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a) Laboratoire de Chimie et Physique Quantiques,

CNRS-IRSAMC Université de Toulouse, France.
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The fundamental multicentric interaction of a lithium atom with a single thio-

phene ring is addressed. A systematic study of the Li-T interaction energy (IE)

and geometry is done at the MP2 and CCSD(T) levels using increasingly large basis

sets up to aug-cc-pVQZ (AVQZ). Basis set superposition errors (BSSE) are eval-

uated and shown to have a major impact on the value of the interaction energy.

The Fixed-Node Diffusion Monte Carlo (FN-DMC) method is used as an alternative

basis-set-free approach to obtain what is likely to be the most accurate estimate of

the interaction energy obtained so far. While counterpoise-corrected MP2/AVQZ

and CCSD(T)/AVTZ interaction energies are found to be -3.8 and -7.5 kcal/mol,

the FN-DMC method yields + 1.3 ±1.7 kcal/mol. The slow convergence of the ab

initio IE (and some key structural parameters) with respect to basis set quality and



2

the discrepancy with the FN-DMC result is discussed. A visualization of the electron

pairing using the Electron Pair Localization Function (EPLF) for the Li-doped vs.

undoped thiophene is also presented.

I. INTRODUCTION

Conjugated organic polymers have been extensively studied, both from the experimental

and theoretical points of view. They are of practical importance because they combine elec-

tronic/optical properties of a semiconductor with the mechanical properties of a conventional

plastic material. Furthermore, their properties are easily tuned by chemical modification.

In the case of trans-polyacetylene (PA) it has been found experimentally that doping with

electron donors or acceptors (D/A) leads to a huge increase in electrical conductivity (for

example, [1]) which has been rationalized in terms of the formation of charged solitons [2–5].

One of the crucial points during the doping process is the generation of defects with char-

acteristic distortions of the polymer structure. These defects can be classified as spinless

states (charged solitons, bipolarons) and states carrying spin (neutral solitons, polarons).

In the case of polymers such as polyparaphenylene, polypyrrole, and polythiophene bipo-

larons are considered as the spinless charge carriers in these systems (see [6], and references

therein). PA has two degenerate ground states, connected through a Peierls transition state,

that lead to soliton formation when doped by electron donors or acceptors. Polythiophene

(PT) has a non-degenerate ground state where the benzenoid form contains two formal

double bonds within the heterocyclic ring (shown schematically in Figure 1(a) of ref.[7])

is preferred over the quinonoid alternative, with one double bond within the ring plus an

inter-ring double bond. Thus, electronic charge transfer due to D/A doping will produce

polarons and/or bipolarons rather than solitons. Since PT, as well as its chemical derivatives
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(e.g. polyethylenedioxythiophene=PEDOT), are well known to be advantageous for many

technological applications, it is of considerable interest to examine the effect of D/A doping

on the properties of this prototype polymer. For this reason one of us participated in a sys-

tematic DFT periodic study of the structural and electronic modifications of quasi-1D PT

chains when the organic polymer is doped by lithium with varying doping concentrations

(y=Li/C atom ratio). In this study [7] the amount of charge transfer from the metal to

the chain, the Li-PT bond interaction energy, the carbon-carbon Bond Length Alternation

(BLA) pattern which defines the creation of the polaronic/bipolaronic structure, and the

band structure evolution as function of the Li doping from y=1/4 to y=1/20 have been

addressed. During the calibration stage of this periodic DFT scheme against standard ab

initio methods with various basis sets it has been found that most of the geometric param-

eters of LiT can be readily optimized using relatively simple combinations of correlation

treatments (such as MP2) and not-so-large gaussian basis sets. However, quite surprisingly,

it was also found that an accurate determination of the Li-T interaction energy is not an

easy task and requires the use of rather sophisticated electronic correlation methods coupled

with atomic basis sets of very high quality. Also, it has been noticed that the Li-S and both

Li-C distances are quite dependent on both the dynamic correlation treatment used and

the quality of the basis sets. The basis set issue is so important for the interaction energy

that it had already been addressed in ref. [8] in their SCF and MP2 studies of Na- and

Li-doped oligothiophene chains. However, the computational resources then available im-

posed natural limitations which led them to use basis sets which are very limited by today’s

standards and only unpolarized basis sets for hydrogen atoms were utilized. For C, S and

Li two types of basis sets were considered: a) double-zeta (DZ) quality augmented with

polarization functions and diffuse p functions on carbon and sulfur and, b) triple-zeta (TZ)
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quality augmented by the same additional functions as for the DZ sets. That study showed

the crucial importance of polarization functions on lithium and these ranged from 2p to 4p1d

(full details can be found in Table I of ref. [8]). Although their basis set study was done only

on the dithiophene molecule doped with two antifacially located lithium atoms (Li2T2), it

was clear that the MP2 interaction energy varied wildly (from +17.4 to -34.2 kcal/mol) de-

pending on the quality (DZ vs.TZ) of the basis set and on the number and spatial extension

of the p and d polarization functions on Li. Another issue that immediately arose was the

large Basis Set Superposition Error (BSSE), which ranged from -2.1 to -8.1 kcal/mol and

significantly modifies the interaction energies with respect to the BSSE-uncorrected ones.

However, despite the fact that we were aware of the Li-T interaction energy problem and

because the goal of ref.[7] was to study the band structure of infinite periodic Li-doped PT

chains, we decided to postpone the investigation of this problem to a later benchmark-type

study, which is presented here.

In this work, the Li-T interaction energy will be estimated using three different schemes.

First, using the second-order perturbational MP2 method with increasingly large basis sets,

up to the very large augmented correlation-consistent polarized-VQZ(AVQZ) basis sets of

Dunning[9], the geometries being fully optimized with this approach. Second, using the

optimized MP2 geometries with each basis set, by applying the very accurate CCSD(T)

method up to the large augmented correlation-consistent polarized-VTZ(AVTZ) basis set,

which represents our computational limit. As mentioned above, given the importance of

the BSSE errors, the counterpoise correction to both of these ab initio energies is applied.

