compared to Becke and Edgecaridhé.

4.1 Closed-shell single-determinant systems

A first natural example to look at is the case of a closed-slteth described at the Hartree-Fock
(HF) level. Using the Dunning’s cc-pVDZ atomic basis%@¢he radial values of the EPLF and
ELF for the Argon atom are displayed in Figure 1. It is noteal thoth functions display three
maximum values corresponding to the= 1,n = 2, andn = 3 values of the principal quantum
number. Furthermore, these maxima are essentially locdtéek same place. Thgoss features
of the atomic shell structure are thus described in a simiay by both approaches. However,
there is also a striking difference: The magnitudes of the $econdary maxima corresponding

to the two most external shells are essentially identicéh&ELF case but very different for the



0.35

0.30

0.10

0.05

0.0

r (a.u.)

1.0

0.8

0.6

ELF

0.4

0.2

0.0

3.0

Figure 1: ELF and EPLF radial values for the Argon atom as &tfan of the distance to the
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EPLF / HF

EPLF where the outermost one is much smaller. However, tisea¢dso a striking difference:
The magnitudes of the two secondary maxima corresponditigetbvo most external shells are
essentially identical in the ELF case but very differentttoe EPLF where the outermost one is
much smaller. Note that having such a difference is not gingy since EPLF is, in contrast with
ELF, directly connected to electron pairing. The pairingaafi-parallel electrons is likely to be

the strongest in the first shell, weaker in the second shrellflae weakest in the most diffuse third

shell.
0.35 A “ 1.0
A 10.9
0.30 L [\ los
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Figure 2: ELF and EPLF values in the G&I" anion along the C7§$S axis computed using a
Hartree-Fock and a BLYP determinant.

The EPLF and ELF were computed for the £31 methanethiolate anion, using a Hartree-
Fock determinant and a Kohn-Sham determinant. The6:&1* atomic basis sé€23was used

for both determinants, and the BLYP functioffaf® was used for the DFT calculation. Figure 2
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compares the one-dimensional plots of the EPLF and ELF alen§#SS axis of the tetrahedral
CH5;S™. As for the Argon atom, the topologies of the EPLF and ELF fioms are comparable
both for the Hartree-Fock and the Kohn-Sham determinantsndsrom the Hartree-Fock to the
BLYP level, the values of the ELF are essentially the samééncbre domains, become slightly
smaller in the G-S bonding region and slightly larger on the rest of theSCaxis. As the EPLF
exhibits the same trend, we conclude that for closed-shnglesdeterminants the EPLF and ELF
give qualitatively similar results.

The ELF and EPLF were computed for the ethylene moleculeywsiiF/cc-pVDZ wave func-
tion. The isosurfaces ELF=0.75 and EPLF=0.12 are repredentFigure 3. These images are
gualitatively similar, even if the core domains seem to logdausing the EPLF. This is due to the
fact that the EPLF values are higher in the first atomic stjaisn the Argon example), while the
ELF has more comparable values among the shells.

To have a more quantitative visualization of the similastand differences between the ELF
and the EPLF, a correlation plot relating the values of baitfcfions is presented in Figure 4.
Three different regimes can be observed. First, a regintegponding to the core domain where
the EPLF takes its larger values. In this region an almodepepbne-to-one correspondence is
observed, thus illustrating the similarity between bottal@ation functions. In contrast, in the
valence region where the (EPLF,ELF) points are scatterseeims to be no longer true. In fact,
this is not really the case since the majority of points atamtbto be almost aligned along the left
side of the envelope of points. To illustrate this, the mediae (same number of points on each
side) is represented. Finally, a last regime corresponttinige region where the ELF and EPLF
values are small (say, ELF smaller than 0.05) can be defineslidh a regime the two localization
functions turn out to be fully decorrelated. However, thelenying configurations correspond
to regions in space where the electronic densities are senall, and this case is not of great
chemical interest. As a conclusion, in all chemically ietting regimes the correlation between
ELF and EPLF is high. We have found that such a conclusionlid wat only for this case but

also for all molecules described by a closed-shell singlerdegnant wave function. In this case the
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Figure 3: ELF=0.75 (top) and EPLF=0.12 (bottom) isosurdamiethe ethylene molecule.
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Figure 4: Correlation between the ELF and the EPLF in theletieymolecule.

gualitative information that can be obtained from an ELF ancEPLF calculation is essentially
the same. This can be understood by noting that for a cldsell+mono-configurational wave
function thea electrons are independent from {Bielectrons so localizing electrons is essentially

equivalent to localizing anti-parallel electron pairs.

