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In this paper we define a minimal generating system for the free twisted Lie algebra. This gives a correct formulation and a proof to an old statement of Barratt. To this aim we use properties of the Lyndon words and of the Klyachko idempotent which generalize to twisted Hopf algebras some similar results well-known in the classical case.

Introduction

We can date the birth of twisted algebraic structures from the article of Barratt ([2]), where he proposed a new way for tackling the study of James-Hopf and Hilton-Hopf invariants. Many years later general combinatorial foundations of twisted algebraic structures were developed: elementary, combinatorial definitions by Stover ([12]) copied from the classical (non-twisted) ones; abstract, categorical definitions with the species of structures ( [START_REF] Joyal | Foncteurs analytiques et espèces de structures. Combinatoire énumérative[END_REF], [START_REF] Patras | On descent algebras and twisted bialgebras[END_REF]). Let us also mention an operadic approach ([3], [START_REF] Livernet | Lie theory for Hopf operads[END_REF], [START_REF] Markl | Operads in algebra, topology and physics[END_REF]).

The results presented hereafter were announced in [START_REF] Aubry | Twisted Lie algebra and idempotent of Dynkin[END_REF]. At the end of [START_REF] Barratt | Twisted Lie algebras. Geometric applications of homotopy theory[END_REF], Barratt gives a description of the linear basis of the free twisted Lie algebra, but without proof. Briefly, he asserts that the free twisted Lie algebra on a set of variables X is generated as a twisted module by the Lyndon words (in the classical meaning) and the brackets [. . . [x, x] . . . , x], x ∈ X.

This set is minimal but it is not generating. To get a feeling of what happens, we consider the following analogy. Like free twisted Lie algebras, free graded Lie algebras satisfy [x, x] = 0 for elements x of odd degree (one can make the analogy more precise, but it is too much effort for a mere motivating example). Now look at the following graded Lie algebra: consider the graded set X = {x 1 , x 2 }, where the subscript represents the degree, and L(X) the free graded rational Lie algebra generated by X. We quickly check that L(X) admits the following basis in low dimensions:

1) In word length 1:

x 1 , x 2 ; 2) In length 2 : [x 1 , x 1 ], [x 1 , x 2 ]; 3) In length 3 : [[x 1 , x 1 ], x 1 ], [[x 1 , x 2 ], x 2 ]; 4) In length 4 : [[[x 1 , x 1 ], x 2 ], x 2 ], [[x 1 , x 2 ], [x 1 , x 2 ]].
The element which corresponds to item 4) in the twisted case was not detected by Barratt. So we may suspect it ought to be.

We already guess how to improve Barratt's intuition. To get a generating system we have to consider the brackets [. . . [u, u] . . . , u], not only for u ∈ X, but also for elements u obtained from Lyndon words: [[x 1 , x 2 ], [x 1 , x 2 ]] = 2[x 1 , x 2 ] 2 , where [x 1 , x 2 ] is obtained from the Lyndon word x 1 x 2 .

Our proof follows the classical one: the Lyndon words give an independant set and the Klyachko idempotent proves that this set is generating. We study the Klyachko idempotent in the Hopf algebra environment: then the proofs work abstractly on morphisms and limit the complications involved by the action of the permutation group on words.

Acknowledgements. We are indebted to F. Patras for drawing our attention to Barratt's article on twisted Lie algebras, and for pointing out that his assertion about their linear basis remains unproved. We are also grateful to the referee who incited us to clarify various notions of freeness for twisted objects.

The paper is organized as follows. We recall some definitions about twisted algebraic structures very briefly in Section 2. We also set up notations once for all.

Section 3 gives a short account on various notions of free twisted associative and Lie algebras. Some light is brought to associative and Lie polynomials in the twisted case.

In section 4, we discuss Lyndon words and prove the minimality of our Hall basis.

Section 5 proves the properties of the Klyachko idempotent for Hopf algebras.

In Section 6 we prove that our basis is generating.

Twisted algebras

We briefly review some twisted algebraic structures we shall use in the following sections. A complete exposition was given by Stover ([12]). We follow his presentation : it is very explicit on elements and so immediately manageable when we construct Hall basis.

First we fix some notation for the permutation group.

2.1. Permutation groups. Let us denote by S n the group of all bijections of n objects; in the following it is understood (if the converse is not specified) that these objects are the set of integers {1, . . . , n}; we also explicitely denote a permutation σ by its image (σ(1), . . . σ(n)). We compose permutations as usual for maps by acting on the left σ • τ (i) = σ(τ (i)). Given a decomposition (all integers in the following are non-negative) (p 1 , p 2 ) of n = p 1 + p 2 (by abuse we shall say a decomposition n = p 1 + p 2 ), we define the inclusion S p 1 × S p 2 ⊂ S n as reflecting the inclusion given on objects by the map preserving order from left to right: {1, . . . , p 1 } {1, . . . , p 2 } ⊂ {1, . . . , n} i → i on the first factor i → p 1 + i on the second factor (As above and by abuse, for order matters). One immediately extends this to the case

n = p 1 + • • • + p k , k ≥ 2, to define S p 1 × • • • × S p k ⊂ S n . If Φ i are permutations in S i we denote then by (Φ 1 , . . . , Φ k ) the image in S n of (Φ 1 × • • • × Φ k ) ∈ S p 1 × • • • × S p k .
We now define permutations acting on blocks. Let n = p 1 + • • • + p k be some decomposition and σ ∈ S k . We define the permutation of S n acting on the k-blocks p 1 , . . . , p k by the following composition:

C p σ -1 (1) ,...p σ -1 (k) (σ) : {1, . . . , n} → {1, . . . , p 1 } • • • {1, . . . , p k } → {1, . . . , p σ -1 (1) } • • • {1, . . . , p σ -1 (k) } → {1, . . . , n}
where the first and last arrows preserve the order from left to right, and the second one preserves the elements (i.e. if σ(j) = i, at the l-th spot of the i-th block of the image you find the element that was at the l-th spot of the j-th block in the preimage). We also recall the following Proposition 2.1.1.

