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Traveling waves for nonlinear Schrodinger equations with
nonzero conditions at infinity, II

David CHIRON* and Mihai MARIS T

Abstract

We present two constraint minimization approaches to prove the existence of traveling
waves for a wide class of nonlinear Schrodinger equations with nonvanishing conditions at
infinity in space dimension N > 2. Minimization of the energy at fixed momentum can
be used whenever the associated nonlinear potential is nonnegative and it gives a set of
orbitally stable traveling waves. Minimization of the action at constant kinetic energy can
be used in all cases, but it gives no information about the orbital stability of the set of
solutions.

Keywords. nonlinear Schrédinger equation, nonzero conditions at infinity, traveling
wave, Gross-Pitaevskii equation, cubic-quintic NLS, constrained minimization, Ginzburg-
Landau energy.
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1 Introduction

We study a class of special solutions to the nonlinear Schrédinger equation

(1.1) i%—f+A<I>+F(|<I>|2)<I>:0 in RV,
where ® is a complex-valued function on R" satisfying the ”boundary condition” |®| — 7
as |z| — o0, 7o > 0 and F is a real-valued function on R such that F(r3) = 0.

Equation (1.1), with the considered non-zero conditions at infinity, arises in the modeling
of a great variety of physical phenomena such as superconductivity, superfluidity in Helium II,
phase transitions and Bose-Einstein condensate ([1], [3], [4], [5], [18], [27], [29], [30], [31], [32],
[44]). In nonlinear optics, it appears in the context of dark solitons ([35], [36]). Two important
model cases for (1.1) have been extensively studied both in the physical and mathematical
literature: the Gross-Pitaevskii equation (where F'(s) = 1—s) and the so-called ” cubic-quintic”
Schrodinger equation (where F(s) = —aj + ags — ass®, a1, as, o are positive and F has two
positive roots).

In contrast to the case of zero boundary conditions at infinity (when the dynamics asso-
ciated to (1.1) is essentially governed by dispersion and scattering), the non-zero boundary
conditions allow a much richer dynamics and give rise to a remarkable variety of special solu-
tions, such as traveling waves, standing waves or vortex solutions.

Using the Madelung transformation ®(x,t) = /p(x, t)e?@ (which is well-defined in any
region where ® # 0), equation (1.1) is equivalent to a system of Euler’s equations for a
compressible inviscid fluid of density p and velocity 2V6. In this context it has been shown
that, if F is C! near r and F'(r2) < 0, the sound velocity at infinity associated to (1.1) is
vs = roy/—2F'(r3) (see the introduction of [41]).

If F'(r2) < 0 (which means that (1.1) is defocusing), a simple scaling enables us to assume
that 7o = 1 and F’(r) = —1; we will do so throughout the rest of this paper. The sound
velocity at infinity is then vy = /2.

Equation (1.1) has a Hamiltonian structure. Indeed, let V(s) = fsl F(7)dr. It is then easy
to see that, at least formally, the ”energy”

(1.2) E(®) :/RN yvq>|2dx+/RN V(|9[2) da

is conserved. Another quantity which is conserved by the flow of (1.1) is the momentum,
P(®) = (P1(®),...,Pn(P)). A rigorous definition of the momentum will be given in the next
section. If @ is a function sufficiently localized in space, we have Pp(®) = [gn (i®, , @) du,
where (-,-) is the usual scalar product in C ~ R2.

In a series of papers (see, e.g., [3], [4], [27], [31], [32]), particular attention has been paid
to the traveling waves of (1.1). These are solutions of the form ®(x,t) = ¥ (z + ctw), where
w € SV~ is the direction of propagation and ¢ € R* is the speed of the traveling wave. They
are supposed to play an important role in the dynamics of (1.1). We say that ¢ has finite
energy if Vip € L2(RN) and V (|¢|?) € L}Y(RY). Since the equation (1.1) is rotation invariant,

we may assume that w = (1,0,...,0). Then a traveling wave of speed ¢ satisfies the equation
. oY 2N . N
(1.3) zc%+A1/J+F(|w| =0 in R™.
1

It is obvious that a function 1 satisfies (1.3) for some velocity c if and only if 1)(—z1, 2') satisfies
(1.3) with ¢ replaced by —c. Hence it suffices to consider the case ¢ > 0.



In view of formal computations and numerical experiments, it has been conjectured that
finite energy traveling waves of speed c exist only for subsonic speeds: ¢ < vs. The nonexistence
of traveling waves for supersonic speeds (¢ > v,) has been proven first in [28] in the case of the
Gross-Pitaevskii equation, then in [41] for a wide class of nonlinearities. More qualitatively, the
numerical investigation of the traveling waves of the Gross-Pitaevskii equation (F'(s) =1 —s)
has been carried out in [31]. The method used there was a continuation argument with respect
to the speed, solving (1.3) by Newton’s algorithm. Denoting Q(v) = P;(¢) the momentum of
1) with respect to the x1—direction, the representation of solutions in the energy vs. momentum
diagram gives the following curves (the straight line is the line E = v4Q).

E E
E=¢,Q

/'/ >0
c—>0 P/
//\
A
|

0 Q

77 C=>Cq

Figure 1: (E, P) diagrams for (GP): (a) dimension N = 2; (b) dimension N = 3.

The rigorous proof of the existence of traveling waves has been a long lasting problem and
was considered in a series of papers, see [9], [8], [14], [7], [43]. At least formally, traveling
waves are critical points of the functional E — c¢@). Therefore, it is a natural idea to look
for such solutions as minimizers of the energy at fixed momentum, the speed ¢ being then
the Lagrange multiplier associated to the minimization problem. In the case of the Gross-
Pitaevskii equation, in view of the above diagrams, this method is expected to give the full
curve of traveling waves if N = 2 and only the lower part that lies under the line £ = v,Q if
N = 3 (because it is clear that minimizers of E at fixed () cannot lie on the upper branch).
On a rigorous level, minimizing the energy at fixed momentum was used in [8] to construct a
sequence of traveling waves with speeds ¢, — 0 in dimension N > 3. Minimizing the energy
E at fixed momentum () has the advantage of providing orbitally stable traveling waves, and
this is intimately related to the concavity of the curve ) — E. On the other hand, if Q@ — E
is convex, as it is the case on the upper branch in figure 1 (b), one expects orbital instability.

More recently, the curves describing the minimum of the energy at fixed momentum in
dimension 2 and 3 have been obtained in [7], where the existence of minimizers of E under the
constraint () = constant is also proven for any g > 0 if N = 2, respectively for any ¢ € (g, 00)
(with go > 0) if N = 3. The proofs in [7] depend on the special algebraic structure of the
Gross-Pitaevskii nonlinearity and it seems difficult to extend them to other nonlinearities.
The existence of minimizers has been shown by considering the corresponding problem on
tori (R/ 2n7TZ)N , proving a priori bounds for minimizers on tori, then passing to the limit as
n — oo. Although this method gives the existence of minimizers on RY, it does not imply the
precompactness of all minimizing sequences, and therefore leaves the question of the orbital
stability of minimizers completely open.

The existence of traveling waves for (1.1) under general conditions on the nonlinearity, in



any space dimension N > 3 and for any speed ¢ € (0, vs) has been proven in [43] by minimizing
the action E — ¢@Q under a Pohozaev constraint. The method in [43] cannot be used in space
dimension two (there are no minimizers under Pohozaev constraints). Although the traveling
waves obtained in [43] minimize the action F — ¢@ among all traveling waves of speed ¢, the
constraint used to prove their existence is not conserved by the flow of (1.1) and consequently
it seems very difficult to prove their orbital stability (which is expected at least for small speeds
c).

In the present paper we adopt a different strategy. If the nonlinear potential V' is nonnega-
tive, we consider the problem of minimizing the energy at fixed momentum ) = ¢ and we show
that in any space dimension N > 2 there exist minimizers for any ¢ € (qo,00), with go > 0.
The minimizers are traveling waves and their speeds are the Lagrange multipliers associated
to the variational problem. These speeds tend to zero as ¢ — oo. If N = 2 and F has a good
behavior near 1 (more precisely, if assumption (A4) below is satisfied and the "nondegeneracy
condition” F”(1) # 3 holds), we prove that go = 0 and that the speeds of the traveling waves
that we obtain tend to vs as ¢ — 0. For general nonlinearities we obtain the properties of
the minimum of the energy vs. momentum curve and this is in agreement with the results in
[31], [32] and [7]. We also prove the precompactness of all minimizing sequences for the above
mentioned problem, which implies the orbital stability of the set of traveling waves obtained
in this way.

If V' achieves negative values (this happens, for instance, in the case of the cubic-quintic
NLS), the infimum of the energy in the set of functions of constant momentum is always
—oo. In this case we minimize the functional F — @) in the set of functions 1 satisfying
Jrw |V4|? dz = k. In space dimension N > 2 we prove that minimizers exist for any k in some
interval (ko, ko) and, after scaling, they give rise to traveling waves. Moreover, if N = 2 and
F behaves nicely near 1 we have ky = 0 and the speeds of traveling waves obtained in this way
tend to vs as k — 0. Let us emphasize that the result of [43], which holds for any N > 3,
does not require any sign assumption on the potential V.

In space dimension two, even if V takes negative values it is still possible to find local
minimizers of the energy under the constraint ) = ¢ = constant if q is not too large. If F
satisfies assumption (A4) below and F”(1) # 3 this can be done for any ¢ in some interval
(0, goo) and the speeds of traveling waves obtained in this way tend to vs as ¢ — 0. Moreover,
we get the precompactness of all minimizing sequences, and consequently the orbital stability
of the set of local minimizers.

Our results cover as well nonlinearities of Gross-Pitaevskii type and of cubic-quintic type.
To the best of our knowledge, all previous results in the literature about the existence of
traveling waves for (1.1) in space dimension two are concerned only with the Gross-Pitaevskii
equation and the proofs make use of the specific algebraic properties of this nonlinearity.

The main disadvantage of the present approaches is that although we get minimizers for
any momentum in some interval (gp,o0) or (0, ¢so) or for any kinetic energy in some interval
(ko, kxo), the speeds of the traveling waves obtained in this way are Lagrange multipliers, so
we cannot guarantee that these speeds cover a whole interval. However, in all cases it can be
proved that we get an uncountable set of speeds.

One might ask whether there is a relationship between the families of traveling waves
obtained from different minimization problems. In dimension N > 3 we prove that all traveling
waves found in the present paper also minimize the action EF—c@ under the Pohozaev constraint
considered in [43]. The converse is, in general, not true. For instance, in the case of the Gross-
Pitaevskii equation in dimension N > 3, it was proved in [7, 21] that there are no traveling
waves of small energy, and we generalize that result in the present paper; this implies that
there is ¢y < v, such that there are no traveling waves of speed ¢ € (¢, vs) which minimize the



energy at fixed momentum. However, if N > 3 the existence of traveling waves as minimizers
of E—cQ under a Pohozaev constraint has been proven for any ¢ € (0, vs). This is in agreement
with the energy-momentum diagram of figure 1 (b), where the traveling waves with speed ¢
close to the speed of sound vs are expected to be on the upper branch. We also prove that
all minimizers of the energy at fixed momentum are (after scaling) minimizers of F — @ at
fixed kinetic energy. It is an open question whether the converse is true or not. An affirmative
answer to this question would imply that the set of speeds of traveling waves which minimize
the energy at fixed momentum is an interval. However, this last fact might not be true, at least
if we do not impose further conditions on the nonlinearity F. Indeed, in the case of general
nonlinearities (as those studied in dimension one in [15]), the two-dimensional traveling waves
o (1.1) have been studied numerically in [17]. The numerical algorithms in [17] allow to
perform the constrained minimization procedures used is the present paper. It appears that
for N = 2, even if the potential V is nonnegative, it is not true in general that minimizing £
at fixed (Q or minimizing F — @) at fixed kinetic energy provides a single interval of speeds; for
instance, it may provide the union of two disjoint intervals.

We will consider the following set of assumptions:

(A1) The function F is continuous on [0,00), C! in a neighborhood of 1, F(1) = 0 and
F'(1) <O0.

(A2) There exist C > 0 and py < 725 (With py < oo if N = 2) such that |F(s)| <
C(1+ sPo) for any s > 0.

(A3) There exist C, ap > 0 and 7, > 1 such that F(s) < —Cs* for any s > r,.

(A4) Fis C? near 1 and
F(s)=—(s—1)+ %F”(l)(s —1)24+0((s —1)* for s close to 1.

If (A1) and (A3) are satisfied, it is explained in the introduction of [43] how it is possible
to modify F is a neighborhood of infinity in such a way that the modified function F satisfies
also (A2) and (1.1) has the same traveling waves as the equation obtained from it by replacing
F with F. If (A1) and (A2) hold, we get traveling waves as minimizers of some functionals
under constraints. However, if (A1) and (A3) are verified but (A2) is not, the above argument
implies only the existence of such solutions, and not the fact that they are minimizers.

If F' satisfies (A1), using Taylor’s formula for s in a neighborhood of 1 we have
1 1
(1.4) V(s) = 5V”(l)(s — 124 (s—1)?%e(s—1) = PG D2+ (s —1)%(s — 1),
where ¢(t) — 0 ast — 0. Hence for |¢| close to 1, V(|¢)|?) can be approximated by the

Ginzburg-Landau potential §(|y[? — 1)2.

Energy and function spaces. We fix an odd function ¢ € C*°(R) such that ¢(s) = s
for s € [0,2],0 < ¢’ < 1on R and ¢(s) = 3 for s > 4. If assumptions (A1) and (A2) are
satisfied, it is not hard to see that there exist C7, C9, C'3 > 0 such that
(15) V(s)] < C1(s—1)% for any s < 9;

' in particular, |V (¢?(7))| < C1(¢*(7) — 1)? for any T,
(1.6) [V (b) — V(a)| < Ca|b — a] max(aP®, bP°) for any a, b > 2.

Given 1 € H! (RY) and an open set Q C RY, the modified Ginzburg-Landau energy of ¢ in
Q) is defined by

(17) EGuw) = [ 1V do+ [ (A0 -1)° do.



We simply write Egr (1) instead of Egg (¢). The modified Ginzburg-Landau energy will play
a central role in our analysis.

We denote HY(RY) = {y € L} (RN) | Vi € L2 (RY)} and
£ = {pe H'RY) [ L(|¥]) 1€ L*(RY)}

= {Ye H'(R") | Egr(v) < oo}.

Let DY2(RY) be the completion of C2°(RY) for the norm ||v|| = Vvl L2y and let

(1.8)

X = {ueDYRY)| (1 +u]) - 1€ L*RN)}

(1.9) — {ue B'®Y)|ue L (RY), Bo(l+u) <oo} N >3.

If N > 3 and ¢ € &, there exists a constant zg € C such that ¢ — zy € L2*(RN), where
2" = % (see, for instance, Lemma 7 and Remark 4.2 pp. 774-775 in [24]). It follows
that ¢(|¢]) — ¢(]20]) € L> (RYN). On the other hand, the fact that Egr (1)) < oo implies
o([¢]) —1 € L2(RYN), thus necessarily ¢(|zo|) = 1, that is |29| = 1. Then it is easily seen that
there exist g € [0,27) and v € X, uniquely determined by 1, such that 1) = € (1 4 u). In
other words, if N > 3 we have £ = {¢®(1 +u) | ap € [0,27), u € X}.

It is not hard to see that for N > 2 we have

(1.10) £ ={y:RY — C| ¢ is measurable, |¢| — 1 € L*(R"), V¢ € L*(R")}.

Indeed, we have |@?(|¢)|) — 1| < 4] [¢] — 1|, hence p*(|¢]) — 1 € L*(RY) if || — 1 € L*(RY).
Conversely, let ¢ € £. If N = 2, it follows from Lemma 2.1 below that [1/|> — 1 € L?(R?) and
we have | || — 1| = Wlﬁ‘ > = 1] < ||f* = 1|. If N > 3, we know that ¢(|¢)]) — 1 € L*(RY)

-
and 0 < [y — o([]) < [W[Lgyzey < 2(19] = Digy>2y < 2| [ = 1] 2 L{jyjz2y and the last
function belongs to L2(R™) by the Sobolev embedding. Moreover, one may find bounds for
[ 14| = 1| L2(mavy in terms of Egr (1) (see Corollary 4.3 below).

Proceeding as in [25], section 1, one proves that & C L? + L>*(RY) and that £ endowed
with the distance

(L.11)  de(d1,92) = |1 — Yol poqpeommy + IVY1 — Vol 2wy + [ [901] = [Yo [ L2 mv)

is a complete metric space. We recall that, given two Banach spaces X and Y of distributions
on RY, the space X + Y with norm defined by |lw| x4y = inf{||z|x + lyly |w =2+ y,z €
X,y € Y} is a Banach space.

We will also consider the following semi-distance on &:

(1.12) do (11, ¥2) = V1 — Vbol L2y + [ [¥1] = [92] (| 2wy

If 41,19 € € and do(v1,¥2) = 0, then we have [1)1| = |1)2| a.e. on RY and 1)1 — 5 is a constant
(of modulus not exceeding 2) a.e. on RY.

In space dimension N = 2, 3,4, the Cauchy problem for the Gross-Pitaevskii equation has
been studied by Patrick Gérard ([24, 25]) in the space naturally associated to that equation,
namely

E = {y € H, (R") | V¢ € L*RN),[¢* — 1 € L*(RY)}
endowed with the distance
dg (Y1, ¥2) = [[¢1 — Yol 2y e @y + IV = Vb 2y + | 11 * = [02]? | 2wy

If N =23 or 4 it can be proven that E = £ and the distances d¢ and dg are equivalent on
€. Global well-posedness was shown in [24, 25] (see section 7) if N € {2,3} or if N =4 and



the initial data is small. In the case N = 4, global well-posedness for any initial data in E was
recently proven in [34].

Notation. Throughout the paper, £V is the Lebesgue measure on RY and H?* is the
s—dimensional Hausdorff measure on RY. For z = (x1,...,zy) € RY, we denote 2/ =
(w2,...,zy5) € RV~ We write (21, 29) for the scalar product of two complex numbers 21, 2o.
Given a function f defined on RN and X, ¢ > 0, we denote

(1.13) Prale) =1 (31 2).

If 1 <p < N, we write p* for the Sobolev exponent associated to p, that is z% = % — %
Main results. Our most important results can be summarized as follows.

Theorem 1.1 Assume that N > 2, (A1) and (A2) are satisfied and V> 0 on [0,00). For
q >0, let

Emin(q) = inf{E(®) | ¢ € £, Q(¥)) = q}.
Then:

(i) The function Ep, is concave, increasing on [0,00), Emin(q) < vsq for any g > 0, the
right derivative of Epmin at 0 is vs, and Enyin(q) — 0o and E%"(q) — 0 as ¢ — 0.

(i1) Let qo = inf{qg > 0 | Enin(q) < vsq}. For any q > qo, all sequences (¢¥n)n>1 C €
satisfying Q(n) — q and E(Yy) — Enin(q) are precompact for dy (modulo translations).

The set Sq ={¢ € £| Q) = q, E(¥) = Emin(q)} is not empty and is orbitally stable (for
the semi-distance dy) by the flow associated to (1.1).

(iii) Any v, € Sy is a traveling wave for (1.1) of speed c(vy) € [dT Enmin(q),d” Emin(q)],
where we denote by d~ and d* the left and right deriatives. We have c¢(1q) — 0 as ¢ — .

(iv) If N > 3 we have always qo > 0. Moreover, if N = 2 and assumption (A4) is satisfied,
we have gy = 0 if and only if F"(1) # 3, in which case c(1q) — vs as ¢ — 0.

If V' achieves negative values, the infimum of E on the set {¢p € € | Q(¢p) = ¢} is —o0
for any ¢. In this case we prove the existence of traveling waves by minimizing the functional
I() = =Q) + Jg~ V([¢[*) da (or, equivalently, the functional E — Q) under the constraint
fRN |V|? dx = k. More precisely, we have the following results:

Theorem 1.2 Assume that N > 2 and (A1), (A2) are satisfied. For k > 0, let

Lnin (k) = inf {1(1/;) |y e, /RN V|2 da = k}

Then there is koo € (0,00] such that the following holds:

(i) For any k > koo, Lmin(k) = —oo. The function Ly, is concave, decreasing on [0, k),
Lnin(k) < —k/v? for any k > 0, the right derivative of I at 0 is —1/v%, and I”“T"(k) — —00
as k — oo.

(ii) Let kg = inf{k > 0 | Lnin(k) < —k/v2} € [0,ks]. For any k € (ko, ko), all
sequences (Yn)n>1 C & satisfying [gn [Vn|*dz — k and I(¢n) —> Imin(k) are pre-
compact for dy (modulo translations). If v, € & is a minimizer for In,(k), there exists
c=c(yy) € [\/—1/d+lmm(k), \/—1/d*Imm(k:)] such that V() is a non constant traveling
wave of (1.1) of speed c(1y).




(iii) We have koo < 00 if and only if (N =2 and infV < 0). If koo = 00, the speeds of the
traveling waves obtained from minimizers of Lyin(k) tend to 0 as k — oco.

(iv) For N > 3, we have ko > 0. If N = 2 and assumption (A4) is satisfied we have
ko = 0 if and only if F"(1) # 3, in which case the speeds of the traveling waves obtained from
minimizers of Imin(k) tend to vs as k — 0.

In space dimension two, the tools developed to prove Theorem 1.2 enable us to find min-
imizers of F at fixed momentum on a subset of £ even if V' achieves negative values. We
have:

Theorem 1.3 Assume that N = 2 and that (A1), (A2) are satisfied. Let

s in =q an Hdax .
Bhl0) = int { (W) | € €. Q) = and [ V([ude >0}

Then:

(i) The function EF s concave, nondecreasing on [0, 00), Ef (q) < wsq, dT Egun(O) = v

min min

and E* (q) < koo for any q > 0, where koo is as in Theorem 1.2.

(ii) Let qg = 1nf{q >0 ‘ (q) < vsq} € [0,00] and qoo = sup{¢g > 0 ‘ (q) <
koo} € (0,00]. Then qO < qgo and for any q € (qg,qgo), all sequences (Yn)n>1 C & satisfying
Q(n) — q and E(¢y,) — Efnm( ) are precompact for dy (modulo translations).
The set Sg ={vef|QW) =q E¥)= Efmn( )} is not empty and is orbitally stable by
the flow of (1.1) for the semz’-distance dp.

mzn mzn

(111) Any g € S‘j verifies [go V(|$g|?)dz > 0, hence minimizes E under the constraint
Q = q in the open set {w € £ | [go V(lw|?)dx > 0}. Therefore, it is a traveling wave for (1.1)

of speed c(iby) € [d*EY,, (q),d™EY, ().

min min

(iv) If assumption (A4) is satisfied, we have qg = 0 if and only if F"(1) # 3, and in this
case c(hg) — vs as ¢ — 0.

We may observe that in Theorem 1.2 it may happen that ky = koo, and then (ii) never
occurs. Statements (iii) and (iv) in Theorem 1.2 provide sufficient conditions to have kg < koo
Actually, this is always the case if N > 3. In the case N = 2, we have kg < koo if inf V > 0,
or if (inf V' < 0, F verifies assumption (A4) and F”(1) # 3). Notice that the main physical
example of nonlinearity satisfying inf V' < 0 is the cubic-quintic nonlinearity, for which one has
F"(1) # 3. In the same way, in Theorem 1.3 it may happen that qg = ¢%, in which case (ii)

never holds, but here again, under assumption (A4), this is possible only if F”(1) = 3.

We conclude with a result concerning the nonexistence of small energy solutions to (1.3).
This is a sharp version of a result proven in [7] for the Gross-Pitaevskii nonlinearity in dimension
N = 3, then extended to N >4 in [21]. The cases where go > 0, ko > 0 or qg > 0 in the above
theorems follow directly from this result.

Proposition 1.4 Assume that N > 2 and that F verifies (A1) and ((A2) or (A3)). Suppose
that either

e N >3, or

o N =2, F satisfies (A4) and F"(1) = 3.
The following holds.

(i) There is k. > 0, depending only on N and F, such that if ¢ € [0,vs] and if U € € is a
solution to (1.3) satisfying [gn |VU|*dz < ki, then U is constant.



(ii) Assume, moreover, that F satisfies (A2) with py < % or F satisfies (A3). There is
L. >0, depending only on N and F', such that any solution U € &€ to (1.3) with ¢ € [0,vs] and

fRN (|U]2 — 1)2 dx < £, is constant.

Outline of the paper. In the next section we give a convenient definition of the mo-
mentum and we study its basic properties. In section 3 we present a regularization procedure
which enables us to eliminate the small-scale topological defects of functions in £. The tools
introduced in sections 2 and 3 will be crucial for the variational machinery developed later. In
section 4 we consider the problem of minimizing the energy at fixed momentum and we prove
Theorem 1.1. We also develop some analytical tools that will be useful elsewhere. In section 5
we consider the problem of minimizing the functional F — ) when the kinetic energy is fixed
and we prove Theorem 1.2. Section 6 is devoted to the proof of Theorem 1.3. The orbital
stability of the set of traveling waves provided by Theorems 1.1 and 1.3 is proven in section
7. In section 8 we investigate the relationship between the traveling waves given by Theorems
1.1, 1.2, 1.3 above and those found in [43]. In section 9 we show that if the stationary variant
of (1.1) admits nontrivial solutions, the traveling waves found in the present paper converge to
the ground states of the stationary equation as ¢ — 0. The small energy solutions are studied
in section 10, where we prove Proposition 1.4.

2 The momentum

The momentum (with respect to the x; direction) should be a functional defined on € whose
?Gateaux differential”! is 2i0,,. In dimension N > 3, it has been shown in [43] how to define
the momentum on & (and, consequently, on £). In this section we will extend that definition
in dimension N = 2.

It is clear that on the affine space 1 + H'(R") C &, the momentum should be defined by
Q1+ u) = Jgw (itg,,u) dz. In order to define the momentum on the whole &, we introduce
the space Y = {050 | ¢ € H' (RN)}. Tt is easy to see that J endowed with the norm
10z, 8lly = [Vl L2(mvy is a Hilbert space.

In dimension N > 3, it follows from Lemmas 2.1 and 2.2 in [43] that for any u € X we have
(itgy,u) € LYRN) 4+ Y. If N >3 and ¥ € £, we have already seen there are v € X and g €
[0,27) such that ¢ = €™ (1 + u). An easy computation gives (it);,, %) = Im(ugz,) + (iug,,u)
and it is obvious that Im(us,) € Y, thus (it),,, ) € LY(RY) + Y. The next Lemma shows
that a similar result holds if N = 2.

Lemma 2.1 Let N=2. For any ) € £ we have |1|?> —1 € L*(R?) and (it)5,,¢) € L*(R?)+ .
Proof. The following facts, borrowed from [12], will be useful here and in the sequel: for

any g € [2,00) there is Cy > 0 such that for all ¢ € L} (R?) satisfying V¢ € L*(R?) and
L2(supp($)) < 0o we have

2 1—2
(21) 19llz0e2) < CallVl ds ey IV

(see inequality (3.12) p. 108 in [12]). Since V¢ = 0 a.e. on {¢ = 0}, (2.1) and the Cauchy-
Schwarz inequality give

(2.2) 9]l Larz) < Cqll Vol L2mz) (£2({o(x) # 0}))% :

"We did not introduce a manifold structure on &, although this can be done in a natural way, see [24, 25].
However, it will be clear (see (2.11)) what we mean here by ” Gateaux differential.”




Notice that (2.2), which is a variant of inequality (3.10) p. 107 in [12], holds for any ¢ € [1, c0).
Let b € £. It is clear that

2.3 2 _ 1) dy = 2 —1)2%dx < 0.
(2.3) Amqﬂw ) AMQ&MWD 2 du <

Obviously, £2({|1| > 2}) < oo (because Egr (1) < 0o) and |1 —1 < C(|1h|—3)% on {|| > 2}.
Using (2.2) for ¢ = (|¢| — 2); (which satisfies [V¢| < \V¢|]1{MZ%} a.e.) we get

3\4 3
(2.4) A¢>%OM2—U2@hEC/<W4—2> Mﬁ“ﬂvw%amﬂ?HW42§D<oo
+

Thus [¢|> — 1 € L?(R?).

It follows from Theorem 1.8 p. 134 in [25] that there exist w € H!(R?) and a real-valued
function ¢ on R? such that ¢ € L2 (R?), 9% € L*(R?) for any o € N? with |a| > 1 and
(2.5) Y =€+ w.

A simple computation gives

0 0 ; 0P .
(26) (i 0) = =g+ o ({i0,6)) = 2(22 6, w0) + (00, ).

