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Abstract

We present a modified definition of the Electron Pair Localization Function (EPLF), ini-

tially defined within the framework of quantum Monte Carlo approaches [A. Scemama, M.

Caffarel, and P. ChaquinJ. Chem. Phys.121, 1725 (2004)] to be used in Density Functional

Theories (DFT) andab initio wave function-based methods. This modified version of the

EPLF —while keeping the same physical and chemical contents— is built to be analytically

computable with standard wave functions or Kohn-Sham representations. It is illustrated that

the EPLF defines a simple and powerful tool for chemical interpretation via selected applica-

tions including atomic and molecular closed-shell systems, σ andπ bonds, radical and singlet
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open-shell systems, and molecules having a strong multi-configurational character. Some ap-

plications of the EPLF are presented at various levels of theory and compared to Becke and

Edgecombe’s Electron Localization Function (ELF). Our open-source parallel software im-

plementation of the EPLF opens the possibility of its use by alarge community of chemists

interested by the chemical interpretation of complex electronic structures.

1 Introduction

Nowadays, when dealing with theoretical chemical interpretation, quantum chemists rely on two

main strategies. The first consists in the traditional direct interpretation of the wave function

through its projection onto molecular orbitals (MO) or valence bond (VB) structures (the so-called

Hilbert space partitioning). The second uses a geometricaldirect-space description in order to

partition the electronic density into domains within the ordinary 3D-space. The design of such in-

terpretative techniques, initiated by Daudel,1 was popularized by Bader who introduced the Quan-

tum Theory of Atoms in Molecules (QTAIM).2 Along with QTAIM, Bader introduced the concept

of topological analysis, offering an atom-based partitionof the molecular space grounded on the

gradient dynamical system theory and using a local function, here the Laplacian of the electron

density. Through years, many efforts have been devoted to the design of alternative local func-

tions. For example, Becke and Edgebombe introduced the Electron Localization Function (ELF)3

offering an access to chemically intuitive domains beyond atomic centers encompassing bonds,

lone pairs,etc. Ever since, its usefulness has been demonstrated by Silvi and Savin4 who exten-

sively developed its topological analysis, although no partition of space is unique.5

The problematic of an accurate description of chemical bonding gets more and more difficult as

the complexity of the wave function goes beyond the single determinant approximation.6 There-

fore, an additional natural orbital approximation was added to the ELF formalism7 to extend it

to the correlated level, but its general applicability toanyquantum chemical method is still sub-

ject to intense development. In that context, other methodswere introduced such as the electron

localizability indicator (ELI, see8 and references therein), the analysis of electronic probability
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distributions,9,10 and the Electron Pair Localization Function (EPLF).11

In this work, we shall focus on this latter function, EPLF, whose main feature is to give direct

access to the local (spatial) electronic correlations between spin-like and spin-unlike electronic

pairs. The EPLF has been first introduced within the framework of quantum Monte Carlo (QMC)

approaches where introducing simple and direct estimatorsof such local electronic correlations is

particularly easy. In practice, it has been proposed to build an indicator —the electron pair local-

ization function— based on a suitable combination of the average distances between an electron

of a given spin located at pointr and the closest spin-like and spin-unlike electrons. EPLF has

been shown to be particularly interesting to get new insights into the nature of the pairing and

localization of electrons and, particularly, to understand more deeply the role of the dynamical and

non-dynamical near-degeneracy correlation effects.12,13From a fundamental point of view, such a

result is not surprising since the EPLF is actually related to the conditional probabilities of finding

an electron at pointr2 with spinσ or σ̄ , knowing that an electron of a given spinσ is located at

some pointr1. Indeed, having such quantities at our disposal is known to be sufficient to define

an exact electronic structure theory (e.g., theexactexchange-correlation energy of DFT can be in

principle derived from such conditional probabilities, seee.g.14). The advantage of having defined

the EPLF within a QMC computational scheme is that such a function can be easily calculated at

various levels of approximation. Indeed, by generating QMCprobability densities associated with

various trial wavefunctions, the average distances between electrons and, thus the EPLF function,

can be evaluated at the Hartree-Fock, DFT, CASSCF, CI, VB, etc. levels of approximation. It is

also possible to evaluate the EPLF at the Fixed-Node Diffusion Monte Carlo level, a particularly

accurate QMC approximation recovering the major part of static and dynamical correlation effects,

even if in some cases the quality of the fixed-node error is notso easy to assess, seee.g. Ref.15