1) For all σ, τ ∈ S k , we have

C p (σ•τ ) -1 (1) ,...,p (σ•τ ) -1 (k) (σ•τ ) = C p (σ•τ ) -1 (1) ,...,p (σ•τ ) -1 (k) (σ)•C p τ -1 (1) ,...,p τ -1 (k) (τ ).
2) For all σ ∈ S k , Φ 1 ∈ S p 1 , . . . , Φ k ∈ S p k , we have

C p σ -1 (1) ,...,p σ -1 (k) (σ)•(Φ 1 ו••×Φ k )=(Φ σ -1 (1) ו••×Φ σ -1 (k) ) • C p σ -1 (1) ,...,p σ -1 (k) (σ).
2.2. Twisted modules and tensor products. Let R be a ring. A graded R-module X is a collection (X n ) n∈N of R-modules X n indexed by the nonnegative integers.

Twisted modules.

A twisted module M is a graded module together with a right S n -action (a right R(S n )-module structure on X n for each n). Morphisms of graded R-modules and of twisted modules are defined as one can imagine; we shall only consider morphisms of degree 0. A twisted module M is connected if M 0 = 0. R is canonically given a structure of twisted module.

Twisted tensor product. The twisted tensor product of k twisted modules M 1 , . . . , M k is defined by its nth-term

(M 1 ⊗• • •⊗M k ) n = p 1 + • • • + p k = n p i ≥ 0 ((M 1 ) p 1 ⊗ R • • •⊗ R (M k ) p k )⊗ R(Sp 1 ×...Sp k ) R(S n ).
2.3. Twisted algebras and coalgebras. With the definitions given above, we can formally define twisted algebras and twisted coalgebras by the same diagrams we do for the classical cases. Like the classical case again we define the tensor twisted algebra A ⊗ B of two twisted algebras A and B, the product of which is the composition

A ⊗ B ⊗ A ⊗ B A ⊗ T ⊗ B -A ⊗ A ⊗ B ⊗ B µ A ⊗ µ B -A ⊗ B
which we can explicit on elements

((a 1 ⊗ b 1 ) • σ 1 )((a 2 ⊗ b 2 ) • σ 2 ) = ((a 1 a 2 ) ⊗ (b 1 b 2 ) • C p 1 ,p 2 ,q 1 ,q 2 (T ) • (σ 1 × σ 2 ).
We have denoted by T the swap A ⊗ B → B ⊗ A and by σ the permutation (1, 3, 2, 4).

2.4. Twisted bialgebras, Hopf algebras. We refer to [START_REF] Stover | The equivalence of certain categories of twisted Lie and Hopf algebras over a commutative ring[END_REF] for the definitions of twisted algebras, coalgebras and bialgebras. Formally they reproduce the definition diagrams of the classical case.

Definition 2.4.1. A twisted bialgebra is a twisted module A, which is both a twisted algebra with product µ : A ⊗ A → A and unit ǫ : R → A and coalgebra with coproduct ∆ : A → A ⊗ A and counit η : A → R, such that both µ and η are morphisms of twisted coalgebras or, equivalently both ∆ and ǫ are morphisms of twisted algebras; here A ⊗ A is given the structure of twisted coalgebra (resp. algebra) induced by A and depicted in the preceding subsection.

Let us just emphasize the existence of the antipode in the axioms of Hopf algebras.

Definition 2.4.2. A twisted Hopf algebra is a twisted bialgebra A together with a morphism of twisted modules S : A → A such that the following diagram commutes:

A ∆ -A ⊗ A S ⊗ A -A ⊗ A R η - A ⊗ A ∆ ? A ⊗ S -A ⊗ A µ -A µ ? ǫ -
where η : A → R (resp. ǫ : R → A) is the counit (resp. unit) of the coalgebra (resp. algebra) A.

Convolution. At this point it seems judicious to introduce an operation we shall use very often in the next sections.

Proposition 2.4.3. Let C be a twisted coalgebra and A be a twisted algebra. The set of morphisms of twisted modules Hom R(S) (C, A) is an associative monoid with the following product, called the convolution and denoted by ⋆:

f ⋆ g : C ∆ -C ⊗ C f ⊗ g -A ⊗ A µ -A
Now, by definition the antipode is the inverse of the identity under the convolution product; it is thus unique. Like the classical case there is a canonical way to define an antipode on a twisted connected bialgebra and thus to give it the structure of a twisted Hopf algebra.

Before continuing our description of twisted algebraic structures, let us recall the notion of pseudo-coproduct in cocommutative twisted bialgebras. We shall need it for the Klyachko idempotent (Section 5) and we reffered already toit for the Dynkin idempotent in [START_REF] Aubry | Twisted Lie algebra and idempotent of Dynkin[END_REF].

Let A be a cocommutative bialgebra. We use notations of Section 2 and denote by π, ∆, η and ǫ respectively its product, coproduct, unit and counit. Let ν = η • ǫ. Formally the same definition as in [START_REF] Patras | On Dynkin and Klyachko idempotents in graded bialgebras, Special issue in memory of Rodica Simion[END_REF] works. Definition 2.4.4. An endomorphism f of A (here and in the sequel endomorphism means F(S)-module endomorphism, and we denote the corresponding set -F-module -by End(A)) admits

F ∈ End(A ⊗ A) as a pseudo- coproduct if F • ∆ = ∆ • f . If f admits the pseudocoproduct f ⊗ ν + ν ⊗ f , we say that f is pseudo-primitive.
2.5. Lie algebras. Definition 2.5.1. A twisted Lie algebra L is a twisted module together with a morphism of twisted modules β : L ⊗ L → L, called the bracket, which satisfies the traditional anticommutativity and Jacobi identities:

β + β • T = 0 in Hom R(S) (L ⊗ L, L) β•(β⊗L)+β•(β⊗L)•(2, 3, 1) # +β•(β⊗L)•(2, 3, 1) 2 # = 0 Hom R(S) (L⊗L⊗L, L) where (2, 3, 1) # acts on L ⊗ L ⊗ L by x ⊗ y ⊗ z → y ⊗ z ⊗ x.
Let us be redundant and transcribe this definition on elements. As usual we write the bracket β = [, ] and the identities are written with explicit elements

u i ∈ L p i for i = 1, 2, 3: [u 1 , u 2 ] = [u 2 , u 1 ] • C p 2 ,p 1 ((2, 1)) [[u 1 , u 2 ], u 3 ]+[[u 2 , u 3 ], u 1 ]C p 2 ,p 3 ,p 1 ((2, 3, 1))+[[u 3 , u 1 ], u 2 ]C p 3 ,p 1 ,p 2 ((3, 1, 2)) = 0
As in the classical case we can define a Lie bracket on each twisted algebra A by β = µµ • T or on elements [x, y] = xy -yxC q,p ((2, 1)) for x and y elements of A of respective degrees p and q.