The Cauchy-Schwarz inequality implies that (¢, e, w) and (iw,,,w) belong to L'(R2). It is
obvious that g—i € ). We have (iw, ¢®) € L?(R?) and

O (G, %)) = (152 69) + (w, 2.0%),

dx; Ox; Oz
The fact that w and 887‘@ belong to H'(R?) and the Sobolev embedding give w, g% € LP(R?) for
any p € [2,00), hence (w, %eid’) € LP(R?) for any p € [1,00). Since <igT“;,ei¢’> € L*(R?), we
get % ((iw, e?)) € L*(R?), hence (iw,e”?) € H'(R?) and consequently 8%1 ((iw, e?)) € V.
The proof of Lemma 2.1 is complete. U

For v € L'(RY) and w € Y, let L(v + w) = [gn v(z)dz. It follows from Lemma 2.3 in
[43] that L is well-defined and that it is a continuous linear functional on L'(RY)+ ). Taking
into account Lemma 2.1 and the above considerations, for any N > 2 we give the following

Definition 2.2 Given ¢ € &, the momentum of ¥ with respect to the x1—direction is

Q(¢) = L((l%u?@)

Notice that the momentum (with respect to the z;—direction) has been defined in [43] for
functions v € X by Q(u) = L((i%,u)). If ¢ = e’ (1 +u), it is easy to see that Q(¢) = Q(u).

If ¢ € & is symmetric with respect to z; (in particular, if ¢ is radial), then Q(v) =
Q(Y(—z1,2)) = —Q(¥), hence Q(¢) = 0.

If ¥ € £ has a lifting ¥ = pe’ with p2 —1 € L2(RN) and 0 € H*(RN) (note that if
2 < N < 4 we have always [1)|?> — 1 € L2(RY) by (1.10) and the Sobolev embedding), then

(2.7) mw=Leﬁ%n:;AJ&—n@wm

The next Lemma is an ”integration by parts” formula.
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Lemma 2.3 For any ¢ € € and v € HY(RYN) we have (it)y,,v) € LYRN), (i), vy,) €
L' (RN)+Y and

(2.8) L({ithey v) + (ith, v5,)) = 0.

Proof. If N > 3 this follows immediately from Lemma 2.5 in [43]. We give the proof in the
case N = 2. The Cauchy-Schwarz inequality implies (it),,,v) € L'(R?). Let w € H'(RY) and
¢ be as in (2.5), so that ¢ = ¢/ + w. Then

(29) (1) = o ((06,0)) + (Brei®,0) + (i, 2,

From the Cauchy-Schwarz inequality we have {(¢,,e'®,v) € L'(R?) and (iw,v,,) € L'(R?).
As in the proof of Lemma 2.1 we obtain (ie’?,v) € H'(R?), hence 8%1 ((ie*?,v)) € Y. We
conclude that (i), v,,) € LY(RYN) + Y. Using (2.5), (2.9) and the definition of L we get

E({i503,0) + (00, 0)) = Dl ) + (i 0)) = [ (i 0) + (i, d
and the last quantity is zero by the standard integration by parts formula for functions in
H'(R?) (see, e.g., [10] p. 197). O

Corollary 2.4 Let 11, 1o € £ be such that 1y — 1y € L>(RY). Then

O Oy
. - < |l — AL
2100 1@ - @)l < I = vallawy (| 52 |y + 5 )
Proof. The same as the proof of Corollary 2.6 in [43]. O

Let ¢ € £. Tt is easy to see that for any function with compact support ¢ € H*(RY) we
have ) + ¢ € £ and using Lemma 2.3 we get

Q1) T QW 19) = Q) = E((i ) + (i 1) =2 [ (it 0} da
The momentum has a nice behavior with respect to dilations: for ¢ € £, A\, ¢ > 0 we have

(2.12) Qns) = ¥ 1Q().

3 A regularization procedure

The regularization procedure described below will be an important tool for our analysis. It
was first introduced in [2], then developed in [43], where it was a key ingredient in proofs. It
enables us to get rid of the small-scale topological defects of functions and in the meantime to
control the Ginzburg-Landau energy and the momentum of the regularized functions.

In this section € is an open set in RY. We do not assume € bounded, nor connected. If
00 # 0, we assume that 9Q is C2. Fix ¢ € £ and h > 0. We consider the functional

EGO+ 5 [IC-vfPde itV =2
Glral0) = 1
B3O+ 3 [ellc-uP) o itV =3

11



Note that GZ,Q(Q‘ ) may equal oo for some ¢ € &; however, G;f,Q(Q ) is finite whenever ¢ € £ and
¢ — 1 € L*(Q). We denote H}(Q) = {u € H'(RY) |u=0on RV \ Q} and
Hy(Q) ={¢Ce&|(—v e Hy()}
Assume that N > 3 and ¢ = €/ (1 + u) € £, where ag € [0,27) and u € X. Then
H}b(Q) = {1 +v)|ve HY(Q)}.

Let 1
alw) =BG+ )+ 35 [ o (w—uP) do

It is obvious that ( = €*°(1 + v) is a minimizer of GZQ in Hllp(Q) if and only if v is a
minimizer of C;”,t’ﬂ in H}(€), hence the results proved in [43] for minimizers of éz’g also hold
for minimizers of G;fﬂ.

The next three lemmas are analogous to Lemmas 3.1, 3.2 and 3.3 in [43]. For the conve-

nience of the reader we give the full statements in any space dimension, but for the proofs in
the case N > 3 we refer to [43]; we only indicate here what changes in proofs if N = 2.

Lemma 3.1 (i) The functional G;fQ has a minimizer in H}b(Q)

(ii) Let i be a minimizer ofG Qi H! (Q) There exist constants C; > 0, depending only
on N, such that:

(3.1) E&r(¢n) < EGL(v);
W2 EgL(v) if N =2,
(3:2) 16k = ¥l172(0) < -
B2BZ, (1) + C1 (B () b if N > 3.
(33) | 106D = 1) = (2 (101) = 1)? | do < Coh B (w0
2hEL; (1) if N =2,

(3.4) Q) — Q(Y)] <

N

2
Cs (2 + (EQ )™ h¥)* & () N =3

(iii) For z € C, denote H(z) = (¢*(|z]) — 1) go(\z|)cp’(|z|)ﬁ if z# 0 and H(0) = 0. Then
any minimizer (p, ofG o in H! (Q) satisfies in D'(Q) the equation

~AG A+ H(G) +55(G — ) =0 FN=2
(3.5)

AGHH(G) + 35 (G~ 9) (G -9) =0 N 23

Moreover, for any w CC Q we have (, € W?P(w) for p € [1,00); thus, in particular, (, €
Ch(w) for a € 0,1).

(iv) For any h >0, 6 > 0 and R > 0 there exists a constant K = K(N,h,0,R) > 0 such
that for any ¢ € € with EZ, (v) < K and for any minimizer (;, of Gf’ﬂ in Hq}}(Q) we have

(3.6) 1-0<|((x)) <140 whenever x € Q and dist(x,0Q) > 4R.
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Proof. Let N = 2.

(i) The existence of a minimizer is proven exactly as in Lemma 3.1 in [43].

(ii) Let ¢; be a minimizer. We have G;{;Q(Ch) < G}i’ydd)) = FEqr(¢) and this gives (3.1)
and (3.2). It is obvious that

[ (@2(21]) = 1)7 = (92(122]) = 1) | < 6lel=a]) = @(l2a)] - [(l1 %) + @(l2]?) - 2|

and |¢o(]z1]) — ¢(|22])| < |21 — 22|. Using the Cauchy-Schwarz inequality and (3.2) we get

L1206 = 1)* = (20— 1)? | do

2 \2
< 6[Ch = Yllz2@) (/{J@%I@IH@Q(W)—?‘ d:v)

ol

< 61 (B, (4))* - (2 |2 06h =1+ () - 1) dx)2 < 12v2hES, (v)

and (3.3) is proven. Finally, (3.4) follows from Corollary 2.4, (3.1) and (3.2).

(iii) For any ¢ € C2°(£2) we have (j, + ¢ € HI}J(Q) and the function t — G}Z;Q(Ch +1to) is
differentiable and achieves its minimum at ¢ = 0. Hence %‘t—o (G%}Q(gh + tqﬁ)) = 0 for any
¢ € C*(Q) and this is precisely (3.5).

For any z € C we have

(3.7) [H(2)] < 3l0*(2]) — 1] < 24.

Since ¢, € &, we have ©?(|¢4]) — 1 € L?(R?) and the previous inequality gives H(vy) €
L? N L°°(R?). We have (p,9 € H} (R?) and from the Sobolev embedding theorem we get
Ch, ¥ € LY (R?) for any p € [2,00). Using (3.5) we infer that A, € L¥ () for any p € [2,00).
Then (iii) follows from standard elliptic estimates (see, e.g., Theorem 9.11 p. 235 in [26]).

iv) Using (3.7) we get

[N
[NIES

IH (G 2y < 3lle*([Cal) — Uiz < 3V2 (EGL(Ch))? < 3V2 (EZL(v))

From (3.5), (3.2) and the above estimate we get

(3.8) 1AG 2 < (:M n )(E&w»?

For a measurable set w C RY with £V (w) < oo and for f € L(w), we denote by m(f,w) =
le(w)/ f(x)dz the mean value of f on w. In particular, if f € L?(w) using the Cauchy-

Schwarz inequality we get |m(f,w)| < (EN(w))fé | £l 22y and consequently

1 1_1
(3.9) Im(f, )Ly = (L¥(@))* Im(f,w)| < (¥ (W))* 2 [1fll12()
Let xo be such that B(xp,4R) C €. Using the Poincaré inequality and (3.1) we have

1
(3.10) |G — m(Cn, B(20, AR)) || 12(B(ao ar)) < CPRIVGI|2(Bagary < CPR (EGL(¥))? .
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It is well-known (see Theorem 9.11 p. 235 in [26]) that for p € (1,00) there exists C' =
C(N,r,p) > 0 such that for any w € W?P?(B(a,2r)) we have

(3.11) lwllw2e o) < C (1wllLr Bz + 1AW Lo (Ba2r)) -
From (3.8), (3.10) and (3.11) we get
1
(3.12) 1Ch = m(Chy B0, 4R))lw22(B (a0 2r)) < C(h, R) (EGL(¥))*

and in particular

oo
0x;0x;

We will use the following variant of the Gagliardo-Nirenberg inequality:

(3.13) vi<ij<2, < C(h, R) (B2 (1))? .

L2(B(z0,2R))

aq 1—-4
BL) o= mw, Bl ) lispiary < Ot N0l aam IV v,
for any w € WYY (B(a,2r)), where 1 < ¢ < p < oo (see, e.g., [33] p. 78). Using (3.14) with
N =2 p=4, q=2, then (3.1) and (3.13) we find

1 1
IV — m(V{p, B(wo, R))||L4(B(I0,R)) < CHVChHIQJz(B(mO’gR))”VQCLthz(B(mO’gR))
(3.15)

N

< C(h, R) (Eg,(v))
By (3.9) and (3.1) we have [|m(V(y, B(zo, R))||14(B(z0,R)) < (WRQ)_i (EgL(@ZJ))% Together
with (3.15), this gives

(3.16) VGl ey < C (s R) (B2 (1))

We will use the Morrey inequality which asserts that, for any w € CONWP(B(xg,r)) with
p > N we have

_N
(317)  |w(z) —w(y)| < Clp, N)le =y 7 ||Vl o)  for any z,y € B(zo,r)
(see the proof of Theorem IX.12 p. 166 in [10]). The Morrey inequality and (3.16) imply that
1 1
(3.18) [Ch(2) = G(y)] < Culh, R) (EGL(4))? |z =yl for any 2,y € B(zo, R).

Fix § > 0. Assume that there exists xg € §2 such that dist(xg,0?) > 4R and ’ |§h(az0)|—1’ >
J. Since ’ | 1¢h(@)] = 1| = | [Gu(w)] — 1] ’ < |Ch(x) — Cn(y)]|, using (3.18) we infer that

)
| |Ch(x)] — 1| > B for any x € B(xq,75),

where rs = min (R, WM) . Let
(3.19) n(s) = inf{(p*(7) = 1)? | 7 € (—00,1 — 5] U [1 4 5,00)}.
It is clear that n is nondecreasing and positive on (0, 00). We have:
2
BL) 2 EG@ = [ (#ah -1 ds
B(zo,rs)

(3.20)

23 @ = g0y = prmin (R s )

— 2 B(zo,rs) 2 272700 272 TAC2(hR)EG (¥))

It is clear that there exists a constant K = K (h, R, §) such that (3.20) cannot hold if EZ, () <
K. We infer that ‘ |Ch(z0)| — 1’ < & whenever zg € Q, dist(z9,0Q) > 4R and B, (v) < K. O
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Lemma 3.2 Let (,)n>1 C € be a sequence of functions satisfying:
(a) (EGr(¥n))n>1 is bounded and

0 (g P ) =0
)

There exists a sequence h, — 0 such that for any minimizer ¢, of GZ” RN M Hdl}n(RN)
we have || |Cn| = 1| oomny — 0 as n — oo.

Proof. Let N = 2. We split the proof into several steps.
Step 1. Choice of the sequence (hp)p>1. Let M = sup Egr(v,). Forn > 1 and z € R? we

n>1

denote
1

() = (o, Blar, 1)) = - /B L

™

The Poincaré inequality implies that there exists Cp > 0 such that
[ ) = ma@Pdy<Co [ (0P
B(z,1) B(z,1)

Using assumption (b) we find

(3.21) suF% [thn = mn(2) | L2(B(z1)) — 0 as n — oo.
e

Proceeding exactly as in the proof of Lemma 3.2 in [43] (see the proof of (3.35) there) we get

(3.22) lim sup |H(mp(z))| =0.
n—oo IERQ
Let
%
(3.23) h, = max (( sup ||, — mn(fU)HL2(B(a:,1))> , sup H(mn(;r))]> .
z€R? zeR?

From (3.21) and (3.22) it follows that h, — 0 as n — oo. Hence we may assume that
0 < hy, < 1 for each n (if h, = 0 then v, is constant a.e. and any minimizer ¢, of G;f” R2
equals v, a.e.).

Let ¢, be a minimizer of GZZ r2 (as given by Lemma 3.1 (i)). It follows from Lemma 3.1
(iii) that ¢, satisfies (3.5) and ¢, € W22 (R2).

loc
Step 2. We prove that ”ACn”LQ(B(Z, 1)) is bounded independently on n and on x. There is
2
no loss of generality to assume that z = 0. Then we observe that (3.5) can be written as

(3.24) —AG, + h%(cn —mn(0)) = fn in D'(R?),
where
(3.25) fn= h%(wn —mn(0)) = (H(Cn) — H(mn(0))) — H(mn(0)).

n

N|=

From (3.2) we have |[(n — ¥nllr2@m2) < hnEGL(wn)% < h,M
[0 — mn(0) | L2(B(0,1)) < Py < hn, hence

and from (3.23) we obtain

1
(3.26) [¢n = mn(0)[|L2(B0,1)) < (M2 + 1)hy,.
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Since H is Lipschitz, we get
(3.27) 1H (Cn) — H(mn(0) [l 12(50,1) < Cillén — mn(0)l| L2(5(0,1)) < Cohn.

Using (3.25), (3.23) and (3.27) we get

| full2(B0,1)) 1
(3.28) < gz l¥n = ma (0 z2(B0,1)) + IHH (Ca) = H (mn (0)) 22(80,1)) + 72 | H (1, (0))]
< Cshy,.

It is obvious that for any bounded domain 2 C R?, each term in (3.24) belongs to H~!(Q).
Let x € C°(R?) be such that supp(x) C B(0,1),0 < y <1and x =1 on B(0,1). Taking the
duality product of (3.24) by x (¢, — m,(0)) we find

(3.29)

[ V6P o= [ (801 ma(F dat
R2 R2

2
2 Jro

Xl () dax = /RQ(fn,Cnmn(O»xdx.

Using (3.29), the Cauchy-Schwarz inequality and (3.26), (3.28) we infer that
(3.30)
1

— Cn — mp(0 2 dx
7 Jyoy [0~ 000

< [[Ax|| Lo r2) / o =m0 (0)* dz + || full £2(B0,1)) Gn = M (0) | £2(B(0,1)) < Cahiy-

)

Now (3.24), (3.28) and (3.30) imply that there is C5 > 0 such that | AGu| 2(5(,1y) < Cs. Thus
we have proved that for any n and z,

(3.31) HACHHLQ(B(%%)) < (5, where C5 does not depend on z and n.

Step 3. A Holder estimate on ,. It follows from (3.11) that

(3.32) 1Gn — mn|\w2,2(3(x,i)) < C(HACnHLz(B(x,%)) + [¢n = mnHL?(B(m,%))) < Cs.
From (3.14) and (3.32) we find

1 1 ) 1
(333) ||v<n - m(an, B(ZEa 7))||L4(B(z,§)) < C”VCn|’z2(B( i))”v CTLH[QIz(B(m’%)) < 07'

8

z,

1
It is clear that |m(V ¢, B(z, %))| < (L*(B(z, %)))75 ||VCH||L2(B(35,§)) < Cg. Then (3.33) implies

that [|VCal| fap(, 1) is bounded independently on n and . Using the Morrey inequality (3.17)
we infer that there is Cy > 0 such that

1
(3.34) |Gu(x) — Cn(y)] < Colz — y|% for any n € N* and any z,y € R? with |z — y| < 3

Step 4. Conclusion. Let 6, = || |Cn| — 1| oo (r2y if ¢n is bounded, and d,, = 1 otherwise.
Choose z{ € R? such that | |¢,(zf)] — 1| > % From (3.34) we infer that [¢n(2)] = 1] > &

8

(3.35) [ @ah-1wz [ (5) dz =1 (5> 2.
B(xf,rn) B(x§,rn) 4 4

16
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On the other hand, the function z — (¢*(|z|) — 1)2 is Lipschitz on C. From this fact, the
Cauchy-Schwarz inequality, (3.2) and assumption (a) we get

[ @ = 1)* = (- 1 |dy
B(z,1)

1
< C B(e.1) ’Cﬂ(y) - ¢n(y)| dy < C’/TEHC?’L wnH[ﬂ (z,1)) < 07'(2 ”CTL wnHLQ(R2) < Cthn-

Then using assumption (b) we infer that

(3.36) sup / (> (16 (w)]) — 1)2 dy — 0 as n —» 00.
zeR?2 JB(z,1)

From (3.35) and (3.36) we get le n (%") 72 = 0 and this clearly implies le 0p, = 0. This

completes the proof of Lemma 3.2. O

The next result is based on Lemma 3.1 and will be very useful in the next sections to
prove the ”concentration” of minimizing sequences. For 0 < Ry < Ry we denote Qg, r, =
B(0, R2) \ B(0, Ry).

Lemma 3.3 Let A > A3 > As > 1. There exist ¢g > 0 and C; > 0, depending only on
N, A, A, A3z (and F for (vi)) such that for any R > 1, ¢ € (0,e9) and 1 € & wverifying
ESE’AR () < e, there exist two functions 1, s € £ and a constant by € [0,27) satisfying the

following properties:
(i) 1 =1 on B(0, R) and 11 = €% on RN \ B(0, A2R),
(i3) 2 = ¢ on RN\ B(0, AR) and 15 = €% = constant on B(0, A3R),

(iii) RNH%‘ —}gi;f—‘gfjmdxgcleforj:L...,N,
) [ [ 0D = 1) = (i) = 1) = (e = 1)? [ da < Coe,

(v) 1Q(¥) = Q1) — Qy2)] < Cse,
(vi) If assumptions (A1) and (A2) in the introduction hold, then

2% —

Cie + Cs /2 (Bar(v)) =

if N > 3,
S V0 = V() = V(aft e <
) Ce + Cr/z (Ear()P! if N =2.

Furthermore, the same estimate holds with V. (respectively V_) instead of V.

Proof. 1If N > 3, this is Lemma 3.3 in [43].

Let N =2. Fix k > 0, A; and A4 such that 1 +4k < A1 < Ay < A3 < Ay < A —4k. Let
h=1and § = 3. Let K(N,h,§, r) be as in Lemma 3.1 (iv). We will prove that Lemma 3.3
holds for g = min (K(Q, 1, 5, k), 5 (%))

Fix € < g9. Consider ¢ € & such that EGR 4R(1h) < e. Let ¢ be a minimizer of G1 QAR
in the space H}! (Q R,AR)- Such minimizers exist by Lemma 3.1 (but are perhaps not unique).
From Lemma 3.1 (iii) we have ¢ € Wl P(Qr.ar) for any p € [1,00), hence ¢ € C1(Qg ar).

Moreover, Lemma 3.1 (iv) implies that

1
(3.37) 3 <|¢(x)] < g for any = such that R+ 4k < |z| < AR — 4k.
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Therefore, the topological degree deg(%, 0B(0,r)) is well defined for any r € [R+4k, AR —4k]

and does not depend on r. It is well-known that ¢ admits a C lifting 6 (i.e. ¢ = [¢[e?) on
QR+ak, Ar—ak if and only if deg((,0B(0,r)) = 0 for r € (R + 4k, AR — 4k). Denoting by 7 =
(—sint,cost) the unit tangent vector at dB(0,r) at a point re* = (rcost,rsint) € 0B(0,7),
we get

|deg (¢, 0B(0,7))| =

1/%§«vw»ﬁ%:
0

. [
2im C(rett) 0

2im ((re’)

(3.38) 1
o ' 2T ) 2
< 2;/0 2V (re)] di < T2 (/0 |VC(re’t)|2dt> .

On the other hand,

AR-4k (21 A
/ vg(x)dex_/ r/ VC(ret) 2 dt dr.
QR+4k, AR—4k R+4k 0

We have/ |V¢()]2dx < ng’AR €) < ng’AR(w) <eg < gln (ARI?J%J“) and we infer
QR4 4k, AR—4k

2m
. 1
that there exists 7. € (R + 4k, AR — 4k) such that r*/ |VC(R.e™) 2 dt < g—. From (3.38)
0 Tx

we get

re —(w1\? 1

. T
Since the topological degree is an integer, we have necessarily deg((,0B(0,r.)) = 0. Conse-
quently deg(¢,0B(0,r)) = 0 for any r € (R + 4k, AR — 4k) and ¢ admits a C! lifting ¢ = pe®.
In fact, p, 6 € VVi’f(QRHk,AR_%) because ( € ‘/Vlif(QR—&—zlkAR—%) (see Theorem 3 p. 38 in
[11]).
Consider n1,m2 € C*°(R) satisfying the following properties:

m =1on (—oo0,A;], m =0on [Ag,00), 1 is nonincreasing,
n2 =0 on (—oo, A3], m2 =1 on [A4,00), n2 is nondecreasing.

Denote 8y = m(6,Q4,r,.4,r). We define 91 and 12 as follows:

Y(x) if x € B(0,R),
¢(z) ifxe B(0,4:R)\ B(0,R),

(3.39) ¥ (x) = (1 T (2l (p(a) - 1)) o (otm (7 (0()~00))

ifx e B(O, A4R> \ B(O, AlR),
e if x € R?\ B(0, A4R),

e if x € B(0,A1R),

(1+ ) (o) — 1)) £ o B0 -0)
(3.40) e () = if € B(0, A4R) \ B(0, A1 R),
¢(x) ifz e B(0,AR)\ B(0, A4R),

Y(z) ifz € R?\ B(0, AR).

\

Then 91, 12 € € and satisfy (i) and (ii). The proof of (iii), (iv) and (v) is exactly as in [43].
Next we prove (vi).
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Assume that (A1) and (A2) are satisfied and let W (s) = V(s) — V(¢*(s)). Then W(s) =0
for s € [0,4] and it is easy to see that W satisfies

(3.41) W (b?) — W(a?)| < Cs]b — a (a2p0+1]1{a>2} + b2p0+1]1{b>2}) for any a,b > 0.

Using (1.5) and (3.41), then Holder’s inequality we obtain

/ V(1P = V(ICP)| de
R2
< / V(2 (1)~ V2| + [W (2~ W ()| da

2 2 2 2
iz =CJy, D=1+ () - 1) de

e / el — 11| (10127 Loy + [CPP D gy da
QR, AR

1 1
2 2
<C'e + Y =Clir2(@p, an) {(/ |¢|4p0+2]1{|¢|>2}dfﬂ> + (/ |<|4p°+211{<|>z}d$> ]
Qr, AR QR, AR

Using (2.2) we get
B3 [ R do < OIS £ (o € R | @) > 2)).
On the other hand,
Bay) 9 (e R | @I 22) < [ (0D~ 1)’ do < 2B (w)
and a similar estimate holds for (. We insert (3.43) and (3.44) into (3.42) to discover
(3.45) [ V40P = ViIGP) do < e + OVE (Bau ()™

Proceeding exactly as in [43] (see the proof of (3.88) p. 144 there) we obtain

(3.46) [ VAR = V(tial) = Vi(wa)] do < =

Then (vi) follows from (3.45) and (3.46). O

Corollary 3.4 For any ¢ € &, there is a sequence of functions (Yn)n>1 C & satisfying:
(i) 1 = on B(0,2") and ¢, = € = constant on RN \ B(0,2"+1),
(i) IV = V|l 2gvy — 0 and |9 ([¢n]) — *([U])] L2y) — 0,

(i) Q) — Q). [ V() = V()] dz — 0 and

/RN | (@*(Inl) — 1)2 — (¢*(Jv]) - 1)2 |dz — 0 as n — oo.
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RN\ B(0,2")

Proof. Let e, = Eg (1), so that e, — 0 asn — oo. Let A =2, fix 1 < Ay <
As < 2 and use Lemma 3.3 with R = 2" to obtain two functions ¢, ¥§ with properties (i)-(vi)
in that Lemma. Let 1, = ¢}. It is then straightforward to prove that (i, ),>1 satisfies (i)-(iii)
above. O

The next Lemma allows to approximate functions in £ by functions with higher regularity.

Lemma 3.5 (i) Assume that Q = RN or that 92 is C'. Let v € £. For each h > 0, let ¢, be
a minimizer of Gﬁf’ﬂ in HQ})(Q) Then ||Ch — [l g1y —> 0 as h — 0.

(ii) Let ¢ € £. For any e > 0 and any k € N there is ¢ € £ such that V¢ € HF(RYN),
Eqr(C) < Eqr(¥) and || =¥l vy <e.

Proof. (i) It suffices to prove that for any sequence h,, — 0 and any choice of a minimizer
Cp of G;fmﬂ in H}b((l), there is a subsequence ((y, )r>1 such that kli}ngo 1Chn, — PllE1 () = 0.
Let h, — 0 and let (,, be as above. By (3.2) we have (,, —¢ — 0 in L?(Q2) and it is clear
that ¢, — 1 is bounded in H}(2). Then there are v € HJ () and a subsequence ((,, )x>1 such
that
(G, — ) — v weakly in H}(Q) and  ((u, — %) — v ae. on Q.

Since (p,, — ¥ — 0 in L?*(Q) we infer that v = 0 a.e., therefore V(,, — V¢ weakly in L?(Q)
and (,, — 1 a.e on Q. By weak convergence we have [, (V|2 de < 1i’§n inf [, |V, |? dx
— 00

and Fatou’s Lemma gives [, (¢*(|¢]) — 1)2 dr < likrgi(gf Jo (©2(1Gn,]) — 1)2 dx. Thus we get
E2, (¥) < likrgioléf EZ; (Cy)- On the other hand we have E; (G,,) < ES; (¥) for all k. We infer
that necessarily lim E2, (o) = E& () and Jim_ Jo VG l?dz = [, V9[> dz. Taking into
account that V(,, — Vi weakly in L?(Q), we deduce that V(,, — Vi strongly in L?(9),
thus (¢, —¥) — 0 in H}(Q), as desired.

(ii) Let h > 0 and let ( be a minimizer of G;f gy Then ¢, satisfies (3.5) in D'(RY), thus

A¢y, € L*(RY) and this implies aijg};j € L2(RN) for any 4, j, hence V¢, € H'(RY). Moreover,
if Vi € HY(RYN) for some £ € N, taking successively the derivatives of (3.5) up to order ¢ and
repeating the above argument we get V¢, € HFH(RY).

Fix ¢ € £, k € N and € > 0. Using (i), there are h; > 0 and a minimizer (; of Gl}fl,RN such
that [|¢1 — ¢|lg1myy < § and V(i € H'(RY). Then there are hy > 0 and a minimizer (y of
G}%’RN such that [[¢2 — Gill g1 wyy < 37 and V(o € H*(RY), and so on. After k steps we find

hy and (j such that (j is a minimizer of Gi’;}l{]\,, Ik = Cr—1ll prmvy < o7, and V(i € HE(RN).
Then (|G — ¥llgr@myy < [[G = Gty + - + 1@ = Gllareyy + G = Ylm@y) < e
O

Moreover, Egr(Ck) < Ear(Ck—1) < -+ < Egr(v).

4 Minimizing the energy at fixed momentum

The aim of this section is to investigate the existence of minimizers of the energy E under the
constraint ¢ = ¢ > 0. If such minimizers exist, they are traveling waves to (1.1) and their
speed is precisely the Lagrange multiplier appearing in the variational problem.

We start with some useful properties of the functionals E, Egy, and Q.
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Lemma 4.1 If (A1) and (A2) in the Introduction hold, then V(||?) € LY(RYN) whenever
Y € E. Moreover, for any § > 0 there exist C1(6), C2(d) > 0 such that for all 1 € £ we have

5 [ =) o= @IVilEgy < [ V(P da

(4.1)
5 *
<20 [ (@) 1) et GO IV, N3,
respectively
1-6
" (2 O ) L@ -0 ar< [ v
4.2

1456
< (P raomvei) [ @ -ta g2

These estimates still hold if we replace the condition F € C°([0,00)) in (A1) by F € L}, ([0, 00))
and if we replace V' by |V|.

