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HALL BASIS OF TWISTED LIE ALGEBRAS

MARC AUBRY

Abstract. In this paper we define a minimal generating system for the
free twisted Lie algebra. This gives a correct formulation and a proof to
an old statement of Barratt. To this aim we use properties of the Lyndon
words and of the Klyachko idempotent which generalize to twisted Hopf
algebras some similar results well-known in the classical case.

1. Introduction

We can date the birth of twisted algebraic structures from the article
of Barratt ([2]), where he proposed a new way for tackling the study of
James-Hopf and Hilton-Hopf invariants. Many years later general combi-
natorial foundations of twisted algebraic structures were developed: ele-
mentary, combinatorial definitions by Stover ([12]) copied from the classical
(non-twisted) ones; abstract, categorical definitions with the species of struc-
tures ([6], [10]). Let us also mention an operadic approach ([3], [7], [8]).

The results presented hereafter were announced in [1].
At the end of [2], Barratt gives a description of the linear basis of the

free twisted Lie algebra, but without proof. Briefly, he asserts that the
free twisted Lie algebra on a set of variables X is generated as a twisted
module by the Lyndon words (in the classical meaning) and the brackets
[. . . [x, x] . . . , x], x ∈ X.

This set is minimal but it is not generating. To get a feeling of what
happens, we consider the following analogy. Like free twisted Lie algebras,
free graded Lie algebras satisfy [x, x] 6= 0 for elements x of odd degree
(one can make the analogy more precise, but it is too much effort for a
mere motivating example). Now look at the following graded Lie algebra:
consider the graded set X = {x1, x2}, where the subscript represents the
degree, and L(X) the free graded rational Lie algebra generated by X. We
quickly check that L(X) admits the following basis in low dimensions:

1) In word length 1: x1, x2;
2) In length 2 : [x1, x1], [x1, x2];
3) In length 3 : [[x1, x1], x1], [[x1, x2], x2];
4) In length 4 : [[[x1, x1], x2], x2], [[x1, x2], [x1, x2]].

Key words and phrases. Twisted Hopf algebras, twisted Lie Algebras, Klyachko idem-
potent, Hall basis, Dynkin word.
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The element which corresponds to item 4) in the twisted case was not de-
tected by Barratt. So we may suspect it ought to be.

We already guess how to improve Barratt’s intuition. To get a generating
system we have to consider the brackets [. . . [u, u] . . . , u], not only for u ∈ X,
but also for elements u obtained from Lyndon words: [[x1, x2], [x1, x2]] =
2[x1, x2]

2, where [x1, x2] is obtained from the Lyndon word x1x2.

Our proof follows the classical one: the Lyndon words give an independant
set and the Klyachko idempotent proves that this set is generating. We study
the Klyachko idempotent in the Hopf algebra environment: then the proofs
work abstractly on morphisms and limit the complications involved by the
action of the permutation group on words.

Acknowledgements. We are indebted to F. Patras for drawing our
attention to Barratt’s article on twisted Lie algebras, and for pointing out
that his assertion about their linear basis remains unproved. We are also
grateful to the referee who incited us to clarify various notions of freeness
for twisted objects.

The paper is organized as follows.
We recall some definitions about twisted algebraic structures very briefly

in Section 2. We also set up notations once for all.
Section 3 gives a short account on various notions of free twisted as-

sociative and Lie algebras. Some light is brought to associative and Lie
polynomials in the twisted case.

In section 4, we discuss Lyndon words and prove the minimality of our
Hall basis.

Section 5 proves the properties of the Klyachko idempotent for Hopf al-
gebras.

In Section 6 we prove that our basis is generating.

2. Twisted algebras

We briefly review some twisted algebraic structures we shall use in the
following sections. A complete exposition was given by Stover ([12]). We
follow his presentation : it is very explicit on elements and so immediately
manageable when we construct Hall basis.

First we fix some notation for the permutation group.

2.1. Permutation groups. Let us denote by Sn the group of all bijections
of n objects; in the following it is understood (if the converse is not specified)
that these objects are the set of integers {1, . . . , n}; we also explicitely denote
a permutation σ by its image (σ(1), . . . σ(n)). We compose permutations as
usual for maps by acting on the left σ ◦ τ(i) = σ(τ(i)).

Given a decomposition (all integers in the following are non-negative)
(p1, p2) of n = p1 + p2 (by abuse we shall say a decomposition n = p1 + p2),
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we define the inclusion Sp1 × Sp2 ⊂ Sn as reflecting the inclusion given on
objects by the map preserving order from left to right:

{1, . . . , p1}
∐

{1, . . . , p2} ⊂ {1, . . . , n}

i 7→ i on the first factor

i 7→ p1 + i on the second factor

(As above and by abuse, for
∐

order matters). One immediately extends
this to the case n = p1 + · · ·+ pk, k ≥ 2, to define Sp1 × · · · ×Spk

⊂ Sn. If
Φi are permutations in Si we denote then by (Φ1, . . . ,Φk) the image in Sn

of (Φ1 × · · · × Φk) ∈ Sp1 × · · · × Spk
.

We now define permutations acting on blocks. Let n = p1 + · · · + pk be
some decomposition and σ ∈ Sk. We define the permutation of Sn acting
on the k-blocks p1, . . . , pk by the following composition:

Cp
σ−1(1),...pσ−1(k)

(σ) : {1, . . . , n} → {1, . . . , p1}
∐

· · ·
∐

{1, . . . , pk}

→ {1, . . . , pσ−1(1)}
∐

· · ·
∐

{1, . . . , pσ−1(k)} → {1, . . . , n}

where the first and last arrows preserve the order from left to right, and the
second one preserves the elements (i.e. if σ(j) = i, at the l-th spot of the
i-th block of the image you find the element that was at the l-th spot of the
j-th block in the preimage).