Beside these advantages, the main drawback of calculating the EPLF with QMC is that simulations

need to be rather intensive to decrease sufficiently the statistical errors on the values of the EPLF at

each pointr of the grid employed. Indeed, a minimal resolution is neededto distinguish the subtle

changes in local properties.
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In this work, we propose a modified form for the EPLF allowing itsexactcomputation (no sta-

tistical error) for the standard wave functions of computational chemistry written as determinantal

expansions built from molecular orbitals expressed in someGaussian basis set. The approach can

also be naturally applied to DFT calculations based on a Kohn-Sham density expressed in a deter-

minantal form. As we shall see, the proposed modification of the EPLF does not alter its chemical

content. Using this modified expression, the EPLF is much more rapid to compute since its cal-

culation requires only the evaluation of mono-electronic integrals (see, below). In particular, it

avoids the use of a Monte Carlo sampling which can be rather CPU-intensive for large systems

opening the possibility to perform full topological analyses in the near future. Accordingly, once

introduced into standard computational chemistry packages, we believe that the EPLF will be-

come a very useful and powerful tool for chemical interpretation accessible to a wide community

of chemists.

2 EPLF: The original definition

In the original definition of the EPLF, Ref.,11 the motivation was to define a function ofR
3 mea-

suring locally the electron pairing in a molecular system. To do that, the following definition of

electron pairing has been first introduced: An electroni located atr i is said to be paired to an

electronj located atr j if electron j is the closest electron toi. Having defined such a pairing, it has

been proposed to define the amount of electron pairing at point r in terms of a quantity inversely

proportional to

d(r) =

〈

Ψ

∣

∣

∣

∣

∣

∑
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δ (r − r i)min
j 6=i

r i j
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∣

Ψ

〉

(1)

whered(r) can be interpreted as the average of the shortest electron-electron distance atr , Ψ(r1, , rN)

being theN-electron wave function, andr i j = |r j − r i |.

Two different types of electron pairs are to be defined: Pairsof electrons having the same spin
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σ , and pairs of electrons with opposite spins (σ ,σ̄). Hence, two quantities need to be introduced:

dσσ (r) =
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(3)

The electron pair localization function is bounded in the[−1,1] interval and is defined as

EPLF(r) =
dσσ (r)−dσσ̄ (r)
dσσ (r)+dσσ̄ (r)

(4)

When the pairing of spin-unlike electrons is predominant,dσσ (r) > dσσ̄ (r) and EPLF(r) > 0.

When the pairing of spin-like electrons is predominant,dσσ (r) < dσσ̄ (r) and EPLF(r) < 0. When

the electron pairing of spin-like and spin-unlike electrons is equivalent, EPLF(r) ∼ 0.

This localization function does not depend on the type of wave function, and can therefore

measure electron pairing using any kind of representation:Hartree-Fock (HF), Kohn-Sham (KS),

Configuration Interaction (CI), Multi-Configurational Self-Consistent-Field (MCSCF) as well as

Slater-Jastrow, Diffusion Monte Carlo (DMC), Hylleraas wave functions,etc. Due to the presence

of theMin function in the definition ofdσσ (r) anddσσ̄ (r) these quantities cannot be evaluated in

an analytical way and quantum Monte Carlo (QMC) approaches appear to be the most efficient way

of computing the three-dimensional EPLF grids via a statistical sampling of∼ Ψ2(r1, , rN) in the

case of Variational Monte Carlo (VMC)-type calculations or∼ Ψ(r1, , rN)Φ0(r1, , rN) (Φ0 fixed-

node ground-state wave function) in the case of the more accurate Fixed-Node Diffusion Monte

Carlo (FN-DMC)-type calculations11–13,16(for a detailed presentation of these various versions of

QMC approaches, seee.g.17).
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3 EPLF: A modified definition suitable for DFT and wave function-

based methods

Following preliminary developments,18 we propose here to introduce a modified definition of the

EPLF which —in contrast with the original definition— can nowbe analytically computable for

standard wave functions of quantum chemistry, thus avoiding the need for statistical sampling. To

do that, we propose to express theMin function appearing in the average distances in terms of

Gaussian functions. More precisely, we introduce the following exact representation

min
j 6=i

r i j = lim
γ→+∞

√

−1
γ

ln f (γ; r i j ) (5)

with

f (γ; r i j ) = ∑
j 6=i

e−γr2
i j (6)

