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We investigate the influence of a uniform magnetic field B0 � B0ek on energy decay laws in

incompressible magnetohydrodynamic (MHD) turbulence. The nonlinear transfer reduction along B0 is

included in a model that distinguishes parallel and perpendicular directions, following a phenomenology

of Kraichnan. We predict a slowing down of the energy decay due to anisotropy in the limit of strong B0,

with distinct power laws for energy decay of shear- and pseudo-Alfvén waves. Numerical results from the

kinetic equations of Alfvén wave turbulence recover these predictions, and MHD numerical results clearly

tend to follow them in the lowest perpendicular planes.
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Predicting the evolution of freely decaying turbulence

remains one of the most difficult problems in turbulence.

For the sake of simplicity, this problem is often tackled

under the assumption of homogeneity and isotropy. In the

case of 3D Navier-Stokes flows, the Kolmogorov predic-

tion for the kinetic energy decay law thus reads Ev�t� �
�t� t���10=7, where t� is the time origin for power law

decay [1]. Close power law indices are measured in grid

turbulence experiments although boundary effects may

alter the result [2]. The generalization of decay laws to

other situations is still currently under debate. For example

in rotating turbulence, a recent experiment shows that

neutral fluids behave differently from pure (non rotating)

flows with a slowing down of the kinetic energy decay due

to the presence of anisotropy [3]. In this case, the original

isotropic Kolmogorov description has to be modified to

include rotation effects that may lead to strong spectral

anisotropy (see, e.g., Ref. [4]).

In this Letter, we investigate the influence of an external

uniform magnetic field on the energy decay laws in freely

incompressible magnetohydrodynamic (MHD) turbulence.

The MHD approximation has proved to be quite successful

in the study of a variety of astrophysical plasmas like those

found in the solar corona, the interplanetary medium or in

the interstellar clouds. These media are characterized by

extremely large Reynolds numbers (up to 1013) [5] with a

range of available scales from 1018 m to few meters. The

isotropy assumption is particularly difficult to justify when

dealing with astrophysical flows since a large-scale mag-

netic field is almost always present like in the inner inter-

planetary medium where the magnetic field lines form an

Archimedean spiral near the equatorial plane (see, e.g.,

Ref. [6]). The present study, although theoretical, appears

therefore particularly important to extract some universal

features of turbulent plasmas. The MHD equations in

presence of an external uniform magnetic field B0 �
B0ek read

 @tv� B0@kb� v � rv � �rP� � b � rb� ��v; (1)

 @tb� B0@kv� v � rb � b � rv� ��b; (2)

with r � v � 0 and r � b � 0. The magnetic field b is

normalized to a velocity (b ! ��������������

�0nmi
p

b, with mi the ion

mass and n the electron density), v is the plasma flow

velocity, P� the total (magnetic plus kinetic) pressure, �
the viscosity and � the magnetic diffusivity. The role of the

B0 field on the flow behavior has been widely discussed in

the community (see, e.g., Ref. [7–14]). One of the most

clearly established results is the bidimensionalization of an

initial isotropic energy spectrum with a strong reduction of

nonlinear transfers along B0.

In the past, several papers have been devoted to predic-

tions of energy decay laws in isotropic MHD turbulence

[15–19]. We first review one of them [19] which follows

the Kolmogorov-Kraichnan spirit that we then adapt to

strongly anisotropic flows. In the simplest case (balance

turbulence), the derivation of self-similar decay laws in

MHD relies on few basic assumptions which are (i) a weak

correlation between velocity and magnetic fields (which

allows to use below the variable z instead of z	, where

z
	 � v	 b), (ii) a power law spectrum in E�k� � ks (with

s � D� 1, D being the space dimension) for the low wave

number energy, i.e., at scales larger than the integral scale ‘
from which the inertial range begins, and, obviously (iii) a

power law time dependence for E�t� � �t� t���� and

‘�t� � �t� t���, where � and � are two unknown indices.