We also recall the following

Proposition 2.1.1. 1) For all σ, τ ∈ Sk, we have

Cp(σ◦τ)−1(1),...,p(σ◦τ)−1(k)
(σ◦τ) = Cp(σ◦τ)−1(1),...,p(σ◦τ)−1(k)

(σ)◦Cp
τ−1(1),...,pτ−1(k)

(τ).

2) For all σ ∈ Sk, Φ1 ∈ Sp1, . . . , Φk ∈ Spk
, we have

Cp
σ−1(1),...,pσ−1(k)(σ)◦(Φ1×···×Φk)=(Φ

σ−1(1)×···×Φ
σ−1(k)

) ◦ Cp
σ−1(1),...,pσ−1(k)

(σ).

2.2. Twisted modules and tensor products. Let R be a ring. A graded
R-module X is a collection (Xn)n∈N of R-modules Xn indexed by the non-
negative integers.

Twisted modules. A twisted module M is a graded module together with
a right Sn-action (a right R(Sn)-module structure on Xn for each n). Mor-
phisms of graded R-modules and of twisted modules are defined as one can
imagine; we shall only consider morphisms of degree 0. A twisted module
M is connected if M0 = 0. R is canonically given a structure of twisted
module.

Twisted tensor product. The twisted tensor product of k twisted modules
M1, . . . ,Mk is defined by its nth-term

(M1⊗· · ·⊗Mk)n =
∑

p1 + · · · + pk = n
pi ≥ 0

((M1)p1⊗R· · ·⊗R(Mk)pk
)⊗R(Sp1×...Spk

)R(Sn).
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2.3. Twisted algebras and coalgebras. With the definitions given above,
we can formally define twisted algebras and twisted coalgebras by the same
diagrams we do for the classical cases.

Like the classical case again we define the tensor twisted algebra A ⊗ B
of two twisted algebras A and B, the product of which is the composition

A ⊗ B ⊗ A ⊗ B
A ⊗ T ⊗ B

- A ⊗ A ⊗ B ⊗ B
µA ⊗ µB

- A ⊗ B

which we can explicit on elements

((a1 ⊗ b1) ◦ σ1)((a2 ⊗ b2) ◦ σ2) = ((a1a2)⊗ (b1b2) ◦ Cp1,p2,q1,q2(T ) ◦ (σ1 × σ2).

We have denoted by T the swap A⊗B → B ⊗A and by σ the permutation
(1, 3, 2, 4).

2.4. Twisted bialgebras, Hopf algebras. We refer to [12] for the defini-
tions of twisted algebras, coalgebras and bialgebras. Formally they repro-
duce the definition diagrams of the classical case.

Definition 2.4.1. A twisted bialgebra is a twisted module A, which is both
a twisted algebra with product µ : A ⊗ A → A and unit ǫ : R → A and
coalgebra with coproduct ∆ : A → A ⊗ A and counit η : A → R, such that
both µ and η are morphisms of twisted coalgebras or, equivalently both ∆
and ǫ are morphisms of twisted algebras; here A⊗A is given the structure of
twisted coalgebra (resp. algebra) induced by A and depicted in the preceding
subsection.

Let us just emphasize the existence of the antipode in the axioms of Hopf
algebras.

Definition 2.4.2. A twisted Hopf algebra is a twisted bialgebra A together
with a morphism of twisted modules S : A → A such that the following
diagram commutes:

A
∆

- A ⊗ A
S ⊗ A

- A ⊗ A

R

η

-

A ⊗ A

∆

? A ⊗ S
- A ⊗ A

µ
- A

µ

?

ǫ

-

where η : A → R (resp. ǫ : R → A) is the counit (resp. unit) of the
coalgebra (resp. algebra) A.
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Convolution. At this point it seems judicious to introduce an operation
we shall use very often in the next sections.

Proposition 2.4.3. Let C be a twisted coalgebra and A be a twisted algebra.
The set of morphisms of twisted modules HomR(S)(C, A) is an associative
monoid with the following product, called the convolution and denoted by ⋆:

f ⋆ g : C
∆

- C ⊗ C
f ⊗ g

- A ⊗ A
µ

- A

Now, by definition the antipode is the inverse of the identity under the
convolution product; it is thus unique. Like the classical case there is a
canonical way to define an antipode on a twisted connected bialgebra and
thus to give it the structure of a twisted Hopf algebra.

Before continuing our description of twisted algebraic structures, let us
recall the notion of pseudo-coproduct in cocommutative twisted bialgebras.
We shall need it for the Klyachko idempotent (Section 5) and we reffered
already toit for the Dynkin idempotent in [1].

Let A be a cocommutative bialgebra. We use notations of Section 2 and
denote by π, ∆, η and ǫ respectively its product, coproduct, unit and counit.
Let ν = η ◦ ǫ. Formally the same definition as in [9] works.

Definition 2.4.4. An endomorphism f of A (here and in the sequel en-
domorphism means F(S)-module endomorphism, and we denote the corre-
sponding set - F-module - by End(A)) admits F ∈ End(A⊗A) as a pseudo-
coproduct if F ◦∆ = ∆ ◦ f . If f admits the pseudocoproduct f ⊗ ν + ν ⊗ f ,
we say that f is pseudo-primitive.

2.5. Lie algebras.

Definition 2.5.1. A twisted Lie algebra L is a twisted module together
with a morphism of twisted modules β : L ⊗ L → L, called the bracket,
which satisfies the traditional anticommutativity and Jacobi identities:

β + β ◦ T = 0 in HomR(S)(L ⊗ L, L)

β◦(β⊗L)+β◦(β⊗L)◦(2, 3, 1)#+β◦(β⊗L)◦(2, 3, 1)2# = 0 HomR(S)(L⊗L⊗L, L)

where (2, 3, 1)# acts on L ⊗ L ⊗ L by x ⊗ y ⊗ z 7→ y ⊗ z ⊗ x.