We conclude here the reminder on generalities about twisted algebraic structures. It gives a convenient framework to understand the notations of the coming sections. The paper of Stover ([12]) continues with enveloping algebras and the Milnor-Moore theorem.

Actually the theorem of Milnor Moore also holds in the twisted context. Even if we shall need only part of the well-known results, let us recall some facts about primitive elements.

2.6. Primitives in a twisted Hopf algebra.

If A is a twisted bialgebra, an element a ∈ A is primitive if ∆(a) = a ⊗ 1 + 1 ⊗ a.
The set of primitives of A is a twisted sub-module of A, denoted by P A.

Let us mention two results about P A (cf. [START_REF] Stover | The equivalence of certain categories of twisted Lie and Hopf algebras over a commutative ring[END_REF] Prop. 7.8 and 8.10).

Proposition 2.6.1. Consider A as the twisted Lie algebra whith bracket canonically induced by the (associative) product of A. Then P A is a twisted Lie sub-algebra of A.

Proposition 2.6.2. If the Hopf algebra A is cocommutative, then the inclusion P A ⊂ A induces an isomorphism of twisted Hopf algebras U P A ∼ = A.

In the next section we wish to spread some light on various notions of free twisted objects. The most general one is defined by the usual process of adjunction (cf [START_REF] Stover | The equivalence of certain categories of twisted Lie and Hopf algebras over a commutative ring[END_REF]). Barratt [START_REF] Barratt | Twisted Lie algebras. Geometric applications of homotopy theory[END_REF], much more restrictive, defines an explicit basis in degree 1. Finally we shall extend the definition of [START_REF] Barratt | Twisted Lie algebras. Geometric applications of homotopy theory[END_REF] to generators of any degree: for that we introduce the notion of twisted polynomials.

Let us now proceed and fix some ideas about free twisted objects.

Free twisted objects and twisted Lie polynomials

In this section we follow again Stover [START_REF] Stover | The equivalence of certain categories of twisted Lie and Hopf algebras over a commutative ring[END_REF] and adapt the first chapter of Reutenauer's book [START_REF] Reutenauer | Free Lie algebras[END_REF] to the case of twisted structures.

First let us recall some basic definitions and properties of free monoids. Here no twisting occurs and we shall be brief.

3.1.

Words and free monoids. Let X be a set, finite or infinite, and denote its elements by x or x i , for i on some indexing set. A juxtaposition (or concatenation) of a finite number of ordered letters, e. g. x 1 x 2 . . . x n , is called a word. The collection of all words generated by X, denoted by W (X), comes with an obvious embedding of sets ı : X → W (X). Moreover W (X) admits a product, called the concatenation product, defined as in the following example: (

x 1 . . . x n )(x ′ 1 . . . x ′ n ′ ) = x 1 . . . x n x ′ 1 . . . x ′ n ′ . W (X)
with this product is a free monoid. This definition is justified by the following. Proposition 3.1.1. For any monoid M and any map of sets f : X → M there is a unique map of monoids f : W (X) → M such that the following diagram in the category of sets commutes:

X f -M W (X) f - ı - 3.2.
Definitions of free twisted objects and polynomials. Let X be a graded set (each x ∈ X is equipped with a positive integer | x | called the degree) and R be a ring. The twisted free module over R generated by X is any twisted module isomorphic to ⊕ x∈X xR(S |x| ) and is denoted by R(S)(X). Again there is an obvious embedding of sets ı : X → R(S)(X).

Proposition 3.2.1. For any twisted module M and any map of graded sets f : X → M there is a unique map of twisted module f : R(S)(X) → M such that the following diagram in the category of graded sets commutes:

X f -M R(S)(X) f - ı - Proof. Given any element x 1 r 1 + • • • + x n r n , x i ∈ X, r i ∈ R(S), the commu- tation of the diagram implies that f (x i ) = f (x i ) and by linearity f (x 1 r 1 + • • •+x n r n ) = f (x 1 )r 1 +• • •+f (x n )r n .
Thus f , if existing, is unique. Moreover the preceding formula is precisely a definition of f once f is given. Now let M be a twisted module over R. Let us denote by M ⊗n the twisted module given by the tensor product of n copies of M and by T (M ) the direct sum ⊕ n>1 M ⊗n (see subsection 2.2 for the definition of the twisted tensor product). The associativity formula of subsection 2.2 defines a (product) map M ⊗n ⊗ M ⊗m → M ⊗(n+m) which by linearity extends to T (M ) and endows it with a structure of an associative twisted algebra. This is called the free twisted (associative) algebra generated by the twisted module M . There is an obvious embedding of twisted modules ı : M → T (M ). This terminology is justified by the following: Proposition 3.2.2. For any twisted (associative) algebra A and any map of twisted modules f : M → A there is a unique map of twisted algebras f : T (M ) → A such that the following diagram in the category of twisted modules commutes:

M f -A T (M ) f - ı - Proof. Given an element m 1 ⊗ • • • ⊗ m i ⊗ σ define f (m 1 ⊗ • • • ⊗ m i ⊗ σ) = f (m 1 ) ⊗ • • • ⊗ f (m i ) ⊗ σ. A straightforward inspection shows that f (m 1 σ 1 ⊗ • • • ⊗ m i σ i ⊗ σ) = f (m 1 )σ 1 ⊗ • • • ⊗ f (m i )σ i ⊗ σ = f (m 1 ) ⊗ • • • ⊗ f (m i )(σ i × σ 1 × • • • × σ i )σ.
This proves, first, that f is well-defined on T (M ) as a twisted module map and, secondly, that f is multiplicative. Moreover, and by definition, f = f on the twisted module M . This completes the proof.