Finally, since the Li-T interaction energy seems to be very dependent on both the basis

set quality and on the nature of the electronic correlation treatment, we have performed

Fixed-Node Diffusion Monte Carlo calculations (FN-DMC) which, by its very nature, does
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not contain any BSSE and is completely free of the electronic excitation-degree correlation

problem. Taking into consideration that the ground-state wavefunction of LiT is essentially

mono-configurational the fixed-node error (the only residual systematic error of FN-DMC

when statistical fluctuations have been sufficiently reduced) is expected to be rather small.

As a consequence, the FN-DMC calculation of the IE presented here is probably the best

estimate obtained so far of the Li-T interaction energy and should be considered as a bench-

mark value.

From the physical point of view the Li-T interaction is quite complex for three reasons:

a) Since Li transfers charge to the T ring, the latter will become negatively charged and

this fact requires particular attention similar to the calculation of electron affinities (see

e.g., [11]). b) Since Li is simultaneously adjacent to the five atomic centers of the ring, the

Li-T interaction implies dynamic correlation effects involving pairs, triplets and quartets of

orbital interactions on two, three and four atoms. This is similar to the complex interactions

of metal atoms when they are coordinated to cyclopentadienyl. These three- and four-center

interactions imperatively require the use of very sophisticated electronic correlation schemes

if one aims at obtaining truly accurate interaction energies. c) Isolated thiophene contains

two formal double CC bonds and one central CC single bond. The natural charge transfer

that occurs from the metal to the ring induces significant carbon-carbon bond distance

rearrangements, thus leading to an inversion of the BLA pattern in the ring as the Li

atom approaches its equilibrium geometry. However, these BLA modifications are two-way

coupled to the extent of metal-to-ring charge transfer, thus closely relating this point with

a).

We note that, at the equilibrium geometry of the LiT molecule, the CASSCF(3,4) wave-

function is largely dominated by the Hartree-Fock determinant with a CI coefficient of 0.97.
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It is important to emphasize that larger active spaces do not modify this fact and this pic-

ture is practically independent of the basis set quality. Since the HF determinant is largely

dominant the open-shell unrestricted MP2 method can, in principle, provide good estimates

of the interaction energy. However, Coupled Cluster calculations at the CCSD(T) level us-

ing the largest possible atomic basis sets, is undoubtedly the best approach if one wishes to

obtain benchmark-type quality ab initio interaction energies.

In this study we also propose to visualize the electron-pairing occuring in this system. In

standard computational chemistry several approaches have been developed to analyze and

visualize the electronic distribution in the ordinary 3D-space. Among them we can cite,

e.g., the methods analyzing the deformation of densities (a build-up of charge between two

atoms is interpreted as the existence of a bond)[12], the methods based on the topological

analysis of the electron density or its Laplacian (see, for instance, Bader [13]), the methods

studying the topography of the molecular electrostatic field[14] and, also, approaches using

as indicator the electron localization function (ELF) describing the amount of local Pauli

repulsion between electrons[15],[16]. Of course, this list cannot be considered as exhaustive

since defining a successful and general qualitative model for the description of chemical

structure is an everlasting theme in chemistry since the pioneering electron-pair model of

Lewis.

In this work we propose to exploit the accurate data obtained from our FN-DMC simu-

lations to get some insight into the electron localization properties of the LiT molecule at

its equilibirum geometry. To do that we shall use the function, introduced by some of us

[17], describing the pairing of electrons in a molecular system. This function, called Electron

Pair Localization Function (EPLF), is built to reveal the differences in the average distances

between spin-like and spin-unlike electrons. In regions where localized pairs of electrons are
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present (lone pairs, atomic pairs, bonds) the EPLF takes large values and displays maxima.

In contrast, in regions where electrons behave essentially as an homogeneous fluid (spin-like

and spin-unlike electrons being mixed together), the EPLF takes much smaller values. The

form of the EPLF is simple and has been chosen to be easily computable using quantum

Monte Carlo (QMC) calculations. Originally applied to several simple atomic and molecular

systems[17], the EPLF has recently proven to be a practical tool for describing electronic

features in more complex molecular systems [18],[19]. It is applied here to our challeng-

ing chemical problem involving subtle changes in electron pairing upon Li doping of the

thiophene ring.

The organization of the paper is as follows. In Sections II and III the electronic structure

approaches used in this study [MP2 and CCSD(T) on one hand and QMC approaches

on the other hand] are briefly presented. In particular, for the ab initio approaches the

choice of the gaussian basis sets employed is discussed and the very basic features of QMC

needed to understand the present work are briefly summarized. In Sec.IV the Electron Pair

Localization Function (EPLF) is presented. A few computational details are given in Sec.V

and our numerical results including the EPLF visualization of the electronic pairings are

presented in Sec.VI. Finally, a summary of this study is given in the last section, Sec.VII.

II. DYNAMIC CORRELATION TREATMENT USING MP2 AND CCSD(T).

CHOICE OF THE ATOMIC BASIS SET

In [7] one of us has shown that the LiT open-shell molecule can be very well described at

the zeroth-order by the Hartree-Fock wavefunction. Since both Li and LiT are open-shell

systems we shall use here the unrestricted open-shell formalism for these species, which then

can be extended to the UMP2 and UCCSD(T) methods to account for the dynamic electronic
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correlation effects. For the thiophene molecule we use the restricted versions, namely the

RMP2 and the RCCSD(T) methods. The optimized geometries of the isolated thiophene

(T) and the LiT complex were obtained using the 2nd-order perturbational Möller-Plesset

scheme (MP2) as programmed in the Gaussian03 code [20].

As mentioned before, the calculation of the Li-T interaction energy could, at first sight,

seem to be a simple and straightforward task. However, since the pioneering work Irle and

Liscka [8] where the dilithium-dithiophene(Li2T2) interaction energy was studied, it became

clear that the choice of the optimal basis sets to achieve this task is far from being obvious.