Let us be redundant and transcribe this definition on elements. As usual
we write the bracket β = [, ] and the identities are written with explicit
elements ui ∈ Lpi

for i = 1, 2, 3:

[u1, u2] = [u2, u1] ◦ Cp2,p1((2, 1))

[[u1, u2], u3]+[[u2, u3], u1]Cp2,p3,p1((2, 3, 1))+[[u3, u1], u2]Cp3,p1,p2((3, 1, 2)) = 0

As in the classical case we can define a Lie bracket on each twisted algebra
A by β = µ − µ ◦ T or on elements [x, y] = xy − yxCq,p((2, 1)) for x and y
elements of A of respective degrees p and q.



6 MARC AUBRY

We conclude here the reminder on generalities about twisted algebraic
structures. It gives a convenient framework to understand the notations of
the coming sections. The paper of Stover ([12]) continues with enveloping
algebras and the Milnor-Moore theorem.

Actually the theorem of Milnor Moore also holds in the twisted context.
Even if we shall need only part of the well-known results, let us recall some
facts about primitive elements.

2.6. Primitives in a twisted Hopf algebra. If A is a twisted bialgebra,
an element a ∈ A is primitive if ∆(a) = a⊗ 1 + 1⊗ a. The set of primitives
of A is a twisted sub-module of A, denoted by PA.

Let us mention two results about PA (cf. [12] Prop. 7.8 and 8.10).

Proposition 2.6.1. Consider A as the twisted Lie algebra whith bracket
canonically induced by the (associative) product of A. Then PA is a twisted
Lie sub-algebra of A.

Proposition 2.6.2. If the Hopf algebra A is cocommutative, then the inclu-
sion PA ⊂ A induces an isomorphism of twisted Hopf algebras UPA ∼= A.

In the next section we wish to spread some light on various notions of
free twisted objects. The most general one is defined by the usual process of
adjunction (cf [12]). Barratt [2], much more restrictive, defines an explicit
basis in degree 1. Finally we shall extend the definition of [2] to generators
of any degree: for that we introduce the notion of twisted polynomials.

Let us now proceed and fix some ideas about free twisted objects.

3. Free twisted objects and twisted Lie polynomials

In this section we follow again Stover [12] and adapt the first chapter of
Reutenauer’s book [11] to the case of twisted structures.

First let us recall some basic definitions and properties of free monoids.
Here no twisting occurs and we shall be brief.

3.1. Words and free monoids. Let X be a set, finite or infinite, and
denote its elements by x or xi, for i on some indexing set. A juxtaposition
(or concatenation) of a finite number of ordered letters, e. g. x1x2 . . . xn,
is called a word. The collection of all words generated by X, denoted by
W (X), comes with an obvious embedding of sets ı : X → W (X). Moreover
W (X) admits a product, called the concatenation product, defined as in the
following example: (x1 . . . xn)(x′

1 . . . x′
n′) = x1 . . . xnx′

1 . . . x′
n′ . W (X) with

this product is a free monoid. This definition is justified by the following.
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Proposition 3.1.1. For any monoid M and any map of sets f : X → M
there is a unique map of monoids f : W (X) → M such that the following
diagram in the category of sets commutes:

X
f

- M

W (X)

f

-

ı

-

3.2. Definitions of free twisted objects and polynomials. Let X be
a graded set (each x ∈ X is equipped with a positive integer | x | called
the degree) and R be a ring. The twisted free module over R generated by
X is any twisted module isomorphic to ⊕x∈XxR(S|x|) and is denoted by
R(S)(X). Again there is an obvious embedding of sets ı : X → R(S)(X).

Proposition 3.2.1. For any twisted module M and any map of graded sets
f : X → M there is a unique map of twisted module f : R(S)(X) → M
such that the following diagram in the category of graded sets commutes:

X
f

- M

R(S)(X)

f

-

ı

-

Proof. Given any element x1r1 + · · ·+xnrn, xi ∈ X, ri ∈ R(S), the commu-
tation of the diagram implies that f(xi) = f(xi) and by linearity f(x1r1 +
· · ·+xnrn) = f(x1)r1+· · ·+f(xn)rn. Thus f , if existing, is unique. Moreover
the preceding formula is precisely a definition of f once f is given.

�

Now let M be a twisted module over R. Let us denote by M⊗n the twisted
module given by the tensor product of n copies of M and by T (M) the direct
sum ⊕n>1M

⊗n (see subsection 2.2 for the definition of the twisted tensor
product). The associativity formula of subsection 2.2 defines a (product)

map M⊗n ⊗ M⊗m → M⊗(n+m) which by linearity extends to T (M) and
endows it with a structure of an associative twisted algebra. This is called
the free twisted (associative) algebra generated by the twisted module M .
There is an obvious embedding of twisted modules ı : M → T (M). This
terminology is justified by the following:
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Proposition 3.2.2. For any twisted (associative) algebra A and any map
of twisted modules f : M → A there is a unique map of twisted algebras
f : T (M) → A such that the following diagram in the category of twisted
modules commutes:

M
f

- A

T (M)

f

-

ı

-

Proof. Given an element m1 ⊗ · · · ⊗ mi ⊗ σ define f(m1 ⊗ · · · ⊗ mi ⊗ σ) =
f(m1)⊗· · ·⊗f(mi)⊗σ. A straightforward inspection shows that f(m1σ1⊗
· · · ⊗ miσi ⊗ σ) = f(m1)σ1 ⊗ · · · ⊗ f(mi)σi ⊗ σ = f(m1) ⊗ · · · ⊗ f(mi)(σi ×
σ1 × · · · × σi)σ. This proves, first, that f is well-defined on T (M) as a
twisted module map and, secondly, that f is multiplicative. Moreover, and
by definition, f = f on the twisted module M . This completes the proof.