Proof. Inequality (4.1) follows from Lemma 4.1 p. 144 in [43]. We only prove (4.2).
Fix § > 0. There exists § = 3(d) € (0,1] such that

L- 5(3 —1)2<V(s) < %M( —1)? for any s € ((1 — B)2, (1+ B)?).

Let ¢ € €. It follows from (4.3) that V(|¢|*)L1_g<jpi<146y € L'(R?) and
1-9¢ 2
e (o) -1 do < | V() do

{1-B<¥|<1+48} {1-B<|¥|<1+8}

(4.3)

(4.4)
140

T2 Jp-s<ipi<i4p)
Using (A2) we infer that there exists C'(d) > 0 such that

P2 (y)) — 1)

) Vi) - 122 (20 - 1)°] < c0) <|s - 25> e

for any s > 0 satisfying |s — 1| > . Let K = {z € R? } ||@Z)(m)| - 1’ > g} Let 1 be as in
(3.19). Then (@2(|¢]) —1)* > n(£) on K, hence

1 2
4.6 LK) < —— 2(ly) —1
(4.6 )< [ -
Let ¢ = <‘ | = 1] - 7> . Then 1) € L} (R?), IV¢| < |V¢| a.e. on R? and using (2.2) we get
(47) [ 10P2 e < v £2(6),

Using (4.5), (4.6) and (4.7) we obtain

1+6

ViR - =

/ () ~ 1)? | de
R\ {1-8<[y|<1+8}
(4.8)

<) [ P < oINS, [ @i -1?
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From (4.4) and (4.8) we infer that V(|y|?) € L*(R?) and (4.2) holds. a

The following result is a direct consequence of (4.2).

Corollary 4.2 Assume that N = 2 and (A1) and (A2) hold. There is k1 > 0 such that for
any ¢ € € satisfying [go |V|* dz < ki we have [, V(|¢|?) dx > 0.

If N > 3 and there exists sp > 0 satisfying V(sg) < 0, Corollary 4.2 is not valid any-
more. Indeed, if V' achieves negative values it easy to see that there exists ¢ € £ such that
JanV (J¥|?)dx < 0. Then JanV (|tbo.0]?) dv = v a4 (|¥)?)dz < 0 for any o > 0 and
Jan [Vool?de = oN72 [on [VY|?dz — 0 as 0 — 0.

Corollary 4.3 Let N > 2. There is an increasing function m : Ry — Ry such that
lir% m(7) =0 and
T—

1] = Ul p2myy < m(Ear(v)) for any v € E.

Proof. Let F(s) = 4= —1. Tt is obvious that F satisfies the assumptions (Al) and (A2) in the

/s

introduction (except the continuity at 0, but this plays no role here). Let V f F

so that V(s) = (y/s — 1)? and Jan V(W) dz = || |¢] — 1HL2 rv)- The Conclusmn follows by
using the second inequalities in (4.1) and (4.2) with F and V instead of F and V. O

Lemma 4.4 (i) Let § € (0,1) and let 1 € € be such that 1 — & < [1p| < 14§ a.e. on RV.
Then

1
< —F .
QW < 55 Fen(®)
(i) Assume that 0 < ¢ < vs and let ¢ € (0,1 — ). There exists a constant Ky =

Ki(F,N,c,e) > 0 such that for any ¥ € £ satisfying EGL(¢) < K1 we have

/ Vo2 de + / V() dr — Q)| > eEar(t).
RN RN

Proof. If N > 3, (i) is precisely Lemma 4.2 p. 145 and (ii) is Lemma 4.3 p. 146 in [43]. In
the case N = 2 the proof is similar and is left to the reader. O

For any ¢ € R we denote

Eninla) =int{ [ 1VuPdot [ VeP)ds |veeQw)=a).

Notice that if V' > 0, the above definition of F,,;, is the same as the one given in Theorem 1.1.
For later purpose we need this more general definition. To simplify the notation, we denote

E) = /RN (V| dx + /RN ‘V(|1/)|2)‘ dx for any ¢ € £.

There are functions ¢ € £ such that Q() # 0 (see for instance Lemma 4.4 p. 147 in [43]).
For any ¢ € &, the function ¥ (z) = 1)(—x1,2’) also belongs to & and satisfies E(¢)) = E(v),
Q(¢) = —Q(1)). Taking into account (2.12), it is clear that for any ¢ the set {¢) € £ | Q(¢) = ¢
is not empty and Eyin(—q) = Emin(q). Thus it suffices to study E,in(q) for g € [0, 00).

If there is sg such that V(s3) < 0, then inf{E() | ¥ € £,Q(¢)) = ¢} = —oco for all ¢ € R.
(This is one reason why we use F, not E, in the definition of E,;,.) Indeed, fix ¢ € R. From
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Corollary 3.4 and (2.12) we see that there is ¥, € £ such that Q(v,) = ¢ and 1, = 1 outside
a ball B(0, R,). It is easy to construct a radial, real-valued function vy such that E(¢y) < 0
and ¢y = 1 outside a ball B(0, Ry) (for instance, take Ry sufficiently large, let ¢y = sp on
B(0,Rg — 1), ¥ = 1 on RY \ B(0, Ry) and vy affine in |z| for Ry — 1 < |z| < Ry). Then
Q(¢o) = 0. Let e; = (1,0,...0). For n > 1, we define 1, by 1, = ¢, on B(0, R.), and
Un(2) = vo(E — n(Ro + Ru)er) on RN \ B(0, R.). Then Q() = Q() +nV1Q(¢o) = g
and E(¢n) = E(¥y) +nV 72 [on [V dz 4+ n [gn V([1ho]?) do — —o0 as n — oo,

The next Lemmas establish the properties of E,;p,.

Lemma 4.5 Assume that N > 2. For any q > 0 we have Enin(q) < vsq. Moreover, there
18 a sequence (wn)n21 such that ¢, — 1 € CSO(RN): V(wn) >0, Q(wn) =4q, E(¢n) — Usq,

Ear(¥n) — vsq and sup |0%n(x)] — 0 as n — oo for any a € NV |a| > 1.
zeRN

Proof. Fix x € C®(RY), x # 0. We will consider three parameters ¢, A\, o > 0 such that
eE— 0, A — 00,0 — o0 and A < 0. We put

e Ox (x 2 ry o —ig0
- = 1 _— _— — 0 o = _— — o = p e )\’0-(.?).
Pe A, (.T) + \@A 8301 < N\ O'> ) A, (J?) X ( N'o )’ ¢a,>\, (.7)) Pe, A, (3}‘)6

It is clear that V(pg ro) = 0if £ is small enough. A straightforward computation gives

/ )domg Yy = Sl / 82)6‘2 dx
RN 8331 R ’

23 2
o o2 2 N-3 82 2
/ |2 ar = =5 / ~|dr, j=2.0N,
RN Ly R

2\ N 8x18mj

005512 oN-1 e Ox 2 Ox |2 o1 ax |2

9 o

2| g = 1 X )—’ dz ~ / (—‘ dz,

/RN Pero 0x1 v A /RN ( * \/§A 8x1> 0x v A RN 0x1 .
2

/ P2 80}"02611::0]\7_3)\/ 1+L8—X ‘aX‘deNUN—?))\/ ‘G—X‘Qda:

RN ero 0z RN V2 011 Ox; - Ry 10x; ’

2 _N-1
2 e‘o ‘ ox ‘2
V dzr ~ —1 d
/RN (ps)\’a) v A /RN 0y “

9 2 2€2JN1/ ‘ ox ‘2
Vo) de~ =0 IXN” g,
/R (@ (pepo) = 1) d S N

96, V2e2gN-1 Oy
. 2 _ O ~ - - -
Q(lpe,)\,a) = 5/RN(p5,>\,U 1) 85(31 da ~ A /RN agjl

Now fix ¢ > 0. Then choose sequences of positive numbers (€5,)n>1, (An)n>1, (0n)n>1 such that

en — 0, Ay — 00, 0y — 00, i" — 0 and Q(¢z, A,.0,,) = ¢ for each n. Such a choice is

n

2
‘ dzx.

2 5N-1 dx |2
possible in view of the last estimate above. In particular, this gives = / ‘—‘ dxr —
)\n RN 81’1
\%. Let vy, = e, An0n- It follows from the above estimates that

2+ 2025 oI VOo? + V(021 s) do — V2q = vsq

Bwn) = B@n) = [ Vpens

and similarly Eqgr(1,) — vsq as n — oco. The other statements are obvious. Notice that a
similar construction can be found in the proof of Lemma 3.3 p. 604 in [7]. O
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Lemma 4.6 Let N > 2. For each € > 0 there is g- > 0 such that
Emin(q) > (vs —€)q  for any q € (0, ).

Proof. Fix e > 0. It follows from Lemma 4.4 (ii) that there is K1(¢) > 0 such that for any
Y € & satisfying Eqr(v) < Ki(e) we have

E@) = (v - 5) QW)

_ Using Lemma 4.1 we infer that there exists Ks(e) > 0 such that for any ¢ € &£ satisfying
E(v) < Ka(e) we have Egr(¢) < Kq(¢e).
Take ¢. = 52) Tet g e (0,¢:). Thereis v € € such that Q(v)) = g and E(¢) < Enin(q)+q.

vs+1 —
Since Emin(q) < vsq by Lemma 4.5, for any such ¢ we have E(¢) < (vs + 1)ge = Ka(e) and
we infer that Eqr(¢) < Ki(e), thus E(¢) > (vs — §) |Q(¥)| = (vs — §) g. This clearly implies
Emzn(q) > (Us - %) q. O

Lemma 4.7 Assume that N > 2.
(i) The function Eny, is subadditive: for any q1, g2 > 0 we have Epin(q1+q2) < Emin(q1)+

Emin(q2)~

(i) The function En, is nondecreasing on [0,00), concave, Lipschitz continuous and its
N-—2

best Lipschitz constant is vs. Moreover, for 0 < q1 < q2 we have Epin(q1) < (%) vt Erin(q2).

(iii) For any q > 0 we have the following alternative:
e cither Epin(T) = vsT for all T € [0, q],
e 07 Enin(q) < Emin(T) + Emin(q— 1)  forall 7 € (0,q).

Proof. (i) Fix € > 0. From Corollary 3.4 and (2.12) it follows that there exist 11,19 € €
such that Q(v;) = ¢, E(1;) < Emin(q;) + 5 and ¢; = 1 outside a ball B(0, R;), i = 1,2. Let
1(z) if x| < Ry,

Yo(x —4(R1 + Ra)e)  otherwise.
Y €& QM) = QY1)+ Q(Y2) = a1 + q2 and Epin(q1 + ¢2) < E(W) = E(Y1) + E(y2) <
Emin(q1) + Emin(q2) + €. Letting ¢ — 0 we get Enin(q1 + ¢2) < Emin(q1) + Emin(g2)-

(ii) From Lemma 4.5 we obtain 0 < E,,in(q) < vsq for any g > 0.
For ¢ € € we have ¢y, = 1 (;) eg&,

e € RN be a vector of length 1. Define 1(z) = { Then

(49) QW) = oV 1QW) and  F(thy,) = oV 2 / Vo do + o / V(19P)| da.
RN RN

1

Assume that 0 < g1 < g2. Let g = (%) M1 21 For any ¢ € & satisfying Q(v) = g2 we

have Q(¢5y.00) = q1 and from (4.9) we see that Emin(q1) < E(Vy0y) < 0p 2E(1)). Passing
N-—-2

to the infimum over all ¢ verifying Q(¢) = g2 we find Epin(q1) < <%>ﬁ Enin(g2). In

particular, F,,;, is nondecreasing. Using (i) and Lemma 4.5 we get

0< Emin(q2) - Emin(Ql) < Emin(q2 - Q1) < US(QQ - Q1)-

Hence E,,;;, is Lipschitz continuous and vy is a Lipschitz constant for F,,;,. Lemma 4.6 implies
that vy is indeed the best Lipschitz constant of E,,;,.

Given a function f defined on RY and ¢t € R, we denote by S;"f and S; f, respectively,
the functions

(4.10) S;Ff(:c) _ { flx) ifzy>t,

f(xl, ey, TN—1, 2t — $N) if zy <t,
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_ flz1,...,en_1,2t —xN) oy >4,

(4.11) S fl@) = { flx)if zy < t.
It is easy to see that for all ¢» € £ and t € R we have S; v, S; v € £,  E(S; )+ E(S; %) =
2E (1) and (i(SEY)e,, Sip) = SiE((ithe,,1)). Moreover, if ¢ € H'(RN) then Sf¢ € HY(RN)
and 9,,(SE¢) = SE(0y,0). If ¥ € &, there are ¢ € H'(RN) and g € L'(RY) such that
(ithp,, ) = Dy ¢ + g (see Lemma 2.1 and the remarks preceding it). Then (i(S4)),,, SE) =
SE(it)ny, 1)) = Oy (SEP) + Sig and Definition 2.2 gives Q(SFv) = Jrw Stgdx. Tt fol-
lows that Q(S;¢) + Q(S;¥) = 2Q(¢) and the mapping t — Q(S;v) = [gn S gdz =
2 f{mn>t} g dx is continuous on R, tends to 0 as £ — oo and to 2 ngdﬂU =2Q(v) ast — —o0.

Fix 0 < ¢1 < g2 and € > 0. Let ¢p € &€ be such that Q) = % and E(y) <
Erin (%) + e. The continuity of ¢t — Q(S; ) implies that there exists ty € R such
that Q(Sﬁow) = ¢1. Then necessarily Q(S; ¥) = ¢2 and we infer that E(S; %) > Enin(q1),
E(S; %) > Emin(q2), and consequently

Eoin (P52 ) 2> B(0) = (B (SH0) + (ST 0) 2 5 Bminlar) + B ()

Passing to the limit as € — 0 in the above inequality we discover

(4.12) Boin (Q1 : q2> > 2 (Bnin(@0) + Bonin(02)).

It is an easy exercise to prove that any continuous function satisfying (4.12) is concave.

(iii) Fix ¢ > 0. By the concavity of Epin we have Epin(7) > 7 Emin(q) for any 7 € (0,q)
and equality may occur if and only if E,,;, is linear on [0, ¢g|. Therefore for any 7 € (0,q) we
have Epin(7) + Emin(q —7) > gEmm(q) + %Emm(q) = Enin(q) and equality occurs if and
only if E,,;, is linear on [0, q], that is Eyn(7) = at for 7 € [0,¢] and some a € R. Then

Lemma 4.5 gives a < vs and Lemma 4.6 implies a > vy — € for any € > 0, hence a = v;. O
The function ¢ —— E’MT”(‘I) is nonincreasing (because F,.;, is concave), positive and
by Lemma 4.4 in [43] there is a sequence g, — oo such that lim qu’il(q") = 0, hence
n—oo n
lim Zminl@ — 0 Let
q—oo 4

qo = inf{q > 0| Epnin(q) < vsq},
so that qo € [0,00), Emin(q) = vsq for g € [0, go] and Emin(q) < vsq for any ¢ > qo.

Lemma 4.8 Let N > 2. Assume that (A1), (A2) hold.Then for any m, M > 0 there exist
Ci(m), Co(M) > 0 such that for all ¢ € € satisfying m < E(y) < M we have

Ci(m) < Egr(y) < Co(M).

Proof. If N > 3, Lemma 4.8 follows directly from (4.1) with |V| instead of V. If N = 2,
the second inequality in (4.2) implies that there is C1(m) > 0 such that Egr(v) > Ci(m)
if E(y) > m. All we have to do is to prove that [g. (¢*(|¢]) — 1)2 dz remains bounded if
E(y) < M. This would be trivial if inf{V(s?) | s > 0, |s — 1| > 6} > 0 for any § > 0; however,
our assumptions do not prevent V' to vanish somewhere on [0, 00) or to tend to zero at infinity.
Since the proof is the same if N =2 or if N > 2, let us consider the general case.

Fix § € (0,1] such that V(s?) > (s> —1)% for s € [l — §,1 + 6]. Consider ¢ € & such
that B(y) < M. Clearly, [|,_yj<s (92(10]) = 1)% dz < 4 [ 0y gy V(I$[2) do < 4M and
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we have to prove that f{‘ W|—1]>6} (L*(J¥]) — 1)2 dz is bounded. Since ¢ is bounded, it suffices

to prove that £V ({| [¢| — 1| > 6}) is bounded.

Let w = [¢)| — 1. Then |Vw| < |Vy| a.e., hence Vw € L}2RY), and LN ({|w| > a})
is finite for all & > 0 (because ¢ € &). Let wi(x) = ¢1(|z|) and we(z) = ¢2(|x|) be the
symmetric decreasing rearrangements of wy and w_, respectively. Then ¢; and o are finite,
nonincreasing on (0,00) and tend to zero at infinity. From Lemma 7.17 p. 174 in [38] it
follows that [[Vw:|[r2myy < |[Vwi|lp2myy and [[Vws| 2@y < [|[Vw—||p2gyy. In particular,
wy, wy € HY(QR, r,) for any 0 < Ry < Ry < oo, where Qg, r, = B(0,Rz) \ B(0, R;). Using
Theorem 2 p. 164 in [22] we infer that ¢1, ¢2 € H. ((0,00)), hence are continuous on (0, 00).

Let t; = inf{t > 0| ¢;(t) <}, i =1,2, so that 0 < ¢;(t) < 0 on [t;,00) and, if t; > 0, then
¢i(t;) = 4. It is clear that

LY 9] = 1] > 6) = £V ({wy > 63) + £V (fuw_ > )

(4.13) = LV({wr > 6Y) + LY (fwp > 8)) = (& + 1)LV (B(0, 1))

Define hy(s) = s> + 2s, Hi(s) = 3% + 5%, ha(s) = —s? + 25, Ha(s) = —5s3 + s, so that
H{ = hy and H), = hs. If t; > 0 we have:

_ 1
)= [ ePdeeg [ (00D = 1) g do

2/ |Vw+2dx+1/ ((w++1)2—1)2 dx

RN 4 Jiw,<s)

2/ |Vw1]2dw+1/ (wr +1)° — 1) do
RN 4 Jiw <)

1
2/ Vun? + B2 (wy) de
(4.14) RV\B(0,1) 4

o0

=157 [ (10 + ) ¥

t1

> Y [T 1P + LR 6a(s)) ds

t1

> SN [ (61 (5))64 (5) ds

t1

=ty SN [-Hi(d1())]5S, = 1SV HL(8) T

s=to

where [SV 71| is the surface measure of the unit sphere in RY. From (4.14) we get ¢} 1 <
CE(v), where C depends only on N and V. It is clear that a similar estimate holds for ¢s.
Then using (4.13) we obtain

EV{| [ = 1] > 6}) < ¢ (B(y)) ¥,

where C depends only on N and V, and the proof of Lemma 4.8 is complete. O
We can now state the main result of this section, showing precompactness of minimizing
sequences for E,,in(q) as soon as q¢ > qo.
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Theorem 4.9 Assume that ¢ > qo, that is Enin(q) < vsq. Let (n)n>1 be a sequence in €
satisfying B
Qn) —q and  E(,) — Enin(q).

There ezist a subsequence (¥, )k>1, @ sequence of points (vx)k>1 C RY, and ¢ € € such that
QW) =¢, E(Y)=Emin(q), Yn, (- + 1) — ¥ a.e. on RN and do(¢n, (- + x),9) — 0, that is

IV (- + 2k) = VOl 2myy — 0, [+ 28) = [9] [ 2mvy — 0 as kb — o0,

Proof.  Since E(¢b,) — Emin(q) > 0, it follows from Lemma 4.8 that there are two
positive constants My, My such that My < Egr(1,) < M, for all sufficiently large n. Passing
to a subsequence if necessary, we may assume that Egr(¢,) — a9 > 0.

We will use the concentration-compactness principle [39]. We denote by A, (¢) the concen-
tration function associated to Eqr, (), that is

(4.15) A, (t) = sup / (Vb |? + % (@ ([¢nl) = 1)2 dx.
yeRN J B(y,t)

Proceeding as in [39], it is straightforward to prove that there exists a subsequence of ((¢n, Ay))n>1,
still denoted ((¢n, An))n>1, there exists a nondecreasing function A : [0,00) — R and there
is a € [0, ] such that

(4.16) Ay (t) — A(t) a.eon [0,00) as n — o0 and A(t) — a as t — 0.

As in the proof of Theorem 5.3 in [43], we see that there is a nondecreasing sequence t,, —» 0o
such that

(4.17) lim Ay(t,) = lim A, (“) —a

n—0o0 2

Our aim is to prove that o = . The next lemma implies that o > 0.
Lemma 4.10 Assume that N > 2 and assumptions (A1) and (A2) in the Introduction hold.
Let (n)n>1 C € be a sequence satisfying:
(a) Egr(v¥n) < M for some positive constant M.
(b) liminf Q(¢y,) > g € RU {0} as n — oc.
n—oo
¢) limsup E(v,) < vsq.

n—00

Then there exists k > 0 such that sup Egéy’l)(wn) > k for all sufficiently large n.
yeRN

Proof. We argue by contradiction and we suppose that the conclusion is false. Then there
is a subsequence (still denoted (%, ),>1) such that

1
(4.18) lim sup / Voul? + 5 (92(1nl) — 1)* dz = 0.
B(y.1) 2

n—oo yERN

The first step is to prove that

(4.19) tim [ (V(al?) ~ 5 (Pl ~1)?|dz =0,

n—oo RN

If N > 3 this is done exactly as in the proof of Lemma 5.4 p. 156 in [43]. We consider here
only the case N = 2.
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Fix ¢ > 0. By (A1) there is d(¢) > 0 such that

’V(SZ) — % (*(s) — 1)2 ‘ < g (p*(s) — 1)2 for any s € [1 —d(e), 1+ d(¢)],
hence
2 L 9 2
/ [Vgal?) — 5 (D)~ 1)? | do
{1-8(e)<||<1+6(e)}
(4.20)
< 6/ 802(|7l}n|)—1)2 dx < eM.
2 Ja-s@<i<i+oe)}

Using (A2) we infer that there is C'(¢) > 0 such that

1
(4.21) ‘V(s2) —5 (¢*(s) — 1)2 ‘ < C(e)(|s| = 1)?P0F2  for any s satisfying |s — 1| > d(e).

Let w, = ||¢n| - 1}. Then w,, € L} (RY) and |Vw,| < |Vi,| a.e., hence [Vwn|l2rey <
IVnllL2rey < VM. Using (2.2) for <wn - 6(2€)> we obtain
+

2po+2
[ e (0 8,
{wn>d(e)} {wn>8(e)} 2 +

< O Vwa| ey £2({wn > 27} < CMPH L2 ({w, > 50Y).

(4.22)

We claim that for any § > 0 we have
(4.23) lim L2({w, > §}) = 0.

The proof of (4.23) relies on Lieb’s Lemma (see Lemma 6 p. 447 in [37] or Lemma 2.2 p. 101
n [12]) and is the same as the proof of (5.20) p. 157 in [43], so we omit it.
From (4.21), (4.22) and (4.23) we get

(4.24) / ‘V(s2) — = (¢%(s) = 1) ‘ da < 0(5)/ w2t gy — 0
{I [w|—1]>6(<)} 2 {wn>3(e)}

as n — 0o. Then (4.19) follows from (4.20) and (4.24).
From (4.18) and Lemma 3.2 we infer that there exists a sequence h, — 0 and for each n
there is a minimizer ¢, of GZ’" e Hé}n (RY) such that

(4.25) 6n = || [Cnl = 1| Loo(rvy — 0 as n —» o0.

Then Lemma 4.4 (i) implies

(4.26) EGL(gn) > \/5(1 - (5n)’Q(Cn)|

From (3.4) we obtain ILm |Q(¢n) — Q(¢y)| = 0, hence lirginf@({n) = lirgian(zpn) > ¢. Using
(4.19), the fact that Fqr(¢,) < Eqr(vn) and (4.26) we get

B(6) = Boulin) + [ V(ul®) = 56 () — 1
> Per(G) + [ V) = 5 (i) — 1) da
> VA= 810U+ [ V(i) = 5 (nl) ~ 1P

l\D\l—‘
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Passing to the limit as n — oo in the above inequality we get
liminf E(¢,) > V2q = vsq,
n—oo

which contradicts assumption c) in Lemma 4.10. This ends the proof of Lemma 4.10. O

Next we prove that a € (0,ap). We argue again by contradiction and we assume that
0 < a < ag. Let t, be as in (4.17) and let R, = t—; For each n > 1, fix y, € RY such that
ESWm ) (4,) > Ay (R,) — L. Using (4.17), we have

(4.27) gy = ESWmRNBnRn) () y < AL (2R,,) — (An(Rn) - i) —0asn —s oo

After a translation, we may assume that y, = 0. Using Lemma 3.3 with A = 2, R = R,
€ = €y, we infer that for all n sufficiently large there exist two functions vy, 1, ¥ 2 having the

properties (i)-(vi) in Lemma 3.3. In particular, we have Eqr,(¢n1) > EGBéo’R”)(wn) > q(Ry)—1,
N

E1(nz2) 2 Egy, * ™) () 2 Bar($n)—a(2Ra) and |EL(n) — Ear(n1) — Bar ()| <

Ce, — 0 as n —» oo. Taking into account (4.17), we conclude that necessarily

(4.28) Ecr(Yn1) — « and Ecr(Yn2) — ag — o as n — 00.

From Lemma 3.3 (iii)-(vi) we get

(4.29) |[E(n) — E(¥n1) — E(Yn2)] — 0 and

(4.30) 1Q(¥n) — Q(¥n1) — Q(¥n2)| — 0 as n — 0o,

In particular,if(q/}n,i) is bounded, i = 1,2. Passing to a subsequence if necessary, we may
assume that E(i,;) — m; > 0 as n — oo. Since li_>m Ecr(Yn:) > 0, it follows from
n [o.¢]

Lemma 4.1 that m; > 0, ¢ = 1,2. Using (4.29) we see that m; + ma = Enin(q), hence
my,ma € (0, Emin(q))-

Assume that liminf Q(¢, 1) < 0. Then (4.30) implies limsup Q(¢n2) > ¢. It is obvious

n—0o0 n—00
that B
E(¢n,2) > Emm(Q(@Z’nQ))
Passing to limsup in the above inequality and using the continuity and the monotonicity of
Epin we get ma > Epin(q), a contradiction. Thus necessarily lim inf Q (v, 1) > 0 and similarly
n—o0

liminf Q(¢pn2) > 0. From (4.30) we get limsup Q(¢) < ¢, @ = 1,2. Passing again to a
n—oo n—o0
subsequence, we may assume that Q(¢,;) — ¢; as n — 00, i = 1,2, where ¢1,¢2 € (0,q).

Using (4.30) we infer that ¢ + g2 = ¢. Since E(¥ni) > Emin(Q(1n)), passing to the limit we
get m; > Enin(qi), i = 1,2 and consequently

Epmin(q) = m1 +ma > Epin(q1) + Emin(g2)-

Since Epnin(q) < vsq, the above inequality is in contradiction with Lemma 4.7 (iii). Thus we
cannot have o € (0, o).
So far we have proved that o = . Then it is standard to prove that there is a sequence
N
(21)n>1 C RY such that for any e > 0 there is R. > 0 satisfying EgL \B(I"’RE)(zpn) < ¢ for all

sufficiently large n. Denoting v, = (- + xp), we see that for any € > 0 there exist R. > 0
and n. € N such that

(4.31) ERVBORI (Y < forall n > n..
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Obviously, (Vi )p>1 is bounded in L2(RN) and it is easy to see that (¥y,),>1 is bounded in
L?(B(0,R)) for any R > 0 (use (2.3) and (2.4) if N = 2, respectively (2.3) and the Sobolev
embedding if N > 3). By a standard argument, there exist a function ¢ € H OC(RN ) such that
V¢ € L2(R"N) and a subsequence (@bnk) k>1 satisfying

Viﬂnk — V¢ weakly in L2(RY),

&nk P weakly in H'(B(0, R)) for all R > 0,

1/1% — 1 strongly in LP(B(0, R)) for R > 0 and p € [1,2*) (p € [1,00) if N =2),
¢nk — ¢ ae. on RV,

(4.32)

By weak convergence we have

(4.33) / (V| do < liminf/ |V, |2 da.
RN k—o00 RN
The a.e. convergence and Fatou’s Lemma imply
2 2 . 2/1.7 2
(4.34) / (e2(jy]) —1)° dz < hmmf/ (21 ) ~ 1) do and
RN k—oco JRN

(4.35) / \V([¢*)] dz gnminf/ V(|4 [*)] da.

RN k—o00 RN

From (4.33), (4.34) and (4.35) we obtain

(4.36) EGL(zp)gliknl}infEGL(zﬁnk):ao and  E(Y) < liminf E(Pn,) = Emin(q).

k—o0

Similarly, for any € > 0 we get

437)  ER\BOR) ) < lim inf By, TABOR) (7 ) < lim sup ERIBOR) (] <

The following holds.

Lemma 4.11 Assume that N > 2 and assumptions (A1) and (A2) are verified. Let (yn)n>1 C
E be a sequence satisfying:

(a) (Eqr(Yn))n>1 is bounded and for any € > 0 there are R, > 0 and n. € N such that

N
EgL \B(O’RE)(%) <eg forn>n..

(b) There exists v € £ such that v, — 7 strongly in L?>(B(0, R)) for any R > 0, and
Yo — ¥ a.e. on RN asn — oco.