Another hypothesis, directly related to the invariance of the

Loitsianskii integral [20], tells that the modal spectrum

scales like ks�2 at low wave numbers and, with sufficient

scale separation, this dominates the total energy so that

E� ‘��s�1�, hence the first relation � � ��s� 1�. A sec-

ond relation may be obtained from the energy transfer

equation � � �dE=dt� E=�tr � �t� t�����1, where �tr
is the transfer time and � is the transfer rate. According

to the Iroshnikov-Kraichnan (IK) phenomenology [21],
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�tr � �2NL=�A, with �NL � ‘=z‘, the eddy turnover time,

and �A � ‘=B0, the Alfvén time. Substituting previous

times into the energy transfer equation leads to 1 � ��
�. Finally one obtains � � �s� 1�=�s� 2� and � �
1=�s� 2�. The predictions for 3D MHD turbulence (s �
4) are then E�t� � �t� t���5=6 and ‘�t� � �t� t��1=6. The

energy decay law for isotropic MHD turbulence has been

favorably compared with direct numerical simulations, in

particular, in the 2D case for which higher Reynolds num-

bers can be reached than in the 3D case [18,19]. Note that

other phenomenologies exist for explaining, in particular,

the influence of magnetic helicity on the decay laws [22], a

situation different from here where it is negligible.

We now derive an anisotropic version of the previous

heuristic description which is well adapted to MHD flows

permeated by a strong uniform magnetic field. The main

characteristic of such flows is that nonlinear transfers are

strongly damped along the mean field B0 direction, leading

preferentially to perpendicular (?) transfers. In Fourier

space, this means that the modal energy spectrum mainly

develops a power law scaling in k?-wave numbers whereas

the scaling along parallel wave numbers, kk, does not

change very much. In practice, we assume that the intensity

B0 is strong enough to ignore parallel transfers and we

make the approximation k� k? 
 kk which means, in

particular, that the initial condition of the system is con-

fined to the largest parallel scales. In this situation, it is

straightforward to show that shear-Alfvén wave energy

corresponds to perpendicular fields (z?) whereas pseudo-

Alfvén wave energy mainly comes from parallel fields (zk).
Our heuristic description is focused on shear-Alfvén

waves, and not pseudo-Alfvén waves, since it is well

known that under such anisotropic configuration, the latter

are slaved to the former [9,12].

We make three equivalent hypotheses as in the isotropic

model and we note E?, ‘? and ‘k the shear-Alfvén wave

energy, the perpendicular and parallel integral scales, re-

spectively. The ‘k length scale, although appearing some-

times in our derivation, is assumed time independent

because of the strong nonlinear anisotropy. In that case,

we assume (a) v? � b? � z?, (b) for kk fixed,

E?�k?; kk� � kD? (where D is the space dimension) at

low perpendicular wave numbers, i.e., at scale larger than

‘?, and (c) E?�t� � �t� t��� �� and ‘? � �t� t�� ��, where

�� and �� are the new unknown indices. The second as-

sumption means a D� 1 power law index for the modal

spectrum before the integral k?-wave number; furthermore

it leads to estimate E?�t� � ‘��D�1�
? ‘�1

k , and hence the

(same) first relation

 �� � ���D� 1�: (3)

A second relation may be obtained by using the energy

transfer equation

 �? � �dE?=dt� E?=�tr � �t� t��� ���1; (4)

where �tr � �2NL=�A, with, for anisotropic transfers, �NL �

1=�k?z?‘?� and �A � 1=�kkB0�. Substituting these times

into (4) leads to the (new) relation

 1 � ��� 2 ��: (5)

Finally, (3) and (5) lead to two new scaling exponents:

 �� � D� 1

D� 3
; �� � 1

D� 3
: (6)

Hence the predictions for 3D anisotropic MHD turbulence

(D � 3) E?�t���t� t���2=3 and ‘?�t���t� t��1=6. These

results show, in particular, a slowing down of the energy

decay for shear-Alfvén waves compared to the total energy

in the isotropic case (where no distinction is made between

shear- and pseudo-Alfvén waves).