�

We briefly pause here to emphasize an important point we shall only
use in the next subsection. Consider the map of twisted modules ∆ : M →
T (M)⊗T (M) given by ∆(m) = m⊗1+1⊗m and extend it to obtain a map
of twisted algebras ∆ : T (M) → T (M)⊗T (M) . This process endows T (M)
with a structure of twisted bialgebra. Actually this bialgebra is connected;
indeed it is easy to check that the anti-automorphism S : T (M) → T (M)
defined by S(m) = −m (just apply the universal property of proposition
3.2.2 to the algebra opposite to T (M)) satisfy the axioms of an antipode for
T (M). In other words we just defined the structure of twisted Hopf algebra
for T (M).

Now let us specialize to the free twisted module generated by a graded set
X. Let us denote by F(X) the free twisted associative algebra T (R(S)(X)).
Combininig propositions 3.2.1 and 3.2.2 , we readily obtain

Proposition 3.2.3. For any twisted associative algebra A and any map of
graded sets f : X → A there is a unique map of twisted algebras f : F(X) →
A such that the following diagram in the category of graded sets commutes:

X
f

- A

F(X)

f

-

ı

-
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We end this subsection by introducing polynomials in the twisted case.
A typical element of R(S)(X)) may be written as

∑
i∈I xi ◦ σi, for a finite

indexing set I. Thus F(X) is linearily generated (i.e.as an R(S)-module)
by elements of the type ⊗j∈Jxj where J browses all finite tuples of elements
of X. Such an element is also written x1 . . . xj for a j-uple (x1, . . . , xj) and
is called a monomial of F(X). The collection of monomials is a linear basis
for F(X). In the algebra F(X) the product of polynomials follows the rules
of the product in a free twisted algebra edicted in subsection 2.2:

((x1,1σ1,1 ⊗ · · · ⊗ x1,kσ1,k)τ1 × (x2,1σ2,1 ⊗ · · · ⊗ x2,l)σ2,l)τ2

= ((x1,1σ1,1 ⊗ · · · ⊗ x1,kσ1,k) ⊗ (x2,1σ2,1 ⊗ · · · ⊗ x2,lσ2,l))τ1 × τ2

= (x1,1 ⊗ · · · ⊗ x1,k ⊗ x2,1 ⊗ · · · ⊗ x2,l)(σ1,1 × · · · × σ1,k × σ2,1 × · · · × σ2,l)(τ1 × τ2).

3.3. Free twisted Lie algebras and Lie polynomials. We refer here to
Stover ([12]), specially for the proofs.

Consider a non-associative abstract operation on symbols and write it as
a bracketting. Starting with a unique symbol - say x - the bracketting oper-
ation gives rise to an infinite set N (x) - the free non-asociative monoid gen-
erated by x. Given a twisted module M and an element b of N (x), we define
M⊗b as the twisted module M⊗#b, where #b denotes the number of occur-
rences of x in b, and the twisted structure is similar to the twisted structure
of the ordinary tensor product. The bracketting operation in the monoid
N (x) induces an obvious bracketting operation M⊗b ⊗M⊗c → M⊗(bc). Let
us define the twisted module T (M) = ⊕b∈N (x)M

⊗b. The bracketting oper-
ation just defined extends to T (M) by linearity. Call it β.

Define I(M) as the two sided twisted ideal of T (M) generated by the
images of

β + β ◦ (2, 1) : T (M) × T (M) → T (M)
β ◦ (β × I(M)) + β ◦ (β × I(M))(2, 3, 1) + β ◦ (β × I(M))(2, 3, 1)2 :
T (M) × T (M) × T (M) → T (M)

The quotient L(M) = T (M)/I(M) is equipped with the map induced
by β (denoted as usual by [ , ]) and is called the free twisted Lie algebra
generated by M , denomination justified by the following proposition proved
by Stover [12]. There is an obvious embedding of twisted modules ı : M →
L(M).

Proposition 3.3.1. For any twisted Lie algebra L and any map of twisted
modules f : M → L there is a unique map of twisted Lie algebra f : L(M) →
L such that the following diagram in the category of twisted modules com-
mutes:
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M
f

- L

L(M)

f

-

ı

-

Let us end this subsection with some lines about twisted universal en-
veloping algebras.

If L is a twisted Lie algebra, consider T (L) the free (associative) twisted
algebra generated by the twisted module L, with the linear embedding ı :
L → T (L). Now let IL be the two-sided twisted Lie ideal generated in T (L)
by elements of the form [ı(x), ı(y)] − ı[x, y].

The enveloping algebra of L is the quotient (associative) algebra T (L)/I(L)
and is denoted by UL. It satisfies the following :

Proposition 3.3.2. For any Lie algebra L and any map of Lie algebras
f : L → A there is a unique map of algebras f : UL → A such that the
following diagram in the category of sets commutes:

L
f

- A

UL

f

-

ı

-

And now we can phrase the twisted version of Milnor-Moore for free
algebras given in [12], Prop. 7.4.

Proposition 3.3.3. Let M be a twisted module. the twisted algebra map

T (M) → UL(M)

induced by the composition of maps of twisted modules

M → L(M) → UL(M)

is an isomorphism.

As in the preceding subsection we can introduce Lie polynomials. Recall
that a typical element of R(S)(X) may be written as

∑
i∈I xi ◦ σi, for an

indexing set I and that a (non-commutative) polynomial in F(X) is a linear
combination of elements such as x1σ1 ⊗ · · · ⊗ xjσj . By subsection 2.4 and
proposition 3.3.1 we define an embedding of twisted Lie algebras: L(X) ⊂
F(X). A polynomial in F(X) is called a Lie polynomial if it is in the image
of L(X) by this embedding.
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Remark. If we suppose that all elements of X are of degree 1, we recover
Barratt’s definition of a free twisted (associative) algebra and Lie algebra.