We briefly pause here to emphasize an important point we shall only use in the next subsection. Consider the map of twisted modules ∆ : M → T (M )⊗T (M ) given by ∆(m) = m⊗1+1⊗m and extend it to obtain a map of twisted algebras ∆ : T (M ) → T (M )⊗T (M ) . This process endows T (M ) with a structure of twisted bialgebra. Actually this bialgebra is connected; indeed it is easy to check that the anti-automorphism S : T (M ) → T (M ) defined by S(m) = -m (just apply the universal property of proposition 3.2.2 to the algebra opposite to T (M )) satisfy the axioms of an antipode for T (M ). In other words we just defined the structure of twisted Hopf algebra for T (M ). Now let us specialize to the free twisted module generated by a graded set X. Let us denote by F(X) the free twisted associative algebra T (R(S)(X)). Combininig propositions 3.2.1 and 3.2.2 , we readily obtain Proposition 3.2.3. For any twisted associative algebra A and any map of graded sets f : X → A there is a unique map of twisted algebras f : F(X) → A such that the following diagram in the category of graded sets commutes:

X f -A F(X) f - ı -
We end this subsection by introducing polynomials in the twisted case. A typical element of R(S)(X)) may be written as i∈I x i • σ i , for a finite indexing set I. Thus F(X) is linearily generated (i.e.as an R(S)-module) by elements of the type ⊗ j∈J x j where J browses all finite tuples of elements of X. Such an element is also written x 1 . . . x j for a j-uple (x 1 , . . . , x j ) and is called a monomial of F(X). The collection of monomials is a linear basis for F(X). In the algebra F(X) the product of polynomials follows the rules of the product in a free twisted algebra edicted in subsection 2.2:

((x 1,1 σ 1,1 ⊗ • • • ⊗ x 1,k σ 1,k )τ 1 × (x 2,1 σ 2,1 ⊗ • • • ⊗ x 2,l )σ 2,l )τ 2 = ((x 1,1 σ 1,1 ⊗ • • • ⊗ x 1,k σ 1,k ) ⊗ (x 2,1 σ 2,1 ⊗ • • • ⊗ x 2,l σ 2,l ))τ 1 × τ 2 = (x 1,1 ⊗ • • • ⊗ x 1,k ⊗ x 2,1 ⊗ • • • ⊗ x 2,l )(σ 1,1 × • • • × σ 1,k × σ 2,1 × • • • × σ 2,l )(τ 1 × τ 2 ).
3.3. Free twisted Lie algebras and Lie polynomials. We refer here to Stover ([12]), specially for the proofs.

Consider a non-associative abstract operation on symbols and write it as a bracketting. Starting with a unique symbol -say x -the bracketting operation gives rise to an infinite set N (x) -the free non-asociative monoid generated by x. Given a twisted module M and an element b of N (x), we define M ⊗b as the twisted module M ⊗#b , where #b denotes the number of occurrences of x in b, and the twisted structure is similar to the twisted structure of the ordinary tensor product. The bracketting operation in the monoid N (x) induces an obvious bracketting operation M ⊗b ⊗ M ⊗c → M ⊗(bc) . Let us define the twisted module T (M ) = ⊕ b∈N (x) M ⊗b . The bracketting operation just defined extends to T (M ) by linearity. Call it β.

Define I(M ) as the two sided twisted ideal of T (M ) generated by the images of

β + β • (2, 1) : T (M ) × T (M ) → T (M ) β • (β × I(M )) + β • (β × I(M ))(2, 3, 1) + β • (β × I(M ))(2, 3, 1) 2 : T (M ) × T (M ) × T (M ) → T (M )
The quotient L(M ) = T (M )/I(M ) is equipped with the map induced by β (denoted as usual by [ , ]) and is called the free twisted Lie algebra generated by M , denomination justified by the following proposition proved by Stover [START_REF] Stover | The equivalence of certain categories of twisted Lie and Hopf algebras over a commutative ring[END_REF]. There is an obvious embedding of twisted modules ı : M → L(M ). 

M → L(M ) → U L(M ) is an isomorphism.
As in the preceding subsection we can introduce Lie polynomials. Recall that a typical element of R(S)(X) may be written as i∈I x i • σ i , for an indexing set I and that a (non-commutative) polynomial in F(X) is a linear combination of elements such as x 1 σ 1 ⊗ • • • ⊗ x j σ j . By subsection 2.4 and proposition 3.3.1 we define an embedding of twisted Lie algebras: L(X) ⊂ F(X). A polynomial in F(X) is called a Lie polynomial if it is in the image of L(X) by this embedding.

Remark. If we suppose that all elements of X are of degree 1, we recover Barratt's definition of a free twisted (associative) algebra and Lie algebra.

Lyndon words

Preliminary remark. One can ask -and we are grateful to the referee for his question -why we are limited to Lie algebras over free twisted modules. The reason rests on the next two sections. As the classical one (see [START_REF] Garsia | Combinatorics of the free Lie algebra and the symmetric group[END_REF]) our proof uses Lyndon words. Let us have an idea of the problem. Suppose M is defined on the rationals by two generators x and y of degree 2 and a relation x(1 + ǫ) = y(1ǫ), where ǫ = (2, 1) ∈ Q(S 2 ) (notice that 1ǫ and 1 + ǫ are zero divisors in Q(S 2 ) and the set of generators {x, y} is minimal). Of course this relation induces further relations between all monomials in x and y and the fundamental theorem 4.2.2 is no more valid. This section (and Section 5) follows the presentation of [START_REF] Garsia | Combinatorics of the free Lie algebra and the symmetric group[END_REF] in outline.

We have now to handle carefully the twisted structures. We have precisely in mind that for an element u in a twisted Lie algebra the bracket [. . . [u, u], . . . , u]] is not necessarily 0. So, when building a basis, we have to modify the classical definitions and to check properties again. Let us proceed for Lyndon words.

4.1.