Then || || — Wl |2~y — 0 and [[V(|yal*) = V(1912 gvy — 0 as n — oo.

Proof of Lemma 4.11. Fix £ > 0. Let R. and n. € N be as in assumption (a). Then

(438) (b = Wsmsio < [ o, (#0122
for n > n.. It is clear that a similar estimate holds for . Let

T = |ml = @(lml); 7=l =@,

An = {z € RV | |y(2)] > 2}, A={z e RY | |y(z)| = 2},

A5 ={z e RN\ B(0,R.) | |w(z)| > 2}, A°={z e RV \B(0,R.) | [y(z)| > 2}.
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‘We have
0LN (42) < / (P (al) — 1) dz < 2ERVBORI () < o
RN\B(0,R.)

and similarly 9LV (A¢) < 2e. In the same way £V (A4,) < 2Eq1(yn) and LY (A) < 2EqL(7).
Since 0 < ¢/ < 1, it is easy to see that |VA,| < |Vy,| a.e. and |V7| < |V7| a.e., hence
(IVAn|)n>1 and V7 are bounded in L2(RY). If N > 3, the Sobolev embedding implies that
(An)n>1 is bounded in L¥ (RN). Then using the fact that 4, = 0 on RY \ A, and Holder’s
inequality we infer that 7, is bounded in LP(RY) for 1 < p < 2*. If N = 2, by (2.2) we get

1l r2) < CoIVARNT2 g2y £ (An),

hence (95, )n>1 is bounded in LP(RN) for any 2 < p < oo. Let p = 2* if N > 3 and let p > 2pg+2
if N = 2. Using Holder’s inequality (p > 2po + 2 > 2) we have

. _ s oi12 _2
(4.39> HfY”H%Q(RN\B(O,RE)) = /AE ]’yn‘de < H7n|’%p(RN)£N(An)1 p < Clgl P,

where C does not depend on n. It is clear that a similar estimate holds for 7.
In the same way, using (A2) and Hoélder’s inequality (p > 2po + 2) we get

/ V(Plde<c | 042
(RN\B(0,Re))N{|vn|>4} (RN\B(0,R:))N{|vn|>4}
(4.40)
2po+2 2po+2

<O [ Bl de < Ol £ (40 £ 00t
and (A1) implies
@y | V(P do <0 [ (*(al) — 1)* der < Cie,

(RN\B(0,R:))N{|vn|<4} RN\B(0,R:)

where the constants C5, C's do not depend on n. The same estimates are obviously valid for ~.
From (4.38) and (4.39) we get

[ 1vnl = IV 2@\ B0, RY) < H<P(|’Yn!)—1HL2(RN\B(0,RS))+||90(\72|)—1||L2(RN\B(0,RE))
¥l L2 @™\ Bo,r)) + 1T 2@\ BOR.)) < 2v2¢ + 201 .

Using (4.40) and (4.41) we obtain

(4.42)

+2

(4.43) / V() da < Coe'™ 5 & Ce.
RN\ B(0,R.)

It is obvious that v also satisfies (4.43).

Since |yn| = ©(|n|) +7n is bounded in LP(B(0, R)) for any p € [2,2*] if N > 3, respectively
p € [2,00) if N =2, and 7, — 7 in L?(B(0, R)) by assumption (b), using interpolation we
infer that v, — 7 in LP(B(0, R)) for any p € [1,2*) (with 2* = oo if N = 2). This implies
that V(|y.]?) — V(|7]?) in L'(B(0, R)) (see, for instance, Theorem A2 p. 133 in [46]). Thus
we have | Pynl — 1]l z2(50.5)) < € and V(19 P) — V(21305 < € for all suffciently
large n. Together with inequalities (4.42) and (4.43), this implies || [vn| — 7| | L2my) < 2v/2¢ +

2po+2
2C1517% + e and [|[V(|yn|?) — V(”Y‘Q)HLI(RN) < 205 . (2C5 + 1)e for all sufficiently
large n. Since ¢ is arbitrary, Lemma 4.11 follows. O

We come back to the proof of Theorem 4.9. From (4.31), (4.32) and Lemma 4.11 we obtain
| = 9] | 2y — 0 as k — oo. Clearly, this implies [|0? ([t |) — @*(IY])l| 2gv) — 0.

We will use the following result:
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Lemma 4.12 Let N > 2 and assume that (n)n>1 C € 15 a sequence satisfying:
(a) (Eqr(Yn))n>1 is bounded and for any € > 0 there are R, > 0 and n. € N such that
N

EgL \B(O’RE)(vn) < e forn > n..

(b) There exists v € £ such that Vv, — Vv weakly in L*>(RYN) and v, — v strongly in
L?(B(0, R)) for any R >0 as n — co.

Then Q(vn) — Q(y) as n — oc.

We postpone the proof of Lemma 4.12 and we complete the proof of Theorem 4.9. From
(4.31), (4.32) and Lemma 4.12 it follows that Q(¢) = klim Q(¥n,) = ¢. Then necessarily
— 00
E(Y) > Epin(q) = klim E(ty, ). From (4.36) we get E(¢) = Emin(q), hence 1 is a minimizer
— 00

of E under the constraint Q(v)) = q. Taking into account (4.33), (4.35) and the fact that
E(ihn,) — E(¥), we infer that Jrv |V, |2 dz — Jan~ [VY|* dz. Together with the weak
convergence Vb, — Vb in L2(R™N), this gives the strong convergence ||V, ~VY| L2@myy —
0 as K — oo and Theorem 4.9 is proven. O

Proof of Lemma 4.12. Tt follows from Lemma 4.1 and Lemma 4.4 (ii) that there are g > 0
and Cp > 0 such that for any ¢ € £ satisfying Eqr(¢) < g9 we have

(4.44) |Q(®)| < CoEcr(d).

Fixe € (0,%). Let R. and n. be as in assumption (a). We will use the conformal transform.
Let

x if |x| > R, x if || > R,
i W):{”’“” EE {7() EE

w(fe) el <R, DT (Ba) ] <R

A straightforward computation gives

R2 N-2
i) [ vaPda= [ P (1) < [ V(o) P dy
B(0,R.) RN\B(0,R.) |yl RN\B(0,R.)

2 _1)2 _ 2 _1)2 Rg N
/ o (FED = 1) e = / o, D 1) (W) dy

2
< / (@2(1]) — 1)* dy,
RM\B(0,R:)

so that vy, € € and FEqr(vr) < 2e < go. Similarly v € £ and Egr(v) < 2e. From (4.44) we get

(4.47)

(4.48) |Q(vg)] < 2CHe and |Q(v)] < 2Che.

Since V4, — Vv weakly in L2(R), a simple change of variables shows that for any fixed
§ € (0, R:) we have Vv, — Vv weakly in L?(B(0, R.) \ B(0,5)). On the other hand,

R2 N-2
[oowapar=[ L wnr (1) as [ P
B(0,8) RNM\B(0,5) Y| RM\B(0,5%)

and sup / , IV9%®)|* dy — 0 as § — 0 by assumption (a). We conclude that
k>1JRN\B(0,52)

(4.49) Vo, — Vo weakly in L*(B(0, R.)).
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Since v, — v in L?(B(0, R)) for any R > 0, we have for any fixed § € (0, R.),

2 o ( R? o
/ |vg — ] d:v:/ ) v (y) —v(y)| < 2) dy — 0 as k — 0.
B(0,R:)\B(0,5) B(0,Z£)\ B(0,R.) |yl

It is easy to see that there is p > 2 such that ((Jvx| — 2)+)k>1 is bounded in LP(RN). (If N >3
this follows for p = 2* from the Sobolev embedding because ||Vvk||%2(RN) < Eqr(vg) < 2e. If

N = 2, the fact that Egr(vy) < 2¢ implies that £2({|vx| > 2}) and ||Vug||f2(r2) are bounded
and the conclusion follows from (2.2).) Using Holder’s inequality we obtain

1—2
/B o 1 =2 2 <l =20 g, (£¥(BO.9)'
and the last quantity tends to zero as § — 0 uniformly with respect to k. This implies

/ |og|? dz — 0 as 0 — 0 uniformly with respect to k
(0,0)

and we conclude that

(4.50) O —— in L*(B(0, R.)).
Let
(4.51) W = Y — Uk, w=y— .

It is obvious that wy, w € HY(B(0, R.)), 7, = vk + wy and v = v + w. From assumption (b),
(4.49) and (4.50) it follows that

(4.52) wy — w  strongly and  Vwp — Vw  weakly in L?(B(0, R.)).
Using Definition 2.2 we have

Q) — QY| < 1Q(vk) — Qv)| + | L((i 52 wi) — (i, w))|
(4.53)

8 8
H LG5, vk) = (i, o)) + | LG5, wi) — (igge, w)).
From (4.48) we get |Q(vr) — Q(v)| < 4Cpe. Since wy = 0 and w = 0 outside B(0, R.), using
the definition of L we obtain

0 . . O ov
L({i 8?;’; wg) — <86;)1,w>)—/B(OR)<Zag’i 188;1 w)—i—(zaT’“,wk— w)yder — 0 ask — o0

because g—;’; — 8‘9; — 0 weakly and wy — w — 0 strongly in L?(B(0, R.)). Similarly the last
two terms in (4. 53) tend to zero as k — oo. Finally we get |Q(vx) — Q(v)| < (4Cy + 1)e for

all sufficiently large k. Since € € (0, %) is arbitrary, the conclusion of Lemma 4.12 follows. [

Corollary 4.13 Assume that N > 2 and (A1), (A2) are satisfied. If (yn)n>1 CE, v € € are
such that do(yn,y) — 0, then li_)m Q(vn) = Q(v) and li_>m 1V (|yml?) — V(\7|2)HL1(RN) =0.

In particular, @ and E are continuous functionals on £ endowed with the semi-distance dy.
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Proof. We have Vv, — Vv and (|v.] — |7]) — 0 in L?*(RY) as n — oo, hence
Vral? 4 5 (92 () = 1)° — V3 4 5 (¢%(17]) = 1)” in L' (RY), and consequently (7)1
satisfies assumption (a) in Lemma 4.12.

Consider a subsequence (vn,)¢>1 of (9n)n>1. Then there exist a subsequence (’Ynek)kzl
and v9 € £ that satisfy (4.32). Since Vn,, — V7o weakly in L*(R"M) and Vo, — Vv
in L2(R"N) we see that Vyy = Vv a.e. on R, hence there is a constant 3 € C such that
7 = v+ B a.e. on RY. The convergence [Yne, | — ol in L (RY) gives || = || a.e. on
RM. By the definition of @ it follows that Q(y0) = Q(y + ) = Q(v). Using Lemma 4.12
we get Q(Vn, ) — Q(10) = Q(7) as k — oo and Lemma 4.11 implies that V(|’>’ngk’2) —
V([70l?) = V(]7/?) in LY(RY) as k — co. Hence any subsequence (7y,)¢>1 of (Yn)n>1 contains
a subsequence (Yn,, )rk>1 such that Q(yn, ) — Q(v) and |V (|yn,, 1) — V(\”y\Q)HLl(RN) — 0,
and this clearly implies the desired conclusion. O

Assume that for some ¢ > 0 there is ¢ € £ such that Q(¢)) = ¢ and E(¢)) = Epin(q). Using
Corollary 4.13, for any sequence (¢, )n>1 C € such that do(iy,, 1) — 0 and for any sequence
of points (7,)n>1 € RY we have Q(¢n (- + 2,)) — ¢ and E(¥n(- + 2n)) — Emin(q). Hence
the convergence result provided by Theorem 4.9 for minimizing (sub)sequences of E under the
constraint () = ¢ is optimal.

Next we show that if V' > 0 on [0,00), the minimizers of E = E at fixed momentum are
traveling waves to (1.1). We denote by d~ Epnin(q) and d¥ Ep,i,(q) the left and right derivatives
of Epmin at ¢ > 0 (which exist and are finite for any ¢ > 0 because E,,;, is concave). We have:

Proposition 4.14 Let N > 2 and ¢ > 0. Assume that V(s) > 0 for any s > 0 and ¢ is a
minimizer of E in the set {¢p € £ | Q(¢) = q}. Then:

(1) There is ¢ € [dt Emin(q),d” Emin(q)] such that v satisfies
(4.54) i, + A+ F(|[9]*) =0 in D'(RN).

(ii) Any solution 1) € £ of (4.54) satisfies 1 € W ’p(RN) and Vi € WIP(RN) for any
p € [2,00), ¥ and Vi are bounded and ¢ € CH(RN) for any o € [0,1).

(iii) After a translation, ¢ is axially symmetric with respect to the x1—axis if N > 3. The
same conclusion holds for N = 2 if we assume in addition that F is C".

() For any q > qo there are ¥ ,¢~ € € such that Q(v) = Q(¢~) = p E(y™) =
E(Y™) = Enmin(p) and ™4~ satisfy (4.54) with speeds ¢ = dT Eynin(p) and ¢ = d~ Epin(p),
respectively.
Proof. (i) It is easy to see that Ay + F(|¢|?)y € H-YRYN), ith,, € L2(RY) and for any
1
¢ € CX(RY) we have ¢ + ¢ € €, lim — (Q(w +t¢) — Q) = 2(iths,, @) L2(r) and

(155) lim =+ (B () + t6) ~ B(¥))

2 / (V46,V6) — F(1b[2) (1, 6) da
—2(A¢ + F([$), ) -1y, i1 mY)-

Denote E'(4).¢ = ~2(A¢ + F([2), 6) g1 mny ) and Q'(). = 2(itbu,, 6) 2wy We
have E(¢ + tp) > Enmin(Q(¥ + t)), hence for all t>0

(156) LB +16) — BW)) > 1 (Bnin(QW +10)) ~ Enin(a)).
)

If Q' (¢).¢ > 0, we have Q(¢) + td) > Q(1p) = ¢q for t > 0 and ¢ close to 0, then passing to
the limit as ¢ | 0 in (4.56) we get E'(¢).¢0 > d" Enin(q)Q'(¥).¢. If Q'(¢).¢ < 0, we have
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QY +1t¢) <
get E'(¢).¢
d+Emin(Q)Q/
d_Emin(Q)Ql

(1) = q for t close to 0 and ¢ > 0, then passing to the limit as ¢ | 0 in (4.56) we
d~ Emin(q)Q' (v).¢. Putting —¢ instead of ¢ in the above, we discover

(¥).¢ < E'(¢).¢ <d”Emin(q)Q'(¥).¢ i Q'(¢).¢ >0, and
(V)¢ < E'(Y).¢ <d"Enn(0)Q'(V).0  if Q'().¢ <0.

Let ¢g € C°(RYN) be such that Q'(v)).¢p = 0. We claim that E’(1)).¢g = 0. To see this,
consider ¢ € C°(RY) such that Q'(1).¢ # 0. (Such a ¢ exists for otherwise, we would have
0 = Q'(¥).6 = 2iths,, B 2w for any ¢ € CX(RY), yielding 14y, = 0, hence Q(¥) = 0 #
g.) Then for any n € N we have Q'(¢¥).(¢ + ngo) = Q'(¢).¢. From (4.57) it follows that
E'(Y).(¢ + ndg) = E'(¢).¢ + nE'(¢).¢p is bounded, thus necessarily E’(1)).¢g = 0.

Take ¢; € C(RY) such that Q'(¢)).¢1 = 1. Let ¢ = E'(3).¢1. Using (4.57) we obtain
¢ € [d" Emin(q),d” Emin(q)]. For any ¢ € CZ(RY) we have Q'(¢).(¢ — (Q'(¢).¢)d1) = 0,
hence E'(¢).(¢ — (Q'(v).¢)p1) = 0, that is E'(1)).¢0 = c¢Q'(1)).¢ and this is precisely (4.54).

(ii) If N > 3 this is Lemma 5.5 in [43]. If N = 2 the proof is very similar and we omit it.

Q
>

(4.57)

(iii) If N > 3, the axial symmetry follows from the fact that the minimizers are C! and
from Theorem 2’ p. 329 in [42]. We use an argument due to O. Lopes [40] to give a proof
which requires ' to be C!, but works also for N = 2. Let S;” and S; be as in (4.10) and
(4.11), respectively. Proceeding as in the proof of Lemma 4.7 (ii), we find ¢ € R such that
Q(S{¥) = Q(S; ¢) = ¢. This implies E(S;"¢)) > Emin(q) and E(S; 9) > Epin(q). On the
other hand E(S; ) + E(S; v¢) = 2E(¢)) = 2En(q), thus necessarily E(S; ) = E(S; ) =
Emin(q) and S; 1) and S; 1 are also minimizers. Then S; 1 and S; 1 satisfy (4.54) (with some
coefficients ¢y and c_ instead of ¢) and have the regularity properties given by (ii). Since
St = on {zy >t} and S; v = ¢ on {zn < t}, we infer that necessarily c; = c_ = c.
Let ¢o(z) = e%w(a:), o1(z) = e%stﬂb(x), ¢a(x) = 6%5;1[)(3:). Then ¢g, ¢1 and ¢o are
bounded, belong to T/Vli’p (RN ) for any p € [2,00) and solve the equation

2
A¢+ (Z + F(|¢|2)> 6=0  inRY.
Since Fis C! and ¢g, ¢1 are bounded, the function w = ¢; — ¢q satisfies an equation

Aw+ A(z)w =0 in RV,

where A(z) is a 2 x 2 matrix and A € L®(RY). Since w € H? (RY) and w =0 in {zy > t},
the Unique Continuation Theorem (see, for instance, the appendix of [40]) implies that w = 0
on RY that is S;"% = ¢ on RY. We have thus proved that v is symmetric with respect to the
hyperplane {zy = t}. Similarly we prove that for any e € SN¥~! orthogonal to e; = (1,0,...,0)
there is . € R such that 1 is symmetric with respect to the hyperplane {z € RN | z.e = t.}.

Then it is easy to see that after a translation v is symmetric with respect to Ox1.

iv) Consider a sequence ¢, T ¢. We may assume g, > qo for each n. By Theorem 4.9 there
is ¢, € & such that Q(v¥,) = ¢, — ¢ and E(¢,) = Enin(¢n) — Emin(q) by continuity of
Epin. Since ¢ > qo we have Ep,in(q) < vsq and using Theorem 4.9 again we infer that there
are a subsequence (Y, )k>1, a sequence (7x)g>1 C RY and ¢~ € € such that Q(v~) = g,
E(¢¥™) = Enin(q) and, denoting 1/~1nk = Yn, (- + x,), we have TZJnk — ¢~ a.e. on RN and
do(thn,, ™) — 0 as k — oc.

By (i) we know that each 1, satisfies (4.54) for some ¢n, € [d Emin(Gn,), d~ Emin(Gny,)]-
Since Eyip is concave, we have ¢,, — d~ Epin(q) as k — oo. It is easily seen that @nk —
and F(|{n, |2)tn, — F(|~|?)p~ in D'(RN). Writing (4.54) for each ¢),,, and passing to the
limit as k — oo we infer that ¢~ satisfies (4.54) in D'(R”Y) with ¢ = d~ Epin(q).
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The same argument for a sequence g, | ¢ gives the existence of 1T, O

If F satisfies assumption (A4) in the introduction and F”(1) # 3, we prove that in space
dimension N = 2 we have gy = 0. This implies that we can minimize F under the constraint
@ = q for any ¢ > 0. The traveling waves obtained in this way have small energy and speed
tending to vs as ¢ — 0. For the two-dimensional Gross-Pitaevskii equation, the numerical and
formal study in [31] suggests that these traveling waves are rarefaction pulses asymptotically
described by the ground states of the Kadomtsev-Petviashvili I (KP-I) equation. The rigorous
convergence, up to rescaling and renormalization, of the traveling waves of (1.1) in the transonic
limit to the ground states of the (KP-I) equation has been proven in [6] in the case of the two-
dimensional Gross-Pitaevskii equation. That result has been extended in [16] to a general
nonlinearity satisfying (A1), (A2) and (A4) with F”(1) # 3.

A result similar to Theorem 4.15 below is not true in higher dimensions: in view of
Proposition 1.4 we have gg > 0 for any N > 3. If N > 3, the existence of traveling waves
with speed close to v is guaranteed by Theorem 1.1 and Corollary 1.2 p. 113 in [43]. In space
dimension three, the convergence of the traveling waves constructed in [43] to the ground
states of the three-dimensional (KP-I) equation as ¢ — v, has been rigorously justified under
the same assumptions as in dimension two (see Theorem 6 in [16]). It was also shown in [16]
that these solutions have high energy and momentum (of order 1/4/v2 — ¢? as ¢ — v5) and
thus lie on the upper branch in figure 1 (b).

Theorem 4.15 Suppose that N = 2, the assumption (A4) in the introduction holds and
F"(1) # 3. Then Epin(q) < vsq for any q¢ > 0. In other words, gy = 0.

Remark 4.16 If N = 2, V > 0 and (Al), (A2) and (A4) hold with F"(1) # 3, it follows
from Theorems 4.15 and 4.9 that for any ¢ > 0 there is 9, € € such that Q(¢,) = ¢ and
E(¢p) = Epmin(q). Proposition 4.14 (i) implies that 1), is a traveling wave of (1.1) of speed
c(Yq) € [dT Emin(q),d” Epnin(q)]. Using Lemmas 4.5 and 4.6 we infer that c(¢,) — v, as
q — 0. In particular, we see that there are traveling waves of arbitrarily small energy whose
speeds are arbitrarily close to vs.

In view of the formal asymptotics given in [31], it is natural to try to prove Theorem 4.15

by using test functions constructed from an ansatz related to the (KP-I) equation.

Proof of Theorem 4.15. Fix v > 0 (to be chosen later). We consider the (KP-I) equation

1
(4.58) U — YUy + ﬁumx - Ogluyy =0, teR,(z,y) € R?,

s

where u is real-valued. Let Y be the completion of {9.¢ | ¢ € C(R?* R)} for the norm
H@ng)H%, = H(‘)xqu%z ®r2) T+ v2\|8y¢||%2 (R2) T ||8a:xd)H%2 (R2)" A traveling wave for (4.58) moving
with velocity - 2 is a solution of the form u(t,z,y) = v(x — 77 y), where v € Y. The traveling
wave profile v solves the equation

1 1 _ .
—Up + YVUz — ﬁvxm + 0, 1vyy =0 in R?,
S S

or equivalently, after integrating in x,

1 1
v+ v — 2vm—i—8;2vyy:0 in R

4.5
( 9) ’U2 2 s

It is a critical point of the functional (called the action)

_ 24 2 -1, 2 gl 3 _ 1 2 7 3
P = [ e lel ot faray+ ] [ ey = S+ [ o
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Equation (4.59) is indeed nonlinear if v # 0. The existence of a nontrivial traveling wave
solution w for (KP-I) follows from Theorem 3.1 p. 217 in [19]. The solution found in [19]

minimizes || - ||y in the set {v € Y | / v3dedy = w? dx dy}. Tt was also proved (see
R? R?

Theorem 4.1 p. 227 in [19]) that w € H®(R?) := NpenH™(R?), 97w, € H®(R?) and w
minimizes the action . among all nontrivial solutions of (4.59) (that is, w is a ground state).
Moreover, w satisfies the following integral identities:

( I 5 v 3 1 2 1.2
/R2 U—gw +§w +v—§\8xw| + 10, "wy|*dzdy = 0,
I 9.7 3 1 2 —1,. 2
(4.60) . W +§w —ﬁ‘&,}w| + 3|0, “wy|* dz dy = 0,
S S
I 9,7 3 1 2 -1, 2
/R2 U—gw +gw +v—3\8rw| — 05 “wy|* dz dy = 0.

The first identity is obtained by multiplying (4.59) by w and integrating, while the two other
are Pohozaev identities associated to the scalings in x, respectively in y. They are formally
obtained by multiplying (4.59) by zw, respectively by yd; lw, and integrating by parts; see
the proof of Theorem 1.1 p. 214 in [19] for a rigorous justification.

Comparing . (w) to the last equality in (4.60) we get

(4.61) / 107 w2 dar dy = ~.7 (w).
R2 2

In particular, .#(w) > 0. Then from the three identities (4.60) we obtain

3 1

(4.62) ;2/ (|2 dz dy = 2.7 (w),

/|wx|2dxdy:<5”(w), 7/ w dx dy = —. (w).
2 2 . 6 Jro

02 Jr
Let w be as above and let ¢ = Usﬁx_lw, so that 8,6 = vsw. For £ > 0 small we define
pe(2,y) = 1 + 2w(ex, %), 0.(z,y) = ep(ex, e2y), U. = poeit=

Then U, € € (because w € H*(R?)). For ¢ sufficiently small we have V(|U.|?) = V(p2) > 0,
hence E(U.) = E(U.). A straightforward computation and (4.61), (4.62) give

dp |2 3/ Ow |2 3,2 3
= _— = = 2
/R2 D dedy =¢ - 890‘ dx dy = e’vis (w) = 2”7 (w),
2 2
/ Ope dr dy = 55/ a—w‘ dx dy,
R?2 8y R2 83/

00,

2 2 2. \2( 4 |2
o dedy =¢ | (14 ¢c*w)*|¢,|"dxdy
R2 X R2 12

= 51}3/ (1 + e2w)*widz dy = év;{?(w)e — Sl (w)ed + 1)355/ whdz dy,
R?2 2 Y R?2
2
/ P2l == dxdy = 63/ (14 e%w)?| ¢y |*dzx dy
R?2 83/ R?2

= a?’vg/ (14 &%w)?|0; 'wy |2z dy
2

00,

1
= 51}35’(1{))63 + 26702 /R2 w|0; Ly |Pdx dy + 7v? /R2 w?| 9, twy [Pdx dy.

37



Using (2.7) we get

00,
(4.63) R? . 6
= €vs / (2w + 2w?)w dx dy = 3v3.7 (w)e — —vs.7 (w)e>.

R2 Y

dx dy = 5/ (2w + e2w?) ¢, dx dy
RZ

If (A4) holds we have the expansion

(4.64) V(s) = %(s Sy éF”(l)(s C 1) 4 H(s),

where |H(s)| < C(s — 1)* for s close to 1. Using (4.64) and the fact that w € LP(R?) for any
p € [2,00], for small € we may expand V' (p.) and integrate to get

4
/ V(p?) dzdy = 25/ w?dzx dy + &3 (2 — F”(1)> / w3dzx dy + O(£%)
R2 R2 3 R2

I
[\S][oV

4
<
—~

S
S~—

™

|

[=2]

(vg — %F”(l)) S (w)ed + O(&%).
From the previous computations we find

I

(4.65) E(U.) - v,Q(U.) = v2.9(w) (2 _ W) &1 0.

If F"(1) # 3, choose v € R such that 3 — w < 0 (take, for instance, v = 6 — 2F"(1)).
Let w be a ground state of (4.59) for this choice of . It follows from (4.65) that there is g > 0
such that E(U.) —vsQ(U:) < 0 for any € € (0,e0) (since .(w) > 0). On the other hand, using
(4.63) we infer that there is 1 < g such that the mapping ¢ — Q(U.) is a homeomorphism
from (0,e1) to an interval (0,q;). Since Enmin(Q(U:)) < E(U.) = E(U.) < vsQ(Us), we see
that Epnin(q) < vsq for any ¢ € (0,¢1). Then the concavity of E,.;, implies Fypin(q) < vsq for
any q > 0. (]

We pursue with some qualitative properties of F,,;, for large q. Theorem 4.17 (a) below
implies that the speeds of traveling waves obtained from Theorem 4.9 tend to 0 as ¢ — co.

Theorem 4.17 N
(a) If (A1) holds and N > 2, there is C' > 0 such that Epnn(q) < CqN-11lng for large q.
(b) If N > 2 and (A1) and (A2) hold we have lim Epin(q) = oco. Moreover, if N > 3
q o0

there is C' > 0 such that Enin(q) > Cq%.

Proof. (a) Using Lemma 4.4 p. 147 in [43] we see that there is a continuous mapping
R+ vg from [2,00) to H'(R") and constants C; > 0, i = 1, 2, 3, such that

(4.66) / Vor|2dz < CLRN21n R, / IV + vrl)| de < CoRN-2,
RN RN

(4.67) C3(R—2)N 1< Q1 +4wvg) < C3RN L.

Let gr = Q(1 4+ vgr). The set {gr | R > 2} is an interval of the form [g.,00). By (4.67) we
11 B T
have Cy " 'qp ' < R<2+4Cq " 'qp . Then using (4.66) we get for R sufficiently large

N-2

Emin(qr) < E(1+vg) < C1RY2In R+ CoRY ™2 < Cqf ' Ingp.
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N-2

(b) As in the proof of Lemma 4.7 (ii), using (4.9) we get Ein(q2) > (%) N Ein(q1) for

any g2 > g1 > 0. This is the second statement of (b), and it implies that lim FE,,;,(q) = oo if
q—o0
N > 3.
Let N = 2. We argue by contradiction and we assume that lim F,,;,(q) is finite. Using
q—00

Theorem 4.9 for ¢ sufficiently large, we may choose 1, € £ such that Q(v,) = g and E(¢,) =
Epin(q). Consider a sequence g, — co. From Lemma 4.8 it follows that Eqr, (1, ) is bounded
and stays away from 0. Passing to a subsequence we may assume that Eqgr,(1g,) — ag > 0.
Let A, (t) be the concentration function associated to Eqr(1g,) (as in (4.15)). Arguing as in
the proof of Theorem 4.9 and passing to a subsequence (still denoted (g, )n>1), we see that
there exist a nondecreasing function A : [0,00) — R, a € [0, ag] and a sequence t, — 00
satisfying (4.16) and (4.17). Then we use Lemma 4.10 to infer that o > 0.

