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Abstract

The paper is concerned with the problem of demosaicking, deblurring and denoising a
color image in the same time. The global model of the acquisition chain for a color image
contains these three effects, then doing restoration in the same time as demosaicking
makes sense. We propose to take into account for correlation of spectral bands (R,G,B
colors) by minimizing a criterion written in a nearly decorrelated basis. Then we adapt
the Alternating Direction Multipliers Minimization (ADMM) method to get the solution.

1 Introduction
In this paper we address a classical and challenging problem in image processing: the
so called demosaicking problem which arises in digital cameras for reconstructing color
images. Let us give a short description.

Most digital cameras use a single sensor which is placed in front of a color filter array:
the Bayer Matrix. The sensor therefore sampled only one color per spatial position and
the observed image is degraded by the effect of mosaic generation. It is therefore necessary
to implement, possibly fast, algorithms to define an image with three color components
by spatial position. The set of techniques used in the literature, to solve this problem, is
huge. Without claiming of being exhaustive we refer the reader to [10] for a broad and
recent survey (see also [1, 2, 4]).

The originality of our research, in this context, is to define a variational method well
suited to take into account all possible degradation effects due to: mosaic effect, blur and
noise. Looking at the literature in this direction it is worth mentioning the work by Condat
(see [3] and references therein) where a demosaicking-denoising method is proposed, but
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without taking into account blur effects. In [7, 11] all the degradation effects are consid-
ered but with regularization energies which does not allow for fast convex optimization
technique. Indeed in these works, in order to take into account the correlation between
the RGB components, the prior regularization term has a complicated expression.

Here we analyze and test a new method to solve, in a more direct and possibly faster
way, the demosaicking-deblurring-denoising problem. Our approach is based on two steps.
The first one, as in [3], is working in a suitable basis where the three color components
are statistically decorrelated. Then we are able to write our problem as a convex mini-
mization problem. Finally to solve such a problem and to restore the image, we adapt to
our framework the, well known, ADMM (Alternating Direction Multipliers Minimization)
convex optimization technique. The ADMM method and its variants are largely used to
solve convex minimization problems in image processing. We refer the reader to [6], for a
general dissertation on convex optimization techniques, such as ADMM methods or others,
and their applications to image processing.

Organization of the paper
The paper is organized as follows. Section 2 is devoted to notation in a discrete setting.
In section 3 we give a short description of the general ADDM method. In section 4 we
define the new basis for which the channels of the color image are decorrelated. Then
we introduce the Bayer matrix and the blur operator. Section 5 is concerned with the
definition of our variational model. We also show how to adapt the classical ADMM
algorithm to our case.

Finally in the last section we give some applications of our algorithm on color images
of big sizes.

2 Discrete setting
We define the discrete rectangular domain Ω of step size δx = 1 and dimension d1d2.
Ω = {1, ..., d1} × {1, ..., d2} ⊂ Z2. In order to simplify the notations we set X = Rd1×d2

and Y = X×X. u ∈ X denotes a matrix of size d1×d2. For u ∈ X, ui,j denotes its (i, j)-
th component, with (i, j) ∈ {1, ..., d1} × {1, ..., d2}. For g ∈ Y , gi,j denotes the (i, j)-th
component of with gi,j = (g1i,j , g

2
i,j) and (i, j) ∈ {1, ..., d1} × {1, ..., d2}. We endowed the

space X and Y with standard scalar product and standard norm. For u, v ∈ X:

〈u, v〉X =

d1∑
i=1

d2∑
j=1

ui,jvi,j .

For g, h ∈ Y :

〈g, h〉Y =

d1∑
i=1

d2∑
j=1

2∑
l=1

gli,jh
l
i,j .

For u ∈ X and p ∈ [1,+∞) we set:

‖u‖p := (

d1∑
i=1

d2∑
j=1

|ui,j |p)
1
p .
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For g ∈ Y and p ∈ [1,+∞):

‖g‖p :=

 d1∑
i=1

d2∑
j=1

(√
(g1i,j)

2 + (g2i,j)
2
)p 1

p

.

If G,F are two vector spaces and H : G→ F is a linear operator the norm of H is defined
by

‖H‖ := max
‖|u‖G≤1

(‖Hu‖F ).