4. Lyndon words

Preliminary remark. One can ask - and we are grateful to the referee for
his question - why we are limited to Lie algebras over free twisted modules.
The reason rests on the next two sections. As the classical one (see [4]) our
proof uses Lyndon words. Let us have an idea of the problem. Suppose
M is defined on the rationals by two generators x and y of degree 2 and a
relation x(1 + ǫ) = y(1− ǫ), where ǫ = (2, 1) ∈ Q(S2) (notice that 1− ǫ and
1+ ǫ are zero divisors in Q(S2) and the set of generators {x, y} is minimal).
Of course this relation induces further relations between all monomials in x
and y and the fundamental theorem 4.2.2 is no more valid.

This section (and Section 5) follows the presentation of [4] in outline.
We have now to handle carefully the twisted structures. We have pre-
cisely in mind that for an element u in a twisted Lie algebra the bracket
[. . . [u, u], . . . , u]] is not necessarily 0. So, when building a basis, we have
to modify the classical definitions and to check properties again. Let us
proceed for Lyndon words.

4.1. Free twisted associative algebra context. First we fix a basis field
F of characteristic 0. Let also X be a graded set; we denote its elements by
xi. Let us denote by W (X) the set of words in X; the length of a word is
the number of elements of X necessary to write it down by concatenation;
conventionally 1 is the word of length 0. Write F(X) for the free associative
twisted algebra generated by X (cf. Section 3); as an F(S)-module, F(X)
admits W (X) for basis. As usual the product in F(X) is denoted by simple
juxtaposition ”fg” and so the canonical Lie algebra structure on F(X) is
given by [f, g] = fg − gfC|g|,|f |((2, 1)).

Finally let us write L(X) for the free twisted Lie algebra generated by X,
which we consider as a Lie twisted subalgebra of F(X) with its canonical
Lie algebra structure.

We now define Lyndon words of F(X) in various equivalent ways and
examine how using them to obtain generators of L(X).

Let u, v, w be words (elements of W (X)) of strictly positive length such
that w = uv. We say that u is a head of w and that v is a tail of w. We
order words of W (X) by lexicographic order and denote the order relation
by ≥. In particular if w ≥ uv, either the order is decided in u and w ≥ u,
or only in v and then u is a head of w.

Definition 4.1.1. A Lyndon word is a word that is strictly smaller than all
its cyclic rearrangements or a power not less than 2 of a Lyndon word.
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Remark. The preceding definition makes sense because it is recursive.
Clearly all elements of X are Lyndon words (these are all Lyndon words of
length 1 - like in the non-twisted case) and if w = up, p ≥ 2 the length of u
is strictly smaller that the length of w.

We fix now some notations. Let L (resp. Ln) denote all Lyndon words of
F(X) (resp. of length n).

We say that a word w = x1x2 . . . xk is not prime if there is some non-
trivial circular permutation σ ∈ Sk such that w = xσ(1)xσ(2) . . . xσ(k). In
the opposite case we say that w is prime.

Proposition 4.1.2. w is a Lyndon word if and only if

1) If w is prime, then w is strictly smaller than all its tails or
2) If w is not prime, then there exists a Lyndon word u such that w =

up, p > 1.

Proof. ⇐
Suppose w is smaller than all its tails. Write w = uv, with u and v of

strictly positive length. Then w < v which implies w < vu. As v is a a tail
of w, it means that w is strictly smaller than all its cyclic rearrangements.

⇒
Let w = αv, with α and v of strictly positive length. Then w < vα

(a) Either this inequality is decided in v and we are done.
(b) Or v is a head of w and w = vβ. Then by hypoyhesis

1) w = αv < βv and thus α < β
2) And vice-versa: w = vβ < vα and thus β < α

which shows that b) cannot happen.
�

Proposition 4.1.3. w is a Lyndon word if and only if it has a factorization

If w is prime: w = w1w2 with w1, w2 ∈ L and w1 < w2

or
If w is not prime : w = up, p > 1 u a prime Lyndon word.

Moreover if w is prime and w2 is the longest possible Lyndon word, w1 and
w2 are prime.

Proof. ⇒
Let w = w1w2 with w2 the longest Lyndon tail of w. We shall show first,

that w1 is strictly smaller than w2 and secondly, that w1 ∈ L, which means
that the decomposition matches the request.

By Proposition 4.1.2 w = w1w2 < w2. Suppose w1 ≥ w2; then w1u ≥ w2,
for every word u, in particular u = w2, which contradicts our hypothesis; so
w1 < w2. Our first assertion holds.

Let us prove now that w1 is a Lyndon word.
First examine the two possible cases.

A) w1 is a prime word.
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We use Proposition 4.1.2 again and show that w1 is strictly smaller than
all its tails. Decompose w1 = uv, u and v of strictly positive length.

w = uvw2 and our choice of w2 implies that vw2 cannot be a Lyndon
word. So, by Proposition 4.1.2, there exists a decomposition vw2 = st with
t < vw2.

a) Either this inequality is decided in v : v > t. Going back to w we get
w = ust and t > w = w1w2 > w1 and we deduce v > t > w1 as desired.

b) Or v is a head of t and we can write t = vs’; then vw2 = st = svs′. In
other words s′ is a tail of w2. Since w2 is a Lyndon word :
i) Either w2 < s′ and we derive

vw2 > t = vs′ > vw2

which is a contradiction.
ii) Or w2 = u′p, p > 1, with u′ a prime Lyndon word (equivalently : p
maximal). If s′ = s′′u′k with s′′ of length strictly positive, but smaller that
the length of u′. Then s′′ is a tail of u′. As u′ is a prime Lyndon word :
u′ < s′′.

Besides

vu′p = vw2 > t = vs′′u′k.

Since the length of s′′ is strictly smaller than the length of u′, this forces

u′ > s′′

in contradiction with the above assertion.
So the case w2 = u′p cannot occur.