Free twisted associative algebra context. First we fix a basis field F of characteristic 0. Let also X be a graded set; we denote its elements by x i . Let us denote by W (X) the set of words in X; the length of a word is the number of elements of X necessary to write it down by concatenation; conventionally 1 is the word of length 0. Write F(X) for the free associative twisted algebra generated by X (cf. Section 3); as an F(S)-module, F(X) admits W (X) for basis. As usual the product in F(X) is denoted by simple juxtaposition "f g" and so the canonical Lie algebra structure on F(X) is given by [f, g] = f ggf C |g|,|f | ((2, 1)).

Finally let us write L(X) for the free twisted Lie algebra generated by X, which we consider as a Lie twisted subalgebra of F(X) with its canonical Lie algebra structure.

We now define Lyndon words of F(X) in various equivalent ways and examine how using them to obtain generators of L(X).

Let u, v, w be words (elements of W (X)) of strictly positive length such that w = uv. We say that u is a head of w and that v is a tail of w. We order words of W (X) by lexicographic order and denote the order relation by ≥. In particular if w ≥ uv, either the order is decided in u and w ≥ u, or only in v and then u is a head of w. Definition 4.1.1. A Lyndon word is a word that is strictly smaller than all its cyclic rearrangements or a power not less than 2 of a Lyndon word.

Remark. The preceding definition makes sense because it is recursive. Clearly all elements of X are Lyndon words (these are all Lyndon words of length 1 -like in the non-twisted case) and if w = u p , p ≥ 2 the length of u is strictly smaller that the length of w.

We fix now some notations. Let L (resp. L n ) denote all Lyndon words of F(X) (resp. of length n).

We say that a word w = x 1 x 2 . . . x k is not prime if there is some nontrivial circular permutation σ ∈ S k such that w = x σ(1) x σ(2) . . . x σ(k) . In the opposite case we say that w is prime.

Proposition 4.1.2. w is a Lyndon word if and only if

1) If w is prime, then w is strictly smaller than all its tails or 2) If w is not prime, then there exists a Lyndon word u such that w = u p , p > 1.

Proof. ⇐ Suppose w is smaller than all its tails. Write w = uv, with u and v of strictly positive length. Then w < v which implies w < vu. As v is a a tail of w, it means that w is strictly smaller than all its cyclic rearrangements. 

Proof. ⇒

Let w = w 1 w 2 with w 2 the longest Lyndon tail of w. We shall show first, that w 1 is strictly smaller than w 2 and secondly, that w 1 ∈ L, which means that the decomposition matches the request. By Proposition 4.1.2 w = w 1 w 2 < w 2 . Suppose w 1 ≥ w 2 ; then w 1 u ≥ w 2 , for every word u, in particular u = w 2 , which contradicts our hypothesis; so w 1 < w 2 . Our first assertion holds.

Let us prove now that w 1 is a Lyndon word.

First examine the two possible cases. A) w 1 is a prime word.

We use Proposition 4.1.2 again and show that w 1 is strictly smaller than all its tails. Decompose w 1 = uv, u and v of strictly positive length. w = uvw 2 and our choice of w 2 implies that vw 2 cannot be a Lyndon word. So, by Proposition 4.1.2, there exists a decomposition vw 2 = st with t < vw 2 . a) Either this inequality is decided in v : v > t. Going back to w we get w = ust and t > w = w 1 w 2 > w 1 and we deduce v > t > w 1 as desired.

b) Or v is a head of t and we can write t = vs'; then vw 2 = st = svs ′ . In other words s ′ is a tail of w 2 . Since w 2 is a Lyndon word : i) Either w 2 < s ′ and we derive

vw 2 > t = vs ′ > vw 2
which is a contradiction. ii) Or w 2 = u ′p , p > 1, with u ′ a prime Lyndon word (equivalently : p maximal). If s ′ = s ′′ u ′k with s ′′ of length strictly positive, but smaller that the length of u ′ . Then s ′′ is a tail of u ′ . As u ′ is a prime Lyndon word :

u ′ < s ′′ .
Besides

vu ′p = vw 2 > t = vs ′′ u ′k .
Since the length of s ′′ is strictly smaller than the length of u ′ , this forces

u ′ > s ′′
in contradiction with the above assertion. So the case w 2 = u ′p cannot occur.

B) w 1 is not prime, say w 1 = (uv) p , p > 1.

Then w = (uv) p w 2 . As w is a Lyndon word, our choice for w 2 implies that vw 2 is not a Lyndon word. Thus there exists a decomposition vw 2 = st, with t < vw 2 . a) Either this inequality is decided in v and v > t. Then w = (uv) p-1 uvw 2 = (uv) p-1 ust and, as w is a Lyndon word with tail t t > (uv) p-1 ust > uv.

Thus v > t > uv

which proves that uv is a Lyndon word. Now uv < (uv) p < w 2 by the first part of the proof. Thus uvw 2 is a product of two Lyndon words uv and w 2 with uv < w 2 . If we suppose recursively that the theorem holds in length smaller than the length of | w |, we conclude that uvw 2 is a Lyndon word, a contradiction with our hypothesis on w 2 .

b) Or the inequality is not decided in v, and v is a head of t. Then we can reproduce the argument in A)b), because in this part of the proof we don't use that w is a Lyndon word, only the fact that w 2 is one.

So the study of the case B) proves that this case does not exist: w 1 is necessarily a prime word.

⇐ We use Proposition 4.1.2 once more and give ourselves a decomposition w = uv. We begin with the case where v = w 2 (and so u = w 1 ). By hypothesis w 1 < w 2 . If this inequality is decided before the end of w 1 , then w 1 β < w 2 for every word β. If not, it means that w 1 is a head of w 2 and then we can write w 2 = w 1 α. Now w 2 is a Lyndon word and w 2 < α which implies w = w 1 w 2 < w 1 α = w 2 .

If v is shorter than w 2 , then v is a tail w 2 and (always Proposition 4.1.2) v > w 2 > w.