3 ADMM algorithm for constrained minimization prob-
lem
In this paper we will describe a new algorithm to perform, in the same time, demosaicking-
deblurring-denoising. To this purpose we will adapt to our context an ADMM type al-
gorithm. We recall the relevant features necessary to illustrate the application of such a
method to our setting. We refer the reader to [6] and references therein, for a general
dissertation on convex optimization. The Alternating Direction Minimization Multipli-
ers method (ADMM) is a particular optimization technique well suited for constrained
minimization problem of the following form:

(1) min
u,z

J(z) +G(u) subject to Ez + Fu = b

where J,G : Rd → R are closed, convex, proper functions and where E and F are matrices.
To solve problem (1) one considers the augmented Lagrangian and seeks its stationary

points.

(2) Lα(z, u, λ) = J(z) +G(u) + 〈λ, Fu+ Ez − b〉+
α

2
‖Fu+ Ez − b‖2.

Then one iterate as follows:

(3)

{
(zk+1, uk+1) = argminz,u Lα(z, u, λk)

λk+1 = λk + α(Fuk+1 + Ezk+1 − b), λ0 = 0

The following result has been proven in [5].

Theorem 3.1 (Eckstein, Bertsekas) Suppose E has full column rank and G(u)+‖F (u)‖2
is strictly convex. Let λ0 and u0 arbitrary and let α > 0. Suppose we are also given se-
quences {µk} and {νk} with

∑∞
k µk <∞ and

∑∞
k νk <∞. Assume that

1. ‖zk+1 − argminz∈RN J(z) + 〈λk, Ez〉+ α
2 ‖Fu

k + Ez − b‖2‖ ≤ µk
2. ‖uk+1 − argminz∈RM G(u) + 〈λk, Fu〉+ α

2 ‖Fu+ Ezk+1 − b‖2‖ ≤ νk
3. λk+1 = λk + α(Fuk+1 + Ezk+1 − b).

If there exists a saddle point of Lα(z, u, λ) then (zk, uk, λk) → (z∗, u∗, λ∗) which is such
a saddle points. If no such saddle point exists, then at least one of the sequences {uk} or
{λk} is unbounded.
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4 Bayer filter, acquisition operators and decorrelated
basis

4.1 Bayer filter
As said in the introduction most digital cameras use a single CCD sensor with a color filter
array (CFA) placed in front of it. The resulting CFA image uCFA is a scalar image having
one color component per spatial location. In a discrete setting, if uc = (uR, uG, uB)T

denotes the initial color image in the RGB basis, the CFA image is of the form (Alleyson
et al. [2]):

(4) uCFA(i, j) = uR(i, j)mR(i, j) + uG(i, j)mG(i, j) + uB(i, j)mB(i, j)

where mR,mG and mG are subsampling functions taking only the values 0 or 1. For
the Bayer CFA these functions are expressed as (see [4]):

mR(i, j) = 1/4(1− (−1)i)(1 + (−1)j)

mG(i, j) = 1/2(1 + (−1)i+j)

mB(i, j) = 1/4(1 + (−1)i)(1− (−1)j)

Indeed the fact that the subsampling functions take the value 0 or 1 at pixel (i, j)
depends only of the parity of i and j. We denote by A the operator which transforms the
initial RGB image uc into the CFA image uCFA, i.e. A(uc) = uCFA.

4.2 Acquisition operators
Beside of mosaicking effect the initial color image uc is also degraded during the acquisition
process by the presence of blur and noise.

Concerning the blur operator we assume that it is the same for every components. In
particular we suppose the following form (with abuse of notation):

H =

H 0 0
0 H 0
0 0 H


where H is a matrix representing the standard convolution with some Gaussian kernel.
The noise b is supposed to be additive, white and Gaussian, independent of u. So the total
acquisition chain can be modeled as

(5) uc = [uR(i, j), uG(i, j), uB(i, j)]T → H(uc)→ AH(uc)→ AH(uc) + b = uCFA

and the problem consists in reconstructing uc from uCFA knowing that

AH(uc) + b = uCFA.