This problem arises mainly because the extent to which charge transfer occurs from Li to

T is strongly coupled to the charge delocalization (leading to the BLA changes) on the ring

backbone and vice-versa. Thus, we will approach this interaction energy problem in an

incremental manner using increasingly large basis sets with both correlated methods; these

were applied to all atoms and comprise the 6-31G**, 6-311G*, 6-311+G**, aug-cc-pVDZ

(AVDZ), aug-cc-pVTZ (AVTZ) and up to the very large aug-cc-pVQZ (AVQZ) [9] basis sets.

These lead to 108, 128, 164, 178, 372 and 668 molecular orbitals in the LiT case, respectively.

The MP2 optimizations of T and LiT could be performed using the huge AVQZ basis set

[10], but the CCSD(T) calculation on LiT could not be achieved due to computational (disk)

limitations. Given that the Basis Set Superposition Error (BSSE) is crucial for our purpose

here, we shall also report BSSE-corrected CCSD(T) interaction energies.
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III. DYNAMIC CORRELATION TREATMENT USING VARIATIONAL

MONTE CARLO (VMC) AND FIXED-NODE DIFFUSION MONTE CARLO

(FN-DMC)

In view of the great sensitivity of the ab initio results as a function of the size of the basis

set used it is particularly important to call for alternative electronic structure approaches

which are much less dependent on the nature of the basis set but are still capable of giving the

major part of the dynamical correlation contribution. Here, we propose to use the quantum

Monte Carlo approach which is particularly powerful when dynamical correlation effects are

searched for. QMC methods are stochastic methods and are fundamentally different from the

commonly used deterministic approaches based either on the expansion of the wavefunction

on a set of antisymetrized products of one-electron molecular orbitals (post-HF methods) or

on the use of the electronic density via appropriate exchange-correlation energy functionals

(DFT approaches). In a few words a quantum Monte Carlo algorithm can be viewed as a

molecular-dynamics-type approach applied to the electrons (not the nuclei!) in which an

additional stochastic step is introduced (Monte Carlo step). From a practical point of view,

a quantum Monte Carlo scheme can be viewed as an algorithm generating by a step-by-step

procedure (time evolution) a series of “states” or “configurations”. Here, a configuration is

defined as the set of the 3N -electronic coordinates (N number of electrons), the positions

of the nuclei being fixed (Born-Oppenheimer condition)

~R = (~r1, . . . , ~rN). (1)

Stated differently, a configuration ~R may be viewed as a “snapshot” of the molecule showing

the instantaneous positions of each electron. Stochastic and deterministic rules are chosen

so that configurations are generated in average according to some target probability den-
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sity, Π(~R). Note that the probability density is defined over the complete 3N -dimensional

configuration space and not over the ordinary 3D-space. Many variants of QMC can be

found in the literature (referred to with various acronyms: VMC, DMC, PDMC, GFMC,

etc...). They essentially differ by the type of stochastic rules used and/or by the specific

stationary density produced. In practice, the two most popular QMC approaches used for

simulating complex molecular systems are the so-called Variational Monte Carlo (VMC) and

Fixed-Node Diffusion Monte Carlo (FN-DMC) methods. Both methods will be employed

here and in what follows only the very basic features useful for understanding this work are

given (for a detailed presentation, see, e.g., [21]).

A. Variational Monte Carlo (VMC)

In a VMC calculation the probability density generated is given by

ΠV MC(~R) =
ψ2

T (~R)
∫
d~Rψ2

T (~R)
(2)

where ψT is a high-quality electronic trial wave function. A commonly used expression for ψT

consists of a product of two terms. The first term is standard and is introduced to describe

the one-particle shell-structure of molecules. It is obtained from a preliminary HF or DFT

ab initio calculation and is expressed as one (or a combination of a few) determinant(s) of

single-particle spatial orbitals. The second term is introduced to reproduce the electron-

electron cusp condition of the exact wave function and, also, to incorporate some explicit

coupling between electron-nucleus and electron-electron coordinates (see, [22]). Note that

the electron-electron cusp condition is known to be particularly difficult to fulfill in standard

ab initio calculations using expansions over one-electron basis sets (necessity of considering

very high values of the orbital momentum). The explicitly correlated term is usually referred
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to as the Jastrow factor. In a spin-free formalism our trial wave function is written as

ψT (~R) = D↑(~R)D↓(~R) exp [
∑

α

∑

〈i,j〉

U(riα, rjα, rij)] (3)

where the sum over α denotes a sum over the nuclei,
∑

〈i,j〉 a sum over the pair of electrons,

andDσ(σ =↑ or ↓) are determinants made of one-particle space-orbitals and U is the Jastrow

factor. Different expressions for the Jastrow part have been presented in the literature. Here

we have chosen a form presented in detail in Ref. [23].

A critical step in a VMC approach is the optimization of the parameters entering the

trial wave function. A standard method consists in searching for parameters minimizing the

fluctuations in configuration space of the local energy defined as

EL(~R) ≡ HΨT/ΨT . (4)

This criterion is based on the fact that for the exact wave function the local energy reduces

everywhere to a constant -the exact energy- and, thus, the fluctuations of the local energy

entirely vanish. Accordingly, small fluctuations are associated with “good” trial wave func-

tions. A number of methods have been developed to perform efficiently the optimization

step within a QMC framework. In this work, we have used the correlated sampling method

of Umrigar et al.[24], an approach based on the minimization of the weighted variance of

the local energy over a set of fixed configurations.

Once the optimal parameters have been determined, the quality of the resulting trial

wave function is usually good. A major part of the dynamical correlation energy (Coulomb

hole) is recovered and the gross features of the one-particle background are also correctly

described via the determinantal part (i.e., the non-dynamical correlation). For most atoms

it is possible to recover up to 80% − 90% of the exact correlation energy[22]; for molecules

the domain of variation lies usually between 30 and 90%.
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The numerical method (stochastic rules) employed to generate the VMC density, Eq.(2),

is standard. It is based on the use of an improved Metropolis algorithm[25].