Now, our basic approximation consists in replacing, forγ large, the integrals
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appearing in Eq. (1) by
√
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The expectation values of the minimum distances are now given by:

dσσ (r) ∼
γ large

√

−1
γ

ln f̄σσ (γ; r) (9)

dσσ̄ (r) ∼
γ large

√

−1
γ

ln f̄σσ̄ (γ; r) (10)
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with the two-electron integrals:

f̄σσ (γ; r) =
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When the wave functionΨ has a standard form (sum of determinants built from molecular integrals

φ ’s) such integrals can be easily obtained in terms of the following elementary contributions

φi(r)φk(r)
∫

dr ′φ j(r ′)φl(r
′)e−γ |r−r ′|2 (13)

which in turn can be evaluated as generalized overlap integrals.

Let us now discuss our basic approximation consisting in going from Eq. (7) to Eq. (8). This

approximation can be written in a more compact way as

〈√− ln f 〉
√

− ln〈 f 〉
∼

γ large 1 (14)

where the symbol〈Q〉 denotes the integration ofQΨ2 over all-particle coordinates except thei-th

one. For a given electronic configuration(r1, ..., rN) andγ large enough,f is dominated by a single

exponential, namelye−γ |r i−r jmin|
2
, where|r i − r jmin| is the distance between the reference electron

i located atr and the closest electron labelledjmin. The validity of our basic approximation is

directly related to the amount of fluctuations of the quantity f when various electronic configu-

rations are considered. Note that for a given electronj the distance|r i − r j | can vary a lot but

it is much less the case for|r i − r jmin| where the electron numberjmin can be different from one

configuration to another. When these fluctuations are small,the ratio in Eq. (14) is close to one

and the approximation is of good quality. To see what happensfor larger fluctuations let us write

f = fmin +δ f . (15)
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A simple calculation leads to
〈√− ln f 〉
√

− ln〈 f 〉
= 1+O[(δ f )2] (16)

showing that at first order in the fluctuations the ratio is still equal to one, illustrating the validity

of our approximation.

A last point to discuss is the value ofγ to be chosen in practice. Because of our approximation,

the limit γ →+∞ cannot be taken since the ratio in Eq. (14) goes to zero.19 Therefore, the value of

γ has to be large enough to discriminate between the closest electron located atr jmin from the other

ones located at larger distances of electroni, while staying in the regime where the ratio in Eq. (14)

stays close to one. We have found that a value ofγ depending onr and chosen on physical grounds

allows to recover systematically the essential features ofthe EPLF images calculated with QMC,

that is to say, with the exact expression of theMin function. To be effective, the discrimination of

the closest electron with the other ones must be properly implemented. To do that, the value of

γ is adapted to keep the leading exponentiale−γ |r i−r jmin|
2

significantly larger than the sub-leading

exponentiale−γ |r i−r jnext−min|
2

associated with the second closest electronjnext−min. First, we define

a sphereΩ(r i) centered onr i with a radiusdΩ(r i). Then, locally, we represent our system made

of the electron located atr i and its two closest neighbors by a model system of three independent

particles. If one calculates the probability of finding all the three particles inside the sphere, one

finds

PΩ(r i) =

(

1
3

∫

Ω(r i)
drρ(r)

)3

(17)

If the densityρ(r) is supposed constant and equal toρ(r i), the radiusdΩ(r i) of the sphere can be

set such thatPΩ is equal to a fixed value

dΩ(r i) =

(

4π
9

PΩ
−1/3ρ(r i)

)−1/3

(18)

Then,γ(r i) is chosen in order to set a constant ratioκ between the width ofe−γr2
i j and the radius
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of the sphere

κ =
√

2γ(r i)dΩ(r i) (19)

We obtain an expression ofγ(r i) which depends on the electron density:

γ(r i) =
κ2

2

(

4π
9

PΩ
−1/3ρ(r i)

)2/3

(20)

In our simulations, we have found that the EPLF images obtained with QMC are properly

recovered usingPΩ = 0.001 andκ = 50.

4 Some applications

As discussed previously, the modified form of the EPLF presented here is aimed to provide the

same chemical information as the original QMC-based EPLF scheme, but without the statisti-

cal noise inherited from the QMC approach. Therefore, the interested reader can refer to exist-

ing recent publications that deal with the QMC-EPLF analysis of covalent, ionic and multicenter

bonds.11–13,16,20We focus in this section on some illustrative applications highlighting the specific

capabilities of the EPLF as compared to Becke and Edgecombe’s ELF.