In fact it is well known that the RGB components are strongly statistically correlated
[8, 9]. So it will be better to find another representation ud = (φ, ψ1, ψ2) in which the
components carry independent information.
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4.3 A decorrelated basis
The problem is: starting from the RGB system, we want to find another basis in the 3D
color space in which components carry non correlated information. Of course it depends
on what we mean by independent information. To answer this question we draw our
inspiration from the work by Alleyson et al. [2]. From their approach we derive direct
calculus to find the new basis. Recall that the CFA image has the form

(6) uCFA(i, j) = uR(i, j)mR(i, j) + uG(i, j)mG(i, j) + uB(i, j)mB(i, j).

What we want to do is to rewrite uCFA as a linear combination of three functions
ψ0, ψ1, ψ2 representing a new “decorrelated” basis in the 3D color space. To do that the
idea is first to replace functions mR,mG,mB by their expression:

(7)

uCFA(i, j) = uR(i, j)
(1− (−1)i)(1 + (−1)j)

4
+uG(i, j)

(1 + (−1)i+j)

2
+uB(i, j)

(1 + (−1)i)(1− (−1)j)

4

Then developing (7) and reorganizing the terms we get:

(8)
uCFA(i, j) = 1/4uR(i, j)+1/2uG(i, j)+1/4uB(i, j)+uR(i, i)m̃R(i, j)+uG(i, j)m̃G(i, j)+uB(i, j)m̃B(i, j)

where

m̃R(i, j) = 1/4((−1)j − (−1)i − (−1)i+j)

m̃G(i, j) = 1/2(−1)i+j

m̃B(i, j) = 1/4(−(−1)+(−1)i − (−1)i+j)

then by denoting

ψ0(i, j) = 1/4uR(i, j) + 1/2uG(i, j) + 1/4uB(i, j)

ψ(i, j) = uR(i, j)m̃R(i, j) + uG(i, j)m̃G(i, j) + uB(i, j)m̃B(i, j)

we obtain

(9) uCFA(i, j) = ψ0(i, j) + ψ(i, j)

Alleyson et al. [2] named ψ0 and ψ respectively the luminance and the scalar chromi-
nance.

Indeed at each pixel position ψ0(i, j) can be viewed as the barycentre of the component
color values. The coefficients pR = 1/4, pG = 1/2 and pB = 1/4 associated respectively
to uR, uG and uB are constant in space. Therefore the percentage of red, green and
blue pixel values remains constant over all spatial positions. Thus ψ0 does not carry
spectral information but only luminance information. Spectral information is carried out
by ψ = uCFA − ψ0.

Before coming back to the choice of a basis in the 3D color space in which components
carry non redundant information, let us rewrite differently ψ by making some algebraic
manipulation. With (6), (9) and the definition of ψ we have (to simplify the notation we
drop the pixel position (i, j)):
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uCFA =
∑

l∈(R,G,B)

ulml = ψ0 +
∑

l∈(R,G,B)

ulm̃l

but since
∑
l∈(R,G,B)m

l = 1, from the above equality, we deduce:∑
l∈(R,G,B)

(ul − ψ0)ml =
∑

l∈(R,G,B)

ulm̃l = ψ.

Let us denote ψl = ul − ψ0 for l ∈ (R,G,B), we get ψ =
∑
l∈(R,G,B) ψ

lml with

ψR = 3/4uR − 1/2uG − 1/4uB

ψG = −1/4uR + 1/2uG − 1/4uB

ψB = −1/4uR − 1/2uG + 3/4uB .

Finally we have obtained that uCFA = ψ0 +
∑
l∈(R,G,B) ψ

lml. Now let us recall that
what we want to do is to write uCFA as uCFA =

∑
l∈(0,1,2) alψl where ψ0, ψ1, ψ2 represent

a new “decorrelated” basis in the 3D color space. Thanks to the previous discussion it
seems natural to choose as a first component the luminance

ψ0 = 1/4uR + 1/2uG + 1/4uB

and then for completing the basis to choose ψ1 and ψ2 among the three spectral informa-
tions ψl with l ∈ (R,G,B). But these three components are dependent since it is easy to
verify that 1/4ψR + 1/2ψG + 1/4ψB = 0. So, we can choose any two components among
ψR, ψG and ψB or any combination of it. In the literature most of the authors choose
ψ1 = ψG = −1/4uR + 1/2uG − 1/4uB and ψ2 = 1/2(ψG +ψB) = −1/4uR + 1/4uB . With
this choice we can verify that

uCFA = ψ0 + (mR +mG −mB)ψ1 + 2(mB −mR)ψ2.