B. Fixed-Node Diffusion Monte Carlo (FN-DMC)

In a diffusion Monte Carlo scheme the stochastic rules employed are the same as in the

VMC case (Metropolis algorithm) plus a new rule corresponding to a branching (or birth-

death) process. More precisely, depending on the magnitude of the local energy a given

configuration is destroyed (when the local energy is greater than some estimate of the exact

energy) or duplicated a certain number of times (local energy lower than the exact energy).

It can be shown that the stationary density resulting from these rules is now given by

ΠDMC(~R) =
ψT (~R)φ0(~R)

∫
d~RψT (~R)φ0(~R)

(5)

where φ0(~R) denotes the ground-state wave function.

Fixed-node error. Actually, because the density ΠDMC is necessarily positive, as any

stationary density resulting from some stochastic rules, φ0 is not the exact ground-state

wave function, but some approximate one resulting from the additional constraint that φ0

must have the same sign as the trial wave function so that the product in Eq.(5) is always

positive. In other words, the mathematical eigenproblem solved is not the exact one but,

rather, some modified one which can be written as

HφFN
0 (~R) = EFN

0 φFN
0 (~R) (6)

where φFN
0 (~R) = 0 whenever ψT (~R) = 0.

The fact that the nodes (points in 3N -dimensional space where the wave function van-

ishes) of ψT and φFN
0 are identical leads to a so-called “fixed-node” error. However, as far as
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total energies are concerned, this approximation is in general very good and the fixed-node

error on total energies represents usually a small fraction of the total correlation energy. Let

us emphasize that this error depends only on the quality of the nodes; see, e.g., the discus-

sion in [26]). In the context of this work it is quite interesting to note that a benchmark-type

study by Grossman [27] (see, also the study by Manten and Lüchow, Ref.[28]) on the cal-

culation of the atomization energy of 55 molecules (G1 set of Pople and collaborators [29])

has shown that by using FN-DMC simulations with Hartree-Fock nodes the quality of the

results was quite high and similar to that obtained with the CCSD(T) method with large

basis sets.

IV. THE ELECTRON PAIR LOCALIZATION FUNCTION (EPLF): A TOOL

FOR VISUALIZING ELECTRONIC PAIRINGS

The EPLF is a local scalar function defined in the ordinary 3D-space, bounded above and

below, which focuses essentially on the localization of electron pairs. It is a good descriptive

tool for chemical bonds, since pairs of electrons play a central role in our everyday interpre-

tation of chemical structure and reactivity (Lewis model, VSEPR). The framework proposed

to calculate such a localization function is that of quantum Monte Carlo approaches. As

emphasized in the introduction, QMC are techniques of a great versatility and, therefore,

the definition of the EPLF proposed below will be of practical use for any type of wave-

functions (HF, post-HF, Valence Bond, etc. . . ) and for any level of computation (VMC,

FN-DMC,“exact”).

First, we need to introduce the two local quantities dσσ(~r) and dσσ̄(~r) defined as follows

dσσ(~r) ≡
N∑

i=1

〈〈δ(~r − ~ri) min
j; σj=σi

|~ri − ~rj |〉〉
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dσσ̄(~r) ≡

N∑

i=1

〈〈δ(~r − ~ri) min
j; σj 6=σi

|~ri − ~rj |〉〉 (7)

where {~rk}k=1,N are the positions of the N electrons for a given configuration ~R, σi is the

spin of the ith electron (σi =↑, ↓), and 〈〈...〉〉 the stochastic average over the Monte Carlo

configurations. As seen from these definitions dσσ(~r) [resp., dσσ̄(~r)] is the average distance

between an electron located at ~r and the closest spin-like (resp., spin-unlike) electron of the

molecule.

The electron pair localization function (EPLF) is defined as

EPLF(~r) =
dσσ(~r) − dσσ̄(~r)

dσσ(~r) + dσσ̄(~r)
(8)

Figure 1 of [17] gives a simple pictorial representation of the construction of the EPLF in

the case of only one configuration and four electrons in 2D.

By definition the EPLF takes its values within the interval [-1,1]. It gives a local indicator

of electron pairing as follows. In regions of space where electrons are unpaired the average

distances between spin-like and spin-unlike electrons are similar, dσσ̄ ≈ dσσ, and the EPLF

goes to zero. When spin-unlike electrons are paired we have dσσ̄ ≪ dσσ and EPLF goes to

1. Finally, when spin-like electrons are paired, dσσ̄ ≫ dσσ and, thus, EPLF goes to -1. The

EPLF main feature is to reveal the differences in the average distances between spin-like and

spin-unlike electrons. In regions where localized pairs of electrons are present (lone pairs,

atomic pairs, bonds) the EPLF takes larger values and displays maxima. In contrast, in

regions where electrons behave essentially as an homogeneous fluid (spin-like and spin-unlike

electrons being mixed together), the EPLF takes much smaller values. In particular note

that for molecules with one or more open shells as is the case with molecular oxygen here, in

regions where there is a larger amount spin-up (or spin-down) density, by construction the

EPLF takes on minima values. Note that the definition of EPLF is particularly well suited
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to QMC; the formula (7) can indeed be easily computed with any QMC scheme.

V. COMPUTATIONAL DETAILS

Basis sets and nuclear geometries for the QMC calculations. As already mentioned the

atomic gaussian basis functions used for all atoms are the fully decontracted Dunning aug-

cc-pVTZ basis sets[9]. The MP2/AVTZ optimized geometries for the isolated thiophene and

the LiT complex have been used.