4.1 Closed-shell single-determinant systems

A first natural example to look at is the case of a closed-shellatom described at the Hartree-Fock

(HF) level. Using the Dunning’s cc-pVDZ atomic basis set21 the radial values of the EPLF and

ELF for the Argon atom are displayed in Figure 1. It is noted that both functions display three

maximum values corresponding to then = 1,n = 2, andn = 3 values of the principal quantum

number. Furthermore, these maxima are essentially locatedat the same place. Thegross features

of the atomic shell structure are thus described in a similarway by both approaches. However,

there is also a striking difference: The magnitudes of the two secondary maxima corresponding

to the two most external shells are essentially identical inthe ELF case but very different for the

9



Figure 1: ELF and EPLF radial values for the Argon atom as a function of the distance to the
nucleus.
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EPLF where the outermost one is much smaller. However, thereis also a striking difference:

The magnitudes of the two secondary maxima corresponding tothe two most external shells are

essentially identical in the ELF case but very different forthe EPLF where the outermost one is

much smaller. Note that having such a difference is not surprising since EPLF is, in contrast with

ELF, directly connected to electron pairing. The pairing ofanti-parallel electrons is likely to be

the strongest in the first shell, weaker in the second shell, and the weakest in the most diffuse third

shell.

Figure 2: ELF and EPLF values in the CH3S– anion along the Câ̆AŞS axis computed using a
Hartree-Fock and a BLYP determinant.

The EPLF and ELF were computed for the CH3S– methanethiolate anion, using a Hartree-

Fock determinant and a Kohn-Sham determinant. The 6-31++G∗∗ atomic basis set22,23 was used

for both determinants, and the BLYP functional24,25 was used for the DFT calculation. Figure 2
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compares the one-dimensional plots of the EPLF and ELF alongthe Câ̆AŞS axis of the tetrahedral

CH3S–. As for the Argon atom, the topologies of the EPLF and ELF functions are comparable

both for the Hartree-Fock and the Kohn-Sham determinants. Going from the Hartree-Fock to the

BLYP level, the values of the ELF are essentially the same in the core domains, become slightly

smaller in the C−S bonding region and slightly larger on the rest of the C−S axis. As the EPLF

exhibits the same trend, we conclude that for closed-shell single determinants the EPLF and ELF

give qualitatively similar results.

The ELF and EPLF were computed for the ethylene molecule using a HF/cc-pVDZ wave func-

tion. The isosurfaces ELF=0.75 and EPLF=0.12 are represented in Figure 3. These images are

qualitatively similar, even if the core domains seem to be larger using the EPLF. This is due to the

fact that the EPLF values are higher in the first atomic shells(as in the Argon example), while the

ELF has more comparable values among the shells.

To have a more quantitative visualization of the similarities and differences between the ELF

and the EPLF, a correlation plot relating the values of both functions is presented in Figure 4.

Three different regimes can be observed. First, a regime corresponding to the core domain where

the EPLF takes its larger values. In this region an almost perfect one-to-one correspondence is

observed, thus illustrating the similarity between both localization functions. In contrast, in the

valence region where the (EPLF,ELF) points are scattered itseems to be no longer true. In fact,

this is not really the case since the majority of points are found to be almost aligned along the left

side of the envelope of points. To illustrate this, the median line (same number of points on each

side) is represented. Finally, a last regime correspondingto the region where the ELF and EPLF

values are small (say, ELF smaller than 0.05) can be defined. In such a regime the two localization

functions turn out to be fully decorrelated. However, the underlying configurations correspond

to regions in space where the electronic densities are (very) small, and this case is not of great

chemical interest. As a conclusion, in all chemically interesting regimes the correlation between

ELF and EPLF is high. We have found that such a conclusion is valid not only for this case but

also for all molecules described by a closed-shell single determinant wave function. In this case the
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Figure 3: ELF=0.75 (top) and EPLF=0.12 (bottom) isosurfaces of the ethylene molecule.

13



Core domains

Valence domains

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  0.05  0.1  0.15  0.2  0.25  0.3

E
LF

EPLF

Figure 4: Correlation between the ELF and the EPLF in the ethylene molecule.

qualitative information that can be obtained from an ELF andan EPLF calculation is essentially

the same. This can be understood by noting that for a closed-shell mono-configurational wave

function theα electrons are independent from theβ electrons so localizing electrons is essentially

equivalent to localizing anti-parallel electron pairs.