If v is longer than w 2 , w 2 is a tail v: v = sw 2 for some word s. Then s is a tail of w 1 . Now w 1 is also a Lyndon word; thus w 1 < s which implies w = w 1 w 2 < sw 2 = v. This was to be proved. We are now ready to show how Lyndon words generate an independent set in L(X). 

(w) = w + v>w va v , whith a v ∈ R(S). If w = u p , then : b(w) = (b(u)) p (1 -γ 2 ) . . . (1 -γ p )
where γ i is the permutation of

C (i-1)|u|,|u| ((2, 1)) of S i|u| .
Proof. We begin with the case w = u p . By recursion it is enough to prove that b Let us now examine the prime case. Again we proceed recursively. So we have the standard factorization w = w 1 w 2 and by the hypothesis of recursion we can write when w 1 and w 2 are prime:

(w) = b(u p-1 )b(u)(1 -γ p ). Now b(u p ) = [b(u p-1 ), b(u)]
b(w) = w 1 w 2 -w 2 w 1 C |w 1 |,|w 2 | ((2, 1)) + (v 1 v 2 -v 2 v 1 C |v 1 |,|v 2 | ((2, 1)))
where the sum is over all pairs (v 1 , v 2 ) where v i appears in the decomposition of w i excepting the pair (w 1 , w 2 ). So v 1 v 2 > w 1 w 2 because either v 1 > w 1 or if v 1 = w 1 then v 2 > w 2 . Similarly v 2 v 1 > w 2 w 1 ; and w 2 w 1 > w 1 w 2 because w 1 w 2 = w is a Lyndon word.

If w 1 = u p or w 2 = v q , then the same argument holds.

The last discussion leads immediately to the fundamental result:

Theorem 4.2.2. The polynomials {b(w)} w∈L are independant in F(X).

We want now to prove that these polynomials are generating. As in the classical case the major tool is the Klyachko idempotent.

The Klyachko idempotent

We follow here the presentation of [START_REF] Patras | On Dynkin and Klyachko idempotents in graded bialgebras, Special issue in memory of Rodica Simion[END_REF] and work in a bialgebra. We shall specialize to the Lie algebra in the next section.

Let A be a twisted bialgebra and F be a field of charactersitic 0, which countains a primitive nth root of the unity ω n for any n ≥ 1. Let p n : A → A n ֒→ A be the projection of A onto its component of degree n (viewed as a morphism of End F(S) (A)) and define p C = p i 1 ⋆ • • • ⋆ p i l , where C denotes the l-uple of strictly positive integers (i 1 , . . . , i l ); we shall also say that C is a composition of (i 1 + • • • + i l ). By definition C is finer than C ′ and write C ′ ≤ C if C ′ is obtained from C by substituting to a subset of consecutive entries of C (say i k , i k+1 , . . . , i k+l , 1 ≤ k ≤ k + l ≤ j) their sum (i k + • • • + i k+l ); notice that this substitution does not change the total sum of all entries of C, which we call the weight -see below.

By inclusion exclusion we define elements r C of End F(S) (A) by the formula

p C = C ′ ≤C r C ′ .
More precisely, let l(C) be the length -the number of entries -of C. Then (by Moebius inversion):

r C = C ′ ≤C (-1) l(C ′ )-l(C) p C ′ . (1) 
For any l-uple C = (i 1 , . . . , i j ) define its weight by

| C |= i 1 + • • • + i l and its major index by maj(C) = (l -1)i 1 + (l -2)i 2 • • • + i l-1 .

With this notation let us define:

This is equivalent to say that P (q) ⊗ P (q) is a pseudo-coproduct for P (q) (the same is true for P (q n ) for any n > 0). Then, applying Theorem 5.0.8 of [START_REF] Aubry | Twisted Lie algebra and idempotent of Dynkin[END_REF], we deduce that κ(q) ⊗ κ(q) is a pseudo-coproduct for κ(q). By the above result, it means that i+j=n K i (q) (q) i ⊗ K j (q) (q) j is a pseudo-coproduct for Kn(q) (q)n , or equivalently i+j=n (q)n (q) i (q) j K i (q) ⊗ K j (q) is a pseudo-coproduct for K n (q). The polynomials (q)n (q) i (q) j vanish for q = ω n , except the cases where i = 0 or j = 0 (in both cases they are equal to 1). This means that K n (ω n ) = nκ n is pseudo-primitive and proves the theorem.

Corollary 5.0.5. If A is a cocommutative, connected bialgebra, then κ n is an idempotent.

Proof. For sake of completenes, we reproduce the proof of [START_REF] Garsia | Combinatorics of the free Lie algebra and the symmetric group[END_REF]. Here there is no changes introduced by the action of S.

First notice that the coproduct δ of the bialgebra A preserves the degree; therefore p C is 0 on all elements of A of degree non equal to the length of C (just consider the coassociativity of the coproduct -which implies the associativity of the convolution). So, by the previous theorem and since A -a cocommutative and connected bialgebra -is generated by its primitive elements (proposition 2.6.2), it is enough to prove that κ n (a) = a for any primitive element a ∈ A; by the preceding remark there is no restriction to suppose | a |= n. As a is primitive p i ⋆ p j (a) = 0, and p C (a) = 0 only if C is of length 1. Equation (1) implies that r C (a) = (-1) l(C)-1 a, for each C of weight n. Thus:

nκ n (a) = |C|=n ω maj(C) n (-1) l(C)-1 a.
Now there is classical bijection between compositions of n and subsets of {1, . . . , n-1}, sending S = (i 1 , . . . , i l ) onto S = {i 1 , i 1 +i 2 , . . . , i 1 +• • •+i l-1 }. The cardinality of S is l(C) -1 and we define maj (S) = i∈S i = maj (C). With these notations

nκ n (a) = S⊂{1,...,n-1} ω maj(S) n (-1) card(S) a = 1≤i 1 <•••<ir≤n-1 ω i 1 +•••+ir n (-1) r a = 1≤i≤n-1} (1 -ω i n )a = (1 + 1 + • • • + 1)a = na
since ω n is a primitive n-root of the unity.