QMC simulations. Since the HF wavefunction is an excellent zeroth-order approximation

for the Li atom, the thiophene, and the LiT molecules, the trial wavefunctions used here for

the FN-DMC simulations consist of the RHF(T) or UHF(Li, LiT) determinants multiplied by

a standard Jastrow prefactor taking into account the explicit electron-electron and electron-

electron-nucleus interactions (see, e.g. [30],[31]). Note that for a system consisting of light

atoms such as C, H and S some care has to be taken for properly reproducing the electron-

nucleus cusp both for the core and valence electrons. Regarding the core region, we have

replaced the 1s atomic orbitals of the carbon and sulfur atoms expanded over the gaussian

basis set by the 1s Slater-type orbital given in the Clementi and Roetti’s Tables [32]. On

the other hand, the valence molecular orbitals are also modified at short nuclear distances

to impose the nuclear cusp; we do that by using a short-r representation of the radial part

of orbitals under the form c1 exp(−γ1r)+ c2r
2exp(−γ2r), in the same spirit as Ref.[33]. The

present FN-DMC calculations are all-electron calculations done with a very small time-step,

τ = 8.10−5, to insure a proper treatment of the nodal hypersurfaces and to reduce time-step

errors. For each trial wave function and for each atomic (Li) and molecular systems (T and

LiT), the calculations are very extensive and represent more than 1010 Monte Carlo steps

distributed over a large number of processors (around one hundred).
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EPLF data. The continuous 3D-space is represented using a 80×80×80 three-dimensional

grid. The EPLF is calculated as follows: for each Monte Carlo configuration generated the

positions of the electrons are scanned. The elementary volume of the 3D-grid occupied by

each electron is determined and the minimum distances appearing in the definition of EPLF

are calculated. The noise in the localization function due to the statistical character of QMC

simulations has been reduced by using a median blur filter as detailed in Ref.[17]. This filter

is particular well adapted here since it is known to modify very little the regions where the

gradient is large. This latter point is particularly important here since we are interested in

altering as little as possible the contours of the pair localization function.

VI. RESULTS

A. The geometry of the Li-thiophene complex

For thiophene and for the Li-thiophene complex, MP2 geometry optimizations have been

performed with all the basis sets. For thiophene, the CC and CS bond distances computed

by the SCF method are improved consistently by electron correlation effects and the final

MP2 results agree very well with experimental data.[34]. The computed CH bond distances

evaluated at the SCF level are already very close to the experimental ones. Note that the

original MP2 CH distances reported by Irle and Lischka[8] overshoot the experimental ones

by about 0.01 Å; this is due to the fact that polarization functions on the hydrogen atoms

were not used at that time for computational limitations. Since we are mainly interested in

the geometry changes of the ring systems, we did not see any need to improve further the

C-H bonds. Calculated bond angles agree very well with experimental ones. Table I shows

the evolution of the main geometrical parameters, namely the single and double CC bonds
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for the thiophene and LiT molecules as functions of the basis set quality. The Bond Length

Alternations (BLA), commonly defined as the difference between these two CC distances, are

also given. Note that the geometry changes in the thiophene ring induced by the interaction

with the Li atom anticipate the quinonoid structures found in the higher PT oligomers.

Clearly, for the isolated thiophene molecule the MP2 geometrical parameters (distances

and angles) show a rather fast convergence with respect to basis set quality. This is par-

ticularly important for the convergence of the BLA (defined previously), which in the PT

polymer is the crucial geometrical parameter related to changes in the non-linear optical

properties [5],[6]. However, note that even for isolated thiophene, the AVDZ basis shows

some anomalous behavior, leading to slightly larger S1-C2, C2-C3 and C3-C4 bond lengths

than those obtained with the smaller basis sets; in particular, the C2-C3 and C3-C4 dis-

tances obtained with the AVTZ basis set are even smaller than those of the 6-311+G** basis

set.

As it is well-known, when the Li atom interacts with thiophene the charge transferred

from the metal to the ring induces an inversion of the BLA, that is, the original CC double

bonds of thiophene become “single bonds” while the single CC bond acquires some “double

bond” character. Three crucial geometrical facts related to the discussion of the interaction

energy must be pointed out: a) the MP2 optimizations performed with different basis sets,

although also leading to nearly constant BLA values around -0.035 Å, actually yield different

C2-C3 and C3-C4 distances, b) the distances of the Li atom to the three different sites (Li-

S1, Li-C2,Li-C3) on the ring show larger variations (0.03 to 0.04 Å) with respect to basis

set quality, in particular when going from AVDZ to AVTZ. c) in all cases the Li atom is

closer to the pair of carbon atoms adjacent to the sulphur site, but the difference between

the Li-C2 and Li-C3 distance also oscillates with respect to basis set quality. The C5S1C2
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and C2C3C4 optimized angles are practically independent of basis set quality. As always,

it would be desirable to achieve basis set convergence of the molecular properties; in this

direction the next natural step would be to obtain results with the even larger aug-cc-pV5Z

basis sets. However, note that the MP2/AVQZ calculations are already at the limit of what

can be achieved with present day computational resources, so that even the corresponding

CCSD(T)/AVQZ calculations are out of reach [35]. Keeping in mind these facts, we proceed

to the energetic analysis of the Li-T interaction.

B. MP2 and CCSD(T) ab initio interaction energies (IE) and BSSE corrections

Table II shows the total energies for LiT and the isolated fragments (Li atom and the

thiophene molecule at the MP2 optimized geometries), and the interaction energies of the Li-

T system using the MP2 and CCSD(T) approaches as a function of the basis set employed.

The basis-set-superposition-error (BSSE)-corrected interaction energies are also given. Sev-

eral interesting facts can be highlighted from this table. First of all, like in the previous

study by Irle and Lischka for dilithium-dithiophene, we find that the BSSE-uncorrected in-

teraction energies at the MP2 level vary quite a lot depending on the quality of the basis

set, from +1.71 kcal/mol to -11.5 kcal/mol. Also, it is somewhat surprising that the largest

MP2 BSSE-uncorrected interaction energy is found for the AVDZ basis set instead of the

AVQZ one. Nevertheless, when the BSSE correction is applied, the expected monotonic

increase for the MP2 interaction energy is recovered as the basis set quality improves; note

that the range of BSSE-corrected MP2 energies is nearly as large as that of the uncorrected

energies, but the BSSE decreases dramatically from 11.65 kcal/mol for the AVDZ basis set

to only 0.92 and 0.39 kcal/mol at the MP2/AVTZ and MP2/AVQZ levels, respectively. This

result might be related to the previously mentioned geometrical anomalies found for the LiT
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complex when described with the AVDZ basis set. We stress that only with the very large

AVTZ and AVQZ basis sets the Li-T complex becomes slightly stable at the MP2-BSSE

level of theory. These results show again the utmost importance of the most diffuse radial

orbitals as well as the essential role of the higher-angular momentum functions to address

this complex multicentric interaction. When analyzing the corresponding results at the

CCSD(T) level, two qualitative changes with respect to the MP2 results appear immedi-

ately: a) all the BSSE-uncorrected IE are negative (attractive) and the range in which they

vary is smaller, from -1.6 to -8.2 kcal/mol; b) a coherent increasingly attractive monotonic

behavior is observed with respect to basis set quality, even without the BSSE correction.