4.2 Open-shell Hartree-Fock

A wave function for the HC·2 radical was obtained at the restricted open-shell Hartree-Fock level

(ROHF), using the cc-pVDZ atomic basis set. Both the ELF and the EPLF were computed, and the

results are displayed in Figure 5. This example points out the main difference between the ELF and

the EPLF: the localization region of the unpaired electron exhibits a maximum of the ELF (high

electron localization) and a minimum of the EPLF (low electron pairing). The EPLF can identify

clearly domains of electron pairing (lone pairs, core domains and bonds), and it can additionally

characterize localized unpaired electrons similarly to spin density.

14



Figure 5: ELF (top) and EPLF (bottom) contour plots of the theHC·

2 radical in the molecular
plane. Red values are the lowest and blue values are the highest.
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4.3 Multi-configurational wave function

A wave function for the singlet state of the ozone molecule was first calculated at the HF/cc-pVDZ

level. The ELF and the EPLF were both calculated, and give similar qualitative results (Figure 6).

Then, a Complete Active Space wave function with 8 electronsin 8 orbitals (CAS(8,8)) was

prepared and the EPLF was calculated (Figure 7). The EPLF obtained from the CAS wave function

is significantly different from the EPLF obtained from the HFwave function. In the HF framework,

the O−O bonding domains are more connected to each other than to thelone pair domains of the

central oxygen atom. With the CAS wave function, each O−O bond domain is more connected to

the lone pair domains than to each other. This example shows that the EPLF is an alternative to the

ELF in closed shell systems where a multi-configurational method is required, as the EPLF is well

defined for such cases.

4.4 Open-shell singlet

When the ethylene molecule is twisted with an angle of 90 degrees along the C−C axis, theπ bond

breaks. Each one of theπ electrons localizes on a carbon atom giving rise to an open-shell singlet,

degenerate with the triplet state. In order to preserve the spin symmetry, a CAS(2,2) wave function

was computed to describe the singlet state. With such a wave function, the spin density is not able

to localize the unpaired electrons since theα one-electron density is equal to theβ one-electron

density in every point of space. The EPLF reveals the presence of these unpaired electrons by local

minimum values of the function close to the carbon atoms, in the plane perpendicular to the C−H

bonds.

5 Software

To realize the EPLF and ELF calculations presented in this paper, a code was written using the

IRPF90 Fortran generator.26 This code is interfaced with the Gaussian03,27 GAMESS28 and Mol-

pro29 programs. As the calculation of the EPLF is more expensive than the calculation of the ELF,
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Figure 6: ELF=0.61 (top) and EPLF=0.123 (bottom) isosurfaces the singlet state of the ozone
molecule (Hartree-Fock).
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Figure 7: EPLF=0.123 isosurface the singlet state of the ozone molecule (CAS-SCF).

Figure 8: EPLF contour plot and isosurface of the singlet state of the twisted H2C·− ·CH2 biradi-
cal. Red values of the EPLF are the lowest and green values arethe highest.
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the program has been efficiently parallelized (for both EPLFand ELF calculations) using the mes-

sage passing interface (MPI) library30 and exhibits a linear speedup property with the number of

cores. The EPLF code is licenced under the GNU General PublicLicence and the source files can

be downloaded from the web athttp://eplf.sourceforge.net.

6 Conclusion

In this work we have introduced a modified version of the EPLF analytically computable for stan-

dard wave functions and DFT representations. When comparedto the original EPLF defined in

a QMC framework, essentially the same images are recovered.A systematic comparison of our

analytical EPLF with the Electronic Localization Function(ELF) of Becke and Edgecombe has

been made. For closed-shell systems, the EPLF results are shown to closely match the ELF ones.

However, for other situations the two localization functions may differ significantly (radicals, sys-

tems with strong static correlations,etc). The major advantage of the reformulated EPLF is that it

can be easily computed for any kind of electronic structure method defined from single or multi-

determinantal wave functions. Further development will focus on the topological analysis of the

EPLF which will provide the possibility of computing various properties integrated from a partition

of the three-dimensional space. As our software is available for free, it should open the possibility

for any chemist to use the EPLF for the understanding of complex electronic structures.
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