The Lyndon-Hall basis

This section tells how to use the Klyachko idempotent for proving that the Lyndon words are generating. We proved in Corollary 5.0.5 that κ n is the identity on primitives of the bialgebra F(X). Moreover κ n maps F(X) into its primitive elements. That recalled, by the Theorem of Milnor-Moore 3.3.3, we conclude κ n (F(X)) = L(X).

In theorem 3.2.2 we proved that the set L of Lyndon words determines a minimal set of independant elements in L(X). In this section we want to prove that this set is generating (actually this is directly related to the fact that, by definition, L forms a set of representatives of all circular rearrangements classes of words of W (X)). Let us see that.

To this purpose we shall use the Klyachko idempotent κ n . The following theorem tells us that κ n does not discriminate between all circular rearrangements of a same word. This property is given by the study of the kernel of the Klyachko invariant. For this part we work in the general context of a connected cocommutative bialgebra A. Theorem 6.0.6. The kernel of κ n restricted to A n is spanned by the elements of the form abω |b| baC |b|,|a| ((2, 1)).

Proof. We directly use the proofs of Theorem 16, Lemma 14 and Corollary 15 given in [START_REF] Patras | On Dynkin and Klyachko idempotents in graded bialgebras, Special issue in memory of Rodica Simion[END_REF]. The proof of theorem 16 explicitly rests on the fact that primitive must be generating in A; hence the hypothesis on A.

First recall the principle of the proof. We examine a word a 1 a 2 . . . a p with total degree | a

1 | + | a 2 | + • • • + | a p |= n, its image κ n (a 1 a 2 . . . a p )
and the circular permutation a p a 1 . . . a p-1 and its image κ n (a p a 1 . . . a p-1 ). Both images are linear combinations of words obtained by permutations of a 1 a 2 . . . a p . Then, focus our attention to such a word w. In the classical case one proves that the coefficient of w in κ n (a p a 1 . . . a p-1 ) is equal to the coefficient of the same w in κ n (a 1 a 2 . . . a p ) multiplied by ω |ap| n . Now we want to extend this classical case (the basis ring is a field F of characteristic 0 -possibly extended by primitive roots of unity) to the twisted case : the basis ring is the group ring F(S). The coefficient of the word w mentionned in the preceding paragraph results from two distinct processes. First, a linear combination in F of coefficients of the form ω In conclusion, the proof of [START_REF] Patras | On Dynkin and Klyachko idempotents in graded bialgebras, Special issue in memory of Rodica Simion[END_REF] still works in the twisted case.

We now go back to the case of A = F(X).

First we remark that the free twisted bialgebra on X can be generated on F(S) by the reunion of all {b(w)} w∈L and the non-trivial circular rearrangements of all w in L : Lemma 6.0.7. Let < L n > be the twisted module generated by L n in F(X), B n its image by the linear extension of b : L → L(X) ⊂ F(X) and K n the kernel of the Klyachko idempotent κ n : F(X) n → L(X) n ⊂ F(X) n . Then there is an isomorphism between < L n > ⊕K n and B n ⊕ K n .

Proof. Look at the decomposition given by Theorem 4.2.2. Consider the basis of B n consisting in all b(w), w ∈ L n and order it lexicographically. Similarly we consider the basis of < L n > consisting in all w, w ∈ L n again ordered lexicographically. Choose some basis for K n . Then Theorem 4.2.2 implies that the matrix giving the basis of B n ⊕ K n in the basis of < L n > ⊕K n is a triangular matrix with 1 at each spot of the diagonal. This proves the lemma.

Remark. If we recall that the Lyndon words are the representatives of all circular rearrangement classes of W (X), we see that < L n > ⊕K n = F(X).

We can now prove the following sequence of inclusions: Combining this with Theorem 4.2.2 we obtain our main result: Theorem 6.0.9. The set of Lie elements associated to all Lyndon words is minimal and generating for the free twisted Lie algebra.

L(X) n ⊇ B n = κ n (B n ) = κ n (B n ⊕ K n )
To conclude with, we now return to [START_REF] Barratt | Twisted Lie algebras. Geometric applications of homotopy theory[END_REF] and specify: (i) each b(w), w a prime Lyndon word, generates submodule isomorphic to F(S |w| ) in L(X). (ii) each b(w), w = u p , p > 1 and u a prime Lyndon word, generates submodule isomorphic to F(S |w| )/I p,|u| in L(X), where I p,|u| is the annihilator of (1γ 2 ) . . . (1γ p ) (cf. Proposition 4.2.1).

Proposition 3 . 3 . 1 .--

 331 For any twisted Lie algebra L and any map of twisted modules f : M → L there is a unique map of twisted Lie algebra f : L(M ) → L such that the following diagram in the category of twisted modules commutes:Let us end this subsection with some lines about twisted universal enveloping algebras.If L is a twisted Lie algebra, consider T (L) the free (associative) twisted algebra generated by the twisted module L, with the linear embedding ı : L → T (L). Now let IL be the two-sided twisted Lie ideal generated in T (L) by elements of the form [ı(x), ı(y)]ı[x, y].The enveloping algebra of L is the quotient (associative) algebra T (L)/I(L) and is denoted by U L. It satisfies the following : Proposition 3.3.2. For any Lie algebra L and any map of Lie algebras f : L → A there is a unique map of algebras f : U L → A such that the following diagram in the category of sets commutes:And now we can phrase the twisted version of Milnor-Moore for free algebras given in[START_REF] Stover | The equivalence of certain categories of twisted Lie and Hopf algebras over a commutative ring[END_REF], Prop. 7.4. Proposition 3.3.3. Let M be a twisted module. the twisted algebra map T (M ) → U L(M ) induced by the composition of maps of twisted modules

⇒

  Let w = αv, with α and v of strictly positive length. Then w < vα (a) Either this inequality is decided in v and we are done. (b) Or v is a head of w and w = vβ. Then by hypoyhesis 1) w = αv < βv and thus α < β 2) And vice-versa: w = vβ < vα and thus β < α which shows that b) cannot happen.

Proposition 4 . 1 . 3 .

 413 w is a Lyndon word if and only if it has a factorization If w is prime: w = w 1 w 2 with w 1 , w 2 ∈ L and w 1 < w 2 or If w is not prime : w = u p , p > 1 u a prime Lyndon word. Moreover if w is prime and w 2 is the longest possible Lyndon word, w 1 and w 2 are prime.