When the BSSE correction is applied a systematic decrease in the IE is observed and, as

could be expected, this correction gets smaller (from almost 6 kcal/mol with 6-31G∗∗ to only

0.73 kcal/mol with AVTZ) with increasing basis set quality.

Finally, let us conclude this section about ab initio results by saying that although the

CCSD(T) approach can be probably considered as one of the most reliable ab initio methods

when multi-configurational effects are negligible and when large basis sets are used, it is clear

that the results obtained here are far from being satisfactory. Our final value of (at least)

7.5 kcal/mol for the binding energy between the Li atom and the thiophene must be taken

with lot of care since a large variation of more than 3kcal/mol still appears when going from

CCSD(T)/AVDZ to CCSD(T)/AVTZ including BSSE; this represents a 66% increase in the

BSSE-corrected CCSD(T) interaction energy.

C. QMC results

Given the large variations found with both ab initio methods for the Li-T interaction en-

ergy, we decided to perform Fixed-Node Diffusion Monte Carlo (FN-DMC) simulations. The
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geometries used are those obtained at the MP2/AVTZ level both for the isolated thiophene

and for the LiT complex.

Figure 1 shows the evolution of the FN-DMC interaction energy as a function of the

number of Monte Carlo (MC) steps. Let us emphasize that the number of MC steps is

proportional to the CPU time needed to perform the calculation and is therefore a direct

indicator of the computational effort. As it can be seen, the simulations are quite intensive:

the maximum number of MC steps done here is about 2.1010 for the separate fragments as

well as for the LiT complex. To perform such a large number of steps, we exploit the maximal

efficiency of QMC approaches with respect to parallel computations (any QMC simulation

of length L can be divided into P shorter and independent simulations of length L/P ).

Typically, the calculations presented in this work have been done using 64 or 128 processors.

By looking at the convergence of the interaction energy as a function of the simulation time,

it is clear that to get converged results a quite large amount of computation is needed. To be

more precise, at up to 4.109 MC steps we are still in the transient regime where the IE mean

value displays a systematic drift in time. Only after this regime has passed the stationary

domain is reached and the IE is almost stabilized within a couple of kcal/mol.

Table III shows the final FN-DMC results obtained with our most extensive simulations.

For the sake of comparison, we also present the Hartree-Fock as well as the CCSD(T) values

obtained with the largest basis set (no BSSE corrections are reported since we just want to

compare total energies). As seen in the table the total energies obtained with FN-DMC are

excellent and, in any case, much better (lower) than the CCSD(T)/AVTZ values. For the Li

atom, knowing that the total correlation energy is estimated to be 0.04533 a.u.(e.g., Ref.[36])

we see that the FN-DMC calculation recovers about 99.5 ± 0.1 % of the correlation energy,

which is of course an excellent result. Note that in the case of the CCSD(T) calculation for
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this three-electron system and, because we are in the approximation where two electrons are

kept fixed in the innermost 1s atomic orbital, the CCSD(T) result is expected to converge

to the Hartree-Fock result and this is indeed what is observed. For the thiophene and the

Li-thiophene systems the FN-DMC are much lower than the CCSD(T) results. For example,

in the thiophene case the total energy at the CCSD(T) level is lower than the HF energy by

about 0.9 a.u, while at the FN-DMC level the energy value is lower than the CCSD(T) one

by an additional amount of about 0.6 a.u. Similar results are obtained for other systems.

These results, which are rather impressive, are cleary in favor of FN-DMC. However, to

be fair, some caution is needed here. Indeed, using a FN-DMC scheme the core electrons

are automatically correlated (they are part of the all-electron simulations). In constrast,

this is not the case for the CCSD(T) calculations performed by using (very) large basis

sets and by freezing the core electrons to avoid huge and untractable Hilbert spaces. As

a consequence, the frozen-core CCSD(T) total energies are significantly higher than in the

FN-DMC case. Various comparative studies, e.g.[27],[28], have shown that CCSD(T) and

FN-DMC calculations are of a much more similar quality when atomic cores play only a

marginal role (for example, when computing differences of molecular energies).

Now, it is important to comment in some detail the disagreement observed between

the FN-DMC interaction energy of +1.3 ± 1.7 kcal/mol and the ab initio BSSE-corrected

CCSD(T)/AVTZ value of −7.5 kcal/mol. A first important point we have to mention is

that we are in a situation where the exact wavefunctions for both the thiophene and the

Li-Thiophene molecular systems have a strong mono-configurational character. This point

is crucial for both theoretical approaches. For the CCSD(T) case it means that we do not

need to resort to a multiconfigurational variant of the coupled cluster approach and thus

avoid extremely expensive calculations. For the FN-DMC case, the mono-configurational
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character implies that the nodal patterns of the wavefunctions employed are expected to

be of good quality, a point that we shall comment further later. In the case of CCSD(T)

calculations the main source of error of the calculations is the use of a finite basis set

associated with a maximum orbital quantum number l. When dynamic correlation effects

are strong like in the present case, the convergence as a function of l is far from being

guaranteed. We stress again that the largest CCSD(T)calculations that can be done are

with the AVTZ basis set (356 atomic functions and lmax = 3). To go much further is

beyond present-day computational capabilities. Now, when looking at the behavior of the

BSSE-corrected values of the interaction energy as a function of the basis set size, see

Table II, it is clear that it is difficult to conclude on the validity of the final value of −7.5

kcal/mol. Regarding the Fixed-Node Diffusion Monte Carlo calculations, we consider that

the situation is less confusing. As already noted in Sec.III B the only error left in FN-