If @ € (0,0), proceeding as in the proof of Theorem 4.9 and using Lemma 3.3 for 1,
we see that there exist functions ¢y, 1,9, 2 € € such that (4.28)—(4.30) hold. Passing to
a subsequence if necessary, we may assume that E(¢,;) — m; > 0 as n —> oo. Since
n11—>120 Ecr(¢n:) > 0, it follows from Lemma 4.1 that m; > 0, ¢ = 1,2. Using (4.29) we see that

m1+mg = lim Ep,in(q), hence 0 < m; < lim Eyipn(q). Since Q(vg,,) = ¢n — 00, from (4.30)
q—o0 q—o0

it follows that at least one of the sequences (Q(¥ni))n>1 contains a subsequence (Q(¥n, i))k>1
that tends to co. Then E(¢n, i) > Epmin(Q(¥n,.:)) and passing to the limit as k — oo we
find m; > lim Ein(q), a contradiction. Thus we cannot have a € (0, ayp).

q—00

We conclude that necessarily a = ag. Proceeding again as in the proof of Theorem 4.9
we infer that there is a sequence (zy)p>1 C RN such that ¢, = g, (- + =) satisfies (4.31).
Then there is a subsequence (¢, )i>1 and ¢ € &€ such that (4.32) holds. Using Lemma 4.12

we infer that Q(q,/;nk) — Q(¢¥) € R and this is in contradiction with Q(vn,) = gn, —> 0.
Thus necessarily Epin(q) — 00 as ¢ — 0. O

An alternative proof of the fact that Euin(q) — 00 as ¢ — oo is to show that for ¢ € €
we may write (it);,,v) = f + g, where g € Y and f is bounded in L'(RY) if Egp(v) is
bounded, then to use Lemma 4.8 to infer that Q(¢) remains bounded if F(v)) is bounded.

From Theorem 4.17 and Lemma 4.8 we obtain the following:

Corollary 4.18 For all M > 0, the functional Q is bounded on the set {p € € | Eqr,(¢) < M}.
If (A1) and (A2) hold, Q is also bounded on {¢p € £ | E(x)) < M}.

5 Minimizing the action at fixed kinetic energy

Although in many important physical applications the nonlinear potential V' may achieve
negative values (this happens, for instance, for the cubic-quintic NLS), there are no results
in the literature that imply the existence of finite energy traveling waves for (1.1) in space
dimension two for this kind of nonlinearity. We develop here a method that works if N > 2
and V takes negative values. The method used in [43] (minimization of E. under a Pohozaev
constraint) does not require any assumption on sign of the potential V', hence can be applied
for the cubic-quintic NLS if N > 3, but does not work in space dimension two. Throughout
this section we assume that (A1) and (A2) are satisfied.
We begin with a refinement of Lemma 4.4.

Lemma 5.1 Assume that |c| < vs and let € € (0,1 — %) There is k > 0 such that for any
Y € & satisfying fRN |Vul? dz < k we have

E(y) —eEar(v) = |cQ(y)].

39



<]

Proof. Fix e; > 0 such that e +¢7 < 1 — o
k1 > 0 such that

. It follows from Lemma 4.1 that there is

(5.1) (1 —e1)Ear(¥) < E(Y) for any ¢ € & satisfying / V|2 do < k.
RN

Let F(s) = (1 — @2(¢§))¢(¢§)¢'(\[)L Then F(s) =1 — s for s € [0,4] and F satisfies

(A1) and (A2). Let V(s f F(r)dr = % (©*(V/s) — 1)2 . Using Lemma 4.4 (ii) with F and V
instead of F' and V we 1nfer that there isk e (

0, £1) such that for any ¢ € € with Eqr(¢) < 2k
we have

2
(5.2) (1—e—e1)Ear(¥) = [cQ(¥)].

Let ¢ € € be such that [gn [V|?dz < k.
1t L fow (92([9)2 = 1) do < k we have Egr(¢) < 2k and (5.2) holds. Then using (5.1)
we obtain E(¢) —eEqr(¢) > (1 —e —e1)Eqr(v) > |cQ(y)|.

1t 3 o (P00 = 1) do > b, let 0 = (fyon [0 d2)® (3 fron (@2(01)? = 1)° )~
Then o € (0,1) and

1 1

2/RN (©*([to0)? = 1)* da = /RN Vool di = S Bar(tng) = o™ AN IV|? dx < k.

Using (5.1) and (5.2) we get E(¢) > (1 —e1)Egr(¢) and (1 —e —e1)Eqr(Vo,0) > |cQ(Vo,0)|.
Then we have

E() —eEaL(¥) — [cQ(¢)| = (1 —e —e1) Eqr(¢) — [cQ(¢)]

>(1—-e—e1) <0A}—2/RN

1—¢e— &1 1 1 1—e— €1
Z 9 <JN—2 + 0'N> Ear(Yo0) — WEGL(%,U) >0

N[

1 1
s (el = 1) o) = @)

O
Let I(1) = —=Q(¥) + Jgn V(I*) dz = E() — Q) — [ [V da.

We will minimize /(1)) under the constraint ||Vo)||12g~)=constant. For any k > 0 we define

Inin(8) =it {10) | we &, [ [VuiPdo =1},
RN
The next Lemmas establish the basic properties of the function I,,;,.

Lemma 5.2 (i) For any k > 0 we have Lyin(k) < —U%k:.
(ii) For any 0 > 0 there is k(0) > 0 such that Lyin(k) > —1%26143 for any k € (0,k(9)).

Proof. i) Let N > 3. Let ¢ = 2kvN=3. In the proof of Lemma 4.5 we have constructed a
sequence (¢n)p>1 C & such that

1 1
Q(n) = q, / IVipn|? de — Zvsq = kol 72, / V(|thn|?) de — Zvsq
RN 2 RN 2

1
and 1, is constant outside a large ball. Let o,, = N2 (fRN |V ihn|? dx) N-2 Then o, — U%

as n — 0o. We get

/ IV ((¥n)on,on) | dz = ajj—?/ Vb |? da = k,
RN RN
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k
Q((wn)an,an) = O'T]Z]_lQ(Qpn) s % — 2

v} 22’
V(| (thn) |2>dx=aN/ V(2 dr — =24 K
RN 1/ In,0n n RN n Uév 2 U2

We have Lyin(k) < I((¥n)on,0,) for each n and passing to the limit as n — oo we obtain
Lnin(k) < =55k
IfN=2let g= %, choose 1, as in the proof of Lemma 4.5 such that

/ VeulPde =k QW) —a=2F  and /V<|wn12>d:c—>k.
R? R2

Vs
Let o0 = L Then [go [V((¥n)oo)?dz =k, Q((¢n)o0) = 0Q(vn) — 1271; and
Jr2V( ¢n Jool?) dz = 02 [RoV (|¢hn|?) do — %, hence I((¥n)o,0) — —%,

(ii) Fix § > 0 and let ¢ = \/ﬁ Lemma 5.1 implies that there is k£ > 0 such that for any
Y € € with [gu |Vy|? dx < k we have

(5.3) /R VU de— Q) + /R V() de > 0.

Let ¢ € € be such that [pn|V¢[>de < . Then [gn [Vibecl?do = N2 [gn VO[> dao < F,
hence 1., satisfies (5.3), that is ¢V 72 [5n [VY|? dz + ¢V I(¥) > 0 or equivalently

1+5
1)z~ [ ViPde =5 [ vuita.

Hence (ii) holds with k(9) = N 5 O

We give now global properties of I;,.

Lemma 5.3 The function Ly, has the following properties:

Imin (k) _
— %5 =

(i) Imin is concave, decreasing on [0,00) and lim —00.
k—o00

(7) Imin is subadditive, that is I (k1 + k2) < Imin(k1) + Imin(ke) for any ki, ko > 0.

(i3) If either N > 3 or (N =2 and V > 0 on [0,00)), we have Lyin(k) > —oo for any
k> 0.

(i) If (N =2 and inf V < 0), then I,y (k) = —o0o for all sufficiently large k.
(v) Assume that N =2, (A4) holds and F"(1) # 3. Then Iyin(k) < —5k for any k > 0.

Proof. 1) We prove that for any k > 0,

(5.4) Iin(k) > limsup Ipyin (h).
hik

Fix ¢ € & such that [pn |[Vi[>dz = k. At least one of the mappings ¢t — [qn [Vios|? da,
t— [gn (Vb1 4)? dz or t — Jrv |Vabe1)? dx is (strictly) increasing on [1,00). Let ¢! be
either 1y ; or 11, or 1, in such a way that t — [p~ |V4!|2 dx is continuous and increasing
on [0,00). It is easy to see that I()*) — I(¢)) ast — 1. Let (ky)n>1 be a sequence satisfying

kn | k. There is a sequence t, | 1 such that fRN |Vyin|2de = k,. For each n we have
Lin(ky) < I('n) and passing to the limit as n — oo we find hm sup Iin(kn) < I(3). Since

this is true for any sequence k, | k and any 1) € £ satisfying fRN |V1/}\2 dx =k, (5.4) follows.
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Proceeding exactly as in the proof of Lemma 4.7 (see the proof of (4.12) there) we find

ki + k 1
(5.5) Imm< 1; 2) > 2( Imin (k1) + Imin(k2)) for any ki, ko > 0.

Let 0 < k1 < ko. Using (5.5) and a straightforward induction we find
(5.6) Ipin(aki + (1 — a)ke) > alpmin(k1) + (1 — @) Inin (k2) for any a € [0,1] N Q.

Let o € (0,1). Consider a sequence (ay)n>1 C [0,1] N Q such that a;, T . Using (5.4) and
(5.6) we get

Inin(aky + (1 — @)ka) > limsup Inin (k1 + (1 — o) ko)

n—oo
> lim sup (anImzn(kl) + (1 - Oln)lmzn(k2)) = aImzn(kl) + (1 — a)Imzn(l{Q)
n—oo
Thus Iy is concave on [0, 00). Since I, (0) = 0, by Lemma 5.2 I, is continuous at 0 and
negative on an interval (0,0) and we infer that I,,;, is negative and decreasing on (0, c0).
The concavity of I,,;, implies that the function k — I"”T"(k) is nonincreasing on (0, c0).
Using Lemma 4.4 in [43] we find a sequence (¢, )n>3 C £ such that

k, ;:/ V|2 de < Cin¥~21nn, ‘/ V(|[¢n|?) dz| < Con™=2 and Q(v) > C3n™N 7L,
RN RN

where C7, Cy, C3 > 0 do not depend on n. Then lim "”Z( ) < lim (:’") = —00.

k—oo n—oo "
(ii) By concavity we have I, (ki) > ﬁjmin(kl + ko), i = 1,2, and the subadditivity

follows.

(iii) Consider first the case N > 3. Fix £ > 0. Argue by contradiction and assume that
there is a sequence (¢,)n>1 C € such that fRN |V, |? do = k and

(5.7) I(¢Yn) = —Q(¢Yn) + /RN V(|[¢n|?) dz — —oc0 as n —» oo.

Let ¢ = %. By Lemma 5.1 there exists ko > 0 such that %2 < (%)]\L2 and (5.3) holds for any

_1
)€ € with [on [VO[2de < ka. Let 0 = k) 2k 72 < %. Then [gu [V((n)ool?dz = ks,
hence (vn,)s,0 satisfies (5.3), that is

(5.8) /RN | Vb |? da — U%Q(zpn) + o2 /RN V(|¢hn]?) dz > 0.

From (5.7) and (5.8) we get
—/ |V@Dnl2dm + (crE - 02) / V(|@Z1n]2) dr — —o0,
RN 2 RN

which implies [gn V([¢n]?) do — —o0 as n — oo. Since [pn [Von|? do = k, this contradicts
the first inequality in (4.1).

Next assume that N = 2 and V' > 0 on [0,00). Fix k& > 0. By Corollary 4.18 there is
qr > 0 such that |Q(v))| < g for any ¢ € & satisfying E(¢) < k+ 1. Let ¢ € £ be such that
Jrz IVY|? do = k. If [go V(|#]*) dz = 0 we infer that || = 1 a.e. on R? and then (2.7) implies

Q) = 0, hence I(¢)) = 0. If [ro V(|¢|*)dz > 0let 0 = (Jgo V |w| )dz)~ 7 and Y = Yoo,
so that [z V (|9|?) dz =1 and Jre |V|2 dz = k. We infer that |Q(¢)| < qi. Since ¢ = P11
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~ 2
we have by scaling I(¢ 2 [reV ([9|2)de — o' Q) > 02— o 'qp > — % We conclude
that Ly (k) > —%’“ > —00.
iv) If V' achieves negative values, it is easy to see that there exists ¢y € & such that

fRQ (|1]?)dz < 0. Let ky = fRQ |V41|? dz. Then, for any t > 0, fR2|V V1)es]?dr =
fR2 |V1|? dx = k1 because N = 2, thus

i) < 1((00)10) = ~1QU) +£2 [ V(jr2) e — —oc

as t — 0o. By concavity we have I, (k) = —oo for any k > ky.

v) The proof relies on the comparison maps constructed in the proof of Theorem 4.15
from the (KP-I) ground state. Notice first that if ¢ € £ is such that [R. |Vy|*dz = k,
Jr2 V(|¢[*) dz > 0 and Q(v) > 0, then the function t — I(Yy) = 12 [g2 V([©]?) dz — tQ(¢)

achieves its minimum at tg = 2@ (fR2 (|%]?) ) . Since [Ro» |Vy|? doe = Jr2 (Vb 4)? do =
k in dimension N = 2, it follows that

Q*(¥)
4 g V([P?) dee
Fix v # 0 (to be chosen later), and let w be a ground state for (4.59). Then, for ¢ small

enough, we have seen in the proof of Theorem 4.15 how to construct from w a comparison map
U. € & satistying

(59) Imzn(k) < %Eg I(¢t,t) = tho,to) =

QU.) = 308 (w)e — 308,?(10)53,

12
VU do = St e + 2 w) (5 - 2) 4 0
R2

Let ke = [ge |VU:|? dx. Since Q(U:) > 0 and [, V(|U:|?) dz > 0 for & small, we infer from
(5.9) that

Imin ko) < — = _ 227 il GO o
- V(0B ~ 2 et (w)e” +O(e”)
_ L3 LAF" (1) ,
2 |30 We = vl —— =S () + O
Therefore, we have
k
Imin(ke)<—v—;

for all e sufficiently small provided that —2F”(1) > 3 — 12 that is A=) - 3 (take, for
g 2y v 2
instance, v =3 — F"(1)). O

Let

(5.10) ko = inf {k >0 | Lin(k) < —1721@} and koo = inf{k > 0 | Ly (k) = —oo}.
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By Lemmas 5.2 and 5.3 (i) we have 0 < ky < oo and 0 < koo < 00. It is clear that ky < koo
If either N >3 or N =2 and V > 0 on [0,00) we have ks, = 0o, while if N = 2 and (A4)
holds with F”(1) # 3, we have kg = 0; obviously, in all these cases we have ky < koo. The
next Lemma gives further information in the case when N = 2 and V' achieves negative values.
It brings into light the relationship between k., and the Dirichlet energy of the stationary
solutions of (1.1) with minimal energy, the so-called ground states or bubbles.

Lemma 5.4 Assume that N =2, (A1), (A2) are satisfied and inf V < 0. Let

T = inf {/ |V|? da ‘ Y e &, Y] is not constant and / V(|¢]?) de < O} .
R?2 R2

Then:

(i) We have T > 0 and the infimum is achieved for some g € £. Moreover, any such 1y
satisfies the equation Ao+ o?F([¢o|*)o = 0 in D'(R?) for some o >0, [g2 V(|tho]?) dz =0,
Yo belongs to CH*(R2) for any o € (0,1) and, after a translation, g is radially symmetric.

(ii) For any k < T and any M >0, Eqy, is bounded on the set

Enar = {w €€ ’ / \VY|* de < k, / V(|[¢]?) dx < M}.
R2 R2
(iii) We have koo =T.

Proof. (i) It follows from Corollary 4.2 that T" > 0. The proof of the existence and
regularity of minimizers is rather classical and is similar to the proof of Theorem 3.1 p. 106 in
[12], so we omit it. Notice that any minimizer of the considered problem is also a minimizer
of [z2 V(|4|?) dz under the constraint [, |[V4)|? dz = T and then the radial symmetry follows
from Theorem 2 p. 314 in [42].

(ii) Fix 5 € (0,1] such that
(5.11) V(s?) > %(32 1 forany se ((1— B (1+8)).

It suffices to prove that for any sequence (Yn)n>1 C &k, Eqr(¢n) is bounded. Let
(Yn)n>1 C Egm- Let Ky, = {z € R?2 ‘ | |thn ()] — 1’ > g} We claim that it suffices to prove
that £2(K,,) is bounded.

Indeed, assume £2(K,) bounded. Let ¢, = (‘ [thn| — 1| — 7> Then ¢, € L. (R?),
V| < [Vb,| a.e. on R? and by (2.2) we have

/R [nlP+2 da < Copyral| Vel ) £2 (Kn) < Copov2 | Vebul| 152y £ (Kn)-

2po+2
By (A1) and (A2) there is Cy > 0 such that |V (s?)| < Cj <|s -1 - g) "™ for any s satisfying
|s — 1| > 8. Hence

/ V(e < Co [ |15 di < CoCanysa| V0| 355 £2(8)
R\ {1-p<[¢n|<1+5}

and the last quantity is bounded. Since [p. V (|1n|?) dz is bounded, we infer that
2 .
f{1_5§|¢n|g1+5} V (|thn)?) dz is bounded, and by (5.11) f{l B<lm| <146} ( 2(|opp]) — 1) dz is
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2
bounded. On the other hand, fRQ\{liﬁg‘wn‘SHﬁ} (©*(|en]) — 1) dr < [ (9*(|¢n]) = 1)" dz <
64L2%(K,) and the conclusion follows.

It remains to prove the boundedness of £2(K,). Let

+ _ |wn’ if W}n’ Z 1 - _ ’¢n‘ if |¢n’ S 1
Yo = { 1 otherwise, and Yo = 1 if || > 1.
It is clear that ¢y, 1, €&, [g2 \v¢+y2+yv¢n 2de =[R2 [V|n| P de < kand [qo V(%) +

V(Iy|?) da = [ge V([¥n]?) dz. If g2 V(|1;T]?) da < 0, by (i) we have [go |V |* do > T >k,
a contradiction. Thus necessarily [g. V(|¢;f]*)dz > 0 and similarly [, V(¢ [*) dz > 0,
hence [, V([¢iF|?) da € [0, M].

Let K;f = {x € R?| |n(2)] > 1452}, Ky = {o € R? | |iho(2)] < 1-E}. Let wit = ¢ (|z))
and w,, = ¢, (Jz|) be the symmetric decreasing rearrangements of (|¢,] — 1)1 = ;" — 1 and of
(|tn| — 1)— =1 — 4, respectively. As in the proof of Lemma 4.8 we have ¢ € H}} ((0,0)).
Let

tp=inf{t >0/ (t) <5}  and s, =inf{t>0]¢,(t) < 5}.

Then £2(K+) C2({(|¢n] — 1)+ > 81 = 52({w; > 51y = £2(B(0,t,)) = 7t2 and similarly
L2(K, ) = ms2, so that L2(K,) = 7 (t2 + s2).

Assume that there is a subsequence t,; — oc. Let w; = (w;[]) a1 = qﬁnj( n; 1), so that
tny’ tn]

w; > % on B(0,1) and 0 < ; < 5 on RQ\B(O, 1). Then [go [V,|? de = [go [Vwy,|* do < k
and using (2.2) we see that (w; — g)Jr is uniformly bounded in LP(B(0,1)) for any p < oo, and
consequently (;);>1 is bounded in LP(B(0, R)) for any p < oo and any R € (0,00). Then
there is a subsequence of (10;);>1, still denoted (;);>1, and there is w € H} (R?) such that
Vi € L*(R?) and (0;);>1, W satisfy (4.32). It is easy to see that 1 + @ € £ and @ > g on
B(0,1). By weak convergence we have

k= / |V |? de < hmmf/ V| do < k.
R2 —00 R2
Using (A2), the convergence w; — w in L?P°*2(B(0,1)) and Theorem A2 p. 133 in [46]
we get [ V(L + w;)?) dr — Jpon V(A + w)?) dz. Since w; € [0,5] on R?\ B(0,1)
and V(s?) >0 for s € [1,1 + g], using Fatou’s Lemma we obtain fR2\B(0 1 V((1+w)?)dr <
hjrggolf fRQ\B(O,l) V((1 4 w;)?) dx. Therefore

1
/ V((1+®)?)de <liminf | V((1+4@;)*)dz =liminf -
R?2 J—00 R?2 J—00 tnj R2

1
_ liminfz/ V(s )) dz < 0
t R2 E

j—oo lp,

V(4w )?) dx

nj

because [po V (1/Jn )?)dz < M and t,, — 400 by our assumption. Since 1 + @ > 1 + g on
B(0,1) we infer that Jrz IV@[*dz > T > k, a contradiction.
So far we have proved that (t,),>1 is bounded. Similarly (sj)n>1 is bounded, thus
(L2(K,))n>1 is bounded and the proof of (ii) is complete.

(iii) Consider a radial function ¢y € € such that |¢g| is not constant, [go V(|1bo]?)dz = 0
and [go [Vio|*de = T. Since F(|iho|*)1ho does not vanish a.e. on R?, there exists a radial
function ¢ € C°(R?) such that [go (F(|¢o|?)tho, @) do > 0. It follows that & |t=0 Jre2 V(v +

to|?) dor = —2 fRZ (|10|?0, #) dz < 0, consequently there is ¢ > 0 such that ng (|o +
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td|?) dx < g2 V([¢o0|*) dz = 0 for any ¢ € (0,¢). Denote k(t) = [ [V (to +t¢)[* dx. It follows
from the proof of Lemma 5.3 (iv) that Ly, (k(t)) = —o0 for any t € (0,¢), thus ko < k(t) for
any t € (0,¢). Since k(t) — T as t — 0, we infer that ko < T

Let k < T. Consider ¢ € € such that [, [V|[?dz = k. If [¢)| = 1 a.e. we have V([9[?) =0
a.e. and Q(T/J) = 0 by (2.7), hence I(¢)) = 0. If |¢| is not constant, then we have necessarily
Jrz V(|[¥[*) dz > 0. If Q(¢) < 0, it is obvious that I(1) > 0. If Q(¢)) > 0 we have ian(l/}tt) =

—1Q%* (¢ V) (fgz V(Y1) )_1 and the infimum is achieved for ¢,,m = 2Q (¥ ) (Jrz V(%) )
There exists t; > 0 such that fRQ ¢t1,t1| )dx = 1. Then ng |V, |2 dr = k and

Q*(¥) Q* (Yt 1) 1 o
I >inf I = ’ _Z ]
(¢) >0 (1/)1‘/ t) 4fR2 W}’ ) 4]1:{2 |wt1 tl‘ ) 4Q (wtl,tl)
This implies I(¢)) > inf{—2Q%(¢) | ¢ € E1}. By (ii) we know that Egy is bounded on &
and Corollary 4.18 implies that @ is also bounded on & ;. We conclude that I, (k) > —oo,
hence k < k. Since this is true for any k < T, we infer that ko, > T. Thus ke = T. O

Lemma 5.5 Assume that0 < k < koo and (¢n)n>1 C £ is a sequence such that fRN |V |2 do <
k for all n. Suppose that (I(¢n))n>1 is bounded in the case N > 3, respectively that I(¢y) <0
for all n in the case N = 2.

Then (Q(¥n))n>1, (fRN (Jeon]?) d ) n>1 and (Eqr(¥n))n>1 are bounded.

Proof. Consider first the case N > 3. Let us show that [px V(|tn]?) dz is bounded from
above. We argue by contradiction and assume that this is false. Then there is a subsequence,
still denoted (v5,)n>1, such that sy, : fRN (|19n]?) dz — 00 as n — co.

1

Let o, = s, ™. Since [u [V((¥n)op,on)|?dz = o} 72 [gn [Vn[?dz — 0 as n — oo,
Lemma 5.1 implies that (¢,)o,,0, satisfies (5.3) with ¢ = % for all sufficiently large n, that is

[ 190 e = s = T + 51 =0

Since [pn |[Vn|? dz and I(3y) are bounded and s, — oo, the left-hand side of the above
inequality tends to —oo as n — oo, a contradiction. We conclude that there is M > 0
such that [pn V(|tn|?)dz < M for all M. Then (4.1) implies that [gn (©*(|¢n]) — )2 dx is
bounded. By (4.1), [gx V (|1]?) dz is bounded from below. Using Corollary 4.18 we infer that
(Q(¥Yn))n>1 1s bounded

Consider next the case N = 2. Since [p2 Vi[> dz < k < koo, using Lemma 5.4 (i) and
(iii) we see that either [pn V(|¢n|?)dz > 0 or [gn V(|¢n|*)dz =0 and || = 1 a.e. on R2
In the latter case (2.7) implies Q(¢,) = 0, hence I(1,) = 0, contrary to the assumption that

I(4,) < 0. Thus necessarily 0 < [pn V WJ”] )dz < Q(1y,) for all n because I(¢,) < 0.

Since [gs [V(¥n)ool? dz = [g2 [Vn|? dz for any o > 0, as in the proof of Lemma 5.4 (iii)

we have

Q) | 2 |
_4fR2 V(|¢n‘2) de ;I;%I((wn)oa) > Lnin (/R2 |V1/)n| d{L‘> > Imm(kj)

and this implies
QX (un) < ~ALin(h) [ V([0 s
RN

Combining this with the inequality 0 < [zo V(|¢n|?) dz < Q(¢n), we get

(5.12) 0< /R V() dr < Q) < ~Ain(R).
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We have thus proved that (Q(¢n))n>1 and ([ge V ([tn]?) dx)n>1 are bounded. The bounded-

ness of [go (©*(|¢hn]) — 1)2 dz follows from Lemma 4.8 if V' > 0 on [0, 00), respectively from
Lemma 5.4 (ii) if V' achieves negative values. O

We now state the main result of this section, which shows precompactness of minimizing
sequences for I, (k) as soon as ky < k < keo.

Theorem 5.6 Assume that N > 2 and (A1), (A2) hold. Let k € (ko, keo) and let (n)n>1 C €
be a sequence such that

/ Vb, |? dz — k and I(Yhn) — Lnin (k).
RN

There exist a subsequence (Vn, )k>1, @ sequence of points (vg)g>1 C RY, and 1 € € such
that fRN V|2 de =k, I(¢) = Lnin(k), ¥n, (v + ) — ¥ a.e. on RN and

IV (- + k) = VOl 2@y = 0, [ [ng |+ 20) =[] L2y — 0 as b — oo

Proof.  Since Ipn(k) < 0, we have I(¢,) < 0 for all sufficiently large n. By Lemma 5.5
the sequences (Q(¢n))n>1, (Jgn V([¢n]?) dx), ., and (Eqr(¥n))n>1 are bounded. Passing to
a subsequence if necessary, we may assume that Egr,(1n) — ag > k > 0 and Q(2p,) — ¢ as
n —» oo.

We use the Concentration-Compactness Principle ([39]) and we argue as in the proof of
Theorem 4.9. Let A, (t) be the concentration function associated to Eqr,(¢y), as in (4.15). It is
standard to prove that there exist a subsequence of ((¢,, Ap))n>1, still denoted ((¢n, Ap))n>1,
a nondecreasing function A : [0,00) — R, a € [0, o], and a nondecreasing sequence t,, —» 0o
such that (4.16) and (4.17) hold. The next result implies that o > 0.

Lemma 5.7 Let (¢n)n>1 C € be a sequence satisfying:
(a) Eqr(tn) < M for some positive constant M.
(b) fRN IVnl? de — k and Q(n) — q as n — oo.

(c) limsup I(¢y) < —U—lgk.
n—00 s

Then there exists £ > 0 such that sup Eg

yeRN

éy,l)(%) > L for all sufficiently large n.

Proof. 1t is obvious that the sequence (i,)n>1 satisfies the conclusion of Lemma 5.7 if
and only if ((¢)v, 0, )n>1 satisfies the same conclusion.

By (a) we have Egr((¥n)v..v,) < max(vl¥ =2 oMM = 2% M. Assumption (b) implies

/RN ’v(wn)vs,vs‘zdx — Uév_2k and Q((Yn)vsws) — Uév_lq =q.

Using (c¢) we find

lim sup B{($)u,) — vsd = lim sup (N / Vil dr + 0 / V(jnl?) d — v @wn))
RN RN

n—0o0 n—oo

=l (ék + lim sup I(%)) < 0.