The extension of our approach to pseudo-Alfvén waves

is not direct since these waves are (mainly) slaved to shear-

Alfvén waves. We remind that shear-Alfvén and pseudo-

Alfvén waves are the two kinds of linear perturbations

about the equilibrium, the latter being the incompressible

limit of slow magnetosonic waves. For the pseudowaves,

the heuristic description based on nonlinear transfers is

misleading. Instead, it seems suitable to find a relationship

between the different type of waves. The divergence free

condition provides this relation which eventually leads to a

prediction for the energy decay law. In Fourier space, the

divergence free condition reads

 k? � ẑ? � kk:ẑk � 0; (7)

where ẑ? and ẑk are the Fourier transform of the Cartesian

fields which may be associated, under strong anisotropy

assumption, mainly to the shear- and pseudo-Alfvén

waves, respectively. Since we assume a weak cross corre-

lation (balance turbulence), it is not necessary to introduce

the Elsässer variables. Simple manipulations lead to

k2?E?�k2kEk, where Ek denotes the pseudo-Alfvén wave

energy. Since nonlinear transfers along the B0 direction are

negligible, kk may be seen as a mute variable. Therefore,

the energy decay law for pseudo-Alfvén waves should be

 Ek � �t� t���1: (8)

Our anisotropic model thus predicts quite different energy

decay laws for shear- and pseudo-Alfvén waves, the latter

not depending on the system dimensions. An important

issue concerns the balance kk � k2=3? law found in many

simulations (see, e.g., [23]). Our analysis is based on the

permanence of big eddies [1] which is directly linked to the

conservation of the spectral scaling law at the largest

scales, i.e., at scales larger than the ones of the inertial

range where the ‘‘critical balance’’ is well observed. The

2=3 law is a priori not included in the model (as well as the

exact scaling law for the energy spectrum) because the

assumption of the existence of an inertial range where

energy is evacuated from the reservoir is enough.

Therefore, the integral length scales ‘? and ‘k are not

linked by the 2=3 law even in the derivation of Eq. (5)

since we are only dealing with scales before the inertial
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range. The possible persistence of the 2=3 law at the largest

scales is nevertheless an important issue which, in princi-

ple, may be investigated from the derivation of the von

Kármán–Howarth equation in anisotropic MHD turbu-

lence, from which a Loitsianskii type invariant could be

found. This is a huge challenge for the future which is, of

course, out of the scope of this Letter.

In order to check the model validity, we perform nu-

merical simulations of strongly anisotropic MHD flows.

The first data set comes from integrations of the kinetic

equations of Alfvén wave turbulence derived and analyzed

in [12]. This regime describes the asymptotic limit of

strong B0. We do not rederive or even rewrite these equa-

tions that the reader can find in [12] [Eqs. (54) and (55)].

One of the main results found in this regime is a k�2
?

scaling law for the energy spectrum (for both shear- and

pseudo-Alfvén waves) which is an exact power law solu-

tion of the wave kinetic equations (in absence of cross-

correlation). Another important result is the total absence

of parallel transfer. For that reason, the numerical simula-

tions are made at a fixed kk. A nonuniform grid in Fourier

space (see for details [12]) is used to achieve a highly

turbulent state at a Reynolds number of about 105, with

� � � � 2� 10�5. Figure 1 displays the time evolution of

the shear-Alfvén, pseudo-Alfvén and total energies in ab-

sence of cross correlation.

We first note the existence of a transient period during

which the energy is conserved. During this period the

energy cascades towards smaller scales following a k�7=3
?

scaling law rather than the k�2
? exact solution [12]. A clear

power law behavior appears for both types of waves. These

power laws are in agreement with the theoretical predic-

tions made for 3D anisotropic flows (for comparison, the

predicted slopes for the 3D and 2D isotropic cases are also

given). Surprisingly, the total energy follows very precisely

the theoretical prediction over more than two decades

whereas pseudo-Alfvén waves decay slower than t�1 at

very large times. This discrepancy may be linked to the

saturation of the integral length scale as it can be observed

from the temporal evolution of the shear-Alfvén wave

spectra (Fig. 2). Indeed, a self-similar energy decay is

observed with a slow increase of the integral length scale

that can be roughly estimated from the wave number at

which the inertial range begins (i.e., the maxima of the

spectra). At later times, this scale is close to the maximum

size of the numerical box whereas the large-scale power

law in k3? is still preserved. The large scales are even more

reduced for (slaved) pseudo-Alfvén waves since they de-

cay faster. Actually, the finite-size box effect may explain

the change of decay law at very large times for pseudo-

Alfvén wave energy.