DMC when statistical fluctuations have been sufficiently reduced by making long enough

simulations is the fixed-node error. Here, the final statistical error is about 1.7 kcal/mol, so

that it can be considered sufficiently small for correctly discriminating between the CCSD(T)

and the FN-DMC results (a difference of about 9 kcal/mol). Accordingly, we just need to

focus on the systematic fixed-node error, which is directly related to the quality of the nodes

of the trial wavefunction employed. Numerical experience during the last twenty years has

shown that there seems to be a close relationship between the multi-configurational character

of the exact wavefunction and the topology of the nodal pattern.[37] When the wavefunction

is multi-configurational, the Hartree-Fock nodes are usually bad. To give an illustrative

example, in a recent calculation of the dissociation barrier of the O4 molecule dissociating

into two triplet O2 molecules [38] it has been found that “mono-configurational” nodes issued

from a HF calculation give a barrier of about 26. kcal/mol, while “multi-configurational”
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CASSCF-nodes lead to about 11. kcal/mol (more than two times smaller!), a value close to

the benchmark ACPF/AVTZ multireference one. On the other hand, when the wavefunction

is essentially mono-configurational it has been systematically observed that FN-DMC results

obtained with Hartree-Fock-like nodes are usually good.[39] In the FN-DMC applications

presented in this work, we have already noticed that all the wavefunctions have a strong

monoconfigurational character. Accordingly, it is reasonable to have some confidence in the

FN-DMC converged value and to conclude that the LiT complex is essentially unbound.

A last point which deserves to be mentioned is the possible role played by our particular

choice for the nuclear geometries. As mentioned before, all geometries used here for the FN-

DMC simulations are those optimized at the MP2/AVTZ level (which are nearly unchanged

when using the much larger AVQZ basis sets). It is clear that it would have been much more

satisfactory to use the optimal nuclear geometries of each approach, in this case the FN-DMC

optimized geometries for T and LiT. This is particularly important here since we have seen

that there exists a strong rearrangement of the atoms of the thiophene ring when doping

the system with the valence electron of the Li atom and, thus, the important dynamical

correlations effects introduced by CCSD(T) or FN-DMC are expected to be strongly coupled

to the nuclear geometry aspects. Unfortunately, geometry optimization with FN-DMC is

still in infancy [40],[41] and no stable and robust algorithm exists up to now. Regarding

CCSD(T) with very large basis sets, geometry optimizations are known to be too expensive

in practice and are completely out of reach in this case.

D. Changes in electron pairing of the thiophene under electronic doping

In this section we propose to visualize the change in electron pairing of the thiophene

ring when doped by the electron brought by the lithium atom. To do that we have employed
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the Electronic Pair Localization Function (EPLF) presented in detail in Sec.IV. Thanks to

EPLF we have at our disposal a unique tool for examining the local electron pairing. Let

us insist that since the EPLF’s have been calculated at the FN-DMC level (both for the

thiophene and for the LiT systems) and that the trial wavefunctions are expected to have

a “good” nodal pattern (Hartree-Fock nodes for nearly-monoconfigurational wavefunctions

as discussed above) the FN-DMC densities from which the the EPLF electron pairings are

extracted are supposed to be of a quite good quality. This remark has to be contrasted with

what happens with alternative tools found in the literature such as, e.g., the ELF (Electron

Localization Function) method[15],[16] or the AIM (Atoms In Molecules) approach [13],

which are usually based on much less accurate densities (for example, using Kohn Sham

orbitals).

Figures 2 and 3 present the EPLF for the thiophene ring without the lithium atom. The

contours of the EPLF are displayed in two different planes perpendicular to the molecular

plane in order to identify the nature of the bonding between the two types of carbon-carbon

bonds.

The two figures show a different EPLF topology for the two types of C-C bonds. In

Figure 2 we look at the central C-C bond (the bond opposite to the sulphur atom). For

this bond the maximum of EPLF is located on the C-C axis, which is typical of a single

bond. However, it can be observed that there are some high EPLF values (slightly smaller

than the maximum on the axis) in domains located on both sides of the molecular plane,

thus indicating an additional weak double-bond character. For the other C-C bond, Fig.3,

the EPLF has clearly two domains of maxima located on both sides of the molecular plane,

a pattern typical of a double bond. Let us emphasize that the EPLF allows very easily to

discriminate between different localization/delocalization regimes. Here, if the electrons were
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strongly delocalized between the various bonds, these two C-C bonds would be equivalent

and this would immediately appear in the EPLF figures. Clearly, the π electrons are here

not well delocalized over the three C-C bonds of thiophene.

Figures 4 and 5 display the contours of the EPLF for LiT in the two planes equivalent to

those used in figures 2 and 3. Of course, in the presence of the lithium atom the thiophene

ring is no longer planar and the planes considered are slightly different. In both figures

one can see that the EPLF, in both C-C bond regions, present two domains of maxima

corresponding to a strong double-bond character. As opposed to the isolated thiophene, the

topology of the three C-C bonds is now much more similar. Accordingly, it can be concluded

that the electron delocalization between the three carbon bonds is much stronger in LiT than

in thiophene alone. This result beautifully examplifies the fact that by injecting an electron

in the thiophene ring, the electronic structure of the doped system is qualitatively changed.