4.2 Open-shell Hartree-Fock

A wave function for the HG radical was obtained at the restricted open-shell Hafmk level
(ROHF), using the cc-pVDZ atomic basis set. Both the ELF &edEPLF were computed, and the
results are displayed in Figure 5. This example points autrthin difference between the ELF and
the EPLF: the localization region of the unpaired electrohilgits a maximum of the ELF (high
electron localization) and a minimum of the EPLF (low elentpairing). The EPLF can identify
clearly domains of electron pairing (lone pairs, core daorsa@nd bonds), and it can additionally

characterize localized unpaired electrons similarly io signsity.
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Figure 5: ELF (top) and EPLF (bottom) contour plots of the K€, radical in the molecular
plane. Red values are the lowest and blue values are theshighe
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4.3 Multi-configurational wave function

A wave function for the singlet state of the ozone moleculs firat calculated at the HF/cc-pvVDZ
level. The ELF and the EPLF were both calculated, and givdaimualitative results (Figure 6).
Then, a Complete Active Space wave function with 8 electior& orbitals (CAS(8,8)) was
prepared and the EPLF was calculated (Figure 7). The EPldtraat from the CAS wave function
is significantly different from the EPLF obtained from the W&ve function. In the HF framework,
the O-0O bonding domains are more connected to each other than tortégair domains of the
central oxygen atom. With the CAS wave function, each@bond domain is more connected to
the lone pair domains than to each other. This example shaw#ite EPLF is an alternative to the
ELF in closed shell systems where a multi-configurationahoe is required, as the EPLF is well

defined for such cases.

4.4 Open-shell singlet

When the ethylene molecule is twisted with an angle of 90ekgalong the €C axis, therrbond
breaks. Each one of theelectrons localizes on a carbon atom giving rise to an opefi-singlet,
degenerate with the triplet state. In order to preservegiimesymmetry, a CAS(2,2) wave function
was computed to describe the singlet state. With such a wenation, the spin density is not able
to localize the unpaired electrons since thene-electron density is equal to tfleone-electron
density in every point of space. The EPLF reveals the presefihese unpaired electrons by local
minimum values of the function close to the carbon atomshénlane perpendicular to the-E

bonds.

5 Software

To realize the EPLF and ELF calculations presented in thiepaa code was written using the
IRPF90 Fortran generaté?. This code is interfaced with the GaussiarfiZ%3AMESS?® and Mol-

pro%® programs. As the calculation of the EPLF is more expensiae the calculation of the ELF,
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Figure 6: ELF=0.61 (top) and EPLF=0.123 (bottom) isoswgfathe singlet state of the ozone
molecule (Hartree-Fock).
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Figure 7: EPLF=0.123 isosurface the singlet state of th@®molecule (CAS-SCF).

Figure 8: EPLF contour plot and isosurface of the singlaesththe twisted HC'—*CH, biradi-
cal. Red values of the EPLF are the lowest and green valugsealeghest.
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the program has been efficiently parallelized (for both EBh& ELF calculations) using the mes-
sage passing interface (MPI) libr&f/and exhibits a linear speedup property with the number of
cores. The EPLF code is licenced under the GNU General Puisknice and the source files can

be downloaded from the weblatt p: / / epl f. sour cef or ge. net.

6 Conclusion

In this work we have introduced a modified version of the EPh&w#ically computable for stan-
dard wave functions and DFT representations. When compgartite original EPLF defined in
a QMC framework, essentially the same images are recovéraystematic comparison of our
analytical EPLF with the Electronic Localization Functi(fLF) of Becke and Edgecombe has
been made. For closed-shell systems, the EPLF results angb closely match the ELF ones.
However, for other situations the two localization funagamay differ significantly (radicals, sys-
tems with strong static correlatioret). The major advantage of the reformulated EPLF is that it
can be easily computed for any kind of electronic structuethmd defined from single or multi-
determinantal wave functions. Further development witu® on the topological analysis of the
EPLF which will provide the possibility of computing varisproperties integrated from a partition
of the three-dimensional space. As our software is availfilfree, it should open the possibility

for any chemist to use the EPLF for the understanding of cerngllectronic structures.
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