By using now on the classical notations uL = ψ0 (the luminance), uG/M = ψ2 (the
green/magenta chrominance) and uR/B = ψ1 (the red/blue chrominance) the change of
basis have the following expression:

(10) ud =

 uL

uG/M

uR/B

 =

 1
4

1
2

1
4

− 1
4

1
2 − 1

4
− 1

4 0 1
4

  uR

uG

uB

 = T (uc)

and

(11) uc =

 uR

uG

uB

 =

 1 −1 −2
1 1 0
1 −1 2

  uL

uG/M

uR/B

 = T−1(ud).

Hereafter uc denotes the image in the canonical basis R,G,B, while ud is the image in
the basis L,CG/M , CR/B .

Let us remark:
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• Alleyson in [2] showed that the Fourier transform of uL is concentrated in the low
frequency domain while the Fourier transform of the chrominance uG/M and uR/B
are concentrated in the high frequency domain. Moreover the support of the three
components in the Fourier domain are disjoint.

• In [8, 9] it is shown that, from a statistical point of view, the coefficients in the new
basis are approximatively decorrelated.

5 The variational model
Let us start by recalling the acquisition camera sequence. We have (see (5)):

uc → H(uc)→ AH(uc)→ AH(uc) + b = uCFA

On the other hand from (11) we have uc = T−1(ud). By a change of variable, the
observation equation (5) becomes

(12) AHT−1(ud) + b = u0.

where we have set u0 = uCFA.
The idea is then to restore ud by working with the, much more convenient, decorrelated

basis L,CG/M , CR/B . Finally, once ud is restored, we simply set uc = T (ud).
In order to retrieve ud, we have to solve an ill posed inverse problem. So that as usual

we seek for minimizer of an energy given by an L2-discrepancy term plus a regularization
penalty.

Now the key point is that, since we are working in the decorrelated basis, it makes
sense to consider the following minimization problem:

arg min
ud
‖∇uL‖1 + ‖∇uG/M‖1 + ‖∇uR/B‖1 + µ‖AHT−1(ud)− u0‖22.

(the norms are the ones defined in Section 2). Notice that the regularizing terms are
uncoupled.

5.1 Application of ADMM method to our problem
In order to apply the ADMM method, we must rewrite the problem

(13) arg min
ud
‖∇uL‖1 + ‖∇uG/M‖1 + ‖∇uR/B‖1 + µ‖AHT−1(ud)− u0‖22,

in the form (1):
min
ud,z

J(z) +G(ud) subject to Ez + Fud = b.

For our problem, we set

G(ud) = 0

and

(14) z =


w1

w2

w3

v

 =


∇uL
∇uG/M
∇uR/B

AHT−1(ud)− u0

 ,
7



(15)

E = −I, F =

[
∇

AHT−1

]
where ∇ =

 ∇L 0 0
0 ∇G/M 0
0 0 ∇R/B

 , b =

[
0
u0

]

We also need the dual variable

λ =


p1
p2
p3
q

 .
To simplify the notation we write

(16) z =

[
w
v

]
=

[
∇ud

AHT−1(ud)− u0

]
, F =

[
∇
K

]
, b =

[
0
u0

]
and finally

λ =

[
p
q

]
We can now write down the corresponding augmented lagrangian as:

Lα(z, ud, λ) = ‖w‖1 + µ‖v‖22 + 〈p,∇ud − w〉+ 〈q,Kud − u0 − v〉

+
α

2
‖v −Kud + u0‖2 +

α

2
‖∇ud − w‖2.(17)

The ADMM iterations are then given by:

wk+1 = argmin
w
‖w‖1 +

α

2
‖w −∇(ud)

k − pk

α
‖22

vk+1 = argmin
v

µ‖v‖1 +
α

2
‖v −K(ud)

k
+ u0 −

qk

α
‖22

(ud)
k+1

= argmin
ud

α

2
‖∇ud − wk+1 +

pk

α
‖22 +

α

2
‖Kud − vk+1 − u0 +

qk

α
‖22

pk+1 = pk + α(∇(ud)
k+1 − wk+1)

qk+1 = qk + α(K(ud)
k+1 − u0 − vk+1),

with p0 = q0 = 0 and α > 0.
The standard explicit formulas for wk+1, vk+1 and (ud)

k+1 are:

wk+1 = S 1
α

(∇(ud)
k

+
pk

α
)

vk+1 = S µ
α

(K(ud)
k − u0 +

qk

α
)