S
n—oo

Then the result follows directly from Lemma 4.10. (|
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Next we prove that a ¢ (0,p). We argue again by contradiction and we assume that
0 < a < ag. Arguing as in the proof of Theorem 4.9 and using Lemma 3.3 for each n
sufficiently large we construct two functions 1, 1,%n 2 € € such that

(5.13) Egr(Yn1) — «a and Eqr(¥n2) — ap — a,
(5.14) / [V |? = |Vibna|* — [Vibno|?| dz — 0,

RN
(515) [ V) = V501 ) = V(o) e — 0
(5.16) |Q(¢n) — Q(n,1) — Q(Yn2)| — 0 as m —s o0.

Passing to a subsequence if necessary, we may assume that fRN |Vibnil?dz — k; > 0 as
n — 00, i = 1,2. By (5.14) we have k; + ko = k. We claim that k1 > 0 and ko > 0.

To prove the claim assume, for instance, that k; = 0. From (5.13) it follows that
3 Jan (@2(1tnal) — 1) dz — «a. Using Lemma 4.1 we find [gn V(|¢n1]?) do — . From
Lemma 4.4 (ii) we infer that there is x > 0 such that E(z) > %|Q(¢)| for any ¢ € £ satisfying
Ecr(v) < k. It is clear that there are ng € N and o9 > 0 such that Eqr((Yn1)ee) < K for
any n > ng and any o € (0,00]. Then E((¥n,1)s,0) > %51Q((¥n,1)0,0)|, that is

s 1
S0 <5 [ WvPde e [ ViR

for any n > ng and o € (0,00]. Passing to the limit as n — oo in the above inequality
we discover % limsup |Q(¢y,1)| < oo for any o € (0,00], that is lim [Q(¢n,1)] = 0. As a
n—oo

n—o0

consequence we find ILm I(¢n1) = a. Since |I(Yy) — I(Yn1) — I(¢¥n2)] — 0 by (5.15) and

(5.16), we infer that I(¢p2) — Inin(k) — o as n — oo. Since fRN \Vipno|? de — ko =k,
this contradicts the definition of I,,;, and the fact that I,,,;,, is continuous at k. Thus necessarily
k1 > 0. Similarly we have ko > 0, that is k1, k2 € (0, k).

We have () > Ipmin(
Imin(ki), i = 1,2. Using (5.15), (5.16) and the fact that I(1,) — Imin(k) we infer that
Iin(k) > Inin(k1) + Lnin(k2). On the other hand, the concavity of I, implies Iy (ki) >
%Imm(kz), hence Ipin(k1) + Lmin(k2) > Lnin(k) and equality may occur if and only if I, is
linear on [0, k]. Thus there is A € R such that I,,;,(s) = As for any s € [0, k]. By Lemma 5.2
we have A = —v%, hence Ipin(k) = —U%, contradicting the fact that & > kg. Thus we cannot

) and passing to the limit we get liminf I (¢, ;) >
n—oo

have a € (0, ap), and then necessarily a = ay.

As in the proof of Theorem 4.9, there is a sequence (x,),>1 C RY such that for any € > 0
there is R, > 0 satisfying E \B(x"’RE)(wn) < ¢ for all n sufficiently large. Let ¥y, = by (-+y,).
Then for any & > 0 there exist R, > 0 and n. € N such that (¢,),>1 satisfies (4.31). Tt is
standard to prove that there is a function ¢ € H} (RY) such that Vi € L?(RY) and a
subsequence (wnj)jzl satisfying (4.32)-(4.34) and (4.37).

Lemmas 4.11 and 4.12 imply that || |1/~}n]| = Yl l2myy — 0, Q(@Z;n].) — Q(v) and
Jan V(1Y 2)dz — [gn V([¥|?) dz as j — oo. Therefore I(1h,,) — I(1)), and conse-
quently I(¢)) = Lynin(k). On the other hand, by (4.33) we have [pn |[V¥|?dz < k. Since Ly
is strictly decreasing, we infer that necessarily [pn [VY|* do =k = Jlgrolo Jrw Vi, ;|2 dz. Com-

bined with the weak convergence VTZJn]. — V4 in L2(RY), this gives the strong convergence
Vi[)nj — Vb in L2(R") and the proof of Theorem 5.6 is complete. O

Denote by d™ I nin (k) and d* I, (k) the left and right derivatives of I, at k > 0 (which
exist and are finite for any k > 0 because I,,;,, is concave). We have:
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Proposition 5.8 (i) Let ¢ > 0. Then the function v is a minimizer of I in the set {¢ €
& | fRN |Vo|? dz = k} if and only if 1. minimizes the functional

I(¢) = —cQ(¢ / V(l¢l)

in the set {¢p € £ | [gn |VO|? dw = N2k},

(ii) If ¢ € & satisfies fRN V|2 de =k and I(v)) = Imin(k), there is ¥ € [d Inin(k), d™ Inin (k)]
such that
(5.17) iy, — OAY + F(|1h|*)p = 0 in D'(RN).

Then for ¢ = \/% the function .. satisfies (4.54) and minimizes E. = E — cQ in the set
{p € €| [gn|VO|*de = N2k}, Moreover, € W, ’f(RN) and Vip € WHP(RY) for any
pE[2,00).

(iii) After a translation, ¢ is axially symmetric with respect to the x1—axis if N > 3. The
same conclusion is true if N = 2 and we assume in addition that F is C1.

(iv) For any k € (ko, koo) there are ™, ¢~ € € such that [gn VY12 de = [gn VY™ P da =
k, I(WT) = I(¥") = Lnin(k) and ¥, @~ satisfy (5.17) with 97 = d Iyin(k) and 9= =
d™ Imin(k), respectively.

Proof. For any ¢ € £ we have I.(¢..) = NI(¢), SR Vel dr = N2 SR Vo|? dx
and (i) follows. The proofs of (ii), (iii) and (iv) are very similar to the proof of Proposition
4.14 and we omit them. O

We will establish later (see Proposition 8.4 below) a relationship between the traveling
waves constructed in section 4 and those given by Theorem 5.6 and Proposition 5.8 above.
The next remark shows that, in some sense, there is equivalence between the inequalities
Emin(q) < Usq and Imzn(k) < _%

Remark 5.9 (i) Let ¢ € € be such that E(¢) < v,Q(v) and let k = [gn [Ve[* dz. Then
Imm(vN%) < —ULN. Indeed, we have fRN|va7L‘2 dx = le*2

k k 1 1
i (2 )+ e ST (0 ) o [ 190 Pde = (B )~ 0.0(w) <0

v
S S

(i1) Conversely, let 1) € € be such that I(1)) < —U—g Jr~ |V|? dz and denote ¢ = vN1Q(y).
Then Epin(p) < vsq. Indeed, we have Q(vy, »,) = v 1Q(v) = q and

Emm(Q) —Vsq < E<wvs,vs) - Q(wvs,vs) = ,Ué\f <12/ |v1/1’2 dx + I(¢)> <O0.
v RN

s

6 Local minimizers of the energy at fixed momentum (N = 2)

We will use the results in the previous section to find traveling waves to (1.1) in space dimension
N = 2 which are local minimizers of the energy at fixed momentum even when V achieves
negative values.

If N =2 and ¢ > 0, define

(6.1) Bu(a) =inf {E@) | v € £ QW) =qand [ V(P)do >0},
R2

This definition agrees with the one given in section 4 in the case V > 0.
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Lemma 6.1 Assume that N = 2 and (A1), (A2) are satisfied. The function Efm-n has the
following properties:

(Z) mzn( ) < vsq fOT' any q > 0.

(ii) For any € > 0 there is g > 0 such that E? (q) > (vs —€)q for any q € (0, qc).

man

(iii) E mm is subadditive on [0,00), nondecreasing, Lipschitz continuous and its best Lips-
chitz constant is vs.

(iv) If inf V- < 0, then for any q¢ > 0 we have Efnm( ) < koo, where koo is as in (5.10) or
in Lemma 5.4 (iii).

(v) E mm is concave on [0, 00).

Proof. If V> 0 on [0,00), the statements of Lemma 6.1 have already been proven in
section 4. We only consider here the case when V' achieves negative values. The estimate (i)
follows from Lemma 4.5. For (ii) proceed as in the proof of Lemma 4.6 and use Lemma 5.1
instead of Lemma 4.4. The proof of (iii) is the same as that of Lemma 4.7 (i).

(iv) Let ¢ > 0. Fix € > 0, ¢ small. By (ii) there is ¢ € &€ such that [g, |[VY[*dz < £
and Q(v) > &&. It is obvious that [gs |V(Yoe)|? dz = [ge |[Vi[*da < § for any o > 0 and
there is o9 > O such that Q(Yeg,00) > ¢- Usmg Corollary 3.4 and (2. 12), we see that there is
wl € &£ such that Q(@bl =q, g2 V1|2 do < € 5 and 91 = 1 outside a large ball B(0, Ry). Let

fRz le ) dz.

Let 1o be as in Lemma 5.4 (i). Proceeding as in the proof of Lemma 5.4 (iii) we see that
there exists a radial function ¢ € C°(R?) and there is €7 > 0 such that [ V([to+t9|?) dz < 0
for any ¢t € (0,e1). Taking ¢t € (0,e1) sufficiently small and using a radial cut-off and scaling
it is not hard to construct a radial function s € & such that fR2 ]Vl/)g\Qdar < ks + i,
ng (|12]?) dz = =My < 0 and ¥y = 1 outside a large ball B(0, Rs). Since v is radial, we

have Q(12) = 0.
Let t = (M]t/b 1 )

N

Choose xg € R? such that |zg| > 2(R; + tRz) and define

_ ) () if |z < Ry,
w*(l') = { s (w—tazo) if |l‘| > R;.

Then ¢ € £, Qi) = QY1) +tQ(¥2) = ¢, [g VY[ dz = fRz V|2 do + [ga [Vio]* du <
koo —|— £, and [p.V (|14]?) dz = JreV (|¢1)?) dx + 2 JreV (|t2)?)dx = My — t2My = g >0.
Thus Eti (q) < E(¢«) < koo + €. Since € is arbitrary, the conclusion follows.

min

(v) The idea is basically the same as in the proof of Lemma 4.7 (ii) but we have to be more
careful because the functions ¢ € £ that satisfy ng (|9|?) dz > 0 do not necessarily satisfy
Jre V(ISi¢[?) dz > 0 for all ¢, where Si° are as in (4.10) - (4.11).

Let Ef = sup Ejj (q). By (iv) we have E* < k. Denote

min

(6.2) ¢ =sup{q> 0| Ef,,(q) < E*}.

Define EX-1(k) = sup{g > 0 | E* (q) < k}. Then E*' is finite, increasing, right

min mzn man

continuous on [0, E*) and Ef (Eﬁ’_l(k:)) = kfor all k € [0, E*). By convention, put E?ﬁm (k) =

min mwn

0 if k < 0. For any ¢ € &€ with [z. V(|¢|*) dz > 0 we have Eﬁnm(Q(qﬁ)) < E(¢), thus

(6.3) Q(9) < Eb N(E(9)).
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We will prove that for any fixed g € (0,¢*) there are g < g and ga > ¢ such that Efm” i
concave on [CJ1> q2]

Let ¢ € (0,4*). Fix an arbitrary & > 0 such that Eﬁnm( ) + 4e < E*. Choose ¢ € & such

that Q) = ¢, [ V([#0]?) dz > 0 and E(¥) < EF,, (q) + .

We may assume that 1) is symmetric with respect to xa. Indeed, let S;” and S; be
as in (4.10)-(4.11). Arguing as in the proof of Lemma 4.7 (ii), there is fp € R such that
Jrz IV(SE W) P do = [go [V (Sy, ()P dx = [ge [VY|? do < koo. After a translation, we may
assume that to = 0. Let ¥ = Sy (¥), 12 = S5 (1), denote ¢; = Q(zpl ) and v; = fRZ (|i|?)
i=12and v = [RV (|1¥|?), so that q1 + ¢ = 2Q(¥)) = 2q and vy + va = 2v. Slnce
ng ]Vz/zz)Pdm < ks = T, by Lemma 5.4 we have v; > 0 and vy > 0 and consequently

v1,v2 € [0,2v]. If g1 < 0 we have g2 > 2¢ and then for oy = = L < %, we get Q((V2)og,00) = ¢
and E((V2)0q.00) < E(Y) < E’ . (q) + ¢, hence we may choose (12) 9,0, instead of ¢, and

min
(V2) 9,00 18 symmetric with respect to w9. A similar argument works if go < 0. If g; > 0 and

qg >0,let og = 1+ and o9 = q—, so that 0%4—0—12 = 2. We claim that there is i € {1, 2} such that

UZ v; < v, and then we may choose (1;)s,.0,, Which is symmetric with respect to z3, instead

of 1 . Indeed, if the claim is false we have v; > %v and taking the sum we get 2 > ﬁ + 0—12,
7 1 2

which is impossible because C%l + U% = 2.

Since v is symmetric with respect to xs, we have Q(S(jﬁb) = ¢ and E(S(jﬁb) = E[W) <
koo — 3e. As in Lemma 4.7 (ii), the mapping ¢ — E(S; %) is continuous and tends to 2E(v))
as t — 0o. Let

1
too = Inf{t > 0| E(S, ¥) > koo} (with possibly to = 00 if E(¢) < 5]{:00)

For any ¢ € [0, o) we have E(S; 1)) < kso. If there is ¢ € [0, %) such that [, V(|S; 9|?) do =
0, we have necessarily [, |[V(S; ¥)|? dm > koo, thus E(S; ¢) > koo, a contradiction. We infer
that the function ¢ — ng (1S; 9|?) dz is continuous, positive at t = 0 and cannot vanish on
[0,%s0), hence [g2 V(|S; ¢¥[*) dz > 0 for all ¢ € [0, ts). Consequently we have

(6.4) E(S; ) > Emm(Q(St_w)) for any ¢ € [0, o).

For any ¢t > 0 we have [, [V(S/¢)]*dz = 2f{x22t} V|2 dx < 2f{x220} V|2 de < E(y) <
koo, hence [go V(]S 9[*) dz > 0 (by Lemma 5.4) and therefore

(6.5) E(SHy) > Ef . (Q(Siy))  for any t > 0.

min
The mapping ¢t — Q(S; ¢) is continuous, tends to 0 as t — oo and Q(Sg ¥) = ¢. If ts = o0,
for any g1 € (0, ¢) there is t4, > 0 such that Q(St‘:lw) = ¢q1. Then Q(St_qlzb) = 2¢ —q1 and using
(6.1), (6.4) we get

1 (E(S;;w) + E(St_qlw)) 1 (Eqﬁmn(%) + Erﬁnzn(zq - Q1)) :

Blinl0) +¢ > B(®) =

man

In the case tos < 00 we have E(S;_v)) = koo, hence E(S;_¢) = 2E(¢) — E(S;_v) <
2B (q) + 2 — koo < E' . (q) and by (6.3) it follows that

min min

Q(SF v) < ER 2B . (g) + 26 — ko) < g

min man

For any ¢ € [Q(S;;@ZJ), q] there is t4, € [0,too] such that Q(S;glz/J) = ¢1. As above, we obtain

1
B +e > 5 (Bhinla) + Bln(20—a)))  for any i € (B, (2B}, () +25—kno). .
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Since ¢ € (0, 1(E* — Efmn( ))) is arbitrary and Efm_nl is right continuous we infer that for any
q € (0,q") there holds

1
(6:6)  Ely(@) = 5 (Ehin(@) + Eh(2a— 1)) for all g1 € (Bl (2B, (@) = o). .

(2Eﬁ (q) — ko) is nondecreasing and right continuous on (0, ¢*).

min

The function ¢ — Eb-

min

Fix ¢. € (0,q"). We have

lim B Y 2EF  (q) — koo) = B "L 2ER . (q.) — kso) < gs

mm mzn mzn mzn
g«

because 2Emm(q*) — ke < Efnm( «). It is then easy to see that there are ¢, < ¢. and
¢! € (¢x, ") such that for any ¢ € [q}, ¢/,

(6.7) B V2B, (@) — ko) < d.-

min min

Using (6.6) we see that for any ¢1, g2 € [¢L, ¢//] we have
q1+ ¢ 4
Eﬁmn <2> (Eﬁmn(qn + Emm( ))

Since Efmn is continuous, we infer that Eﬁnm is concave on [¢., ¢”]. Thus any point ¢, € (0, ¢)

has a neighborhood where Eﬁnm is concave and then it is not hard to see that Efmn is concave

on [0,¢"). If ¢* < oo we have E

¢ = E%on [¢*, 00), hence E' . is concave on [0, 00). O
Let

min

(68) qO - lnf{q > 0 ‘ mzn( ) < USQ} a‘nd qj:i - Sup{q > 0 ‘ mzn( ) < kOO}

It is obvious that q < qOO and ¢ > 0 because Eﬁnm( ) = 0 < koo as ¢ — 0. If F satisfies

assumption (A4) and F”(1) # 3, it follows from Theorem 4.15 that qg = 0 (notice that the
test functions U, constructed in the proof of Theorem 4.15 satisfy V (|U|?) > 0 in R?).

Our next result shows the precompactness of minimizing sequences for Efmn( ).

Theorem 6.2 Assume that N = 2, (A1), (A2) are satisfied, and inf V' < 0. Let q € (qg,qgo)
and assume that (Yn)n>1 C € is a sequence satisfying

L VP e =0, Q) —a and Bl — (@)

There exist a subsequence (¢n, )k>1, a sequence of points (xy)k>1 C RY, and ¢ € € such that
Q) =q, E(v) = Efmn( )y Uny, (2 + ) — ¥ a.e. on R? and klggo do(Yn,, (xk +-), ¥) = 0.

Furthermore, [go V([¢|?)dz > 0, hence ¢ € € is a local minimizer in the sense that
BE() =Bt (q) = mf{E(w) lwee, Q) =g, /Rg V(|jwl?) da > o}.

Moreover, the conclusions of Proposition 4.14 hold true with E,,;, replaced by E

min”’

Proof. Fix k1, ko such that 0 < k1 < Eﬁnm( ) < ky < koo. We may assume that
k1 < E(¢y) < ko for all n. By Lemma 4.1 there is Cy (k1) > 0 such that Eqr(¢y) > C1(k1).

Since [g2 V(|tn|?) dz > 0, we have ¢, € &g, , and using Lemma 5.4 we infer that Egr(¢n)
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is bounded. Passing to a subsequence if necessary, we may assume that Eqgr(¢,) — ag > 0.
Then we proceed as in the proof of Theorem 4.9 and we use the Concentration-Compactness
Principle for the sequence of functions f, = |Vi,|? + & (0%(|¢hn]) — 1)2.

We rule out vanishing thanks to Lemma 4.10.

If dichotomy occurs for a subsequence (still denoted (ty,)n>1), using Lemma 3.3 for all
n sufficiently large we construct two functions vy, 1, 1,2 € £ such that ’ fRZ |V@Z1n]2d:n —
Sz [VUni? do — [ga [V 2|? dz| — 0, and (4.28), (4.29), (4.30) hold for some a € (0, ap).
In particular, we have fRQ |Vipyi|? do < ko < koo, @ = 1,2 for all n sufficiently large and this

implies [g. V |¢n i|?) dx > 0, so that E(in ;) > E,ﬁnm(Q(iﬁn i)). Since q € (qg,qgo) using the
concav1ty of Emm and Lemma 6.1 (i) and (ii) we infer that Eg@m( ) < Efnm( "+ Efmn(q —q)
for any ¢’ € (0,¢q). Then arguing as in the proof of Theorem 4.9 we rule out dichotomy and we
conclude that concentration occurs.

Hence there is a sequence (z,,)n>1 C RY such that, denoting 1, = ¢, (2, +-), (4.31) holds.
Consequently there are a subsequence (¢, )r>1 and ¢ € € that satisfy (4.32) and (4.33). Using

Lemmas 4.11 and 4.12 we get lim || ¢, | — || z2@®y) =0,
k—o0

69  Jim [ VBB = [ VP and  lin Q) = Q)
In particular, we have [go V([¢[*)dz > 0, Q(¥) = ¢ and this implies E(¢) > E' . (q).

Combining this information with (4.33) and (6.9) we see that necessarily [g» \Vpn, | dz —
Jre |V1)|? dx. Together with the weak convergence Vi[)nk — V¢ in L?(R?), this implies the

strong convergence ||V, — V|| L2(r2) — 0. Hence do(thn,,, V) — 0 as k —» co. The fact
that [fo V(|1|?) dz > 0 comes from the fact that || is not constant (because Q(¢)) = ¢ > 0)
and [go [V do < koo

The last part is proved in the same way as Proposition 4.14. O

If qOO < oo we have E}mn( ) = koo for all ¢ > qgo. The conclusion of Theorem 6.2 is not

valid for ¢ > qgo. Indeed, for such ¢ the argument used in the proof of Lemma 6.1 (iv) leads to
the construction of a minimizing sequence (¢, ),>1 C € satisfying the assumptions of Theorem
6.2, but Egr(¢n) — co. Furthermore, if [, |[V|? dz > koo, Lemma 5.4 does not guarantee

that the potential energy [g. V(|1]?) dx is positive.

7 Orbital stability

It is beyond the scope of the present paper to study the Cauchy problem associated to (1.1).
Instead, we will content ourselves to assume in the sequel that the nonlinearity F' satisfies
(A1), (A2) and is such that the following holds:

(P1) (local well-posedness) For any M > 0 there is T (M) > 0 such that for any ¢y € £ with
Ecr(vo) < M there exist Ty, > T(M) and a unique solution t — (t) € C([0, Ty,), (£,d))
such that 1(0) = 19. Moreover, ¥(-) depends continuously on the initial data in the following
sense: if d(¢f, o) — 0 and ¢t — 1)y, (t) is the solution of (1.1) with initial data 1§, then for
any T' < Ty, we have T' < Tyn for all sufficiently large n and d(¢n(t),9(t)) — 0 uniformly on
[0,T] as n — 0.

(P2) (conservation of phase at infinity) We have ¢(-) — ¢ € C([0, Ty, ), H'(RY)).
(P3) (conservation of energy) We have E(i(t)) = E(1o) for any t € [0, Ty,).
(P4) (regularity) If Ayy € L2(RY), then Ay(-) € C([0,Ty,), L*(RY)).
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In space dimension N = 2, 3, 4, the Cauchy problem for the Gross-Pitaevskii equation (that
s (1.1) with F'(s) = 1 — s) has been studied in [24, 25] and it was proved that the flow has
the properties (P1)-(P4) above. Moreover, the solutions found in [24, 25] are global in time if
N = 2,3 or if N = 4 and the initial data has sufficiently small energy. This comes from the
conservation of energy and from the fact that the Gross-Pitaevskii equation is subcritical if
N =2, 3 and it is critical if N = 4. It seems that the proofs in [24, 25] can be easily adapted
to more general subcritical nonlinearities provided that the associated nonlinear potential V'
is nonnegative on [0, 00). Notice that any nonlinearity satisfying (A2) is subcritical.

Recently it has been proved in [34] that the Gross-Pitaevskii equation is globally well-
posed on the whole energy space £ in space dimension N = 4 and that the cubic-quintic NLS
is globally well-posed on & if N = 3, despite the fact that both problems are critical.

Assume that (P1) and (P3) hold. If V' > 0, using the conservation of energy and Lemma
4.8 it is easy to prove that all solutions are global.

If N = 2and inf V < 0, any solution ¢ — t(¢) with initial data ¢ satisfying [ [Vipo|* dz <
koo and E(t)g) < koo is global. Indeed, the mapping ¢ — [. V(|¢(t)|?)dx is continuous; if
it changes sign at some ty € (0,Ty,), there are two possibilities: either () is constant
(and then E(1¢(tp)) = 0, hence E(¢(t)) = 0 for all ¢ and (t) is constant) or Lemma 5.4 (i)
implies that [go V(|[¢0(to)|*)dz = 0 and [g. [Vio|* dz > koo, thus E(¢(tg)) > ko, contra-
dicting the fact that, by conservation of the energy, E(i(ty)) = E(1o) < keo. Consequently
0 < [ge V([9(t)[*)da < E(tho) and 0 < [go [V(t)[*dz < E(t) as long as the solution exists.
Then Lemma 5.4 (ii) implies that Eqr(¢(t)) remains bounded and using (P1) we see that the
solution is global.

In the case of more general nonlinearities, the Cauchy problem for (1.1) has been considered
by C. Gallo in [23]. In space dimension N = 1, 2, 3, 4 and under suitable assumptions on F,
he proved the following (see Theorems 1.1 and 1.2 pp. 731-732 in [23]):

(P1’) For any v € € and any ug € H'(R"), there exists a unique global solution 1 +u(t),
where u(-) € C([0,00), H'(RY)) and u(0) = ug. The solution depends continuously on the
initial data ug € H'(RV).

Notice that the solutions in [23] satisfy (P2) by construction and they also satisfy (P3) and
(P4). Moreover, it is proved (see Theorem 1.5 p. 733 in [23]) that any solution ¢ € C([0,T],E)
automatically satisfies (P2).

Lemma 7.1 (conservation of the momentum) Assume that F is such that (A1), (A2), ((P1)
or (P1’)) and (P2)—(P4) hold. Let 1y € £ and let ¢ be the solution of (1.1) with initial data
o, as given by (P1) or (P1°)). Then

Q(t) =QWo)  for anyt €[0,Ty,).

Proof. Assume that v € € is such that Ay € L2(RY). Let t(-) be the solution of (1.1)
with initial data 19. By (P1) and (P4) we have ¢, (-) € C([0,Ty,), H'(RN)), j = 1,...,N.
Let t,t+s € [0,Ty,). Since ¢(t+s)—(t) € H'(RY) by (P2), the Cauchy-Schwarz inequality
implies (i), (t+8) + iy, (1), (t+s) —(t)) € LY (RY). Using the definition of the momentum
and Lemma 2.3 we get

LQW(t+35)) — Qb)) = LL((ithay (t + 8) + ithay (t), Y (t + 8) — (1))

= [ it () i (0, 2+ 5) = w(e) o
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Letting s — 0 in the above equality and using (1.1) we get
d 0
(1) @ =2 [ (G0 au) + F(uPu) de

Since ( ) ¢ H'(RY), using the integration by parts formula for H! functions (see, e.g., [10]
p. 197) we have

N 52
w2 [ (G avyde = [ SIS g5 [ (vun ) ds

RN j=1

We have [Vo(t)2 € LY(RY) and ;2 ([Vy(t)?) = 21 (S50, 20) e Ll(RN) hence

V(1) € WHLHRN). Tt is Well known that for any f € WH(RY) we have fRN b L (z)dz =0
and using (7.2) we get fRN 8:51 , A(t)) dz = 0.

On the other hand, 2(¢s, (1), F([W*)¢(t)) = —z5 (V[0 (t)]*)) . We have V(|9(1)]*) €
LY(RYN) by Lemma 4.1. Using the fact that 1y, (t) € HY'(RY), (A1), (A2) and the Sobolev
B(

embedding it is easy to see that Wj (V(lv()] )) = —2(1hg, (1), F(|9[*)(t)) € L*(RY) for all
j, hence V(|9 (¢)[*) € WH(RY) and therefore [gx 6%1 (V([¢(t)]*)) dz = 0. Then using (7.1)
we obtain %(Q(w(t))) = 0 for any ¢, consequently Q(¢(-)) is constant on [0, Ty, ).

Let ¢9 € & be arbitrary. By Lemma 3.5, there is a sequence (¢),>1 C & such that
Vi € H*(RY) and ||y — ol g1 gy — 0 as m — oo (thus, in particular, d(¢g, ) — 0).
Fix T € (0, Ty, ). It follows from (P1) or (P1’) that for all sufficiently large n, the solution v, (-)
of (1.1) with initial data 1§ exists at least on [0, T] and d(ty,(t), 1 (t)) — 0 uniformly on [0, T7.
Using Corollary 4.13 we infer that for any fixed ¢ € [0,T] we have Q (1, (t)) — Q((t)). From
the first part of the proof and Corollary 2.4 we get Q(¢n(t)) = Q(¥f) — Q(¢bo) as n — oo.

Hence Q(¢(t)) = Q(¢o). -

We now state our orbital stability result, which is based on the argument in [13].

Theorem 7.2 Assume that (A1), (A2), ((P1) or (P1°)) and (P2)—(P4) hold.

o We assume N > 2 and V >0 on [0,00). Let ¢ > qo, and define S; = {¢p € £ | Q) =
q, and E(¢)) = Emin(q)}.

Then, S, is not empty and is orbitally stable by the flow of (1.1) for the semi-distance dy

in the following sense: for any e > 0 there is §: > 0 such that any solution of (1.1) with initial
data 1)y such that do(1o, Sy) < ¢ is global and satisfies dy(¢(t),Sy) < € for any t > 0.

o Assume that N = 2 and inf V < 0. Let g € (qg,qgo) where qg,qgo are as in (6.8), and
define S;={v € £ | Q(¥) = ¢, Jpa V([¢¥[)dz 2 0 and E(v) = E},;, ()}
Then Sg is orbitally stable by the flow of (1.1) for the semi-distance dy.

Proof. We argue by contradiction and we assume that the statement is false. Then there

is some g9 > 0 such that for any n > 1 there is ¢ € & satisfying do(¢f,S,) < L (resp.

do(w(;,sﬁﬁ) < 1) and there is t, > 0 such that do(¢y(t,),Sg) > €0 (resp. do(v,bn(tn),Sg) > e9),
where v, is the solution of the Cauchy problem associated to (1.1) with initial data (.