Direct numerical simulations of 3D incompressible

MHD Eqs. (1) and (2) are also performed with a pseudo-

spectral code including dealiasing. A high resolution with

5122 in the B0-transverse planes whereas only 64 grid

points are taken in the longitudinal direction. Such a situ-

ation was analyzed to explore the self-consistency of the

reduced MHD model [24] with the conclusion that small

values of viscosities, adjusted according to the transverse

dynamics, are not incompatible with the smaller spatial

resolution in the longitudinal direction since the transfer

towards small scales is also reduced along the uniform

magnetic field. We have checked that viscosity values, � �
� � 5� 10�4, are indeed well adjusted [25]. The initial

condition corresponds to a modal energy spectrum in

agreement with the phenomenology described above,

with a D � 3 power law at largest scales: E	�k?; kk� �
C�kk�k3? for k? and kk 2 �0; 4
, the value of C�kk� increas-

ing with kk to reach a maximum at kk � 4. This initial

spectrum allows a transient period of cascade towards

smaller scales during which energy is mainly conserved.

The uniform magnetic field is fixed to B0 � 15. Initially,

the ratio between kinetic and magnetic energies is one,

whereas the correlation 2hv � bi=hjvj2 � jb2ji is zero (re-

maining less than 4% up to t � 40). In Fig. 3, time evolu-

tions of shear- and pseudo-Alfvén wave energies are

FIG. 1. Temporal decays of shear-Alfvén (long-dashed),

pseudo-Alfvén (dash-dotted) and total (solid) energies, together

with three theoretical slope predictions: 3D isotropic (3Di) in

t�5=6, 2D isotropic (2Di) in t�4=5, and 3D anisotropic (3Da) in

t�2=3. A t�1 slope is also plotted for comparison with the pseudo-

Alfvén energy decay.

FIG. 2. Temporal evolution of shear-Alfvén energy spectra. A

k3? and k�2
? power laws are plotted for comparison.
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plotted at fixed parallel wave numbers, namely kk � 0, 1,

2, 3, together with total energies (as obtained by integrating

Ek over all kk). Note that we chose to show the behavior of

one type of waves, i.e. E�
?;k (with by definition E	 �

hjz	j2i=2), as E�
?;k energies behave the same way. We

observe that systematically E�
? >E�

k at the final time

which confirms the previous results. A clear tendency

towards power law behavior is also found, in particular,

at low kk, with exponents close to the heuristic predictions.

This was already observed at smaller resolution (not

shown) and seems to be a general tendency of anisotropic

MHD flows. However, this is less clear in planes at kk � 2

and 3, probably due to enhanced dissipations there (for

example, at t � 20, �60% of the shear wave energy is lost

at kk � 2, and �73% at kk � 3) leading thus to shortened

self-similar decay ranges. Actually, this remark may ex-

plain the power law steepening of the energy decay, when

integrated over all kk, since the energy loss is even more

pronounced in higher kk planes. This average effect has

never been emphasized in the literature but seems to be the

most important obstacle to see the decay laws as well as the

spectral laws predicted by anisotropic theories like wave

turbulence [26]. Note that other initial conditions with an

extended energy spectrum in kk might reduce the discrep-

ancy found between the model and the simulation at high

kk, a situation not investigated here because of the con-

straint due to the reduced parallel resolution.

In this Letter, we show the influence of a uniform

magnetic field on energetic decays in MHD turbulence.

Modified self-similar laws are derived, with a t�2=3 and a

t�1 decay, respectively, for shear- and pseudo-Alfvén

waves, under strong anisotropy. To our knowledge, this

decay analysis is the first in the context of wave turbulence

and could be extended to many other problems. Integra-

tions of kinetic equations of Alfvén wave turbulence re-

cover the predicted laws, while our MHD numerical flows

follow them in planes at lowest parallel wave numbers.
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