B) w1 is not prime, say w1 = (uv)p, p > 1.
Then w = (uv)pw2. As w is a Lyndon word, our choice for w2 implies

that vw2 is not a Lyndon word. Thus there exists a decomposition vw2 = st,
with t < vw2.

a) Either this inequality is decided in v and v > t. Then

w = (uv)p−1uvw2 = (uv)p−1ust

and, as w is a Lyndon word with tail t

t > (uv)p−1ust > uv.

Thus

v > t > uv

which proves that uv is a Lyndon word.
Now

uv < (uv)p < w2

by the first part of the proof. Thus uvw2 is a product of two Lyndon words
uv and w2 with uv < w2. If we suppose recursively that the theorem holds
in length smaller than the length of | w |, we conclude that uvw2 is a Lyndon
word, a contradiction with our hypothesis on w2.
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b) Or the inequality is not decided in v, and v is a head of t. Then we
can reproduce the argument in A)b), because in this part of the proof we
don’t use that w is a Lyndon word, only the fact that w2 is one.

So the study of the case B) proves that this case does not exist: w1 is
necessarily a prime word.

⇐
We use Proposition 4.1.2 once more and give ourselves a decomposition

w = uv. We begin with the case where v = w2 (and so u = w1). By
hypothesis w1 < w2. If this inequality is decided before the end of w1, then
w1β < w2 for every word β. If not, it means that w1 is a head of w2 and
then we can write w2 = w1α. Now w2 is a Lyndon word and w2 < α which
implies w = w1w2 < w1α = w2.

If v is shorter than w2, then v is a tail w2 and (always Proposition 4.1.2)
v > w2 > w.

If v is longer than w2, w2 is a tail v: v = sw2 for some word s. Then s
is a tail of w1. Now w1 is also a Lyndon word; thus w1 < s which implies
w = w1w2 < sw2 = v. This was to be proved. �

Definition 4.1.4. A standard factorization of a Lyndon word w is a fac-
torization of one of the two types:

i) w = w1w2 where w1 and w2 are Lyndon words, w1 < w2, with w2

the longest word possible, or
ii) w = up, u a Lyndon word and p > 1, with the greatest p possible.

4.2. Free twisted Lie algebra context. In this section we explain how
to use the Lyndon words to construct a basis of the free twisted Lie algebra.

Let us define a map b : L → L(X). We start with x ∈ X: b(x) = x ∈
L(X). Then the definition is recursive: if w = w1w2 (factorization i) of
definition 4.1.4) we set b(w) = [b(w1), b(w2)]; if w = up (factorization ii) of
definition 4.1.4), we set b(w) = [[b(u), b(u)], . . . , b(u)].

We are now ready to show how Lyndon words generate an independent
set in L(X).

Proposition 4.2.1. If w is a prime Lyndon word, then :

b(w) = w +
∑

v>w

vav, whith av ∈ R(S).

If w = up, then :

b(w) = (b(u))p(1 − γ2) . . . (1 − γp)

where γi is the permutation of C(i−1)|u|,|u|((2, 1)) of Si|u|.

Proof. We begin with the case w = up. By recursion it is enough to prove
that b(w) = b(up−1)b(u)(1 − γp). Now b(up) = [b(up−1), b(u)] by definition
of b; then apply the definition of the twisted Lie bracket in F(X).
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Let us now examine the prime case. Again we proceed recursively. So we
have the standard factorization w = w1w2 and by the hypothesis of recursion
we can write when w1 and w2 are prime:

b(w) = w1w2 − w2w1C|w1|,|w2|((2, 1)) +
∑

(v1v2 − v2v1C|v1|,|v2|((2, 1)))

where the sum is over all pairs (v1, v2) where vi appears in the decomposition
of wi excepting the pair (w1, w2). So v1v2 > w1w2 because either v1 > w1 or
if v1 = w1 then v2 > w2. Similarly v2v1 > w2w1; and w2w1 > w1w2 because
w1w2 = w is a Lyndon word.

If w1 = up or w2 = vq, then the same argument holds.
�

The last discussion leads immediately to the fundamental result:

Theorem 4.2.2. The polynomials {b(w)}w∈L are independant in F(X).

We want now to prove that these polynomials are generating. As in the
classical case the major tool is the Klyachko idempotent.

5. The Klyachko idempotent

We follow here the presentation of [9] and work in a bialgebra. We shall
specialize to the Lie algebra in the next section.

Let A be a twisted bialgebra and F be a field of charactersitic 0, which
countains a primitive nth root of the unity ωn for any n ≥ 1. Let pn : A →
An →֒ A be the projection of A onto its component of degree n (viewed
as a morphism of EndF(S)(A)) and define pC = pi1 ⋆ · · · ⋆ pil , where C
denotes the l-uple of strictly positive integers (i1, . . . , il); we shall also say
that C is a composition of (i1 + · · · + il). By definition C is finer than C ′

and write C ′ ≤ C if C ′ is obtained from C by substituting to a subset of
consecutive entries of C (say ik, ik+1, . . . , ik+l, 1 ≤ k ≤ k + l ≤ j) their sum
(ik + · · ·+ ik+l); notice that this substitution does not change the total sum
of all entries of C, which we call the weight - see below.

By inclusion exclusion we define elements rC of EndF(S)(A) by the formula

pC =
∑

C′≤C

rC′ .

More precisely, let l(C) be the length - the number of entries - of C. Then
(by Moebius inversion):

rC =
∑

C′≤C

(−1)l(C′)−l(C)pC′ . (1)

For any l-uple C = (i1, . . . , ij) define its weight by | C |= i1 + · · ·+ il and its
major index by maj(C) = (l− 1)i1 + (l− 2)i2 · · ·+ il−1. With this notation
let us define:
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Definition 5.0.3. The Klyachko idempotent - this denomination will be
justified below - of order n is the morphism κn ∈ EndF(S)(A) given by the
formula:

κn =
1

n

∑

|C|=n

ωmaj(C)
n rC

Theorem 5.0.4. If A is a cocommutative, connected bialgebra, then κn

maps A into the primitives of the bialgebra A.