We claim that Q) — ¢ and E(¢§) — Emin(q) (resp. E(y§) — Efnm( )). Indeed,

for each n there is ¢, € S; (resp. € Sg) such that do(¢%, ¢n) < 2. If N = 2 and V achieves
negative values, we have

limsup/ (V| de = limsup/ IV¢"|? dz < limsup E(¢,) = Efmn( ) < koo,
R?2

n—oo n—0o0 n—oo
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hence [V (|¥5?)dz > 0 for all sufficiently large n. Consider an arbitrary subsequence
(Yo )e>1 of (¢Yf)n>1. Using either Theorem 4.9 or Theorem 6.2 we infer that there exist a

subsequence (¢n,, )k>1 of (¢n)n>1, a sequence (zy)g>1 € RY and ¢ € S, (resp. € Sg) such that
d0(¢ngk('+$k)7 (b) —s 0as k — o0o. Then do(l/Jng (‘—i-l’k), QZS) < d0<¢nek (‘—l-l’k), ¢)+% — 0

and using Corollary 4.13 we get Q1) = Q(¢by* (- + x1)) — Q(¢) = ¢ and E(¢,*) =
B (- + ax) — E(0) = Enin(q) (resp. E(Yy™) — E(¢) = Ej,;,(q)). Since any
subsequence of (¢{),>1 contains a subsequence as above, the claim follows.

By (P3) and Lemma 7.1 we have E(¢,(ty)) = E({g) — Emin(q) (resp. E(¢n(tn)) —
Efmn( )) and Q(¥n(tn)) = Q(¥§) — ¢q. Moreover, if N = 2 and inf V' < 0, we have already
seen that [g V(|¢n(t)|?) dz cannot change sign, hence o V(|¢n(tn)|?) dz > 0. Using again
either Theorem 4.9 or Theorem 6.2 we see that there are a subsequence (ny)g>1, yx € RY and
¢ €S, (resp. € Sg) such that do(¢n, (tn,), C(- —yx)) —> 0 as k — oo, and this contradicts
the assumption do(¢n(tn), Sq) > €0 (resp. do(¢¥n(tn), 33) > ¢p) for all n. The proof of Theorem
7.2 is thus complete. O

8 Three families of traveling waves

If the assumptions (A1), (A2) are satisfied and V' > 0 on [0, 00), Theorem 4.9 and Proposition
4.14 provide finite energy traveling waves to (1.1) with any momentum g > qo; denote by .# the
family of these traveling waves. Theorem 5.6 and Proposition 5.8 provide traveling waves that
minimize the action F — c¢@ at constant kinetic energy; let % be the family of those solutions.
If N =2, we have also a family .#*? of traveling waves given by Theorem 6.2. Finally, let 22
be the family of traveling waves found in [43]; the elements of &7 are minimizers of the action
E — ¢Q under a Pohozaev constraint (see Theorem 8.1 below for a precise statement). Our
next goal is to establish relationships between these families of solutions. We will prove that
MC K and # C P if N >3, and that # C # and #* C # if N = 2. Besides, we find
interesting characterizations of the minima of the associated functionals.

Let

2

/RN Z \(%] Fir, )= BW) QW) Pv) = Bulth) — 5t AlW).

It follows from Proposition 4.1 p. 1091 in [42] that any finite-energy traveling wave 1 of speed
c of (1.1) satisfies the Pohozaev identity P.(1) = 0. Denote

(8.2) C.={y €& | isnot constant and P.(¢p) =0} and 7T, =inf{E.(¢) | ¢ € C.}.
We summarize below the main results in [43].

Theorem 8.1 ([{3]) Assume that N >3 and (A1) and (A2) hold. Then:
(i) For any c € (0,vs) the set C. is not empty and T, > 0.

(11) Let (n)n>1 C € be a sequence such that

P.(1p,) — 0 and E. (1) — T¢ as n — 00.

If N = 3 we assume in addition that there is a positive constant d such that

1

D) — d  asn — oo, where D(¢) = /RN ‘8 ‘ 5 ©*(|o]) — 1)
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Then there exist a subsequence (Vn, )k>1, o sequence (x)k>1 C RY, and ¢ € C. such that
E.(¢) = T, that is, ¢ is a minimizer of E. in Ce, n, (-+x1) —> ¢ in LI (RN) for1 <p < o0
and a.e. on RN and

IV (- + k) = VOl 2@y = 0, [ [ng |+ 20) = [0] L2y — 0 as kb — oo

(iii) Let 1p be a minimizer of E. in C.. Then v satisfies (1.3) if N > 4, respectively there
exists o > 0 such that 11, satisfies (1.3) if N = 3. Moreover, ¢ (respectively 11 ) is a
minimum action solution of (1.3), that is it minimizes the action E. among all finite energy
solutions. Conversely, any minimum action solution to (1.3) is a minimizer of E. in C..

Part (i) is Lemma 4.7 in [43], part (ii) follows from Theorems 5.3 and 6.2 there and part (iii)
follows from Propositions 5.6 and 6.5 in the same paper and from the fact that any solution ¥
satisfies the Pohozaev identity P.(¢) = 0.

Remark 8.2 As already mentioned in [43] p. 119, all the conclusions of Theorem 8.1 above
are valid if ¢ = 0 provided that the set Cy = {¢ € £ | ¥ is not constant and Py(¢)) = 0} is not
empty. We will see later in section 9 that Cy # ) if and only if V' achieves negative values.

Proposition 8.3 Assume that N > 3, (A1) and (A2) hold and V >0 on [0,00). Then:

(i) Te > Emin(q) — cq for any ¢ > 0 and ¢ € (0, vs).

(ii) Te — o0 as ¢ — 0.

(iii) Let ¢ € & be a minimizer of E under the constraint Q = q. > 0. Assume that
Y satisfies an Euler-Lagrange equation E'(¢Y) = ¢Q'(¢) for some ¢ € (0,v5). Then 9 is a
minimizer of E. in C..

Proof. For ¢ € £ denote

(83) = [ g —c@w)+ [ Vi) da

Then E.(¢) = A(¥) + Be(v) = g2 A®W) + P() and Po(¢) = F=3A(Y) + Be(¥).

i) Consider first the case N > 4. Fix ¢ € C.. Tt is clear that A(v)) > 0, hence B.(v) =
P.(y) — B3 A@0) = N=3A(1) < 0. Since V > 0 by hypothesis, it follows that cQ(y)) =

Jan V(W) dz + [gn ’g;pl ’ dx — B.(1)) > 0, hence Q(v)) > 0 because ¢ > 0. It is easy to see
that the function o — E.(¥1,,) = oV "3A(¥) + oV "1B.(¢) achieves its maximum at o = 1.
Fix ¢ > 0. Since Q(¢1,) = oV ~1Q(%), there is o, > 0 such that Q(V1,6,) = q. We have
obviously E(¢1,,) > Emin(q) and

Emin(Q) —cq < E(wl,aq) - CQ(wl,aq) = Ec(wl,aq) < Ec(wl,l) = Ec(l/})

Taking the infimum as @ € C., then the supremum as ¢ > 0 in the above inequality we get
Sup(Emin(Q) - CQ) S Tc-

a>0
Now consider the case N = 3. Let ¢ € C.. Then P.(¢)) = B.(¢)) = 0, Q(¢) > 0 and

E.(16) = A(Y) + 0?B.(v) = A() for any o > 0. Fix ¢ > 0. Since Q(¢1,,) = 02Q(v)), there
is 04 > 0 such that Q(¢1,,,) = q and this implies E(1,0,) > Emin(q). We have

Emin(q) — cq < E(wl,crq) - CQ(wl,crq) = E0(¢1,oq) = A(Yp) = EC(wl,l) = Ec(¢).

Since this is true for any ¢ € C. and any ¢ > 0, we conclude again that sup(Emn(q) —cq) < Te.
q>0
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(ii) Fix ¢ > i We have Ep,in(q) — cq > Epin(q) — 1 for any ¢ € (0, %) Using (i) we get
1
Te > Enmin(q) —cq > Emin(q) — 1 for any ¢ € (0, a)

Since Epin(q) — 00 as ¢ — 0o by Theorem 4.17 (b), the conclusion follows.

(iii) We know that v is a traveling wave of speed ¢ and by Proposition 4.1 p. 1091 in [42]
we have P.(¢) = 0, that is ¢ € C.. Using (i) we obtain

(8.4) E(¢)>T. > zgg(Emm(q) — cq).

On the other hand, we have

Ec(w) = E(df) - CQ(’¢) = Emin(CI*) — C(Gx.

Therefore all inequalities in (8.4) have to be equalities. We infer that ¢) minimizes E. in C,,
T. = Enmin(qx) — cq and the function ¢ — E,i,(q) — cq achieves its maximum at g,. O

The next result shows that the minimizers of E,,;, or E

in are also minimizers for Iy,
(after scaling).

Proposition 8.4 Let N > 2. Assume that (A1), (A2) hold and either

(a) V>0 on [0,00) and g > qo, or

(b)) N=2,infV <0 and q € (qg,qgo).

Consider ¢ € € such that Q(¢) = q and E(¢) = Enin(q) in case (a), respectively E(v) =
E (q) in case (b), and 1) satisfies (4.54) for some c € (0,vs) (the existence of ¢ follows from

min

Theorem 4.9 in case (a) and from Theorem 6.2) in case (b)). Let k = [gn |VU|? da.
Then CN% > ko and 1 1 is a minimizer of I in the set {¢ € & | Jrz IVo|* da = CNk,Q},
that is I(l/);,;) = Inmin (CJVL—;)L
Equivalf@rgtly, Y is a minimizer of I. (and of E.) in the set {¢ € €| [g2 Vo[> dx =k}).
Moreover, if N > 3 the function Iy, ts differentiable at CNL_Q

Proof. By Remark 5.9 (i) we have Imm(vN%) < —ULN and Proposition 4.14 (i) implies

€ (0,vs), hence CN"LZ

) € € of the functional I under the constraint Jav (Vi |? do = N
there is ¢ € (0,vs) such that ey e, satisfies (4.54) with ¢; instead of c.

Let 11 = e, so that Jrw |V1/)1|2 dz = N2 [on VY2 de = k = Jan~ [V¥[* dz. Denote

= Q1) =N 1Q). 3
It follows from Proposition 4.1 p. 1091-1092 in [41] that ¢ and ., ., satisfy the following
Pohozaev identities:

. Using Theorem 5.6 we infer that there is a minimizer

. By Proposition 5.8 (ii)

(8.5) —(N—z)/ V|2 dx + ¢(N — N/ V(|v]?)
RN
r~espectively ( - 2 fRN ‘qu c1 ’2 dxr + Cl( )Q<wc1 (31 =N fRN W}cl,cl‘ ) dx. Since
Verer = (Y1) a1 a1, the latter equality is equivalent to
N 2 N CN
86~ =28 [ VeP e+ (V- )50 = N5 [ V(i) .
RN C N
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Since [ VY112 de = 5 = [pu |VO|? do we have I() < I(1 1), that is

1 1 1 1
81— Q) + oy [ VP e < Q)+ o7 [ V(P

Replacing [gv V([¢[?) dz and [y V([¢1|?) dz from (8.5) and (8.6) into (8.7) we get
2

(8.8) cq+ (N —2)k < cq1 + (N—Q)Z—Zk:.
1

l

Let 0 = <qi1> . Then Q((¢1)s,0) = g and consequently E(¢) < E((¢1)0.5), that is

(8.9) k+ /RN V([ de < o™ Pk + o /RN V(|3h1]?).

We plug (8.5) and (8.6) into (8.9) to obtain

c? N -1 N 2
(8.10) cq1 + (N — 2) k<Ncq1 N cq+<02—0N>k:.

Combining (8.10) with (8.8) we infer that cq+ (N —2)k < Ncqy — %cq + (a—]\é - ULN) k. Since

q = oV 1q, the last inequality can also be written as

Ccq1
p

i((N —2)oN — NoV 2+ 2) <o.

N
(8.11) o —NU—G—N—l)—l—UN

If N =2, (8.11) is equivalent to < (o — 1) § and it implies that o = 1, thus ¢ = ¢.
N—

If N >3 wehave 0¥ ~No+N—1= (0—1)? (N—l—j)aj and (N—2)oN —NoN-242 =

=0
N-3
(0 —1)2 |(N—-2)dVN"2+2 Z (j + 1)o7 | . Inserting these identities into (8.11) and using the
5=0

fact that 0,¢,q1, k are positive we infer that o = 1, hence ¢ = ¢;. Then using (8.8) we obtain
c? < c®. On the other hand, from (8.10) and the fact that ¢ = g1, ¢ = 1 we obtain ¢ < 2.
Since ¢ and ¢; are positive, we have necessarily ¢ = ¢;. Then using (8.5) and (8.6) it is
easy to see that I(¢1 1) = I(1¢), hence I(¢1 1) = Imm(%) Moreover, we have proved

that any minimizer w of I under the constraint [y \V¢]2da: = cNk,g satisfies (5.17) with
¥ = —=. It follows from Proposition 5.8 (iv) that d I;in ( ~ 2) =d Lnin ( k ), hence I,,in
is dlﬁerentlable at N > and mm(cNk,Q) = —C%. O

The next result establishes the relationship, if N > 3, between the traveling waves obtained
from minimizers of I,,;, and the traveling wave solutions given by Theorem 8.1.

Proposition 8.5 Assume that N > 3 and (A1), (A2) hold. Let C. and T. be as in (8.2).
Then:
(i) Te > k + N Iin ( Nk,Q) for any k >0 and any c € (0,vy).

(it) Let ¢ be a minimizer of I under the constraint [ |V|* dz =k and let ¢ € (0,v5) be
such that .. satisfies (4.54). Then .. minimizes E. = E — c¢Q in Ce.
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Proof. We keep the same notation as in the proof of Proposition 8.3.

(i) Consider the case N > 4. Fix ¢p € C. and k > 0. Since A(y)) > 0, the function
o — [an VU162 de = N 3AW) + oVt [qn ]%P dx is one-to-one from (0, c0) to (0, c0),
so there is oy, such that [pn [V, [*do =k, that is [pn [Veo1 o [*dz = 5. This implies

1(¥12) = Tnin (). We have 0 = Po() = A(W) + Bolw), thus A(%) > 0> Bo() and
the function o — E.(11,) = oV 3A(¢Y) + oV 1B, (1) achieves its maximum at o = 1. Then
we have )

E.(vy) = EC(¢1,1) > ECW’L%) = fRN |v¢1,ak| dr + IC(/l/]LU'k)

=k+ CNI(T,Z);ka) >k + CNImin (CNL—z) .
The above inequality is valid for any ¢ € C. and k > 0, hence T, > sup (k: + N Tin (CN%)) :

k>0
Next consider the case N = 3. Let ¢ € C. and let £ > 0. Then P.(v)) = B.(¢) = 0 and for

any o > 0 we have E.(¢1,) = Eo(¢) = A() and [ [V |2 do = A(Y) + 02 [ga | 72| da. If
A() > k we have, taking into account that I,,,;, is negative on (0, c0),

E.(¢) = A(W) > k > k + AL (k) :
c
If A(y) < k, there is o, > 0 such that [ V41 0, |* do = k, which means [ [Ve)1 o, | de = k
This implies I.(1,0,) = 31 (1/11707;@) > A1 min (%) Thus we get
2 3 k
Ec(Y) = Ec(¥1,0,) = /R3 (Vb1 6, |° dz + Ie(P1,0,) 2> kb + ¢ Linin <c> .

Hence E.(v) > k + ¢ Lnin (%) for any ¢ € C. and k > 0, and the conclusion follows.
(ii) Since ). satisfies (4.54), by Proposition 4.1 p. 1091 in [42] we have .. € C.. Then

(8.12) E(thee) > Te > sup (fs + N Lnin (C]V%>> :

k>0

On the other hand,

E.(Yec) = N2 / (V| dx + CNI(l/J) = N2k 4 cNImm(k) < sup (/-@ + N i (%)) .
RN k>0 c
Therefore all inequalities in (8.12) are equalities, e, minimizes E. in C., T, = N2k 4+

cN Inin(k) and the function k — & + ™ Ly (CNL_Q) achieves its maximum at x = ¢V 2k. O

9 Small speed traveling waves

Theorem 4.17 implies that Ean(q) — 0 as ¢ — oo. Since F,;, is concave and positive, neces-
sarily d* Epin(q) — 0 and d~ Epin(q) — 0 as ¢ — oo and we infer that the traveling waves
provided by Theorem 4.9 and Proposition 4.14 have speeds close to zero as ¢ — co. Similarly,
using Lemma 5.3 (i) and (iii) we find that I,,;;, is finite for all k > 0 and d* I, (k) — —o0,
d™ Iin(k) — —o0 as k — oo if either N > 3 or (N = 2 and V > 0). Hence the traveling
waves given by Theorem 5.6 and Proposition 5.8 have speeds that tend to zero as k — oo.
This section is a first step in understanding the behavior of traveling waves in the limit ¢ — 0.
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As one would expect, this is related to the existence of finite energy solutions to the stationary
version of (1.1), namely to the equation

(9.1) A+ F(jp*)p =0 in RV,

Clearly, the solutions of (9.1) are precisely the critical points of E. We call ground state of
(9.1) a solution that minimizes the energy E among all nontrivial solutions.

Assume that N > 2 and the assumptions (Al) and (A2) are satisfied. Then (9.1) admits
nontrivial solutions ¥ € £ if and only if the nonlinear potential V' achieves negative values.
The existence follows from Theorem 2.1 p. 100 and Theorem 2.2 p. 103 in [12] if N > 3,
respectively from Theorem 3.1 p. 106 in [12] if N = 2. Moreover, the solutions found in [12]
are ground states.

On the other hand, any solution ¢ € £ of (9.1) has the regularity provided by Proposition
4.14 (ii) and this is enough to prove that v satisfies the Pohozaev identity

(9.2) (N —2) /RN |V1/1]2dx+N/RN V([¢*) dz =0

(see Lemma 2.4 p. 104 in [12]). In particular, (9.2) implies that (9.1) cannot have finite energy
solutions if V' > 0.

We will prove in the sequel that if N > 3 and V achieves negative values, the traveling
waves constructed in this paper tend to the ground states of (9.1) as their speed goes to zero.
If N > 3, we have shown in section 8 that all traveling waves found here also belong to the
family of traveling waves given by Theorem 8.1, hence it suffices to establish the result for the
solutions provided by Theorem 8.1.

If N =2 and V takes negative values, we were not able to prove that diImm(k) — —00
as k — koo. Numerical computations in [17] indicate that this is indeed the case, at least
for some model nonlinearities (including the cubic-quintic one). If lelzn dE Ly (k) = —oo,

the speeds of the traveling waves given by Theorem 5.6 and Proposition 5.8 tend to zero as
k — koo and we are able to prove a result similar to Proposition 9.1 below (although the
proof is very different because minimization under Pohozaev constraints is no longer possible).

If V> 0on [0,00), equation (9.1) does not have finite energy solutions. Then the traveling
waves of (1.1) have large energy (see Proposition 8.3 (ii)) and are expected to develop vortex
structures in the limit ¢ — 0. This is the case for the traveling waves to the Gross-Pitaevskii
equation: in dimension two the solutions found in [9] have two vortices of opposite sign located
at a distance of order 2, and in dimension three the traveling waves found in [8] and [14] have
vortex rings. If V' > 0, the behavior of traveling waves in the limit ¢ — 0 still needs to be
investigated.

Proposition 9.1 Let N > 3. Suppose that (A1) and (A2) are satisfied and there exists so > 0
such that V(sg) < 0. Let (cn)n>1 be any sequence of numbers in (0,vs) such that ¢, — 0.
For each n, let ¢, € € be any minimizer of E., = E — ¢,Q in C., such that 1, is a traveling
wave of (1.1) with speed c,,. Then:

(i) There are a subsequence (cn, )k>1, a sequence (zx)g>1 C RN and a ground state ¢ of
(9.1) such that Pn, (- + x1) — ¥ in LI (RN) for 1 <p < oo and a.e. on RY and

loc

IV (- + 2k) = VOl 2myy — 0, [ [ng |+ 28) = [9] [ 2mvy — 0 as kb — o0,

(i1) There is a sequence (ax)r>1 of complex numbers of modulus 1 such that a, — 1 as
k — oo and

laxtn, (- + k) — Yllw2p@yy — 0 as k — oo for any p € [2%,00).

In particular, ||agtbn, (- + 2x) — Y|lcr.a@ny —> 0 as k — oo for any a € [0, 1).
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If F'is C* it can be proved that the convergence in (i) holds in W*+2P(RN), 2* < p < oo.

Proof. (i) Let 1y be any ground state of (9.1). By (9.2) we have [pn V(|¢o|*)dz =
—N=2 Jan IVY[*dz < 0. Tt is shown in [12] that ty is a minimizer of the functional J(¢) =
fRN |V¢|? dz: subject to the constraint [gn V(|¢|*) dz = [gn V(|tho]?) da; conversely, any min-
imizer of this problem is a ground state to of (9.1), and Proposition 4.14 (ii) implies that any
minimizer is C' on RM. It follows from Theorem 2 p. 314 in [42] that any ground state of
(9.1) is, after translation, radially symmetric. In particular, the radial symmetry implies that
Qo) = 0.
Let A, E. = E—cQ, P.beasin (8.1) and C. and T, as in (8.2). Since 1) is a solution of (9.1),
it satisfies the Pohozaev identity Py(1o) = 0 and then we get P.(¢o) = Po(¢o) — cQ(¢9) =0
for any ¢, that is ¢y € C, for any ¢. Therefore

(9.3)
1 N -1 N -1 N -1

AWwn) = T (B () = P ) = Yo ) = Y, <

Ee,, (¥0) = A(vo)-

On the other hand, by Proposition 10 (ii) in [16] the function ¢ — T, is decreasing on (0, vs).
Fix ¢ € (0,vs). For all sufficiently large n we have ¢, < ¢*, hence
N-—-1 N -1
Consider first the case N > 4. We claim that Eqr (1) is bounded. To see this we argue
by contradiction and we assume that there is a subsequence, still denoted (), )r>1, such that
Eqr () — oo. By (9.3) we have

05 D= [ [5f

%( (|¢n|)—1)2dx—>oo as n — 00.

Using Lemma 4.4 (ii) we see that there are two positive constants kg, ¥y such that for any
Y € & satisfying Eqr (1) = ko and for any ¢ € (0, c,) (where ¢ is as in (9.4)) there holds

(9.6) Ec(¢) =2 E(¢) — c|Q(¢)| = fo.

It is easy to see that for each n there is ¢, > 0 such that

(9.7) EGL((Yn)onon) = on P A(n) + ol 7' D(n) = ko.

In particular, (¢n)s,.0, satisfies (9.6).

We recall that the functional B, was defined in (8.3). We have B., (¢p) = P, (¥n) —
N N=3 A(¢pn). Then the fact that P, (1,) = 0 and (9.3) imply that By, (1) is bounded. From
(9.5) and (9.7) it follows that o, — 0 as n — oo, hence

Ecn((wn)an,an) = 0'1]1\[73A(1/1n) + Uy]yichn (¢n) —0 as n — 0.

This contradicts the fact that E., ((¥n)en,0,.) > 4o for all n and the claim is proven.
Using Corollary 4.18 we infer that (1)) is bounded. Since ¢, — 0, using (9.3) we find

(98) Pﬂ(wn) - Pcn (wn) + CnQ(wn) — 0 and

E(Yn) = Ee, (¥n) + cnQ(Yn) = %A(lbn) + Pe,, (¥n) + cnQ(¥n)
(9.9)

%A(Qf)@) + CnQ(¢n> = E('¢0) + CnQ(%Z)n) — E(?,Z)(]) as n —» OQ.
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Then the conclusion follows from Theorem 8.1 (with ¢ = 0) and Remark 8.2.

Next consider the case N = 3. For all n and all & > 0 we have

Pe,((Yn)10) = GQP%@%L) =0 and E,((¥n)1,0) = A((¥n)1,0)+Pe, (¥Pn)1,0) = A(Yn) = Te,,,

hence (¢p)1,, is also a minimizer of E., in C.,. For each n there is o, > 0 such that
D((¥n)1.0,) = 02D(th,) = 1. We denote ¢, = (¥n)10,. Then 1, is a minimizer of E,,
in C.,, Ear(Un) = A(hn) +1 = A(1)) + 1 is bounded by (9.3) and then Corollary 4.18 im-
plies that Q(,) is bounded. As in the case N > 4 we find that (¢),,),>1 satisfies (9.8) and
(9.9). From Theorem 8.1 and Remark 8.2 it follows that there exist a subsequence @nk) E>1, &
sequence (xy)g>1 C R? and a minimizer 1/; of E on Cy that satisfy the conclusion of Theorem
8.1 (ii). Moreover, there is o > 0 such that 1 satisfies the equation

a?w 2924

(9.10) o

+ F(|9)Y =0 in D'(R3).

Let 4} = b, (- + 21). Since 1, solves (1.3) with ¢, instead of c, it is obvious that 1F satisfies

2

) 3
(9.11) ey, 2V awk Z ; F(wi»)v; in D'(R3).
=2

ng
8.771 ]

It is easy to see that ¢f — ¢ and F(|oi|2)v; — F([]?)e in D'(R?).
We show that (oy, )r>1 is bounded. We argue by contradiction and we assume that it
contains a subsequence, still denoted the same, that tends to co. Multiplying (9.11) by J%

and passing to the limit as k — oo we get

2 9

9.12
( ) 6m2 t o2 3:E3

=0 in D'(R3).

(R3) for any p € [1,00), we infer that the above equality holds in L

loc loc(Rg)
for any p € [1,00). By the Sobolev embedding (see Lemma 7 and Remark 4.2 p. 774-775 in

[24]) we know that there is o € C such that |a| = 1 and ¢ — a € LS(R3). Let y € C®°(R3) be
a cut-off function such that x = 1 on B(0, 1) and supp(x) C B(0,2). Takmg the scalar product

(in C) of (9.12) by x(%)(1) — a) and letting n — oo we find [gs ‘822 d’ | dz = 0. Since
Y € CH¥(R3), we conclude that 8:3; — 9 _ 0, hence 7,/} depends only on x;. Together with

Oxs —

2
P
Since 335 83: e L

the fact that g—gﬁ S L2(R3) this implies that 1; is constant, a contradiction. Thus (oy, )g>1 is
bounded.

If there is a subsequence (Jnkj )j>1 such that Ony, — O @S Jj — 00, passing to the limit

n (9.11) we discover

6% = 0% - .
Gr FEWRI =0 DR
If 0. # o, comparing the above equation to (9.10) we find % + % = 0 in D'(R3) and
arguing as previously we infer that ¢ is constant, a contradiction. We conclude that necessarily
Op, — 0 as k — oo. Denoting ¢ = 9, 1, we easily see that 1) minimizes E in Cy and is a
ground state of (9.1). Then (¢, )r>1 and v satisfy the conclusion of Proposition 9.1 (i).
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(ii) By the Sobolev embedding there are «, o, € C of modulus 1 and Cs > 0 such that

[¥n, — arllpzmyy < CsllVnllzmyy  and Y = allor gy < CslI VY[ 2w

We may assume that o = 1 for otherwise we multiply v, and ¥ by a ™!

1 = anbp, where 1y is real-valued, but we do not need this observation.)
Let R > 0 be arbitrary, but fixed. By (i) there exists k(R) € N such that for all & > k(R)
we have ([t (- + zk) — ¥l 127 (p(0,r)) < 1. Then we find

(In fact we have

=1 12% (Bo,r)) < 1¥my (-F@k) =l por may Hl|Um, (Fak) =0l o= (g0, r)) V=1l 2 mvy < C

for any k > k(R), where C does not depend on k. This implies that o, — 1.
Let 1} = ag "n, (- + ), so that ¢f —1p € L2 (RY). Using (i) and the Sobolev embedding
we get

(913) Hlb;: — '¢HL2* (RN) < CSHV'Q&Z - VwHL2(RN) —0 as k — oo.

By (i), V4 is bounded in L2(R”) and v} is a traveling wave to (1.1) of speed c;,. It follows
from Step 1 in the proof of Lemma 10.1 below that there is L > 0, independent of k, such that

IVl oo mivy < L and IV poomy < L.
By interpolation we get
(9.14) VY = V|l oy — 0 as k — oo for any p € [2,00).
Using (9.13), (9.14) and the Sobolev embedding we infer that
(9.15) V% = Yl Le@yy — 0 as k — oo for any p € [2%, o0].

We claim that HF(W;‘;]Q)wZ—F(]"L/J\Q)z/JHLp(RN) — 0 as k — oo for any p € [2*, 00). To see
this fix § > 0 such that F is C' on [1—24, 1+26] (such § exists by (A1)). Since p—1 € L2 (RY)
and [|[Vi[|poo gy < L we have ¢p — 1 as [#| — oo, hence there exists R(5) > 0 verifying
|| = 1] < § on RN \ B(0, R(6)). By (9.15) there is ks € N such that [y} — Yl oo gy < 0
for k > ks. The mapping z — F(|z|?)z is Lipschitz on {z € C |1 —2§ < |z| < 1+ 2§}, hence
there is C' > 0 such that

(9.16) |F(|r)r — F(1w[)e] < Cleg =] on RV \ B(0, R(6)) for all k > k.