(ud)
k+1

= (−∆ +K∗K)−1
(
∇∗(wk+1 − pk

α
) +K∗(vk+1 + u0 −

qk

α
)
)

(18)

where S 1
α

(t) is the standard soft thresholding, that is

S 1
α

(t) =

{
t− 1

αsign(t) |t| > 1
α

0 otherwise.
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S µ
α
is defined in the same way, up to the obvious replacement of 1

α with µ
α . K

∗ denotes
the adjoint matrix of the matrix K = AHT−1 given by K∗ = (T−1)∗H∗A∗. Note that
one can compute all of these adjoint operators. ∆ denotes the usual Laplace’s operator.

Concerning the last iteration of system (18), we can verify by induction that in fact
the sum ∇∗ p

k

α −K
∗ qk
α = 0, so (18) simplifies:

(19) (ud)
k+1

= (−∆ +K∗K)−1
(
∇∗wk+1 +K∗(vk+1 + u0)

)
To solve it numerically we used a classical conjugate gradient method.

6 Numerics
We test our method on images of big size (number of pixels d1d2 = P : 500 × 700 ≤ P ≤
2200× 4000).

In order to have a blurred mosaicked and noisy image to test, we follow the following
standard procedure:

1 we pick a color image as a reference uc, which is a good approximation of a color image
without mosaicking effect.;

2 we apply in the right order the acquisition operator to get the observed degraded image
u0:

u0 = AHuc + b;

3 we formally write uc = T−1ud and we work with the new basis (uL, u
G
M , u

R
B ). So we

have
u0 = AHT−1(ud) + b;

4 We apply the ADMM algorithm to restore ud;

5 We set uc = T (ud).

As blur operator we always have considered a standard Gaussian low pass filter standard
deviation ε = 1. In figures 1, 2, 3, we restore an image of size 2200× 2000 with a low level
of noise. When the level noise is high, µ cannot be too small otherwise, the algorithm
does not perform a good demosaicking. In this case the parameter µ is chosen in order
to have a good balancing between denoising and demosaicking. In figure 4 we show the
restoration results of an image reference detail with different values of the parameter µ.
Then in figures 6 and 7 we show the restoration result obtained on the whole image.

We deal with rescaled images in [0, 1]. We made run the Matlab code on an Intel(R)
Xeon(R) CPU 5120 @ 1.86GHz.
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Figure 1: Original image uc = T−1(ud). Size image 2200x2000.

Figure 2: Observed mosaicked blurred and noisy image u0 = AHT−1(ud) + b. σ = 0.01.
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Figure 3: Restored image uc = T (ud). CPU time about 30mn, number of iterations 30, µ = 30.

The results presented here show good performance of the algorithm in terms of visual
quality. The restored images show no false color for image of Figure 1and very few for
image in Figures 4 and 5.

7 Conclusion
In this paper we have introduced in an intuitive way a basis for color image where the com-
ponents are nearly statistically decorrelated. Then this basis is useful to write a criterion
where regularization terms are independent so that standard minimization algorithms can
be used. We show that ADMM algorithm can be applied in our case and that the method
give good results, avoiding most of false color artifacts. In order to bring an automatic
algorithm, estimation of regularizing parameter must now be performed.
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Detail of original image Observed image convergence of the algorithm

restored image with µ = 0.5 restored image with µ = 5 restored image with µ = 50

Figure 4: Top left: crop of the original image. Crop size 256x256. Top center: blurred
mosaicked noisy image. Top right: convergence of the algorithm. Down left: restored image
with a small µ to promote the denoising against the demosaicking. Number of iterations 30.
Down center and down right : restored image with a greater value of µ to promote demosaicking
against the denoising. Number of iterations 30. CPU time about 2mn.
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Figure 5: Original image of size 768x512.

Figure 6: Observed mosaicked blurred and noisy image. σ = 0.5.
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Figure 7: Restored image uc = T (ud). CPU time about 15 mn, number of iterations 30 µ = 20.
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