Proof. We reproduce the proof of [9] and use the short cut presented in [5].
A priori we have to pay attention to the action of S, in particular when
dealing with tensor products.

Actually the general presentations by morphisms ([9]) veils the effective
action of S : the abstract formulas for structure maps of the twisted bial-
gebra A do not involve permutations explicitly; they only appear when we
want to make them explicit on elements of A.

We define Endgr(A) = ⊕n>0EndF(Sn)(An). Let q be a variable; then
Endgr(A)[[q]] makes sense. As the morphisms of EndF(S)(A) are of degree
0, there is a bijection between End(A) and Endgr(A) compatible with the
action of F(Sn); so we can transfer the convolution product to Endgr(A).
Define P (q) =

∑
n≥0 pnqn ∈ Endgr(A). The infinite product

κ(q) = · · · ⋆ P (qn) ⋆ · · · ⋆ P (q) ⋆ P (1)

is well-defined in Endgr(A)[[q]], because A is connected.
Observe that each element of Endgr(A)[[q]] has a unique expression as a

sum
∑

n fn, with fn ∈ End(An[[q]]). Like in [9] (after [5]); these elements
can be easily deduced from the formula:

κ(q) =
∑

n≥0

Kn(q)

(q)n

with (q)n = (1− q) . . . (1− qn) and Kn(q) =
∑

|C|=n qmaj(C)rC . Notice that

in the above formula n actually is the degree which is involved in Endgr(A)
We extend the definition of pseudo-coproduct recalled in Section 2 and

say that f ∈ Endgr(A)[[q]] admits the pseudo-coproduct F ∈ Endgr(A) ⊗
Endgr(A)[[q]] if F ◦ δ = δ ◦ f where δ extends naturally to A[[q]]. Moreover
there is a natural bijection (compatible with the action of the Sn) between
Endgr(A)[[q]] and S-morphisms A → A[[q]] (similarly between Endgr(A)⊗F

Endgr(A)[[q]] and morphisms A⊗FA → A⊗FA[[q]]. We systematically iden-
tify Endgr(A)⊗F[[q]] Endgr(A)[[q]] with(Endgr(A)⊗F Endgr(A))[[q]]. Grant-
ing this, when f, g ∈ Endgr(A)[[q]] we consider f ⊗ g as an element of
(Endgr(A) ⊗F Endgr(A))[[q]]. With all these conventions Theorem 5.0.8 of
[1] applies, since we assumed A to be cocommutative.

We check that
∑

i+j=n pi ⊗ pj ◦ δ = δ ◦ pn, i. e.
∑

i+j=n pi ⊗ pj is a

pseudo-coproduct for pn (this is general; if f =
∑

fn, f ⊗ f is a pseudo-
coproduct for f if and only if

∑
i+j=n fi ⊗ fj is a pseudo-coproduct for fn).
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This is equivalent to say that P (q) ⊗ P (q) is a pseudo-coproduct for P (q)
(the same is true for P (qn) for any n > 0). Then, applying Theorem 5.0.8 of
[1], we deduce that κ(q)⊗κ(q) is a pseudo-coproduct for κ(q). By the above

result, it means that
∑

i+j=n
Ki(q)
(q)i

⊗
Kj(q)
(q)j

is a pseudo-coproduct for Kn(q)
(q)n

, or

equivalently
∑

i+j=n
(q)n

(q)i(q)j
Ki(q) ⊗ Kj(q) is a pseudo-coproduct for Kn(q).

The polynomials (q)n

(q)i(q)j
vanish for q = ωn, except the cases where i = 0 or

j = 0 (in both cases they are equal to 1). This means that Kn(ωn) = nκn

is pseudo-primitive and proves the theorem.
�

Corollary 5.0.5. If A is a cocommutative, connected bialgebra, then κn is
an idempotent.

Proof. For sake of completenes, we reproduce the proof of [4]. Here there is
no changes introduced by the action of S.

First notice that the coproduct δ of the bialgebra A preserves the degree;
therefore pC is 0 on all elements of A of degree non equal to the length of
C (just consider the coassociativity of the coproduct - which implies the
associativity of the convolution). So, by the previous theorem and since A
- a cocommutative and connected bialgebra - is generated by its primitive
elements (proposition 2.6.2), it is enough to prove that κn(a) = a for any
primitive element a ∈ A; by the preceding remark there is no restriction to
suppose | a |= n. As a is primitive pi ⋆ pj(a) = 0, and pC(a) 6= 0 only if C

is of length 1. Equation (1) implies that rC(a) = (−1)l(C)−1a, for each C of
weight n. Thus:

nκn(a) =
∑

|C|=n

ωmaj(C)
n (−1)l(C)−1a.

Now there is classical bijection between compositions of n and subsets of
{1, . . . , n−1}, sending S = (i1, . . . , il) onto S = {i1, i1+i2, . . . , i1+· · ·+il−1}.
The cardinality of S is l(C)−1 and we define maj (S) =

∑
i∈S i = maj (C).

With these notations

nκn(a) =
∑

S⊂{1,...,n−1}

ωmaj(S)
n (−1)card(S)a

=
∑

1≤i1<···<ir≤n−1

ωi1+···+ir
n (−1)ra

=
∏

1≤i≤n−1}

(1 − ωi
n)a

= (1 + 1 + · · · + 1)a = na

since ωn is a primitive n-root of the unity. �
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6. The Lyndon-Hall basis

This section tells how to use the Klyachko idempotent for proving that
the Lyndon words are generating.

We proved in Corollary 5.0.5 that κn is the identity on primitives of the
bialgebra F(X). Moreover κn maps F(X) into its primitive elements. That
recalled, by the Theorem of Milnor-Moore 3.3.3, we conclude κn(F(X)) =
L(X).