Since F(|y;[*)¢; — F(J1]*) is bounded and tends a.e. to zero, using Lebesgue’s dominated
convergence theorem we get

(9.17) IE (15?5 — F(10P) ¥l o (sos)y) — 0 for any p € [1,00).

Now the claim follows from (9.15) - (9.17).
Using the equations satisfied by 7 and 1 we get

a *
AW =) = —ien, 5ok — (F(uiP)ui — F(uP)0).

From the above we infer that [|A(¢; — ¥)|p@nyy — 0 for any p € [2%,00), then using

(9.15) and the inequality [|f|lw2r@y) < Cp <”fHLp(RN) + HAfHLp(RN)> we get the desired
conclusion. g
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10 Small energy traveling waves

The aim of this section is to prove Proposition 1.4. The next lemma shows that the modulus
of traveling waves of small energy is close to 1.

Lemma 10.1 Let N > 2. Assume that (A1) and ((A2) or (A3)) hold.
(i) For any € > 0 there exists M(g) > 0 such that for any c¢ € [0,vs] and for any solution
Y € & of (1.5) with ||V p2mry < M(g) we have

(10.1) |[p(x)] - 1| <e for all z € RV,

(ii) Let p > Npo, where pgy is as in (A2) (respectively p > 1 if (A3) is satisfied). For any
e > 0 there exists ly(e) > 0 such that for any c € [0,v,] and for any solution ¢ € € of (1.3)
with || Y] = 1| porvy < €p(e), (10.1) holds.

Proof. Assume first that (A1) and (A2) are satisfied.
We will prove that there is L > 0 such that any solution ¢ € &£ of (1.3) such that
IV L2(mavy is sufficiently small (respectively [[[1| — ol 2(rn) is sufficiently small) satisfies

(10.2) VY] ooy < L.

Step 1. We prove (10.2) if N > 3 and [[Vo| p2mny < M, where M > 0 is fixed.
Using the Sobolev embedding, for any ¢ € & such that [[Vo| 2gnyy < M we get

1] = 2) 4l L2+ rvy < CslIVIo] 22wy < CslIVoll 2@y

Since || < 2+ (|¢| — 2), we see that ¢ is bounded in L?" 4+ L>®(RM). Tt follows that for any
R > 0 there exists C'r yr > 0 such that for any ¢ € £ as above we have

¢l (B(2,r)) < CrM for all z € RY.

If ¢ € [0,v5], ¥ € € is a solution of (1.3) and ||V 2gyy < M, using (3.11) and a standard
bootstrap argument (which works thanks to (A2)) we infer that for any p € [2,00) there is
Cp > 0 (depending only on F', N, p and M) such that

I llw2p(B(a,1)) < ép for all z € RY.

Then the Sobolev embedding implies that ¢ € C1*(RY) for all @ € [0,1) and there is L > 0
such that (10.2) holds.

Step 2. Proof of (i) in the case N > 3.
Fix ¢ > 0. There is L > 0 such that any solution ¢ € £ of (1.3) with [[Ve||p2gyy <1

satisfies (10.2). If ¢ is such a solution and | [¢)(xz)| — 1| > € for some z¢ € R, from (10.2) we
infer that ! |(x)| — 1| > § for any 2 € B(xo, 57). Then using the Sobolev embedding we get

£ e\ N N 2%
CslI V4l ) = 11161 = Ul vy = N1 = Ul (a0 ) = 5 ((M) LN (B0, 1))) .
N 7
We conclude that if | V1| 2 gy < min (1, TR ((%) LN (B(0, 1))) ? ), then v satisfies (10.1).

Step 3. Proof of (10.2) if N =2 and ||V¢[[12(r2) is sufficiently small.
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By (4.2) there is M; > 0 such that for any ¢ € £ with [|[Vé||p2(r2) < M1 we have

03 5[ o) -1 < [ viePyar< [ (o) -1’

Let v € £ be a solution of (1.3). By Proposition 4.14 (ii) we have ¢ € W, ’p(RZ) and this
regularity is enough to prove that v satisfies the Pohozaev identity

(10.4) /R2 ki 2dm+/Rzaw2

87{[:1 6:@

(see Proposition 4.1 p. 1091 in [41]). In particular, if [|V4)|[z2gr2) < M7 by (10.3) and (10.4)
we get

dr+ | V(|oP))de =
R2

2
(10.5) /R2 (P*(jw) —1)" da < 4/I{2 V(¥P) de < 41-{2 gai

and Corollary 4.3 implies that there is some Ms > 0 (independent on 1) such that || || —
1z2(r2) < M2. We infer that for any R > 0 there is M3(R) > 0 (independent on ¢) such that
11| 1 (B(a,r)) < M3(R) and hence, by the Sobolev embedding, [|%||1»(B(x,r)) < Cp(R) for all
r € R? and p € [2,00). Using (3.11) and an easy bootstrap argument we get Il w2r(B1)) <
ép for all z € R? and p € [1,00). As in Step 1 we conclude that there is L > 0 such that any
solution ¢ € & of (1.3) with [[V¥||p2(g2) < M satisfies (10.2).

Step 4. Proof of (i) if N = 2.

Fix ¢ > 0. Let i be as in (3.19) and M; as in step 3. If ¢ € £ is a solution of (1.3) with
IV 22y < M1 and there is 29 € R? such that | [¢(x0)] — 1| > €, using (10.2) we infer that

| [(z)|—1| = § for any « € B(wo, 57), hence (¢*(|¢]) — 1) n(5) on B(xg, 57) and therefore

/RQ (@2(jl) — 1) da > /B(xo,;L) () — 1)’ dz > = (;L)Zn (g) ,

On the other hand, by (10.5) we have [g. (©?(|¢]) — 1) dr < 4| V|2, (r2) We conclude that
necessarily | [ — 1] < = on R if | VY lfame) < § (52)°0(5)-

Step 5. Proof of (10.2) if || [¢[ — 1| pgwyy < M and p > Npy.

By Proposition 4.14 (ii) we know that ¢ and V1) belong to L>(R"). We will prove that
[l oo (mrvy and [|[Vih|| oo gy are bounded uniformly with respect to . The constants C;
below depend only on M, F,p, N, but not on .

Let ¢(x) = e%w(x), so that |¢| = [¢| and ¢ satisfies the equation

dx < 4M1

(10.6) Ap + (f - F(|¢|2)> ¢=0 in RV,

For all z € RN we have [|¢l1o(5(z,2)) < C1, where Cy depends only on M. Fix r = (2%)

such that Npy < 2rpy < p and (2pg + 1)r > p. In particular, we have r > % > 1. Since
| (% + F(\¢|2)) 9| < Cy + Cs|¢|*P*!, using (10.6) we find that for all z € RY we have

2P0+1—* 2po+1-2

(10.7) 1Al Lr(B@,2)) < Ca+ Cslloll oo (o H¢HLp Ba2) < C6+ Crlloll oo g -
It is obvious that |¢p| < Cg + C’gH(]ﬁHiﬁZT{;; 6|7, hence ¢ satisfies

2po+1—
160l (5(e2) < (LY (B(0,2))7 Cs + CoCF 0] 72 -
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Then, using (3.11) we infer that for all z € RV,

2po+1-2
[llw2r (B(2,1)) < Cro+ 011|!¢HL£(RN) :

Since r > & the Sobolev embedding implies |||z (B(z,1)) < Cslléllw2r(B(2,1))- Choose xq €

RY such that 9] Loo (B(o,1)) = %quHLoo(RN). We have

2po+1—
®RN) < 7H¢HL°° Bao) < 8llwzr(Boy < Cro+ Cralldll sz)-

20

Since 2pp + 1 — 2 < 1 by the choice of r, the above inequality implies that there is Cio > 0
such that [|¢[|fec gy < C12. Then using (10.6) and (3.11) we infer that [||ly2.4(B(,1)) < C(q)
for all z € (RV) and all ¢ € (1,00), and the Sobolev embedding implies HVqﬁHLoo ®y) < Ci3

for some C3 > 0. Since 9(x) = et ¢(z), the conclusion follows.

Step 6. Proof of (ii).
Let ¢ be a solution of (1.3) such that |||¢| — 1|[zp®~) < 1. By step 5, there is L > 0

(independent on t) such that (10.2) holds. If there is zo € RY such that | |1(zq)| — 1| > €,
we have | [¢] — 1} > 5 on B(zo, 57) and consequently

€ e\N N P
1161 = sy = 191 = Ui = 5 ((57) €¥(B0.1)

1
Thus necessarily | [1(z)]—1| < e on RV if || 1| —1]| 1 (RV) < min <1 £ ((%) LN (B0, 1))) p) .

If (A1) and (A3) hold, it follows from the proof of Proposition 2.2 (i) p. 1078 in [41] that
there is L > 0 such that (10.2) holds for any ¢ € [0,v,] and any solution ¢ € & of (1.3).
Therefore the conclusions of steps 1, 3 and 5 are automatically satisfied. The rest of the proof
is exactly as above. U

By (A1) we may fix 8, > 0 such that 3(s —1)2 < V(s) < 3(s — 1)% if |\/s — 1| < B..
Let U € € be a traveling wave to (1.1) such that 1 — 3, < \U| <1+ Bs. It is clear that

1 3
(10.8) JUUP =1 <v(uP) < S(UP-1)*  on RV
It is an easy consequence of Theorem 3 p 38 and of Lemma C1 p. 66 in [11] that there exists a

lifting U = pe? on RY, where p,0 € W ’p(RN) for any p € [1,00). Then (1.3) can be written
in the form

00
Ap = pVOP + pF(p*) = cp—,
T
(10.9)
w(p2ve) = — S 9 (2
div(p“Ve) = 5 0 (p*—1).
Multiplying the first equation in (10.9) by p we get
1 00 00
10.1 “A(p? —1) - 24+ p?F(p?) —c(p* — 1 —.
(10.10) 580" = 1) = [VU +p (p?) = e(p? )ax1 P

The second equation in (10.9) can be written as

(o2 — €O oy _
(10.11) div((p 1)V9)+28x1(p 1) = —A6.
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We set ) = p?—1 and define g : [~1, +00) by g(s) = v2s+2(1+s)F(1+s), so that g(s) = O(s?)
for s — 0. Taking the Laplacian of (10.10) and applying the operator ca%l to (10.11), then
summing up the resulting equalities we find
(10.12)

[A%Z—02A + 202 | n= A (2|VU* = g(n) + 2e10,,0) — 2¢0y, (div(nVe)) in S'(RV).

Notice that the right-hand side of (10.12) contains terms that are (at least) quadratic. We
write (10.12) using the Fourier transform as

(10.13) (€)= Le(6)T(),

where

(018 T = ~FEVUF — gla)) 2L S 0,00+ zcz S,
and

(10.15) L&) = I45

[€]* + v3lE]? — 2t

On the other hand, we know that U satisfies the Pohozaev identity (8.5). Using (2.7) and
the Cauchy-Schwarz identity we have

1
QI = | [ (62 =101, o] < Ilzacumy 02y < 1= Wiz I VU oy

Inserting this estimate into (8.5), using (10.8) and the fact that |c¢| < vy we get

N — 1), N
(10.16) (N =2)|VU|Z2gn) — (1_B)HT7HL2(RN)HVUHL2(RN) + ZHWHQH(RN) <0.

The case N > 3. If N > 3, let a; < as be the two roots of the equation (N — 2)y? —

%y + % = 0. It is obvious that a; and as are positive and from (10.16) we infer that

(10.17) ar|[nllpzmny < VU 2@y < azl[nllL2@wy.-

Proof of Proposition 1.4 for N > 3. We use the ideas introduced in [7] and [21].

In the following C; and K are positive constants depending only on N and F'.

Let 5« be as above. By Lemma 10.1, there are My, 1 > 0 such that any solution U € &£
to (1.3) with [pn [VU|?dz < M, (respectlvely with g (JUJ* — 1) dr < ¢y if (A3) holds or
if (A2) holds and pg < %) satisfies 1 — 3, < |U| < 1+ S, and, in addition, (10.2) is verified.
Then we have a lifting U = pe?® and (10.8)-(10.17) hold. Since g(n) = O(n?), it follows from
(10.17) that
12IVU* = gl L1 gy 2|vU|1Z, RN) + ClH77HL2 rry < Collnll2 gy

10.18
(10.18) Coll VU2, o

<
<

On the other hand, from 1 — 3, < |U| < 1+ B, and (10.2) we get ||2|VU|? =9l pe@mny < Ca
and then, by interpolation,

2

(10.19) 121VU* = gDl Loy < CLO M 2wy
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respectively

2
(10.20) 121902~ gn)l o) < Ko @) VU] gy

for any p € [1,00). It is obvious that [10,,0| < ﬁhﬂ -|VU| and, as above, we find

2

2 2
(10.21) (100, Bllpo) < Co@nll fagerys and (105,60 1ory < Ko@) VU2 -

3138
l€P?
multipliers from LP(RY) to LP(R"), 1 < p < oo. Using (10.14) and (10.19)-(10.21) we infer

that T € LP(RY) for 1 < p < 0o and

By the standard theory of Riesz operators (see, e.g., [45]), the functions & — are Fourier

2 2
(10.22) X)) < Co@)nlZamny  respectively [ oy < Ks@)IVU]Zagn),

We will use the following result, which is Lemma 3.3 p. 377 in [21] with o = 532~ and

q = 2. Notice that - = 38=1 < 2if N > 3.

Lemma 10.2 (/21]) Let N > 3 and let py = 2(22]<7VJ:31) € (1,2). There exists a constant Ky,

depending only on N, such that for any c € [0,vs] and any f € LPN (RY) we have

IFHLOF N rzmny < Enllfllion ®ev)-

From (10.13), Lemma 10.2 and (10.22) we get

2

(10.23) Il 2@y < BNITlpon @y < KNCs(on) 17112 gy

Since 1% > 1, (10.23) implies that there is £, > 0 (depending only on N and F) such that
17l 22y = Le; o1 [[n]|L2may = 0. In the latter case from (10.17) we get [|[VU| 12@mny = 0,
hence U is constant.

From (10.23) and (10.17) we obtain

2 2 2
PN

VUl 2@y < asllnll gy < asKnCalom)lnll gy < ar ™ asKnCa(pw) VU 73 v -

As above we infer that there is k. > 0 such that either [|[VU|| 2gny > ks, or U is constant. [

The case N = 2. If N = 2, from (10.16) we infer that |||/ 2gy) < %HVUHIQ(RN).
However, the Pohozaev identities alone do not imply an estimate of the form |[|[VU|| L2RN) <
Cnl[z2mn). To prove this we need the following two identities, which are valid in any space
dimension and are of independent interest.

Lemma 10.3 Let U = pe'® € £ be a solution of (1.8), where inf p > 0 and p is bounded. Then
we have

(10.24) 2/ P*|VO? dx = c/ (p? —1)0,,0 dx and
RN RN

(10.25) / 20|V + p(p® = 1)|VOP = p(p* = 1)F(p) da = —6/ p(p* = 1)0y,0 da.
RN RN
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Proof. Formally, U is a critical point of the functional E, = F—cQ. Denoting U(s) = pe’*?

one would expect that %|s=1(EC(U(S)) = 0 and this is precisely (10.24).

In the case of the Gross-Pitaevskii equation, (10.24) was proven in [7] (see Lemma 2.8 p.
594 there) by multiplying the second equation in (10.9) by 6, then integrating by parts. The
integrations are justified by the particular decay at infinity of traveling waves for the Gross-
Pitaevskii equation. Since such decay properties have not been rigorously established for other
nonlinearities, we proceed as follows.

For R > 0, we denote 0 = m J. 0Bp 6 dHN~1, we multiply the second equation in
(10.9) by # — 6 and integrate by parts over B(0, R). We get

2/ P*|Vo)? dm—2/ pQ@(e—e‘) dHN !
B(0,R) dB(0,R) ov

= —c/ (p? —1)0,,0 dx + c/ (p* —1)(6 — Q) dHN L,
B(0,R) dB(0,R)

(10.26)

where v is the outward unit normal to 0B(0, R). By the Poincaré inequality we have for some
constant C' independent of R,

160 — 0l 1208(0,r)) < CRIVOllL208(0,R)-
Using the boundedness of p and the Cauchy-Schwarz inequality we have for R > 1

‘2/ p° (0 — _)@ dHN‘l( + ‘c/ (P —1)(0 — O)v dHN !
dB(0,R) v dB(0,R)

< CR/ (p* = 1)2 + |VO]> aHV 1.
dB(0,R)

Since p? — 1 € L*(RY) and V0 € L2(RY), we have

+o0
/ (/ (p* — 1)+ |Vo|? dHN1> dR = / (p* — 1)+ |VO|? dz < o,
1 dB(0,R) {lz>1}

hence there exists a sequence R; — +o0 such that

1

(P> =1+ |VOP aHN P < ——.
/<93(0,Rj) R;jIn R;

Writing (10.26) for each j, then passing to the limit as j — co we obtain (10.24).

It is easily seen that p? —1 € H'(RY). Multiplying the first equation in (10.9) by p? — 1
and using the standard integration by parts formula for H! functions (cf. [10] p. 197) we get
(10.25). O

Using (10.24) and the Cauchy-Schwarz inequality we get

1/2 1/2
2/ p°|VO|? dox = —c/ (p? =1)0,,0 dz < C </ (p? —1)? d:c) </ P Vo2 dw) ,
RN RN RN RN

from which it comes
/ P*|I VO dx < C’/ n* dz.
RN RN
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Using (10.25), the fact that 0 < 1 — 3, < p < 1 + B, the inequality 2ab < a? + b? and the
above estimate we find

20-5.) [ Vol de< [ 2090 ds
RN RN
= —/ pn|Vo|? dm—C/ 10z, 0 dw+/ p’nF(p?) da
RN RN RN

C/ P2|VO)? +n? de < C n? de.
RN RN

IN

It follows from the above inequalities that in the case N = 2, there exist two positive
constants a1, as such that any solution U € & to (1.3) with 0 < ¢ <wvs and 1—3, < |U] < 1+ 0.
satisfies (10.17).

Proof of Proposition 1.4 if N = 2, (A4) holds and F"(1) = 3. The strategy used in
the case N > 3 has to be adapted: small energy traveling waves do exist when N = 2 and
F"(1) # 3 (see Theorem 4.9, Proposition 4.14 and Theorem 4.15). This is related to the fact
that Lemma 10.2 does not apply if N = 2. The proof relies on an expansion in the small
parameter 1 and the observation that when the energy is small, we must have 0., ¢ ~ —cn/2.
Since v2 =2 = —2F'(1) and F”(1) = 3, by (A4) the function g has the expansion as s — 0

1
g(8) =v2s +2(1 4+ 8)F(1 4+ s) = v2s + 2(1 + ) (sF/(l) + 532F”(1) + (’)(33)>
=52+ 0(s).
By Lemma 10.1, there are M, ¢; > 0 such that any solution U € £ to (1.3) with ¢ € [0, vs]
and [go [VU[2dz < My (respectively [go (|U[* — 1)2 dr < ¢ if (A3) holds or if (A2) holds
and po < 1) satisfies 1 — B, < |U| < 1 + S, the estimate (10.2) is verified, we have a lifting

U = pe'® and all the statements above are valid.
Recalling that Y is defined by (10.14), we observe that in the expression of 2|VU|? — g(n)

we have the almost cancellation of two quadratic terms: 2p?(8,,0)* — n? ~ 2((0,,0)* — %n?)
is much smaller than quadratic if 9,,6 ~ vsn/2. We now quantify this idea and split the proof
into 7 steps. We denote

(10.27) h= 8,0 + gn.

By Lemma 10.1, |9z (r2) can be made arbitrarily small by taking M; (respectively /1)
sufficiently small. Moreover, using (10.17) we get

(10.28) Il zarz) < 017 ey 1172 (r2) < Cllnlf2me) < CIVU|Z2ge)-

Step 1. There is C' > 0, depending only on F', such that if M; (respectively ¢1) is small
enough,

/32 W2+ (95,0)% + (02 = )i de < Clnll7agey-

The starting point is the integral identity
[ PIVO V() + el = 101,60 da =0,
R2

which comes from the combination of (10.24) and the Pohozaev identity [g. 2V (p?) + c(p? —
1)04,0 dx = 0 (see Proposition 4.1 in [41]). From (A4) with F”(1) = 3 we have the Taylor
expansion of the potential

2 Ug 9o 1y 3 4 U? 2 ”3 3 4
V(p):V(lJrn):Zn —&F (1)n +0(n)=zn - +O(n").
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Therefore, the above integral identity gives

2 2
A;ﬂ+nX&ﬂf+(%ﬁﬁ+n®m@2+Zw2ZW3+O@ﬁ+cm%ﬁdz:O

Then the identity h% = (0,,0)% + Oy, 0 + %772 gives

/RQ(l +1)(05,0) + h* + TnQ + 1(04,0)* — 2773 dx = —/ O(nt) de,

hence, rearranging the cubic terms,

2
772(1—17) da::—/Rth(h—cn)—i—(’)(n‘L) dx.

2
Vg —

(10.29) / (14 1)(0x,0) + h% +
R2

For the left-hand side, we have 1 +1n > % and 1 —n > % if My or 1 are sufficiently small

(because 7] o0 (r2) is small). We now estimate the right-hand side. Since [|n[| e (r2) is small,
we have | [z O(n?) da| < CHnH;(RQ) and by Cauchy-Schwarz and the inequality 2ab < a®+b?,

1 1
‘/ nh (h — en) dac‘ SHnHLoo(Rz)/ h? dac—i—c(/ h? dac)2</ nt dm>2
R? R? R? R?2
<1/ B2 da + Clnllds o
=2 Jgre LA(R?)

provided that M or £; are small enough, where C depends only on F. Inserting these estimates
into (10.29) yields the result.

Step 2. There exists C, depending only on F', such that for M1 (respectively ¢1) small
enough,

/R2 IVpl? + (v = )n* dae < Clnl|Fage)-

We start from (10.25), that we write in the form

/RQ 2p|Vp|? dx = — /RQ 1 ((02,0)° + (82,0)%) — pnF(p*) + cpndz, 0 da.

Using the expansion F(p?) = nF’'(1) + O(n?) = _v%n + O(n?), this gives

2_ 2
vi—c

(10.30) / 20|V pl* + = —pn* do = —/ 1 ((92,0)% + (02,0)*) + cpnh + O(|n]*) d.
R?2 R?

Note that by the Cauchy-Schwarz inequality,
(10.31) Il ey < 12 eyl ey

Since either HUH%Q(RQ) < {1 or ||VUH%2(R2) < M and then, by (10.17), \|77||%2(R2) < 1;4—%1, we
get

(10.32) ’/W O([nl*) dx’ < Clnllzsme) < Clall2@ InlZamzy < Clnllzame)-
Recall that 1 — 8, < p <14 B, and using step 1 we find

‘/ on(5,0)? dx‘ < C’/ (0:,0)* dx < CllnllLa(rzy.
R?2 R?
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Since ¢ € [0, vg], from step 1 and the Cauchy-Schwarz inequality we obtain

[ conh da| < ClallagalIHl oy < Cllfsgus

Using the definition of h, step 1 and (10.32) we now estimate
2 ¢ \?
’ / p1(0z,0) dx’ < C/ 7] (h - fn) d
R?2 R2 2

(10.33)

< Cliley [ W do+C [ o do < Cllnlfuge

R2 R?2

Summing up the above estimates and using (10.30) yields the conclusion.

In steps 1 and 2 we have not used the fact that F”(1) = 3. Since g(s) = %sQ + O(s%) when
F"(1) = 3, it is natural to write (10.13) in the form

U2
AE) = — LO)F <2<ame>2 - 5172)

2
’U2
(10.34) — Lc(§)F (277(8;,;19)2 + 2p%(0,,0)* + 2|Vp|* — [g(n) - 28772])
—2eL(¢ ),;2 F(001,0) + 26552 £ F(102,0)

where we recall that £.(£) is given by (10.15). We expect the term in the first line of (10.34)
to be much smaller than quadratic. By the Riesz-Thorin Theorem we have 7]y sg2) <

ClInll a/3(m2y- We will estimate the L*/3 norm of all the terms in the right-hand side of (10.34)
and we will show that they are bounded by C||n||3. (R?

Step 8. We have, for some constant C' depending only on F,

§162

£ L F(10:.0)
Indeed, by the continuity of F : L'(R?) — L°(R?) and the Cauchy-Schwarz inequality one
has

H2c

L4/3(R2) H77||L4 (R2)"

€169 §i1&2
20 e Lo OF@00:0) | ) < OIF s (2 Tep = )] o
it
<CH77(9$20HL1 R2) ‘2|22£ (5)’ LA/3(R2)
< Cllama 00l |
§iéo
< Cll s | 57 L) o ey

where we have used the estimate [0:,0]| 22y < Cl|nlla(r2) (see Step 1) and the fact that
7]l 2(r2y is bounded. Thus it suffices to prove that H&g?E (5)’

: is bounded indepen-

|£|2 L4/3(R2
dently on c.
Using polar coordinates, we find for all g > 1,
I ey = S -1 h / e
Minwn = [, e+ o2ief? — ¢y (1 02— Feos? O

oy w/2 do _ 2/7r/2 do ) /7r/2 do
by (w2 —c2cos?W)il T el [ (v2 — w2 cos? )] T (=12 D o (sing)2@-1)’
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Since the last integral is finite and does not depend on c if 2(¢ — 1) < 1, we get

3
(10.35) sup [|Lc(é) |l parey < Cy < o0 for any ¢ € <1, 2> .
0<c<vg

In particular we have %Ec(ﬁ)’ Lo/ (R2) < Ll parsmey < C’% for 0 < ¢ < vg and this
concludes the proof of step 3.

Step 4. There holds

fz
2 ot (5)]—"(7787“9)] psey < Ol
From the definition of h we have 09,0 = nh — <&, thus
&
[ 7000y < 0 g, OO s

The second term is estimated as in Step 3, using (10.35), step 1 and the fact that ||7]|z2g2) is
bounded:

L) F )| a5 w2y < ILe()l s IF M)l (mz) < Cllnllparey 1hllz2me) < ClinllZasme)-

For the first term we first observe that, since ¢? < v2,

52 B £2 & _ 1
162 (5)’ Tl R — g S g - o

Hence, using the estimate || f]|za < Hf||Lo<,Hj"HL4/37 we get for 0 < ¢ < vy,

1
3

1
LA/3(R2) — 4/3”5 €3 )||z4/3(R2) < C.

H ‘f|2 ‘ L4 R2) - 4/3 H |£|2 c(§)

(Warning: £, is not uniformly bounded in L*(R?) as ¢ — vs.) As a consequence, using the
generalized Holder inequality with 4—}3 = % + % and the Plancherel formula,

fieeome

Combining the above estimates gives the desired conclusion.

Step 5. If F(1) = 3 we have

|

By (10.35) and the inequality

1£()F (H) 73 m2) < 1£e(E) arsmay [ F (H) [ Lo (r2) < CallHl| L1 (m2)

Lo(6)|

IF 0P| 2Rz < C\\U\\%4(R2)-

LA/3(R2) — H |€]2 L4(R2)

L&)F <2n<‘o‘xle>2 +20°(0,0)° + 2Vl - [9“” - "D |

2
Lo/ = Clinllzsme)-

it suffices to estimate

2
H%(%é’)2 +20%(0r,0)% + 2|Vp|* — [g(n) —~ 3772] ’
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We estimate each term separately. We have already seen that g(s) = §S2 +0(s3) as s = 0
because F”(1) = 3. By (10.31) we obtain

2
Us 2 3 2
o) = 5], gy < ClEscra) < Cllnl gy
From step 2 we have
2 _ 2 2
(1962, gy = L, 1998 do < Cllnlae

and from step 1 we get

Hp2(8x29)2’

2 4 2
oy € (08 do < il < Clnlqu

Finally, as in (10.33) we infer that

o207

2
LEy S Clinllzsgz)-

Gathering the above estimates we get the conclusion.

Step 6. The following estimate holds:

Indeed, arguing as is step 5 and using the definition of h, the Cauchy-Schwarz inequality and
step 1 we deduce

|

< C|IR?| w2y + Clinll 2wz |7l 22y +

< Clnlliame)-

L(&F (z(axley - 1122 ,72> ‘

L4/3(R2)

v

L(&)F <2(63:19)2 — ‘2?72) ’ 2 (h — En)Z - 1)3772’

<C
3 2 2

L4/3(R2) 3

2 L1(R2)

’U2—02

5 [ e < Clinlfuguey

Step 7. Conclusion.
Using the Riesz-Thorin theorem, we have ||n||pyre2y < C|l0lla/3(r2)- Coming back to
(10.34) and gathering the estimates in steps 3-6, we deduce

Inllzarzy < Cllill s @y < Cllnll7sma),

where C' depends only on F'. Consequently, either 7]/ 4g2) = 0, or there is a constant £ > 0
such that [|9][zam2) > k. If [[n]am2) = 0 we have n = 0 a.e. and from (10.17) we get
VU r2(r2y = 0, hence U is constant. If ||n]| sg2) > &, (10.28) implies that there are £, > 0
and k. > 0 such that ||n]|2r2) > £« and [|[VU||2(r2)y > ks. The proof of Proposition 1.4 is
complete. O
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