Definition 4 . 1 . 4 . 4 . 2 .

 41442 A standard factorization of a Lyndon word w is a factorization of one of the two types: i) w = w 1 w 2 where w 1 and w 2 are Lyndon words, w 1 < w 2 , with w 2 the longest word possible, or ii) w = u p , u a Lyndon word and p > 1, with the greatest p possible. Free twisted Lie algebra context. In this section we explain how to use the Lyndon words to construct a basis of the free twisted Lie algebra.Let us define a map b : L → L(X). We start with x ∈ X: b(x) = x ∈ L(X). Then the definition is recursive: if w = w 1 w 2 (factorization i) of definition 4.1.4) we set b(w) = [b(w 1 ), b(w 2 )]; if w = u p (factorization ii) of definition 4.1.4), we set b(w) = [[b(u), b(u)], . . . , b(u)].

Proposition 4 . 2 . 1 .

 421 If w is a prime Lyndon word, then : b

  by definition of b; then apply the definition of the twisted Lie bracket in F(X).

  the definition of κ n ; notice that if, in the classical case, we calculatep |a 1 | ⋆ p |a 2 | ⋆ • • • ⋆ p |ap| (a 1 a 2 . . . a p ), where the a 1 , a 2 , . . . , a p are primitive, we obtain a combination of words obtained by some permutations of the word a 1 a 2 . . . a p all coefficient equal to 1. Secondly, the action of the group of permutations. It is generated by a repeated application of the following formula : δ(a1 a 2 ) = a 1 a 2 ⊗ 1 + a 1 ⊗ a 2 + a 2 ⊗ a 1 C |a 2 |,|a 1 | ((2, 1)) + 1 ⊗ a 1 a 2 . As a consequence, if in p |a 1 | ⋆ p |a 2 | • • • ⋆ p |ap| (a 1 a 2 . .. a p ) appears a word a σ(1) a σ(2) . . . a σ(p) for some permutation σ its coefficient in F(S) is C |a σ(1) |,|a σ(2) |,...,|a σ(p) | . So if we determine the coefficient of w = a σ(1) a σ(2) . . . a σ (p) in κ n (a 1 a 2 . . . a p ) we obtain the coefficient given in [9], multiplied by C |a σ(1) |,|a σ(2) |,|...a σ(p) | (σ). Similarly if we determine the coefficient of w = a σ(1) a σ(2) . . . a σ(p) in κ n (a p a 1 . . . a p-1 )(-ω |ap| n )C (|ap|,|a 1 |+...a p-1 |) ((2, 1)) we obtain the coefficient given in [9] multiplied by C |a σ(1) |,|a σ(2) |,|•••|a σ(p) | (σ), the same permutation as above (indeed a permutation is given by its image and in our case by the word w).

  by definition of K n = κ n (< L n > ⊕K n ) by Lemma 6.0.7 = κ n (F(X)) by the above remark = L(X) n by Milnor Moore, Proposition 3.3.3. So we can state: Theorem 6.0.8. As a twisted module the free (twisted) Lie algebra is generated by the Lie elements associated to all Lyndon words.

Definition 5.0.3. The Klyachko idempotent -this denomination will be justified below -of order n is the morphism κ n ∈ End F(S) (A) given by the formula:

Theorem 5.0.4. If A is a cocommutative, connected bialgebra, then κ n maps A into the primitives of the bialgebra A.

Proof. We reproduce the proof of [START_REF] Patras | On Dynkin and Klyachko idempotents in graded bialgebras, Special issue in memory of Rodica Simion[END_REF] and use the short cut presented in [START_REF] Gelfand | Noncommutative symmetric functions[END_REF].

A priori we have to pay attention to the action of S, in particular when dealing with tensor products. Actually the general presentations by morphisms ( [START_REF] Patras | On Dynkin and Klyachko idempotents in graded bialgebras, Special issue in memory of Rodica Simion[END_REF]) veils the effective action of S : the abstract formulas for structure maps of the twisted bialgebra A do not involve permutations explicitly; they only appear when we want to make them explicit on elements of A.

We define Endgr(A) = ⊕ n>0 End F(Sn) (A n ). Let q be a variable; then Endgr(A)[[q]] makes sense. As the morphisms of End F(S) (A) are of degree 0, there is a bijection between End(A) and Endgr(A) compatible with the action of F(S n ); so we can transfer the convolution product to Endgr(A). Define P (q) = n≥0 p n q n ∈ Endgr(A). The infinite product

Observe that each element of Endgr(A) [[q]] has a unique expression as a sum n f n , with f n ∈ End(A n [[q]]). Like in [START_REF] Patras | On Dynkin and Klyachko idempotents in graded bialgebras, Special issue in memory of Rodica Simion[END_REF] (after [START_REF] Gelfand | Noncommutative symmetric functions[END_REF]); these elements can be easily deduced from the formula:

(q) n with (q) n = (1q) . . . (1q n ) and K n (q) = |C|=n q maj(C) r C . Notice that in the above formula n actually is the degree which is involved in Endgr(A)

We extend the definition of pseudo-coproduct recalled in Section 2 and say that f ∈ Endgr(A) [[q]] admits the pseudo-coproduct

Moreover there is a natural bijection (compatible with the action of the S n ) between Endgr(A) [[q]] and S-morphisms A → A[[q]] (similarly between Endgr(A) ⊗ F Endgr(A) [[q]] and morphisms

we consider f ⊗ g as an element of (Endgr(A) ⊗ F Endgr(A)) [[q]]. With all these conventions Theorem 5.0.8 of [START_REF] Aubry | Twisted Lie algebra and idempotent of Dynkin[END_REF] applies, since we assumed A to be cocommutative.

We check that i+j=n p i ⊗ p j • δ = δ • p n , i. e. i+j=n p i ⊗ p j is a pseudo-coproduct for p n (this is general; if f = f n , f ⊗ f is a pseudocoproduct for f if and only if i+j=n f i ⊗ f j is a pseudo-coproduct for f n ).