In theorem 3.2.2 we proved that the set L of Lyndon words determines
a minimal set of independant elements in L(X). In this section we want to
prove that this set is generating (actually this is directly related to the fact
that, by definition, L forms a set of representatives of all circular rearrange-
ments classes of words of W (X)). Let us see that.

To this purpose we shall use the Klyachko idempotent κn. The following
theorem tells us that κn does not discriminate between all circular rearrange-
ments of a same word. This property is given by the study of the kernel of
the Klyachko invariant. For this part we work in the general context of a
connected cocommutative bialgebra A.

Theorem 6.0.6. The kernel of κn restricted to An is spanned by the ele-
ments of the form ab − ω|b|baC|b|,|a|((2, 1)).

Proof. We directly use the proofs of Theorem 16, Lemma 14 and Corollary
15 given in [9]. The proof of theorem 16 explicitly rests on the fact that
primitive must be generating in A; hence the hypothesis on A.

First recall the principle of the proof. We examine a word a1a2 . . . ap

with total degree | a1 | + | a2 | + · · ·+ | ap |= n, its image κn(a1a2 . . . ap)
and the circular permutation apa1 . . . ap−1 and its image κn(apa1 . . . ap−1).
Both images are linear combinations of words obtained by permutations of
a1a2 . . . ap. Then, focus our attention to such a word w. In the classical
case one proves that the coefficient of w in κn(apa1 . . . ap−1) is equal to the

coefficient of the same w in κn(a1a2 . . . ap) multiplied by ω
|ap|
n .

Now we want to extend this classical case (the basis ring is a field F

of characteristic 0 - possibly extended by primitive roots of unity) to the
twisted case : the basis ring is the group ring F(S). The coefficient of the
word w mentionned in the preceding paragraph results from two distinct

processes. First, a linear combination in F of coefficients of the form ω
maj(C)
n

which appear in the definition of κn; notice that if, in the classical case,
we calculate p|a1| ⋆ p|a2| ⋆ · · · ⋆ p|ap|(a1a2 . . . ap), where the a1, a2, . . . , ap are
primitive, we obtain a combination of words obtained by some permutations
of the word a1a2 . . . ap all coefficient equal to 1. Secondly, the action of the
group of permutations. It is generated by a repeated application of the
following formula : δ(a1a2) = a1a2 ⊗ 1 + a1 ⊗ a2 + a2 ⊗ a1C|a2|,|a1|((2, 1)) +
1 ⊗ a1a2. As a consequence, if in p|a1| ⋆ p|a2| · · · ⋆ p|ap|(a1a2 . . . ap) appears
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a word aσ(1)aσ(2) . . . aσ(p) for some permutation σ its coefficient in F(S) is
C|aσ(1)|,|aσ(2)|,...,|aσ(p)|.

So if we determine the coefficient of w = aσ(1)aσ(2) . . . aσ(p) in κn(a1a2 . . . ap)
we obtain the coefficient given in [9], multiplied by C|aσ(1)|,|aσ(2)|,|...aσ(p)|(σ).

Similarly if we determine the coefficient of w = aσ(1)aσ(2) . . . aσ(p) in

κn(apa1 . . . ap−1)(−ω
|ap|
n )C(|ap|,|a1|+...ap−1|)((2, 1)) we obtain the coefficient given

in [9] multiplied by C|aσ(1)|,|aσ(2)|,|···|aσ(p)|(σ), the same permutation as above

(indeed a permutation is given by its image and in our case by the word w).
In conclusion, the proof of [9] still works in the twisted case.

�

We now go back to the case of A = F(X).
First we remark that the free twisted bialgebra on X can be generated

on F(S) by the reunion of all {b(w)}w∈L and the non-trivial circular rear-
rangements of all w in L :

Lemma 6.0.7. Let < Ln > be the twisted module generated by Ln in F(X),
Bn its image by the linear extension of b : L → L(X) ⊂ F(X) and Kn the
kernel of the Klyachko idempotent κn : F(X)n → L(X)n ⊂ F(X)n. Then
there is an isomorphism between < Ln > ⊕Kn and Bn ⊕ Kn.

Proof. Look at the decomposition given by Theorem 4.2.2. Consider the
basis of Bn consisting in all b(w), w ∈ Ln and order it lexicographically.
Similarly we consider the basis of < Ln > consisting in all w, w ∈ Ln

again ordered lexicographically. Choose some basis for Kn. Then Theorem
4.2.2 implies that the matrix giving the basis of Bn ⊕ Kn in the basis of
< Ln > ⊕Kn is a triangular matrix with 1 at each spot of the diagonal.
This proves the lemma. �

Remark. If we recall that the Lyndon words are the representatives of all
circular rearrangement classes of W (X), we see that < Ln > ⊕Kn = F(X).

We can now prove the following sequence of inclusions:

L(X)n ⊇ Bn = κn(Bn)

= κn(Bn ⊕ Kn) by definition of Kn

= κn(< Ln > ⊕Kn) by Lemma 6.0.7

= κn(F(X)) by the above remark

= L(X)n by Milnor Moore, Proposition 3.3.3.

So we can state:

Theorem 6.0.8. As a twisted module the free (twisted) Lie algebra is gen-
erated by the Lie elements associated to all Lyndon words.

Combining this with Theorem 4.2.2 we obtain our main result:

Theorem 6.0.9. The set of Lie elements associated to all Lyndon words is
minimal and generating for the free twisted Lie algebra.
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To conclude with, we now return to [2] and specify:

(i) each b(w), w a prime Lyndon word, generates submodule isomorphic
to F(S|w|) in L(X).

(ii) each b(w), w = up, p > 1 and u a prime Lyndon word, generates
submodule isomorphic to F(S|w|)/Ip,|u| in L(X), where Ip,|u| is the
annihilator of (1 − γ2) . . . (1 − γp) (cf. Proposition 4.2.1).

References

[1] Aubry, M., Twisted Lie algebra and idempotent of Dynkin, to appear in Séminaire
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