VII. SUMMARY

To summarize, the purpose of this work was essentially to get a precise evaluation

of the interaction energy between the thiophene molecule and a lithium atom by using

highly-correlated electronic structure calculations. This study follows previous works [7],[8]

which have shown that such a task is far from being trivial, essentially due to the charge

transfer occuring from the atom to the ring, which induces significant carbon-carbon bond

distance rearrangements. To understand and to quantify such effects is of great interest

since the Li-thiophene molecular system can be considered as the elementary building

block of doped polythiophene polymers, which are themselves viewed as prototype systems

for many technological applications (the so-called “plastic electronics”). Apart from the

MP2 calculations, which has been used for geometry optimizations with all the basis sets
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reported here, the two very accurate methods employed in this work are the ab initio

CCSD(T) approach with (very) large basis sets and the Fixed-Node Diffusion Monte Carlo

(FN-DMC) method. Note that for both approaches we are in a favorable situation since the

wavefunctions of the fragments, Li, thiophene and of the Li-thiophene molecular systems

have a strong mono-configurational character. For the CCSD(T) calculations we have

found a poor convergence of the interaction energy as a function of the basis set size. Our

“best” estimate for the interaction energy obtained with the largest basis set (AVTZ) is

-7.5 kcal/mol (after correction of the BSSE), a result which is not easy to trust, despite the

large-scale calculation involved (the CCSD(T)/AVTZ calculations for LiT involve about

1.5x107 CSF). For the FN-DMC case, the result is quite different since the interaction

energy found is +1.3 ± 1.7 kcal/mol, a result which essentially means that the Li-thiophene

system is unbound or perhaps weakly bound. In the FN-DMC approach, the only error left

at the end of the calculation (apart from the statistical error, which has been controlled

here) is the fixed-node error related to the quality of the nodes of the trial wavefunction

employed. The fact that the molecular systems studied have a strong mono-configurational

character implies that the nodal patterns are expected to be of a rather good quality.

Accordingly, the FN-DMC value obtained here is probably the most reliable result for the

interaction energy and the best value obtained so far.
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TABLE I: MP2 optimized geometries for thiophene and for the LiT complex as functions of the

atomic basis set employed; distances in angstroms and angles in degrees. BLA stands for Bond

Length Alternation (see text for the definition). Ring site numbering starts clockwise on the sulphur

atom (S1) and ends on the last carbon on the left (C5) of the ring. The number of uncontracted

atomic functions corresponding to each basis set for LiT is indicated in parentheses.
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6-31G∗∗ 6-311G∗ 6-311+G∗∗ AVDZ AVTZ AVQZ

(108) (128) (164) (178) (356) (668)

Thiophene

S1-C2 1.715 1.713 1.713 1.729 1.716 1.704

C2-C3 1.377 1.381 1.382 1.391 1.378 1.376

C3-C4 1.419 1.421 1.421 1.427 1.413 1.411

BLA 0.042 0.040 0.039 0.036 0.035 0.035

C5S1C2 angle 91.99 92.13 92.14 92.07 92.32 92.49

C2C3C4 angle 112.37 112.26 112.23 112.46 112.49 112.43

Li-Thiophene

S1-C2 1.773 1.771 1.771 1.792 1.767 1.759

C2-C3 1.428 1.432 1.431 1.437 1.424 1.421

C3-C4 1.393 1.395 1.394 1.402 1.389 1.386

BLA -.035 -.037 -.037 -.035 -.035 -.035

C5S1C2 angle 89.86 90.16 90.15 89.89 90.25 90.47

C2C3C4 angle 112.89 112.87 112.88 113.13 113.07 113.02

Li-S1 2.609 2.549 2.545 2.582 2.546 2.540

Li-C2 2.153 2.130 2.128 2.163 2.138 2.137

Li-C3 2.189 2.187 2.189 2.229 2.185 2.181

S1C2C3C4 dihedral 17.22 16.31 16.33 16.39 15.52 15.48
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TABLE II: Total energies (a.u.) using the MP2 and CCSD(T) approaches as a function of the

atomic basis set employed. The number of atomic functions corresponding to each basis set is

indicated in parentheses. The interaction energies De and their BSSE-corrected values are given

in kcal/mol.

6-31G∗∗ 6-311G∗ 6-311+G∗∗ AVDZ AVTZ AVQZ

(108) (128) (164) (178) (356) (668)

MP2

Li -7.431235 -7.432026 -7.432027 -7.432425 -7.432705 -7.432718

T -551.948437 -552.007218 -552.044170 -552.018724 -552.208032 -552.269648

LiT -559.376948 -559.442097 -559.479422 -559.469513 -559.647414 -559.709108

De 1.71 -1.79 -2.02 -11.52 -4.19 -4.23

LiT(BSSE) -559.367049 -559.433185 -559.473034 -559.450940 -559.645948 -559.708499

DBSSE
e 7.92 3.80 1.98 0.13 -3.27 -3.84

CCSD(T)

Li -7.431235 -7.432030 -7.432026 -7.432425 -7.432679 -

T -552.012998 -552.070265 -552.109046 -552.084168 -552.276634 -

Li + T -559.444233 -559.502291 -559.541072 -559.516593 -559.709313 -

LiT -559.446748 -559.511059 -559.550114 -559.526816 -559.722438 -

De -1.58 -5.50 -5.67 -6.41 -8.23 -

LiT(BSSE) -559.437238 -559.502312 -559.543821 -559.523628 -559.721271 -

DBSSE
e 4.39 -0.01 -1.72 -4.41 -7.50 -
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TABLE III: Total and interaction energies of the Li-T system at the HF, CCSD(T)/AVTZ, and

FN-DMC levels. All energies in atomic units, unless otherwise stated.

Hartree-Fock CCSD(T)/AVTZ FN-DMC

Li -7.43268 -7.43268 -7.47779(5)

T -551.37996 -552.27663 -552.9157(17)

Li + T -558.81264 -559.70931 -560.3929(17)

LiT -558.79460 -559.72244 -560.3908(20)

De(kcal/mol) +11.34 -8.23 +1.3 ± 1.7
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FIGURE CAPTIONS

• Fig.1 Convergence of the interaction energy computed with FN-DMC as a function of

the number of Monte Carlo steps.

• Fig.2 Contour plot of the EPLF of thiophene in a plane perpendicular to the two

symmetry planes of the molecule and containing two carbon atoms.

• Fig.3 Contour plot of the EPLF of thiophene in a plane different from the plane of

figure 2, perpendicular to the molecular plane and containing two bonded carbon

atoms.

• Fig.4 Contour plot of the EPLF of LiT in a plane analogous to the plane of figure 2

• Fig.5 Contour plot of the EPLF of LiT in a plane analogous to the plane of figure 3
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FIG. 2:



38

FIG. 3:
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FIG. 4:
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FIG. 5:


