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Rarefaction pulses for the Nonlinear Schrodinger Equation
in the transonic limit

D. Chiron* & M. Maris'

Abstract

We investigate the properties of finite energy travelling waves to the nonlinear Schrédinger equation
with nonzero conditions at infinity for a wide class of nonlinearities. In space dimension two and three
we prove that travelling waves converge in the transonic limit (up to rescaling) to ground states of the
Kadomtsev-Petviashvili equation. Our results generalize an earlier result of F. Béthuel, P. Gravejat and
J-C. Saut for the two-dimensional Gross-Pitaevskii equation, and provide a rigorous proof to a conjecture
by C. Jones and P. H. Roberts about the existence of an upper branch of travelling waves in dimension
three.
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1 Introduction

We consider the nonlinear Schrédinger equation in RY

i%—‘f+A\II+F(\\II|2)\IJ =0 (NLS)
with the condition |¥(¢,z)| — r¢ as |z| — oo, where ro > 0 and F(r2) = 0. This equation arises as a relevant
model in many physical situations, such as the theory of Bose-Einstein condensates, superfluidity (see [19],
[23], [24], [26], [25] and the surveys [37], [1]) or as an approximation of the Maxwell-Bloch system in Nonlinear
Optics (cf. [29], [30]). When F(p) =1 — p, the corresponding (NLS) equation is called the Gross-Pitaevskii
equation and is a common model for Bose-Einstein condensates. The so-called “cubic-quintic” (NLS), where

F(o) = —a1 + az0 — as0’

for some positive constants oy, az and a5 and F' has two positive roots, is also of high interest in Physics
(see, e.g., [2]). In Nonlinear Optics, the nonlinearity F' can take various forms (cf. [29]), for instance

2 2
Flo) = ~ag’ — Bg™. F@)a@uggyy F(o) = —ao(1+y tanh(E 2, ete., (1)

where «, 8, v, v, 0 > 0 are given constants (the second formula, for instance, was proposed to take into
account saturation effects). It is therefore important to allow the nonlinearity to be as general as possible.

The travelling wave solutions propagating with speed ¢ in the x;-direction are the solutions of the form
U(x,t) = U(xy — ct,za,...,2n). The profile U satisfies the equation

—ic,, U + AU + F(|U|*)U = 0. (TW,)

They are supposed to play an important role in the dynamics of (NLS). Since (U, ¢) is a solution of (TW,) if

and only if (U, —c) is also a solution, we may assume that ¢ > 0. The nonlinearities we consider are general,
and we will merely make use of the following assumptions:

(A1) The function F is continuous on [0, +00), of class C! near 73, F(rg) =0 and F'(r3) < 0.

2 ere exist C >0 and pp € |1, v=) (po < 01 = 2) such that 0)| < + 0%°) for all p > 0.
A2) There exist C' > 0 and 1, v if N = 2) such that |F C(1+ o) for all o >0
(A3) There exist Cy > 0, ap > 0 and gy > r¢ such that F(p) < —Cpe®® for all ¢ > 0.

Assumptions (A1) and ((A2) or (A3)) are sufficient to guarantee the existence of travelling waves. How-
ever, in order to get some sharp results we will need sometimes more information about the behavior of F
near r2, so we will replace (A1) by

(A4) The function F is continuous on [0, +00), of class C? near r2, with F(r3) =0, F'(r) < 0 and

Flo) = F(r) + F(r)o— ) + 5F" ()0~ 13 + Olo— 1)) a5 o—1d.

If F is C? near 73, we define, as in [17],

4rd

r=6- C—;F”(rg). (2)

The coefficient T' is positive for the Gross-Pitaevskii nonlinearity (F'(9) = 1 — p) as well as for the
cubic-quintic Schrédinger equation. However, for the nonlinearity F(o) = be~%/® — a, where o > 0 and
0 < a < b (which arises in nonlinear optics and takes into account saturation effects, see [29]), we have
I' = 6 + 2In(a/b), so that I' can take any value in (—o0,6), including zero. The coefficient I' may also
vanish for some polynomial nonlinearities (see [16] for some examples and for the study of travelling waves
in dimension one in that case). In this paper we shall be concerned only with the nondegenerate case I' # 0.

Notation and function spaces. For x = (21,72,...,,2y) € RY, we denote * = (x1,7,), where
) = (z2,...,zy) € RN7L Given a function f defined on RY, we denote V., f = (a‘le Yoy 8‘1{\,). We will

write A,, = 86722 et %. By 7 f(t) ~ g(t) as t — to” we mean lim;_,;, % =1.



We denote by .# the Fourier transform, defined by .#(f)(&) = / e ¢ f(x) dz whenever f € LY(RY).
RN

Unless otherwise stated, the LP norms are computed on the whole space RV,

We fix an odd function x : R — R such that x(s) = s for 0 < s < 2rg, x(s) = 3ry for s > 4ry and
0 < x <1onRi. As usually, we denote H'(RY) = {h € L}, (RY) | Vh € L*(RY)}. We define the
Ginzburg-Landau energy of a function ¢ € H'(RN) by

Bo(w) = [ | IV0F + (3w = ) do
We will use the function space
£={ve H'®Y) | *(p) - € P®RY)} = {v € H'RY) | Eaw(¥) < oo}

The basic properties of this space have been discussed in the Introduction of [17]. We will also consider the
space

X = {ueD"?(RY) | x*(Iro —ul) —r§ € L*(RM)},
where D12(RY) is the completion of C2°(RY) for the norm ||u||p1.2 = Vul| 2wy If N > 3 it can be proved
that € = {a(ro —u) | u€ X, a € C, |a| =1}

Hamiltonian structure. The flow associated to (NLS) formally preserves the energy
B(w) = [ | IVoP+V(uP) do.

where V is the antiderivative of —F which vanishes at 73, that is V (s) = f;g F(p) do, as well as the momen-
tum. The momentum (with respect to the direction of propagation z) is a functional @ defined on & (or,
alternatively, on X) in the following way. Denoting by (-,-) the standard scalar product in C, it has been
proven in [17] and [36] that for any ¢ € £ we have (ig—;bl,w> €Y+ LY(RY), where Y = {867?1 | h e HY(RN)}
and Y is endowed with the norm ||0;, h|ly = ||[VhA|[12r~y). It is then possible to define the linear continuous
functional L on Y + L*(RY) by

Oh

— Oh 1N
L(aler@) RN@(I‘) dx for any 21 €Yand © € L' (RY).

The momentum (with respect to the direction x;) of a function ¢ € £ is Q(¢p) = L (<i%’ w>> .
If ¢ € £ does not vanish, it can be lifted in the fom ) = pe’® and we have

aw) = [ 05 =2 d. ®)

Any solution U € &€ of (TW,) is a critical point of the functional E, = E 4 ¢Q and satisfies the standard
Pohozaev identities (see Proposition 4.1 p. 1091 in [34]):

P.(U) =0, where P.(U) = E(U) + cQ(U) — %/ |V, UJ? dz, and
—1 Jon
(4)
EWU) = 2/ 0., U* da.
RN
We denote
%. = {1 € € | 4 is not constant and P.(¢) = 0}. (5)

Using the Madelung transform ¥ = \/Eew (which makes sense in any domain where ¥ = 0), equation
(NLS) can be put into a hydrodynamical form. In this context one may compute the associated speed of
sound at infinity (see, for instance, the introduction of [34]):

¢s =/ —2r3F'(r3) > 0.
Under general assumptions it was proved that finite energy travelling waves to (NLS) with speed ¢ exist if
and only if |¢| < ¢5 (see [34, 36]).

Let us recall the existence results of nontrivial travelling waves that we use.



Theorem 1 ([17]) Let N =2 and assume that the nonlinearity F satisfies (A2) and (A4)and that T # 0.

(a) Suppose moreover that V is nonnegative on [0,00). Then for any q¢ € (—00,0) there exists U € €
such that Q(U) = q and
B(U) =inf{E@W) | v €&, Q) =q}.

(b) Without any assumption on the sign of V', there is goo > 0 such that for any q € (—¢wo,0) there is
U € & satisfying Q(U) = q and

B(0) = inf {E@) |0 € & Q) =a. [ V(wP)dr >0},

For any U satisfying (a) or (b) there exists ¢ = c(U) € (0,¢5) such that U is a nonconstant solution to
(TWewy). Moreover, if Q(Ur) < Q(Uz) < 0 we have 0 < ¢(Uy) < ¢(Usz) < ¢s and c(U) = ¢5 as ¢ — 0.
Theorem 2 ([17]) Let N = 2. Assume that the nonlinearity F satisfies (A2) and (A4) and that T # 0.
Then there exists 0 < koo < 00 such that for any k € (0, k), there isU € E such that / |VU|? dx =k and

R2

/Rz V(UP) de + Q) = inf {/ V(W) do+ Q) | v € €, / IV|? do = k} .

For any such U there exists ¢ = c¢(U) € (0, ¢s) such that the function U(z) = U(z/c) is a solution to (TW.).
Moreover, if Uy, Us are as above and/ VU |* dx < / \VUs|? dz, then ¢ > c(Uy) > c(Uz) > 0 and we
R2 R?

have c(U) — ¢5 as k — 0.

Theorem 3 ([36]) Assume that N > 3 and the nonlinearity F satisfies (A1) and (A2). Then for any
0 < ¢ < ¢ there exists a nonconstant U € € such that P.(U) =0 and E(U) + cQU) = wing (E(¢) + cQ(v)).
€C.

If N > 4, any such U is a nontrivial solution to (TW.). If N = 3, for any U as above there exists ¢ > 0
such that U(x) = U(x1,001 ) € € is a nontrivial solution to (TW,).

If (A3) holds it was proved that there is Cy > 0, depending only on F, such that for any ¢ € (0, ¢5) and
for any solution U € &€ to (TW,.) we have |U| < Cy in RV (see Proposition 2.2 p. 1079 in [34]). If (A3) is
satisfied but (A2) is not, one can modify F' in a neighborhood of infinity in such a way that the modified
nonlinearity F satisfies (A2) and (A3) and F = F on [0,2C]. Then the solutions of (TW,) are the same
as the solutions of (TW,) with F replaced by F. Therefore all the existence results above hold if (A2) is
replaced by (A3); however, the minimizing properties hold only if we replace throughout F and V' by F and

2

. N To .
V, respectively, where V(s) = / F(r)dr.

The above results provide, under various assumptions, travelling waves to (NLS) with speed close to the
speed of sound ¢;. We will study the behavior of travelling waves in the transonic limit ¢ — ¢4 in each of the
previous situations.

1.1 Convergence to ground states for (KP-I)

In the transonic limit, the travelling waves are expected to be rarefaction pulses close, up to a rescaling, to
ground states of the Kadomtsev-Petviashvili I (KP-I) equation. We refer to [26] in the case of the Gross-
Pitaevskii equation (F(¢) = 1 — ) in space dimension N = 2 or N = 3, and to [29], [28], [30] in the context
of Nonlinear Optics. In our setting, the (KP-I) equation associated to (NLS) is

1
20,¢ +T¢0,,¢ — = B+ A, 07 =0, (KP-I)

N
where A, = Z 8; and the coefficient T is related to the nonlinearity F' by (2).
j=2
The (KP-I) flow preserves (at least formally) the L? norm

¢ dz
RN



and the energy
1 r
Q) = [ 5 @107+ VL0 1P + 5 ¢ e
RN

S

A solitary wave of speed 1/(2¢2), moving to the left in the 27 direction, is a particular solution of (KP-I) of
the form ((7,2) = W(z1 + 7/(2¢2), z1). The profile W solves the equation

1 1 _

= 0., W +TWO,, W — = BW+A, 0 'W=0. (SW)

S S
Equation (SW) has no nontrivial solution in the degenerate linear case I' = 0 or in space dimension N > 4
(see Theorem 1.1 p. 214 in [20] or the begining of section 2). If " # 0, since the nonlinearity is homogeneous,
one can construct solitary waves of any (positive) speed just by using the scaling properties of the equation.
The solutions of (SW) are critical points of the associated action

1
SW)=EW) + = W? dz.
s JRN

The natural energy space for (KP-1) is % (RY), which is the closure of 9,,C2°(RY) for the (squared) norm

Wy = [ |5V 5 (02 + IV, 05 WP d.
From the anisotropic Sobolev embeddings (see [7], p. 323) it follows that . is well-defined and is a continuous
functional on % (R¥Y) for N = 2 and N = 3. Here we are not interested in arbitrary solitary waves for (KP-I),
but only in ground states. A ground state of (KP-I) with speed 1/(2¢2) (or, equivalently, a ground state of
(SW)) is a nontrivial solution of (SW) which minimizes the action . among all solutions of (SW). We shall
denote Sy the corresponding action:

Fin = inf { 7 (W) ‘ W e @ (RY)\ {0}, W solves (SW) }.

The existence of ground states (with speed 1/(2¢2)) for (KP-I) in dimensions N = 2 and N = 3 follows from
Lemma 2.1 p. 1067 in [21]. In dimension N = 2, we may use the variational characterization provided by
Lemma 2.2 p. 78 in [22]:

Theorem 4 ([22]) Assume that N =2 and I # 0. There exists p > 0 such that the set of solutions to the
minimization problem

1
R2 €2

M (1) = inf {g(W) ‘ W € % (R?), W? dz = u} , (6)

is precisely the set of ground states of (KP-1) and it is not empty. Moreover, any sequence (Wp)n>1 C % (R?)

1
such that c—2W,2L dz — p and EW,) — (1) contains a convergent subsequence in % (R?) (up to
R2 b5
translations). Finally, we have
3 1
p=g S min and M(p) = —§ymin.

We emphasize that this characterization of ground states is specific to the two-dimensional case. Indeed,
since & and the L? norm are conserved by (KP-I), it implies the orbital stability of the set of ground states
for (KP-I) if N = 2 (cf. [22]). On the other hand, it is known that this set is orbitally unstable if N = 3
(see [33]). In the three-dimensional case we need the following result, which shows that ground states are
minimizers of the action under a Pohozaev type constraint. Notice that any solution of (SW) in & (RY)
satisfies the Pohozaev identity

1 2 Sz o L e 2 / —1yp)(2
—5 \Uz z o 5 dz = —— z d P
Lo @R+ oW g g s = o [ 9 on W s
which is (formally) obtained by multiplying (SW) by z, - V. 9,'W and integrating by parts (see Theorem
1.1 p. 214 in [20] for a rigorous justification). Taking into account how travelling wave solutions to (NLS)

are constructed in Theorem 3 above, in the case N = 3 we consider the minimization problem

7=t {70W) | W e 2 ®)\ {0}, FW) :/ Vo 05 WP dz ). M)
R3



Our first result shows that in space dimension N = 3 the ground states (with speed 1/(2¢2)) of (KP-I)
are the solutions of the minimization problem (7).

Theorem 5 Assume that N =3 and I' # 0. Then .. > 0 and the problem (7) has minimizers. Moreover,
Wy is a minimizer for the problem (7) if and only if there exist a ground state W for (KP-I) (with speed
1/(2¢%)) and o > 0 such that Wo(z) = W(z1,021). In particular, we have S = Fmin-

Furthermore, let Wp)n>1 C % (R3) be a sequence satisfying:

(i) There are positive constants my, mg such that m; < / W2 + (0, Wn)?dz < ma.
R3
r
(ii) / W2 lew,b) + gwgdz%O as n — 0o.
) hmlnf ,V(Wn) < F.
n—oo

Then there exist o >0, W € # (R?) \ {0}, a subsequence (Wh, ) >0, and a sequence (z7);>0 C R?® such that
2= W(z1,07 21) is a ground state for (KP-1) with speed 1/(2¢2) and

Wy, (- =27) =W in W (R?).

We will study the behavior of travelling waves to (TW,) in the transonic limit ¢ 7 ¢s in space dimension
N =2 and N = 3 under the assumption I" # 0 (so that (KP-I) has nontrivial solitary waves). For 0 < ¢ < ¢,

we define c(g) > 0 by
c(e) = /2 — €2,

As already mentioned, in this asymptotic regime the travelling waves are expected to be close to "the”
ground state of (KP-I) (to the best of our knowledge, the uniqueness of this solution up to translations has
not been proven yet). Let us give the formal derivation of this result, which follows the arguments given in
[26] for the Gross-Pitaevskii equation in dimensions N = 2 and N = 3. We insert the ansatz

U(z) =19 (1 + 52A5(z)> exp (iapa(z)) where z; = exq, 2z, =c’x, (8)
in (TW,(.)), cancel the phase factor and separate the real and imaginary parts to obtain the system

()8, Aw + 2620, 002, Ae + 269V, 0. - V. Ao + (1 + 24,) (aﬁl oo+ 2N, g0€> —0

(9)
1 02 A. + %A, A,
(€ pe +X(0uy0e)” + 'V, el = SF(r3(14£°A0)?) - 22 =0
Formally, if A. — A and . — ¢ as € — 0 in some reasonable sense, then to the leading order we obtain
—¢50., A+ 02 ¢ = 0 for the first equation in (9). Since F is of class C? near r§, using the Taylor expansion

F(rgu +52A5)2) F(r2) — 2 A, + O(h)

with F(r3) = 0 and ¢2 = —2r3 F'(r3), the second equation in (9) implies —c50.,¢ + ¢2A = 0. In both cases,
we obtain the constraint

;A =00 (10)
We multiply the first equation in (9) by c¢(¢)/c2 and we apply the operator %28,31 to the second one, then we
add the resulting equalities. Using the Taylor expansion )

2
F<7'8(1 + Cv)2> = —ca — (%S — 2r§F”(7"3))042 + F3(a), where Fs(a) = O(a®) as a — 0,
we get
& - &(e) L RAEAL AN )
1 F 2
+ {2055) 0,00, A. + Q A 821% +3 azl ((0210)%) + [5 — o go)]azl (Ag)}
2¢(e) g2 2 1 2
= —2¢ CTVZJ_QOE . VZJ_AE — gazl (|VZJ_Q05‘ ) — @ 321 (F3(€ AE)) . (11)



If A. - A and . — ¢ as € — 0 in a suitable sense, we have ¢ — ¢?(¢) = ¢? and 9;,' A = ¢ /¢, by (10), and

then (11) gives

c%azlA— éa§1A+FA821A+AZL8;11A =0,

which is (SW).

The main result of this paper is as follows.

Theorem 6 Let N € {2,3} and assume that the nonlinearity F satisfies (A2) and (A4) with T' # 0. Let
(Un, cn)n>1 be any sequence such that U, € € is a nonconstant solution of (TWe, ), ¢, € (0,¢s) and ¢, — ¢
as n — 0o and one of the following situations occur:

(a) N =2 and U,, minimizes E under the constraint Q = Q(U,), as in Theorem 1 (a) or (b).
(b) N = 2 and Uy(cy-) minimizes the functional I(¢) = Q(v) +/ V([¢|?) dz under the constraint
RN
/ \Vo|? dx :/ |VU,|?dz, as in Theorem 2.
RN RN

(¢) N =3 and U, minimizes E., = E + ¢,Q under the constraint P, =0, as in Theorem 3.

Then there exists ng € N such that |U,| > ro/2 in RN for all n > ng and, denoting €, = \/c2 — c2 (so
that ¢, = c(ey,)), we have

5—2N

B(Uy) ~ =¢,Q(Un) ~ 13 (7 = 2N) Fiwin (2 = 2) 7 = r3el(7 = 2N) Fuinel 2 (12)

and
E(Un) + cnQ(Uy) ~ ﬁrgfmms,?w as n — 00. (13)

Moreover, U, can be written in the form
Un(z) =19 (1 + siAn(z)) exp (ienn(2)), where 2y = epx1, 2z, =eixy,

and there exist a subsequence (Uy, ,Cn, )k>1, a ground state W of (KP-1) and a sequence (2%)i>1 C RN such
that, denoting Ay, = Ap, (- — 2F), ¢ = @n, (- — 2¥), for any 1 < p < 0o we have

A =W, 00 Ay = W, 0.0k > W and 92 Gk — 0.V in WHP(RY) as k — oo,

As already mentioned, if F' satisfies (A3) and (A4) it is possible to modify F' in a neighborhood of
infinity such that the modified nonlinearity F' also satisfies (A2) and (TW,) has the same solutions as the
same equation with F' instead of F. Then one may use Theorems 1, 2 and 3 to construct travelling waves

for (NLS). It is obvious that Theorem 6 above also applies to the solutions constructed in this way.

Let us mention that in the case of the Gross-Pitaevskii nonlinearity F(¢) = 1 — ¢ and in dimension
N = 2, F. Béthuel, P. Gravejat and J-C. Saut proved in [8] the same type of convergence for the solutions
constructed in [9]. Those solutions are global minimizers of the energy with prescribed momentum, which
allows to derive a priori bounds: for instance, their energy is small. In fact, if V' is nonnegative and N = 2,
Theorem 1 provides travelling wave solutions with speed ~ ¢, for |¢| small and the proof of Theorem 6 is
quite similar to [8], and therefore we will focus on the other cases. However, if the potential V achieves
negative values, the minimization of the energy under the constraint of fixed momentum on the whole space
£ is no longer possible, hence the approach in Theorem 2 or the local minimization approach in Theorem 1
(b). In dimension N = 3 (even for the Gross-Pitaevskii nonlinearity F'(¢) = 1 — p), the travelling waves we
deal with have high energy and momentum and are not minimizers of the energy at fixed momentum (which
are the vortex rings, see [13]). In particular, we have to show that the U, ’s are vortexless (|Uy,| > ro/2). For
the Gross-Pitaevskii nonlinearity, Theorem 6 provides a rigorous proof to the existence of the upper branch
in the so-called Jones-Roberts curve in dimension three ([26]). This upper branch was conjectured by formal
expansions and numerical simulations (however limited to not so large momentum). In dimension N = 3,
the solutions on this upper branch are expected to be unstable (see [5]), and these rarefaction pulses should



evolve by creating vortices (cf. [3]).

Tt is also natural to investigate the one dimensional case. Firstly, the (KP-I) equation has to be replaced
by the (KdV) equation

1

and (SW) becomes

1 1

— 0.W +TWI.W — = 92W = 0.
¢ 2

S

If T # 0, the only nontrivial travelling wave for (KdV) (up to space translations) is given by

3
w(z) = TSN YIS
¢2I" cosh®(z/2)
and there holds
1 9 I 4 1 9 2 9 48

The following result, which corresponds to Theorem 6 in dimension N = 1, was proved in [16] by using ODE
techniques.

Theorem 7 ([16]) Let N = 1 and assume that F' satisfies (A4) with T' # 0. Then, there are 6 > 0 and
0 < ¢ < ¢s with the following properties. For any ¢ < ¢ < c¢g, there exists a solution U, to (TW,)
satisfying || |Uec| — 7o/ e @) < 8. Moreover, for ¢g < ¢ < ¢s any nonconstant solution u of (TW.) verifying
| [u| = rollLery < 6 is of the form u(z) = U (x — &) for some 6 € R and & € R. The map U, can be
written in the form

Ue(z) =10 (1 + €A (2)) explicp.(2)), where z =ex  and &= /c2 — 2
and for any 1 < p < o0,
0,0 —> CsW and A, —w in WHP(R) as € — 0.
Finally, as € — 0,
2 4 2 2 2 3487"(2)
E(UC(E)) ~ _CSQ(UC(E)) ~ 57‘OCSL§£(W) (CS —C (5)) = 22
and
E U U 2 Qy 5 487‘8 5
(Ue(e)) + c(€)QUq(ey) ~ csrgs (w)e® = 5C§F2€ .

Remark 8 In the one-dimensional case it can be easily shown that the mapping (¢g,¢5) 2 ¢ — (4. —
70, 0,0) € WHP(R), where U, = A, exp(i¢), is continuous for every 1 < p < oo.

A natural question is to investigate the dynamical counterparts of Theorems 6 and 7. If W¥ is an initial
datum for (NLS) of the type

Vo(z) = ro(l + €2Ag(z)> exp (ifscpg(z)),

with 2 = (21,21) = (ex1,e%r) ) and ¢, A% ~ 9,, Y, we use for U, the ansatz at time ¢ > 0, for some functions
A, . depending on (7, 2),

U, (t,z) =rg (1 + €2A€(T, z))eiwf(T’Z), T=ce, 2z = e(xy —cst), 2L = e2x .

Similar computations imply that, for times 7 of order one (that is ¢ of order e~3), we have ¢sA. ~ 9,, p. and
A, converges to a solution of the (KP-I) equation. This (KP-I) asymptotic dynamics for the Gross-Pitaevskii
equation in dimension N = 3 is formally derived in [5] and is used to investigate the linear instability of
the solitary waves of speed close to ¢, = /2. The one-dimensional analogue, where the (KP-I) equation
has to be replaced by the corresponding Korteweg-de Vries equation, can be found in [39] and [28]. The
rigorous mathematical proofs of these regimes have been provided in [18] in arbitrary space dimension and
for a general nonlinearity F' (the coefficient I' might even vanish), respectively in [11] for the one dimensional
Gross-Pitaevskii equation by using the complete integrability of the equation (more precisely, the existence
of sufficiently many conservation laws).



1.2 Scheme of the proof of Theorem 6

In case (a) there is a direct proof of Theorem 6 which is quite similar to the one in [8]. Moreover, it follows
from Proposition 5.12 in [17] that if (U,,c,) satisfies (a) then it also satisfies (b), so it suffices to prove
Theorem 6 in cases (b) and (c).

The first step is to give sharp asymptotics for the quantities minimized in [17] and [36] in order to prove
the existence of travelling waves, namely to estimate

oin (k) = in { /R V(l2) dz+ Q) | v € &, /R Vol dr=k}  ask—0
and
T, =inf {E(w) +cQ) | ¢ € &, ¢ is not constant, E(y) + cQ(y) = / |V |? da} as ¢ — 5.
R3

These bounds are obtained by plugging test functions with the ansatz (8) into the corresponding minimization
problems, where (A, ¢.) ~ (A,¢;'0;'A) and A is a ground state for (KP-I). A similar upper bound for
Imin (k) was already a crucial point in [17] to rule out the dichotomy of minimizing sequences.

Proposition 9 Assume that F satisfies (A2) and (A4) with T # 0. Then:
(i) If N =2, we have as k — 0

k 4k3
Inin(k) < =% — o5 o5
(k) 2 27ricl2 2

min

+ O(k5).
(ii) If N = 3, the following upper bound holds as e — 0 (that is, as c(e) — ¢s):
Toe) < 218 Fimin(2 = A(€)F + O((2 = ()} ) = 218 Fruine + O?).

The second step is to derive upper bounds for the energy and the momentum. In space dimension
three (case (c¢)) this is tricky. Indeed, if U, is a minimizer of E, under the constraint P. = 0, the only

information we have is about 7, = |V, Uc?dzx (see the first identity in (4)). In particular, we have
N
oU, |2
no a priori bounds on / ‘8 °| dz, Q(U,) and the potential energy / V(|U.|?) dz. Using an averaging
RN £ RN

argument we infer that there is a sequence (U, ¢,,) for which we have ”good” bounds on the energy and the
momentum. Then we prove a rigidity property of ”good sequences”: any sequence (Uy,, ¢,,) that satisfies the
”good bounds” has a subsequence that satisfies the conclusion of Theorem 6. This rigid behavior combined
with the existence of a sequence with ”good bounds” and a continuation argument allow us to conclude that
Theorem 6 holds for any sequence (U,, ¢,) with ¢, — ¢5 (as in (c)). More precisely, we will prove:
Proposition 10 Let N > 3 and assume that F satisfies (A1) and (A2). Then:

(i) For any c € (0,¢s) and any minimizer U of E. in €. we have Q(U) < 0.

(ii) The function (0,¢5) o ¢ — T, € Ry is decreasing, thus has a derivative almost everywhere.

(#ii) The function ¢ — T, is left continuous on (0, ¢s). If it has a derivative at cq, then for any minimizer
Uy of E., under the constraint P., = 0, scaled so that Uy solves (TW,,), there holds

dT,
dC |C=C0

= Q(Uo).

(iv) Let ¢y € (0,¢5). Assume that there is a sequence (¢p)n>1 such that ¢, > co, ¢, — ¢o and for any n
there is a minimizer U, € € of E., on 6., which solves (TW,, ) and the sequence (Q(Uy))n>1 ts bounded.
Then ¢ — T, is continuous at cg.

(v) Let 0 < ¢1 < ¢a < ¢5. Let U; be minimizers of E., on 6.,, i = 1,2, such that U; solves (TW,,).
Denote ¢n = Q(Ur) and g2 = Q(Uz). Then we have

2 2
TCl 2 > TC2 2
5 —C] > —5 —C5.
a3 a3



(vi) If N = 3, F verifies (A4) and T' # 0, there exist a constant C > 0 and a sequence &, — 0 such that
for any minimizer U, € € of Ec(.,) on Gy, which solves (TW,( ) we have
C C
EU,) < — d < =
U< ad QU<
Proposition 11 Assume that N = 3, (A2) and (A4) hold and T # 0. Let (Uy,&n)n>1 be a sequence such
that e, — 0, U,, minimizes E. ) on G, satisfies (TW,(,)) and there exists a constant C > 0 such that

E(U,) < ¢ and IQ(U,)| < gg for all n.

E;TI n

Then there is a subsequence of (Uy, c(en))n>1 which satisfies the conclusion of Theorem 6.

Proposition 12 Let N = 3 and suppose that (A2) and (A4) hold with T # 0. There are K > 0 and e, > 0
such that for any e € (0,e.) and for any minimizer U of Eccy on ) scaled so that U satisfies (TW(.))
we have

K K
BU)ST  end QU<
It is now obvious that the proof of Theorem 6 in the three-dimensional case follows directly from Propo-
sitions 11 and 12 above.

The most difficult and technical point in the above program is to prove Proposition 11. Let us describe
our strategy to carry out that proof, as well as the proof of Theorem 6 in the two-dimensional case.

Once we have a sequence of travelling waves to (NLS) with ”"good bounds” on the energy and the
momentum and speeds that tend to ¢g, we need to show that those solutions do not vanish and can be lifted.
We recall the following result, which is a consequence of Lemma 7.1 in [17]:

Lemma 13 ([17]) Let N > 2 and suppose that the nonlinearity F satisfies (A1) and ((A2) or (A3)). Then
for any § > 0 there is M(5) > 0 such that for all ¢ € [0, ¢s] and for all solutions U € € of (TW,) such that
VUl 2@ry < M(5) we have

1101 = rollzqam < &

In the two-dimensional case the lifting properties follow immediately from Lemma 13. However7 in
c(s)

dimension N = 3, for travelling waves U,y which minimize E.) on () the quantity H
-1

is large,
L2

of order ~ e7" as ¢ = 0. We give a lifting result for those solutions, based on the fact that ||Vm U3 =

%TC(E) is sufficiently small.

Proposition 14 We consider a nonlinearity F' satisfying (A1) and ((A2) or (A8)). LetU € & be a travelling
wave to (NLS) of speed ¢ € [0, ¢s].

(i) If N > 3, for any 0 < 6 < rg there exists p = p(0) > 0 such that

o

1 L2 (RN)

IV mUHLz(]RN < u(é) implies U] = roll oo vy < 6.

oU
(i) If N > 4 and, moreover, (A3) holds or Hax ’
is m(d) > 0 such that

Lo IV MUHLQ &~y < 1, then for any 6 > 0 there

/ |V, U|? dz < m(6) implies U] = 7ol Loe (rry < 6.
RN

As an immediate consequence, the three-dimensional travelling wave solutions provided by Theorem 3
have modulus close to rg (hence do not vanish) as ¢ — ¢,:

Corollary 15 Let N = 3 and consider a nonlinearity F satisfying (A2) and (A4) with T # 0. Then, the
travelling wave solutions Uz to (NLS) provided by Theorem & which satisfy an additional bound E(Ue.)) <
g (with C independent on €) verify

H|Uc(6)| *7’0||L00(R3) —0 as € — 0.

In particular, for e sufficiently close to 0 we have |Ug)| > 1ro/2 in R3.

10



Proof. By the the second identity in (4) we have

/ 5UC(E)
R3

81‘1
Moreover, the first identity in (4) and Proposition 9 (i¢) imply

»/]RB |V96J_ ch(e)|2 dx = Ec(a)(Uc(a)) = Tc(s) < Ce.

U (e
Hence Hiﬁ ()
1

. Ve, Uste ”%2(]1{3) < C'y/e and the result follows from Proposition 14 (7). O

We give now some properties of the two-dimensional travelling wave solutions provided by Theorem 2.

Proposition 16 Let N = 2 and assume that F verifies (A2) and (A4) with T' # 0. Then there exist
constants Cy, Cy, C3, Cy > 0 and 0 < ky < ko such that all travelling wave solutions Uy provided by

Theorem 2 with 0 < k = / |VUL|? do < k. satisfy |Ug| > ro/2 in R,
R2
Ch<-QU) <Gk, Cik< [ V(UPdr<Cob Gk < [ (P - r)Pde < Cok (14)
R2 R2

and have a speed c(Uy) = \/c2 — €7 satisfying
s k
Csk < e, < Cyk. (15)

At this stage, we know that the travelling waves provided by Theorems 2 and 3 do not vanish if their
speed is sufficiently close to ¢s;. Using the above lifting results, we may write such a solution U, in the form

Up(z) = p(2)e'®® = rg\/1 4 2 A (z) &2, where e=+/c2—¢c2, 2z =cexy, 2z, =cx,, (16)

and we use the same scaling as in (8). The interest of writing the modulus in this way (and not as in (8)) is
just to simplify a little bit the algebra and to have expressions similar to those in [8]. Since A. = 2A. +¢2A2,
bounds in Sobolev spaces for A. imply similar Sobolev bounds for A, and conversely. We shall now find
Sobolev bounds for A, and ¢.. It is easy to see that (TW,) is equivalent to the following system for the
phase ¢ and the modulus p (in the original variable x):

O (% —12) = 2div(*V9),

“or1
1
(17)
¢
Ap = p|VOI* + pF(p*) = —cp7—.
1
Multiplying the second equation by 2p, we write (17) in the form
2iv((p? — 1§)V6) — co (7 — 1) = ~2r3A0,
1
(18)
0 0
A = 13) = VUL + 26°F () + 26(p? = 1) 5 = ~2crf 2

0
Let n = p? — 2. We apply the operator —2c—— to the first equation in (18) and we take the Laplacian of

3x1
the second one, then we add the resulting equalities to get
A? — A+ c28—2 n=A|2|VU,* - 2Cn@ —20%F(p*) — 30 ) + 2ci(div(nv¢)) (19)
s Ox? ¢ Oxy s 0x1 ’

Since ¢2 = —272F'(r2), using the Taylor expansion

2 4 ot (4.2 -
2(s + r%)F(s + r(z)) + s = fr—; (1 - 7'0c2(7’0)> s? + rgFg(s),

0 s



where F3(s) = O(s®) as s — 0, we see that the right-hand side in (19) is at least quadratic in (1, ¢). Then
we perform a scaling and pass to the variable z = (ex1,e2z ) (where e = /¢ — ¢2), so that (19) becomes

{8;11 - 8,31 - ciAZL + 282831 A+ E4A§L }AE =R, (20)

where R. contains terms at least quadratic in (A., ¢c):

2 2 2
R. = {02, + 2., 1201+ €240) (007 + 21V, o f) + 2Ol H Ve AT

2(1+4€2A,)
N
— 2’ A,, (A0, 02) +2¢8 Y 0., 0, (A0, 0:)
j=2
4 1001 (,.2
2 2 2 7T0F(7"0) 2 1 =5
+{02 + 2. 21 - )42 = S P8 AL)].

In the two-dimensional case, uniform bounds (with respect to €) in Sobolev spaces have been derived in [§]
by using (20) and a bootstrap argument. This technique is based upon the fact that some kernels related to
the linear part in (20), such as

_ &
F 1( ) and
E1 &7 + 2L I? + 2626360 | + et|EL |

2L )?
7 > )
Ef + &8 + 2L + 2263 €L + et |t
are bounded in LP(R?) for p in some interval [2, p), uniformly with respect to e. However, this is no longer

true in dimension N = 3: the above mentioned kernels are not in L?(R3) (but their Fourier transforms are
uniformly bounded), and from the analysis in [23], the kernel

1 £
7 (fi*+§%+c§|@|2)

is presumably too singular near the origin to be in LP(R3) if p > 5/3. This lack of integrability of the kernels
makes the analysis in the three dimensional case much more diffcult than in the case N = 2.

One of the main difficulties in the three dimensional case is to prove that for e sufficiently small, A, is
uniformly bounded in LP for some p > 2. To do this we use a suitable decomposition of A, in the Fourier
space (see the proof of Lemma 24 below). Then we improve the exponent p by using a bootstrap argument,
combining the iterative argument in [8] (which uses the quadratic nature of R. in (20)) and the appropriate
decomposition of A, in the Fourier space. This leads to some LP bound with p > 3 = N. Once this bound
is proved, the proof of the W bounds follows the scheme in [8]. We get:

Proposition 17 Under the assumptions of Theorem 6, there is €9 > 0 such that A. € W4’p(RN) and
Ve € W3P(RYN) for all e € (0,e0) and all p € (1,00). Moreover, for any p € (1,00) there exists C,, > 0
satisfying for all € € (0,ep)

[ AcllLe + (VA e + 102, Acll e + €[]0, Vo, Al Le + €2 V2 Acllze < Cp and (21)

[0z, 0ellLe + €l V2, @ellr + 1102, @ellr + V2, 0z @elle +€2IVE, @ellLo
(22)
+||8§1906HLP + €‘|VZL831¢E‘ILP + 52||VEL8214P6”LP < Cp~

The estimate (21) is also valid with A, instead of A..

Once these bounds are established, the estimates in Proposition 9 show that (¢; 1., ¢n)n>0 is a mini-
mizing sequence for the problem (6) if N = 2, respectively for the problem (7) if N = 3. Since Theorems 4
and 5 provide compactness properties for minimizing sequences, we get (pre)compactness of (c;lazl%)nzo

in #(RY) < L2(RY), and then we complete the proof of Theorem 6 by standard interpolation in Sobolev
spaces.

12



1.3 On the higher dimensional case

It is natural to ask what happens in the transsonic limit in dimension N > 4. Firstly, it should be noticed
that even for the Gross-Pitaevskii nonlinearity the problem is critical if NV = 4 and supercritical in higher
dimensions, hence Theorem 3 does not apply directly.

The first crucial step is to investigate the behaviour of T, as ¢ — ¢s. In particular, in order to be able
to use Proposition 14 to show that the solutions are vortexless in this limit, we would need to prove that
T, — 0 as ¢ — ¢5. We have not been able to prove (or disprove) this in dimension N = 4 and N = 5,
except for the case I' = 0. Quite surprisingly, for nonlinearities satisfying (A3) and (A4) (this is the case for
both the Gross-Pitaevskii and the cubic-quintic nonlinearity), this is not true in dimension higher than 5,
as shown by the following

Proposition 18 Suppose that F satisfies (A3) and (A4) (and T is arbitrary). If N > 6, there exists § > 0
such that for any 0 < ¢ < ¢s and for any nonconstant solution U € € of (TW.), we have

EU)+cQU) =6

In particular,

inf T, > 0.
0<c<cs

The same conclusion holds if N € {4,5} provided that T' = 0.

Therefore we do not know if the solutions constructed in Theorem 3 (for a subcritical nonlinearity) may
vanish or not as ¢ — ¢ if N > 6. On the other hand we can show, in any space dimension N > 4, that we
cannot scale the solutions in order to have compactness and convergence to a localized and nontrivial object
in the transonic limit as soon as the quantity F + ¢Q tends to zero.

Proposition 19 Let N > 4 and suppose that F satisfies (A2), (A8) and (A4) (and T is arbitrary). Assume
that there exists a sequence (U, cy) such that ¢, € (0,¢4], U, € & is a nonconstant solution of (TW,,)
and E., (U,) — 0 as n — oo. Then, for n large enough, there exist an, Bn, An,0n € R, Ay € HY(RY) and
on € HY(RN) uniquely determined such that

Un(z) =19 (1 + anAn(z)> exp (zﬂnapn(z)), where 21 = \px1, 2L = 0OpTl,

an — 0 and [Anll Lo @®yy = [[AnllLe@y) = 102 @nllz@yy = Vo nllrz@y) = 1.

Then we have ¢, — ¢5 and
1021 AnllL2@y)y = 0 as n — +oo.

Consequently, even if one could show that T, — 0 as ¢ — ¢, in space dimension 4 or 5, we would not

have a nontrivial limit (after rescaling) of the corresponding rarefaction pulses.

2 Three-dimensional ground states for (KP-I)

2(2N—1)

We recall the anisotropic Sobolev inequality (see [7], p. 323): for N > 2 and for any 2 < p < S5, there
exists C' = C(p, N) such that for all © € C=°*(RY) we have
(2N—-1)(p—2) N(p—2) (N—-1)(p—2)
HamgnLP (RN) < CHaZl@HLQ(]RN 2p ||a 6”[,2 RN)”VZJ_@”LQ(]RN . (23)

This shows that the energy & is well-defined on % (RY) if N = 2 or N = 3. By (23) and the density of
9.,C*(R3) in Z (R3) we get for any w € Z (R3):

1
ol zoasy < Clluwlfs Rs)H@zlwllLQ(Rs IV, 02 w1 22 ggay - (24)
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On the other hand, the following identities hold for any solution W € #Z (R") of (SW):

! iz - D Lo e =
/RN 3 O WP Vo, 0P 5 WP+ 5 W2 dz =0
/ el (02 W) +3|V. 0, WP + 5 W3+ w2 dz=0 (25)
RN

1 2
/RN?(‘?“W) + V., 211W|2+ W3+ W2 dz = N—l/ V.. 0" W)? d=.

The first identity is obtained by multiplying (SW) by 0, W and integrating, whereas the two other equalities
are the Pohozaev identities associated to the scalings in the z; and z, variables respectively. Formally, they
are obtained by multiplying (SW) by 2y and z - V., 9;.'W respectively and integrating by parts (see [20]
for a complete justification). Combining the equalities in (25) we get

N
/RN 5 OWP s = [ VLo W d
r 2
5 W3 dz = N1/, |sz WP dz (26)
RN -
_7-2N
W2 d 1y79(2
/]RNCQW N1 |VZL 0., W dz.

Notice that for N > 4 we have 7 — 2N < 0 and the last equality implies W = 0.

We recall the following results about the ground states of (SW) and the compactness of minimizing
sequences in % (R3).

Lemma 20 ([20], [21]) Let N =3 and T # 0.
(i) For A € R*, denote Iy = inf{||w||%,,(R3) | / w*(2)dz = )\}. Then for any A € R* we have I > 0 and
R3
there is wy € # (R?) such that /

R3
% (R3) such that /]R3 w?(2)dz — X and ||wn||§y(R3) — Iy has a subsequence that converges in % (R?) (up to

wi(2)dz = X and ||w>\|\2@(R3) = I. Moreover, any sequence (wp)n>1 C

translations) to a minimizer of Iy.

(ii) There is \* € R* such that w* € % (R?) is a ground state for (SW) (that is, minimizes the action .%
among all solutions of (SW)) if and only if w* is a minimizer of Iy«.

The first part of Lemma 20 is a consequence of the proof of Theorem 3.2 p. 217 in [20] and the second
part follows from Lemma 2.1 p. 1067 in [21].

1 r
Proof of Theorem 5. Given w € % (R3) and o > 0, we denote P(w / = C—2|8Z1w|2 + gwg dz

and w, (2) = w(z1, %+). It is obvious that

/ wgdz=o2/ wP dz, / 0., (w,) 2 dZ:O'2/ 0., w|* dz and
R3 R3 R3 R3

/ |VZL8;11(wg)|2dz:/ |VZL8;11(w)|2w|2dz.
R3 ]RS

Let w* be a ground state for (SW) (the existence of w* is guaranteed by Lemma 20 above). Since w*

satisfies (25), we have P(w*) = 0 and ./ (w / V., 02" (w*)|*w|® dz. Consider w € #(R?) such that

2
s

r - 1
w # 0 and P(w) = 0. Then g/ widz = —— [ w? + |9, w*dz < 0 and it is easy to see that there is
R3 R3

14



o > 0 such that /

wddz = / (w*)*dz = \*. From Lemma 20 it follows that HwJHgy(Rg) > \|w*||§),,(R3),
R3 R3

that is
2
o _ 1 1k
= | w? + |821w\2dz+/ V., 0. 'w|*dz > —2/‘ (w*)? + \8zlw*|2dz+/‘ V., 02 ' w*|* de.
s JRS RS ¢ Jrs RS

Since P(w) = 0 and P(w*) = 0 we have

2 r : r ( 1
T wt 10, w* dz = —02—/ w®dz = ——/ (w*)3dz = = [ (w*)? + |0, w*|? dz
3 R3 R3

2
s JRr3 3 s JR3

and the previous inequality gives / V., 0. 'w*dz > / V., 0-'w*|* dz, that is 7 (w) > .7 (w*). So far
R3 R3

we have proved that the set P = {w € Z(R3) | w # 0, P(w) = 0} is not empty and any ground state w*
of (SW) minimizes the action . in this set. It is then clear that for any o > 0, w’ also belongs to P and
mnimizes .’ on P.

Conversely, let w € P be such that .7 (w) = .. Let w* be a ground state for (SW). It is clear that

/ V., 0 'w>dz = 7, = / V., 0-'w*[>dz. As above, there is a unique o > 0 such that / wddz =
R3 R3 R3

/ (w*)®dz = A* and then we have / w2 + (0., we|* dz = / (w*)? 4 10,,w*|* dz. We find Hwa”é(n@) =
R3 R3 3
w*||%, esy = I+, thus w, is a minimizer for Iy~ and Lemma 20 (ii) implies that w, is a ground state for
% (R3) g
(SW).
Let Wy )n>1 be a sequence satisfying (), (i) and (ii¢). We have P(W,,) — 0 and

r 1
- ngz:P(Wn)——Z/ W2 410, Wn|?dz € [
R3 s JRrs

for all n sufficiently large.

—QTI’LQ mi
3

2 0 92
2 2¢2

We infer that there are ng € N, g,6 > 0 and a sequence (0,,)n>n, C [g, ] such that / (Wn)e, )2 dz = X*
RS
for all n > ng. Moreover,

0.2

IOV)on |3 sy = = W§+|621Wn\2dz+/ V., 02" Wy |* dz
s JR3 R3

_ 2 (p<w,,) L /R 3 w;“;) + (W) = POV))

— (A= NPV + F W) - 5 [ WS, d.

Passing to the limit in the above equality we get

i inf [|(Wn)o, |17 sy = Hminf 7 (W,) = 54" < A4 = 24" = S (w") = g/Rs(w )P dz = |[w % gy = In--

Hence there is a subsequence of ((W,)e, Jn>1 which is a minimizing sequence for Iy-. Using Lemma 20 we
infer that there exist a subsequence (n;);>1 such that o,, — o € [g,5], a sequence (z;);>1 C R and a
minimizer W of Iy~ (hence a ground state for (SW)) such that (W, )onj (-—zj) = W in #(R3). It is then

J

straightforward that W, (- — z;) — Wi in & (R®). O

We may give an alternate proof of Theorem 5 which does not rely directly on the analysis in [20], [21] by
following the strategy of [36], which can be adapted to our problem up to some details.

3 Proof of Theorem 6

3.1 Proof of Proposition 9

For some given real valued functions A, and ¢., we consider the mapping

Ue(z) = |Uc|(2)e™® = rg (1 + 52A5(z))eiw5(z), where 2z = (21,21) = (ex1,e%x ).
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It is obvious that U, € € provided that A. € H(RY) and V. € L2(RY). If € is small and A. is uniformly
bounded in RY, U, does not vanish and the momentum Q(U.) is given by

o) _ d¢
_ 2 2,99 _ _/B5-2N,2 242 £
Q) = /RN(|U5\ 7"0)3x1 dx € "o /RN (QAE te AE) 0z dz,

while the energy of U, is
BU) = [ VUL + V(U do
RN
2 2
- 55*2]%3/ (O (1424.) + 2V 214 240 ) 420, A0) + V., AP
RN
2 42 2.2(q 47’3le2 A3 CEV 24\ 4
Tods el - 5a (r5) et iVale74:) dz,
where we have used the Taylor expansion
4rd ‘ r
V(r%(l + 04)2) = r%{cfoﬂ +¢2 (1 — %F”(r%))a‘3 + c§V4(a)} = r%ci{az + (g — 1)&3 + V4(a)} (27)
with Vi (a) = O(a?) as a — 0. Consequently, with ¢2 = c¢%(¢) + % we get
Ec(s)(UE) = E(U.)+c(e)Q(Ue)
2 2
= 572Ny2 / (0., 0:)? (1 + 52A6) + &4V, | (1 + 52A5) +€%(0,,A)* + V. A
RN
A2 52c2<1 - 4L‘%F"(ﬁ)),af‘" LSy (52A ) —c(e) (2A + 52A2)8 dz
s4le s 3C§ 0 e 4 € € e )0z Pe

1 2
= 67_2]\[7’(2) / 2 (821@6 - C(E)Aa) + (321505)2(2145 + E2Ag) + |Vzﬁ,05|2(1 + 52A€)2 + (321A€)2
RN

4 4 2
PRV, AP+ A2 2 (1 - S—ZSF”(T(%))AS + ;%V4(52A5) — o(e)A20., . d. (28)

Since the first term in the last integral is penalised by 2

0z, e = c(€)Ae.
Let N = 3. By Theorem 5, there exists a ground state A € Z (R?) for (SW). It follows from Theorem 4.1

p. 227 in [21] that A € H*(R?) for any s € N. Let ¢ = ¢,0;,' A. We use (28) with A.(z) = C/\(‘;‘) A(Nz1,21)

, in order to get sharp estimates on E, (. one needs

and . (z) = p(Az1,21). For € > 0 small and A ~ 1 (to be chosen later) we define

U.(z) = |U.|(z)e'®=(®) = 7’0(1 pe2 )\A(z))eis“"(z), where 2= (21,21) = (edx1, %2 ).

c(e)

Notice that U, does not vanish if € is sufficiently small. Since 0, ¢ = ¢sA, we have 0., 9 (2) = A0y, 0(A21,21) =
AesA(Az1, 21 ) = c(e)As(%) and therefore

Cs 2 )\ )
e )\A) + 202 4)

A2 ¢ 4rd 1
A2 s AS 1— 0 F// 2 A3 —V 2
20" T30 ( 32 o)) 4° + va(e

AE oy (Ue) = c?r%a/ PR A2<2A—|—52
R3

c(e)

+ €2

Cs 2 2 —1 412 2
oM ) + A%V, 0 A (1+g

A V. AP* +
)
_)\3&143(1

e

2
_ 2.2 3 Cs ¢ I 3 217, 9-1A2 2
B csros/RS)\ c(e) (1+ c*(e) {3 1])A XNV 0 A (1+5

+

Cs
c(g) )\A)

2 24 )
AA) + 2 @4

s
c(e)
A2 1

A2 e A+ W (52

(e)

)\2
c2(e)

2
c*(e)

V., A2+ 20 AA) dz.

s
c(e)
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On the other hand,

A VL dr=re [ 9. eP (14 a5 a) e z
R2 LVel” a¥ =To2 R3 2P ‘ c(e) ‘ 2(e)

=c2rie | |V, 0 AP (1+E s )2—1—52 Al V., A? dz
s'0 RS zZ1 zl C(E) 02(5) zZ1 .

dz

Z1

Hence U, satisfies the constraint P (U:) = 0 (or equivalently E.)(U. / |V, U.|? dr) if and only if
G(\,e?) =0, where
, 2 c 2\
Mety= [ (g s ] ) A AL, 0 A2 (14 220 . A)?2
G /]Rs c(a)( + c2(e) [3 D ANV 0 Al ( te c(e) ) + 2(e) (9:14)
PRI T S VI - Y —1/4(62 s )\A) dz
c3(e) c(e) c3(e) et c(e)

— [ v, 074 (1 s V. AP d
[0 ap (14 35 4) 4 T AP e

Denote € = 2. Since A is a ground state for (SW), it satisfies the Pohozaev identities (25). The last of these
identities is . (A / V., 0" A|? dz, or equivalently

G(A=1,e=0)=0.
A straightforward computation using (26) gives
o6
O |(A=1,e=0)

Then the implicit function theorem implies that there exists a function € — A(e) = 1+ O(e) = 1 + O(£?)
such that for all e sufficiently small we have G(A(e),e) = 0, that is U, satisfies the Pohozaev identity
P,-)(U:) = 0. Choosing A = A(¢?) and taking into account the last indetity in (25), we find

:/ TA® +2|V., 0, AP + (azlA) + - A2 2—3/ V., 0. AP # 0.
R3

Toe) < Boo)(U:) = / VLU do = Zrie / V., 02T AP + O(€%) = ¢2rjeSmin + O(%)
R3 R3

and the proof of (ii) is complete.

Next we turn our attention to the case N = 2. Let A = ¢;10.,¢ € Z(R?) be a ground state of (SW).
The existence of A is given by Theorem 4. By Theorem 4.1 p. 227 in [20] we have A € H*(R?) for all s € N.
For & small, we define the map

U.(z) = |U|(x)e'*=®) =y (1 + €2 E;) A(z))eiw(z), where 2= (21,29) = (ex1,%x9).

From the above computations and (26) we have

2 2

= / ‘VU€|2 dr = 7%5/ (8Z1<p5)2<1 +52A6) +52(8z1A6)2 +€2(822§08)2 1 +52Ae> +E4(8Z2A5)2
R? R?
e2e, g2 EQCS 2 gt
:rgcgg/ A2(1+ ()A) +027(5)(azl14)2 £2(0,,0,,1 A)? ( 55 ) +62(€)(622A)2 dz
2
= r%ci{s A? dz + 53/ (2A3 + (8217;4) + (3228;1114)2) dz + (’)(55)}
R2 R2 C

S

rgcg{sgcgy(A) (2~ % _ %)5”(/1) +0()

It is easy to see that € — k. is a smooth increasing diffeomorphism from an interval [0, ] onto an interval

_ L k
0,k = k2, and that £ = Ok?) = —s—o —
0, |, and that ¢ + Olke) 3r3cts(A)

/ |VU? |2 d:c:/ |VU.|? dz
R2 R2

17

W + O(kg) as € — 0. Moreover, denoting

S

UZ(z) = Us(x/0) we have



because N = 2. Using the test function UZ, it follows that
Inin (ko) < I(U?) for any o > 0.

Since Q(U.) < 0, the mapping

7 1U2) = QU2 + [ VUZP) do = 0@+ [ V(ULP) da

achieves its minimum at og = ﬂ > 0, and the minimum value is I(UZ°) = Q*(U, )
2/ Ve / V(U-*)
R2
Hence .
Iin(ke) < I(UZ0) = —Q*(U:)
Rz
RQ

Using (27) and (26) we find

I 1
/V(|UE\2) dr = e [ A 2(3 - 1)A0+ LVi(EA) d
R2 R2 3 54

— §4 2 2.2 E _ g 3 5
= el (A)e csro(g 1)Fy(A)s + O
and

Q) = —Erch/ <2A2 + 52A3) dz = =3r3c3. 7 (A)e + r%csgﬁﬂ(/&)as.

R2
Finally we obtain
ke

Imin(ks) + ?

1
) + = |VU.|? d

—Q2
C ]R2
V (1)

@ N

_ (=3¢ + pe? ) rocs s (A)e? + [r%c% + 7”(2)<§ - *)5 + 0(55)] Z(4)
4|:§C2* (27%)€2+O(€4)}T8C%y(14)5 2 s 2 r

2°s

_ (3r3c2® + O(9)) #(4) 1 5
Tk G EeioEn] | 20 WEHOE)

1 k 3 k g —4k3
— 12904 < 3 e 3 5y
QTOy( ) [37’86{7(/1) + O(kg)] +0 <<r0c4§”(A) + OUCE)) ) 27ries 1272, +O(k;)

min

Since € — k¢ is a diffeomorphism from [0, £] onto [0, k], Proposition 9 (i) is proven. O

3.2 Proof of Proposition 10

Given a function f defined on RY and a, b > 0, we denote f,,(z) = f(Z, ZL).

a’ b
By Proposition 2.2 p. 1078 in [34], any solution of (TW,) belongs to Wlo’cp (RY) for all p € [2,00), hence
to C1(RN) for all a € (0,1).

(i) Let U be a minimizer of E. = E + ¢Q on %, (where €, is as in (5)) such that ¢ solves (TW.). Then
U satisfies the Pohozaev identities (4).

If QUU) > 0, let U(x) = U(—x1,2.), so that Q(U) = —Q(U) < 0 and P.(U) = P.(U) — 2cQ(U) =
—2c¢Q(U) < 0. Since for any function ¢ € £ we have

1 N-3 , ,
R = [ o] dova=y [ Voot Q@) va [ VieP)ds, ()

18



we see that there is ag € (0,1) such that P.(U,, 1) =0 . We infer that

- ) -
ﬂéEﬂ%ﬂ:NiTANWMmMFMZ%

1 /N Ve, Ul dz = agE.(U) = aoT.,
- R

contradicting the fact that T, > 0. Thus Q(U) < 0.
Assume that Q(U) = 0. From the identities (4) with Q(U) = 0 we get

8U2 — 1 2 2 o N—]_ 2
/]RN o, dzx = N_Q/RNV(\Ude and /RN|VMU| dx = N_Q/RNVHUde. (30)

ou |2
Since U € £ and U is not constant, necessarily / V(U|*)dx = —(N—2)/ ’a—‘ dx < 0 and this implies
RN RN L1
that the potential V must achieve negative values. Then it follows from Theorem 2.1 p. 100 in [15] that there
is 9y € £ such that / |Vo|? dz = inf {/ Vo> dz | ¢ € &, / V(|¢|*) dx = —1}. Using Theorem 2.2
RN RN RN

p. 102 in [15] we see that there is ¢ > 0 such that, denoting ¥y = (1[)0)070 and —vg = / V(|¢ho)?) dz = =¥,
RN
we have Ay + F(|1bo|?)o = 0 in RY. Hence 1 solves (TWy) and

/RN Vo2 de = inf { /RN V|2 dx ‘ b€, /RN V(¢|?) da = —UO}.

Since all minimizers of this problem solve (TWy) (after possibly rescaling), we know that they are C* in RY
and then Theorem 2 p. 314 in [35] imply that they are all radially symmetric (after translation). In particular,

2 1
we have Q(vo) :Oand/ %‘ dr = —/ |Vpo|? daz for j = 1,..., N. By Lemma 2.4 p. 104 in [15] we
RN 637]‘ N RN

know that g satisfies the Pohozaev identity / |Vapo|> do = —
RN

o € €. and we infer that FE.(¢g) > T., that is

N
500 It follows that P.(10) = 0, hence

2 ) 2 ) _
z dx > =, U|”dx. Tak
T [ Vool do > 7 [ 9., U da Taking
into account (30) and the radial symmetry of vy, this gives vg > — / V(|U|?) dz
RN

On the other hand, by scaling it is easy to see that 1y is a minimizer of the functional ¢ — ||V¢>||2L2 ®RY)

in the set P = {(;5 S ‘ / |Vo|? de = —7/ V(|| )dx} By (30) we have U € P, hence
IVU|[Z2 @y = [[VWoll72 gy and consequently —/N V(|U|?)dzx > vo. Thus IVU[|Z2 @y = Vol 72y,
R

/ V(|U|?) dx = / V(|1|?) and U minimizes ||V - ”%%RN) in the set {(b eé / V(|$|?) dr = —vo}.
RN RN RN

By Theorem 2.2 p. 103 in [15], U solves the equation AU + AF(|U|>)U = 0 in D'(RY) for some A > 0 and
using the Pohozaev identity associated to this equation we see that A = 1, hence U solves (TWy). Since U
also solves (TW,) for some ¢ > 0 and gTZ is continuous, we must have gfl = 0 in RY. Together with the
fact that U € &, this implies that U is constant, a contradiction. Therefore we cannot have Q(U) = 0 and

we conclude that Q(U) < 0.

(#4) Fix ¢y € (0,¢s) and let Uy € € be a minimizer of E., on %.,, as given by Theorem 3. It follows from
(29) that P.((Up)a,1) = +Reu,(a), where

oUy |2 N -3
Rey,(a) = / 70‘ dx + acQ(Up) + a’ [N 1 / Ve, Uol* da +/ V(Juol?) dw] (31)
R RN RN

N (9331

is a polynomial in a of degree at most 2. It is clear that R, y,(0) > 0, Re,.v,(1) = P, (Up) = 0 and for
any ¢ > ¢o we have R, y,(1) = P.,(Uo) + (¢ — c0)Q(Up) < 0 because Q(Up) < 0. Hence there is a unique
a(c) € (0,1) such that R. y,(a(c)) = 0, which means P.((Up)q(c),1) = 0. We infer that

2 2

T, < El(Un)ato) = =7 |, Ve Goluioa P de = ale) g [ VoVl de = a@Tsy. (32
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Since a(c) € (0,1), we have proved that T, < T, whenever ¢y € (0,¢s) and ¢ € (co,¢s), thus ¢ — T, is
decreasing. By a well-known result of Lebesgue, the function ¢ — T, has a derivative a.e.

(#i1) Notice that (32) holds whenever ¢g, Uy, are as above and a(c) is a positive root of R, y,. Using the
Pohozaev identities (4) we find

2/ 9o * 4 —i/ Vo, Uol? dz — coQ(Uo) = Toy — c0Q(Us)  and then
A 2, Uo|* dx — coQ(Uo) = Tey — coQ(Up and the

N -3 Uy |2 1
S 2 Upl2d V(juol?) da = — U—/’—’d:—f Up) — =Toy. (33
o1 L Vet [ V(P de = —aQ) - [ | FE] e = —5aQ(i) - 57, (39)
We now distinguish two cases: Ry, has degree one or two.
N -3
Case (a): If m/ |V, Uo|? da +/ V(|uo|?) dz = 0, then R.p, has degree one and we have

U,
/ =0 ’ dz + coQ(Up) = 0 because P, (Up) = 0. Since R.y, is an affine function, we find a(c) = < for
all ¢ > O hence a(cg) = 1. Moreover, the left-hand side in (33) is zero, thus we have co@Q(Uy) + T, = 0 and

consequently a’(cp) = —% = L}UO).
co
N-3 9 9 o
Case (b): If N1 |V, Uol” dz + V(Juo|®) dz # 0, Rc vy, has degree two, and the discriminant
RN RN

of this second-order polynomial is equal to
Acyy = (¢ = )Q*(Uo) + T2

Consequently Ry, has real roots as long as (¢ — ¢§)Q*(Up) + T2 > 0. It is easy to see that if there are
real roots, at least one of them is positive. Indeed, R, r,(0) > 0> R ;; (0). If A.p, > 0, no matter of the

sign of the leading order coefficient =3 [1x [V, Up|*dx + [on V |u0| )dx # 0, the smallest positive root
a(c) of Ry, is given by the formula

—cQ(Uy) — \/(62 - @)@ Wo) + T2, —coQ(Uo) + T,

ale) = = '
~c0Q(Uo) — Ty —eQ(Us) +1/(* = })Q(Uo) + T2,

(34)

/ T
Therefore, the function ¢ — a(c) is defined on the interval [¢y, 00) where ¢y = 1/c3 QQ(; 7 < co, it is

differentiable on (&g, 00) and a(cg) = 1. Moreover, a straightforward computation gives a’(cp) = # Note
co
that in Case (a), the last expression in (34) is equal to <, which is then indeed a(c).
By (32) we have T, < a(c)Te, and passing to the limit we get lim 7T, < lim a(c)Ty, = Te,-

c—cp, c<co c—cp, c<co
Since ¢ — T is decreasing, T, > T, for ¢ < c¢o and we see that it is left contiuous at c¢y. Moreover, we have

T. — T, — T. —T, —
< < a(c) — alco) T., forc>cy, respectively < > a(c) — alco)
CcC—C C—C CcC—C C—Cp

T., force€ [éo,co).

Passing to the limit in the above inequalities we obtain, since a’(¢y) = % in Cases (a) and (b),
co

T.— T, T.— 1T,
limsup ———% < a/(¢o)T,, = Q(Up), respectively liminf —5——% > a/(¢o)Ts, = Q(Up).
c—cp,c>co C— Cp c—co,c<cop C— Cq
. : - . o dTe
It is then clear that if ¢ — T, is differentiable at ¢y, necessarily —‘ = Q(Uy).
C |c=co

(iv) Fix ¢, € (cg,cs). Passing to a subsequence we may assume that ¢y < cn < ¢4 for all n and
QU,) = —qo < 0. Then Ty > T, >T., > 0and (¢§ — 2)Q*(Uy,) + T2 > (c§ — 2)Q*(Uy,) + T2 > 0 for
all sufficiently large n. Hence for large n we may use (32) and (34) with (cp, co) 1nstead of (co, ¢) and we get

_CnQ( )
~Q(U. +¢co—c2 o W)+ T2

T, < T

-
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Since T, has a positive limit, passing to the limit as n — oo in the above inequality and using the mono-
tonicity of ¢ — T, we get T, <liminf7, = liminf T,. This and the fact that T, is decreasing and left

n—o0o c—Cp, C>Co
continuous imply that T is continuous at cg.

(v) Let 0 < ¢1 < 2 < ¢s and Uy, Uz, q1 = Q(Uy) < 0, ¢o = Q(Uz) < 0 be as in Proposition 10
2

T . . e .
(v). If e < 3 — q%;, the inequality in Proposition 10 (v) obviously holds. From now on we assume that
T, o .
¢ > 3 — ~#. The two discriminants A, 1, = (3 — cf)qi + 17 and A, v, = (¢f — 3)q3 + T, are positive:
2
. : Tz
since 0 < ¢; < ¢z for the first one, and by the assumption ¢? > c3 — q—«j for the second one. Therefore, we

2
may use (32) and (34) with the couples (¢, ¢2), respectively (cz, c1) instead of (¢, ¢) to get
—C1q1 + TC1
—C2q1 + \/(05 —cl)gi + T2

—caq2 + T,

T, <
—c1q2 + \/(C% —c3)q5 + T2,

T, respectively T, <

T.,.

Since T, > 0, we must have

—aq + 71t ) —caq2 + T, >
—ooq /(G- D + T2 —crgs +/( — B)F + T2
We set y; = — g;i}l > 0, and recast this inequality as
2 _ 2212 1 1-% 4+ %
1+ L _ae + \/(Cl —)as + T2, Tyl @t as (35)
2 = _ = T :
arva-tea e e T
1
Denoting, for y € R, g(y) = ;I—y , (35) is exactly
C?
2+ o - 1+9y2
T., 3 T2
g(f ):gy1 29( ==+ 2)~
crgr) 9w ¢ ag
If we show that g is increasing, then we obtain
2 T2 T? T2
e z 1_%+ 2 or oz —F-a,
c1q1 1 G4 41 43

C C C
2 14 242 14y
c1 C1 1

2
which is positive since % > 1 and 1/2—% —14y2 >yl
- 1

(vi) Since ¢ — —T is increasing, by a well-known result of Lebesgue this map is differentiable a.e., the

2 dT,
function ¢ —» d;;“ belongs to L}, .(0,¢s) and for any 0 < ¢; < ¢z < ¢; we have / ——<dc < -T., +T.,.
c
c1

We recall that c(e) = /¢2 —e2 foralle € (0,¢5). If N =3, (A2) and ( A4) hold and I" # 0, by Proposition
9 (7i) there is K > 0 such that T,y < Ke for all sufficiently small . Thus for n € N large we have

c(t/n) gt -
_ ¢ de <T - T <T <
/c(z/n) de Y€ =te@/m) T Let/n) = Le(2/n) = T
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Hence there exists ¢, € (¢(2/n),c(1/n)) such that ¢ — T is differentiable at ¢, and

_dTC < 1 % < K'n.
de je=c, ~ (L) —c(2) n

Let &, = \/c2 — ¢2, so that c(e,) = ¢,. Since ¢(2/n) < ¢, < ¢(1/n), we have L <&, < 2 so that g, — 0 as

no

n — oo. Let U, be a minimizer of E.  on %, , scaled so that U, solves (TW,, ). From (¢) and (i) we get

N

/
dT, < K'n< 2K

dc le=cy, En

Since E(U,) + ¢, Q(Uy) = Te,, = O(ey), it follows that
K//
E(Un) < *CnQ(Un) +Tcn <—

n

and the proof is complete. (|

3.3 Proof of Proposition 12

We postpone the proof of Proposition 11 and we prove Proposition 12.

Let (e,,)n>1 be the sequence given by Proposition 10 (vi). For each n let U,, € £ be a minimizer of E,, on
%., which solves (TW,, ). Passing to a subsequence if necessary and using Proposition 11, we may assume
that (e5,)n>1 is strictly decreasing, that (e, Uyn)n>1 satisfies the conclusion of Theorem 6 and

1 1 1

3706 c45ﬂmm < E(U,) < 2r8c§§”min€—, (36)
I 53 23 1
57"05 Ymmg <=Q(U,) < 2r0cs<7min€— for all n. (37)

We shall argue by contradiction. More precisely, we shall prove by contradiction that there exists e, > 0
such that for any € € (0,¢.) and for any minimizer U of E.) on %, scaled so that U satisfies (TW(.)),

we have 5 3
57‘0 CS ymin

U)| <
Q)| < 21
In view of Proposition 9 (i), we then infer that
K
E(U) = Tc(s) - C(E)Q(U) < ;

for some constant K depending only on g, ¢s and .#yin, which is the desired result. We thps assume that
there exist infinitely many n’s such that there is &, € (e,,£,—1) and there is a minimizer U,, of E e, on
% (c,) which satisfies (TW,(z,)) and

Q)| = ~Q(0) > 5136 Fin = (39)

Passing again to a subsequence of (g,,)n,>1, we may assume that (38) holds for all n > 1. Then for each
n € N* we define
I, = {6 € (en,en—1) | forall &’ € [e,,€] and for any minimizer U,/ of E. /) on G,

which solves (TW (/) there holds [Q(U/)| < 4r§ ¢3S nin - g}
and
# = sup I,,.

By Proposition 10 (v), for €’ € (en, ¢5) and for any minimizer U, of E.(.ry on Gy which solves (TW, (1)
we have

T2 T2
c(e’) ) c(en) 2
+(E) = + €,
Q?*(Us) () Q?*(U,)
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Q) _ QX(U)
TCQ(E') B T(:Q(sn) + (8721 - (5/)2)Q2(Un)

) ()2QAUTE,
()Q( ) T3(5)+(€%_(€))Q2( n)

The mapping e — T, is right continuous (because ¢ — T is left continuous) and using (37) we find
(E/)2Q2(UH)TC2(€/)
lim 2 2 N2)0)2

el —en, e >en Tc(en) + (En — (E ) )Q (Un)

Thus all ¢’ € (e,,e,—1) sufficiently close to €, belong to I,,. In particular, I,, is not empty. On the other
hand, (38) implies that any ¢’ € (£,,,¢,_1) does not belong to I,,, hence ¢ = sup I, € (£,,,én] C (€nsEn_1)-
Let U# be a minimizer of E,#y on %, _#, which solves (TW,(.#))- We claim that

which can be written as

and this gives

(39)

=e2Q%(U,) < (2r3c® Smin )%

QU = 4152 Fmin (40)

™
S| m

Indeed, proceeding as in (39) we have for any &’ € (e, &%) and any minimizer U of E.(./y on €, () which
satisfies (TW(e))

(%) e,

12+ (1-(2)) erew

Notice that (¢')2Q*(U.r) < (473¢2.min)? because &’ € I,,. In particular, Q(U./) is bounded as &’ € (g, €¥).
Since c(¢’) \, c(e¥) as ¢ N e, Proposition 10 (iv) implies that ¢ — T is continuous at c(¢#). Then
passing to liminf as &’ 7 &7 in (41) we get (e7)2Q%(U7) < (4r2¢3.Fuin)?. We conclude that ¢ € T,,.

(#)2Q*(UH) <

(41)

Next, for any ¢’ € (¢, ¢;) and any minimizer U,/ of Ec(ey on 6oy that solves (TW,(./)), inequality (39)
holds with €7 and U7 instead of €, and U, respectively. The limit of the right-hand side as &’ N\, ¥ is
(e)2Q*(UY). If e |Q(UY | < 4r¢c3 Fnin, as above we infer that there is 6,, > 0 such that [/, 7 +6,] C I,,
contradicting the fact that e = sup I,,. The claim (40) is thus proved.

Now we turn our attention to the sequence (e, U#),>1. It is clear that ¥ — 0 (because e € (en,en-1))-

By Proposition 9 (ii) there is K > 0 such that
E(UF) + c(eiNQUYF) = #)(U#) ( #y S Keff

and using (40) we find |E(U#)| < £ for some constant K’ > 0 and for all n sufficiently large. Hence we

may use Proposition 11 and we mfer that there is a subsequence (E#k, U . )k>1 which satisfies the conclusion
of Theorem 6. In particular, we have

: 2.3
lim < QU )| = rBed S
and this contradicts the fact that U,ﬁ satisfies (40). Proposition 12 is thus proven. g

3.4 Proof of Proposition 14

(i) Since U € &, we have |U| —ro € H(RY) (see the Introduction of [17]) and then ai(|U| - ro)‘ < ‘SU
Lq Lg
a.e. in RV, Tt is well-known (see, for instance, [14] p. 164) that for any ¢ € H'(RY) there holds
Ioll ey < 0sH =1 o
We infer that
1101 = rolz vy < Cs H [ = €l 1P 42)
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Assume first that (A2) holds. If ’

Dar e B\ uU||L2 ®RN) <1, from (42) we get || |U]| — 7"0||L2*(RN) < Cs.
U(z). Then U € HL (RN) and U solves the equation

icwq

Let U(z) = e 2

AU+<4 + F(|U] )> =0 in RV,

Since ||U]| 2+ (B1)) < C for any x € RN and for some constant C' > 0, using the above equation and a

standard bootstrap argument (which works thanks to (A2)), we infer that ||U]| . P(Bw,h)) < C,, for some

) !LO

no € N, C, > 0 and for any 2 € RN and any p € [2,00). This clearly implies ||U||y 2. 2 (B( )y < Cp for

T, no
any x € RY and any p € [2,00). In particular, using the Sobolev embedding we see that there isL >0
(independent on U) such that [|VU|| e @ny < L.
Fix § > 0. If there is o € RY such that ||U(zg)| — 79| > &, we infer that || |U(z)| — ro| > § for any
z € B(wg, 5) and consequently

101 = ol ey > 5 (2 (B(xo;L)));* -! (Q‘SL) (£¥ (B0, 1))

N
2%

w‘__‘

(43)

Let p(8) = min (1 S (&) (LN(B(o, 1)))%> . From (42) and (43) we infer that | |U(z)| — ro| < § for any
solution U € & of (TW,) satisfying ’ 9o || 2 v HVMUHL2 @) < w(0).

If (A3) holds, it follows from the proof of Proposition 2.2 p. 1078-1080 in [34] thet there is L > 0,
independent on U, such that |[VU||p @~y < L. The rest of the proof is as above.

(#1) By Proposition 2.2 p. 1078 in [34] we know that U € W2P(RN) for any p € [2,00). In particular,

U € C*(RY) . As in the proof of (i) we see that there is L > 0, independent on U, such that ||[VU|| e @y) <
L.

Fix § > 0 and assume that there is 2% = (29,...,2%) such that ||U(2°)| — 79| > §. Then we have
[1U(x)] —7’0\ > & for any z € B(2°, ) and, in partlcular | |U(m17x8,...,x9v)\ —1o| > 3 for any z; € [z —
229+, We infer that | |U(z1,21)|—ro| > $ for any z1 € [20— -, 29+ 2] and any 21 € Benv—1 (29, ).
Consequently

N-3
U@l =roll 2 = 4 (EY (Broes (1 5)) 0
5 (6N T (pN-1 N
> 8(2)" T (£ (Baws (0,1))) T =
for all z; € [29 — 26L,£E[1) + %] Using the Sobolev inequality in RV =1 we get for z; € [ - %,x? + %} ,
2 L 2 K? n_ 1
Vo, Uzy, a1 )" dey = = U (21, )] = 7oll” 2v-1) > =50
RN-1 CS L™ N=3 (RN-1) C
Integrating the above inequality on [z — -, 2 + 5] we obtain HVMUH?LQ(RN) > L]éz N = K10V, We
conclude that if ||VMU||L2(RN < min(1, K16%), then necessarily | |U| — ro| < 6 in RY. O

3.5 Proof of Proposition 16

It follows from Lemma 4.1 in [17] that there are kg > 0, Cy, C2 > 0 such that for all ¢ € £ with / |Vo|? de <
R2

ko we have
e [ 0wl =iy de< [ V0R) de <Gy [ (3w~ 1) o (14)

We recall that in space dimension two, nontrivial solutions Uy, to (TW,.) have been constructed in Theorem
2 by considering the minimization problem

minimize I(¢) = Q(¢) + / V(|[¢|*)dz  in & under the constraint / \VY|? da = k. (Zk)
R? R?
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If Uy, is a minimizer for (Zj), there is ¢, > 0 such that Uy = (Uk)c, e, solves (TW,, ) and minimizes
E.., = E+ cxQ in the set {7,0 €& ‘ |V|? do = k:}. Moreover, we have ¢, — ¢5 as k — 0. Lemma 13
implies that |U| — ro uniformly on ]RH%2 as k — 0; in particular, there is k; > 0 such that if k¥ € (0, k1), we
have |Uy| > %2 in R?. From the Pohozaev identities (4) we get ¢, Q(Uy) + 2/ V(|Ug|?)dx = 0, and this

gives .
1 1 1 1
Lin(k) = IU) = —QUx) + — | V(Up*)dz = -—Q(Uy) = —7/ V(|Uk|?) da. (45)
Ck ¢ Jre 2¢p ¢ Jr2

By Lemma 5.2 in [17] there is ko > 0 such that —%—;“ < Inin(k) < —[% for all k € (0,ks2). Since ¢ — ¢ as
k — 0, the estimates (14) follow directly from (44) and (45).

It remains to prove (15). By Proposition 9, there is po > 0 such that for k sufficiently small we have
Inin(k) < —c% — uok3. By scaling we have

1 1 k
7(Eck(Uk) - /]R2 VU [? dm) = %(CkQ(Uk) + /]Rz V(|Ux|?) dﬂ?) = I(Up) = Lnin(k) < —— — pok®.

Ck s
Since ¢ — ¢ =7 and / |VUL|? da = k, we get
R2

c? ke?
B, (U) < k(1= %) = pock® = Tk — puocf k. (46)

2

The second Pohozaev identity (4) yields E., (Ux) = 2/ |0Ug|? dz > 0, thus 0 < k(i—é — uocik2> and this
R? '

s

implies

Since ¢ > ¢,/2 for k small, the left-hand side inequality in (15) follows.

In order to prove the second inequality in (15), we need the next Lemma. In the case of the Gross-
Pitaevskii nonlinearity, this result follows from Lemma 2.12 p. 597 in [8]. In the case of general nonlinearities,
it was proved in [17].

Lemma 21 ([8, 17]) Let N > 2. There is 3. > 0 such that any solution U = pe'® € € of (TW,.) verifying
ro — PBx < p < 1o+ B satisfies the identities

EU)+cQU) = %/RN |Vp|? dx and (47)

2/ P*|\Vo? dx = c/ (p? —12)01¢p dx = —cQ(U). (48)
RN RN
Furthermore, there exist ay,as > 0 such that

arllp? = r§llz@yy < IVU 2@y < azllp® = 78]l 2 ). (49)

Proof. Identity (48) is Lemma 7.3 (¢) in [17]. Formally, it follows by multiplying the first equation in (17)
by ¢ and integrating by parts over RY; see [17] for a rigorous justification.
Combining the two Pohozaev identities in (4), we have

(N — 2)/ VU |? dx + N/ V(|UJ?) dx +c¢(N — 1)Q(U) = 0.
RN RN
Using that |[VU|? = |Vp|? + p?|V¢|?, we infer from (48)

N(E(U) + cQ(U)) = Z/RN VU dx + cQ(U) = Z/RN IVpl? dz + (2 /RN P2V G|? da + cQ(U))
=2 Vp|? dz,
|19 da

25



and this establishes (47). The estimate (49) has been proven in [17] (see inequality (7.17) there). O

We come back to the proof of Proposition 16. We write Uy = pe’® and we denote n = p? — 72, so that p,
¢ and n satisfy (17)—(19) (with ¢ instead of ¢). Taking the Fourier transform of (19) we get

€1 9¢

ne = 2|VU|* 42
" = Erragrag” AV g

+202F(p?) + C?n)

(50)

N
&i§ ( 3(25)
—ch F
L grae—ag” "o,
It is easy to see that 2p? F'(p?) + ¢2n = O((p* — r3)?) = O(n?), hence

17 (202 F(p%) + ¢2n) || L@~y < 1202 F(0%) + il @y < Cllnll7e gy

Since rg — Bx < |Ux| < ro + Bs if k is sufficiently small and |[VU|? = |Vp|? + p?|V¢|?, using (49) we get

Hﬁ <778892> HLOO(]RN) Hn@axj

and ||.Z (VUL || 1o ®y) < IVU|32 ®~) < Clnl2. (ry- Coming back to (50) we discover

g
€+ 2P — &8

Using Plancherel’s formula and the above estimate we find

2
Umm_wmmwua\mmN_mwmmm

7] < Clnll7e@ny -

2 _ 1 = 2 4 ‘€|4
sy = oy [ POR A < Clllla) | e raep—arazys € (51)

If N =2, a straightforward computation using polar coordinates gives (see the proof of (2.59) p. 598 in [9]):

/ &’ o T
e P+ 2P —aar © T o jE-a@ e

From to (51) we gfzt ||77||L2(R2) <= |\77||L2(R2) and taking into account (49) we infer that e < C’H77||2L2(R2) <
Notice that at this stage, we have only upper bounds on the energy of travelling waves, and we will have
to prevent convergence towards the trivial solution to (SW). This will be done with the help of the following

result. It was proven in [9] in the case of the Gross-Pitaevskii nonlinearity (see Proposition 2.4 p. 595 there).
We extend the proof to general nonlinearities.

Lemma 22 Let N > 2 and assume that (A1) holds and F is twice differentiable at r3. There is C > 0,
depending only on N and on F, such that any travelling wave U € £ of (NLS) of speed ¢ € [0, ¢cs] such that
2 <|U| < 3% satisfies

[ 1U] = roll poe vy > C(c2 — ¢*) = C*(U).

Proof. Let U € & be a travelling wave such that 2 < [U] < 3¢ in RN, Then U € W2P(RN), VU €
WLP(RY) for all p € [2,00) (see Proposition 2.2 p. 1078 1079 1n [34]), and U admits a lifting U = pe'?,
where p and ¢ satisfy (17). Since U € & we have p? — r¢ € HI(RN) and then it is easy to see that

2 2 2
% € HY(RY). Multiplying the second equation in (17) by 2 22778 and integrating by parts we get

2
/ (1+72>WMF¢V+/ @2—%nvw?—uﬁ—raFm%—wmﬁ—r@gﬂdxzo. (52)
RN P RN Tl

Denote 6 = || [U| — 70|l L@~y = [[p — rol[ oo ). We have

/RN <1+ P2 ) |Vp|? dx > <1+ (:5)) /RN |Vp|? dx and (53)
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2 2
[ = rbiverad < [ 0~ 18l 2 g2 g < 200 E [ [vupds. (54)
RN p? —0)% Jrn

~ (ro
There is C' > 0 such that |F(s?) — F'(r§)(s* = r3)| < C(s* —13)* for all s € [%073%] Remember that
—F'(r}) = 2a% and ¢, = 2arg, thus

~(0* = F(p?) = ~F'(13) (0" = 18)* = Clo? = 1 = (20 = C(2rod + %)) (2 —13)%.  (55)
Using (48) and (3), then (52) and (53)-(55) we get
Q) =2 [ pIVePdnte [ (=) % da
RN RN 83:1
7,2
=2 AwePdns [ (1 " p) Vol dat [ (0 = rR)IVOR — (6 — () da

2 270 + 62 ~
> 9 21762 d +/ (1+T)v 2 _ 2009 gy 2 + (202 — € (2rs + 62)) (0° — 12)2d
2 PIVefds s ) Vel? = T VU + (262 = Clarod +89) (0 = )P da

and we infer that there exists K > 0, depending only on F', such that
—20Q(U) > 2(1 — K(S)/ VU + a2(p® — 12)? da. (56)
RN
On the other hand, using (3) we have

0
Q) =2 /}RNW g do < —

Cs ¢s JrN ’8951‘

+a?(p? — ) dx

1
< =

‘ 1
T Cs RN (7”()* 8

¢ 7”(2) / 2 20 2 2\2
+ — < - VU|* + — .
‘ a® ,0 7«0) dz (ro —0)2 N| | a”(p® —r5)°de

Since U is not constant we have / IVU? + a*(p* — r3)? dz > 0 and comparing (56) and (57) we get
RN

2
c 1
————>1-K&.
Cs (7‘0 —6)2 -

If § > 55 the conclusion of Lemma 22 holds because £(U) is bounded. Otherwise the previous inequality

2
is equlvalent to o 05)2 T K6 > \/c2—22(U) There are Ky, Ko > 0 such that (TO 5)2 = K5 <1+ K6 and

\/;7752 > 1+ Kae? for all § € [0 and all € € [0,¢) and we infer that 1 + K16 > 1+ K»e?(U), that is
§ = [[ U] = 7ol oo (r) Z%EQ(U)- U

, 3]

3.6 Initial bounds for A,

Let U. € & be a travelling wave to (NLS) of speed ¢ provided by Theorems 1 or 2 if N = 2, respectively
by Theorem 3 if N = 3, such that % < |U| < 3% in RN. As in (16), we write U.(z) = p(z)e!®®) =

1+e2A.(2) %) where ¢ = /2 —¢c2, 21 = ex;, 2z, = e2x,. According to Proposition 2.2 p.
1078-1079 in [34] we have

HUCHCbl(]RN) <C and ||VUC||W1,17(]RN) < Cp for pE [2,00)
By scaling, we obtain the initial (rough) estimates
C C C C C
Al < 22 [0z, Ac|[Lo < 23 [V Al < = 1021 ¢c | L < 50 IVerpellne < 3 (58)
and

<O (59)

)

H62A O i+ H 9?A.

022 Cpe ’ 0210z Iy

for any p € [2,00) and all j,k € {2,..., N}. We have:

2N —1
<qeri, |2

Lp

623 8zk
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Lemma 23 Assume that (A2) and (A4) are satisfied and T' # 0. Let U, be a solution to (TW.,) provided
by Theorem 2 if N = 2, respectively by Theorem 3 if N = 3 and let ¢ = \/c2 —c2. If N = 3 we assume
moreover that E(U,) < %, where K does not depend on €.

There exist eg > 0 and C > 0 (depending only on F, N, K) such that U. admits a lifting as in (16)
whenever e € (0,e9) and the following estimate holds:

/ 100l 4 (Ve e+ A2 10, AL 4 PV A d2 < C
R

Proof. If N = 2 it follows from Theorem 2 that k = / |VU,|? dz is small if € is small. Using Lemma 13

in the case N = 2, respectively Corollary 15 if N = 3, we infer that |U.| is arbitrarily close to rg if € is
sufficiently small and then it is clear that we have a lifting as in (16).

We will repeatedly use the fact that there is a constant C' depending only on F' such that
C10;U* > 10;(p*)* + |9;6)? for 1< j <N.

In view of the Taylor expansion of V near r, for ¢ sufficiently close to 0 (so that |U.| is sufficiently close to
ro) we have

V(U*) 2 C(IU| = r0)*.
By scaling, we infer that for some d; > 0 depending only on F' there holds

E(U.) = /RN |VU.|? +V(|U?) da > 6,72V /RN 0., 0> + A% dz.

In the case N = 2 it follows from Proposition 16 that E(U.) < Ce for some C independent of . In the
case N = 3 we use the assumption E(U,) < g In both cases the previous inequality implies that

/RN 0., 0> + A2 dz < C. (60)

We have E.(U.) = T. = O(¢) if N = 3 by Proposition 9 (i7), respectively E.(U.) = O(ke?) = O(e3) by (46)
and (15) in the case N = 2. From the Pohozaev identity P.(U.) = 0 (see (4)) we deduce
2?”2 7T—-2N

2
7/ |VzL905|2—|—52|VZJ_.AE|2 dzgci/ ‘viUc|2 dz = CE,(U.) 20(6772]\]).
N—1 Jon N1 fox
Thus we get
/ |VZL()DE|2+82|VZLAE|2 dz < C. (61)
RN
Furthermore, by scaling the identity (47) in Lemma 21 we obtain
N
7“357—21\1/ 10, Ac|? dz < C/ 10, p|% dz < C’/ Vo2 dz = C2 E.(U.) = OT2),
RN RN RN 2
so that
/ |0, Ac|? dz < C. (62)
]RN

Gathering (60), (61) and (62) yields the desired inequality. O

Using the above estimates, we shall find L? bounds for A.. The proof is based on equation (20), that is
{831 — 831 — AL+ 262631AzL + €4A§L }Aa =R., (20)

where
(0., A:)% + 2|V, A)?
2(1+¢€2A,)

Re = {02, + %A, 21+ 24) (0 08) + 21V ) + &

N
— 2022 A, (A0, 00) +2¢e Y 0., 0, (A0, 0:)
j=2
rdF (r2)

2
s

N I )42 - ng%s Al
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and we recall that Fy(a) = O(a?) as o — 0.
Let
De(§) =& +& + €] + 2% Ne L P +etler] = (€ + %€ l)” + & + cCleL ™

We will consider the following kernels:

Icl

€

(z)zy—l(Di)), /cg(z)zy—l(g(g) and zc;vj(z)zy-l(éjg)), j=2.. N

Then we may rewrite (20) as a convolution equation

N
A= (/c; + 62/@) ¥ G+ 2K L % (Aedsy p2) — 26(2)e® S KL % (A0, 02), (63)

Jj=2
where

2 (5Z1A5)2 + €2|VZLA5‘2
4(1 + €2Aa>

Ge = (1+24) (0:10)? + IV, 0 ) +

[\

¢

@

, 1 -
+ (T —2)A% - €—4F3(r352A5).

|

Lemma 24 The following estimates hold for N =2, 3 and € small enough:
(i) For all 2 < p < 0o we have ||0,, Aclle + €| V2, Acllzr < Cer 3,
(ii) There exists C > 0 such that || A:|| 3« < C’E’%HA‘SH%QQ forany 1 < g < oo.
(i) If N = 3, for any 2 < p < 8/3 there is Cp, > 0 such that ||Ac||prms)y < Cp.
(iv) If N =2, for any 2 < p < 4 there is Cp, > 0 such that || A:||Lrr2) < Cp.

Proof. For (i), it suffices to notice that the estimate is true for p = 2 by Lemma 23 and for p = co by (58),
therefore it holds for any 2 < p < oo by interpolation. For (i) we just interpolate the exponent 3¢ between
2¢ and oo and we use (58):

2 1 2 2
[Acl[ e < [[Ael 72q [ Aell foe < Ce™3 || A 24

Next we prove (iii). As already mentioned, a uniform LP bound (for 2 < p < 8/3) on the kernels K},
e2KL and €2K17 is established in [8] by using a Sobolev estimate. Unfortunately this is no longer possible
in dimension N = 3. We thus rely on a suitable decomposition of A, in the Fourier space. Some terms are
controlled by using the energy bounds in Lemma 23, the others by using (63).

We consider a set of parameters a, 8, v € (1,2) and v > 5/2 with a > § and o > v (to be fixed later).
For € € (0,1), let

Bl ={¢eRV||eLl <1}, B ={¢eRV | >c"}, BT ={cRY [/ <|e]<e J&al <1},
BV ={¢eRV |e7 <leuf<e 1< e <leuly, BV ={¢eRV[1<|au]<e® &l > 6L},
BVI={¢eRV[1< e <eP Gl <1}, BV ={¢eRV|[1<|&|<e 1G] < e}

It is easy to see that the sets Ef,...  EV! are disjoint and cover RYV. For J € {I,...,VII} we denote
Al = Z71(A1gs), so that A. = AL + -+ + AL and we estimate each term separately.

For AL we use
Vo Alllze = €0 A e j<ay ez < AL qe, <y e < (Al e = ARl 22 < C.
By Lemma 23, A. and 9,, A. are uniformly bounded in L?, thus we have

1ALl 22 + 1102, ALl 2 < C.
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Hence Al is uniformly bounded in H!, and using the Sobolev embedding we deduce
V2<p<6, [ALllz» < C. (64)

We will use the Riesz-Thorin theorem to bound A: if 1 < ¢ = p’%l < 2 is the conjugate exponent of
p € (2,00), there holds
AL | Lo < CIIAL Lo

Thus it suffices to bound || AX!||L.. Using the Holder inequality with exponents % and ﬁ, we have

A 11)? 1 L|>eme
118 = [ (Gl + clenhiAl)” < el ae

&1] +elgr])e
~ 1 e Tq
< 1(1&al + el AL ( / Md&)
w (6] + efeL )
*  RdR E
< (10 Acl + Ve A | [ )
e (eR)2-

(We have computed the integral in £&; and we used cylindrical coordinates for the third line.) Provided that
3q 2 > 2 (or, equivalently, ¢ > 6/5), the last integral in R is

3q—2

C(q)e™ 20 x 277 < C,

as soon as a > 3(172 = ?Sf—z, that is p < 6 — —==. Notice that 2 < 6 — —== < 6 because a > 1. By Lemma
23 we get

vz<p<6—% AL 2 < Cla). (65)

Using similar arguments, we have

1421, < CIIAZ g,

1 o
_ C/ (5‘& ) ergle e fal<) g
R3

GIE
2-¢
Lic-s<ie |<e—a, |6 |<1 !
Oel| V=, Acl 12)° ( = jg' o Sel= dg)
1 q
2g e @ q

<ol L) <o

if 5% — 552 0, that is 28 > > ) = p. Consequently,
V2 <p<2p, IA e < C(B). (66)
Similarly we get a bound for ALV:
2—¢q
lio—<ie) |<e—o, 1<e1)v < !
”AgvH%p S C(EHVZLAE”LQ)(] / {e— [§1]<e™ \f €11} df
R (eleLl)™
2—¢q
. (" RvdR \ °
<Gy 5_227"/ ey e
e R72-q +1
provided that 74q 4_ 22qu - 2 > 0, which is equivalent to p < %ﬁfl) (notice that 272(271“) > 2 because
v >1). Therefore7
2v(2 1
vep< BN vy, <o), (67

2v+v
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We use the fact that ||,, A:||z2 is bounded independently of € (see part (7)) in order to estimate AY:

—
IAZ 112, < CIIAY [1Z,

= C/ |£1A\ |q X 1{1§|§L‘S570‘7|£J—‘<‘§1‘y} d&'
ke [S1K
2—q

1 1<|€ |<e~@, <& |V R
< C|0., Ac||%, </ (sleslse ulslal }d£>
R €112

= L R0/

by using cylindrical coordinates in the fourth line. We have ;qu > 1 for ¢ € [1,2) and the last integral is

]
—q

bounded independently of € as soon as % (;qu — 1) > 2, that is p < 351‘? It is obvious that ;ll”if > 2 for

v > 1/2. As a consequence, we get

4 42
V2<p< ,
=P 2v—1

|AY ||» < C(p). (68)

We use the convolution equation (63) to estimate .AY! and AYZL. Applying the Fourier transform to (63)
we obtain the pointwise bound

N
()] = |(RE+ 2R G + 2()RE F(Aebzp0) - 2e(e) Y RV F (A0, 00)
Jj=2

N N
< C(IRY + R +e2 3D IR (1Ge i + 17 (At @)l + D 1 (Acdsy 2012 )

j=2 j=2

The estimates in Lemma 23 and the boundedness of .% : L' — L> imply that the second factor is bounded
independently of . Therefore

+ 261 P+ %6 ] - €L < Cf% +e2|¢L)?
D.(&) - D.(¢)

N 2
A(©)] < O(IRY +2IRE +22 30 k1)) < ¢ (69)

j=2
because 2e2|¢;| - €| < 2 +ete |2 I ¢ € EVE we have |¢;] < 1and 1 < |¢1| <e™? <72 (because 3 < 2),
hence there is some constant C depending only on ¢, such that
2
ClELl = De(8) = & + & + cSIELf + 2% |6 + e 2 %
Using the Riesz-Thorin theorem with exponents 2 < p < oo and ¢ = p/(p—1) € (1,2) as well as (69) we find

Y
AL, < CIIAYTIIZ,

(& +=21EL )
<c| 1 . R
< /Rs slesl<e 161S) g, 2 ¢

& L
< C/RB Liglesize2 jal<1) <|§J_|2q e e
€y

<cC
leu)>1 1€

+Ce?1728 < O,

provided that ¢ > 1 and ¢ > 8. We have ¢ > f if and only if p < % It is obvious that % > 2 because
1 < 8 < 2. Hence we obtain

V2<p< % 1A 10 < C(B). (70)
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In order to estimate AY ! we notice that for £ € BV we have 1 < [£,| <e Y and 1 < |&|¥ < |€1], thus
€
|€1)2 < |€1] < e72 because v > 5/2 > 2 and v < 2. Hence there exists C' > 0 depending only on ¢, such that

Cler]? > Do(§) = & + & + e |? + 287 |e L [P + e > c
Using (69) we get

2q

&
AV, < C/ locie, <, 1<ia v <len |}y <|£ 27 1) g

29+ 87
<c mizdfi—i—Cqu/ R™“dR < C,
gz € |
provided that 2q — 2‘”1 > 2 and 2¢ — y(2 + 1) > 0. These inequalities are equivalent top < % and

v(2v+1)
p= y(2v41)—2v"

respectively Since v > 5/2, we have 2% > 2 and >5/3 and %5 < 5/3. It is easy to

2y+1

see that%>21fand only if v < 57 +1’ v(21(/2+V1J317)2V>2V;1 if and only if v < ~%5. Hence
2 1
V1§’7§L17 V2§p< Z/;— ) ||A¥II||L”§C(p7V)
v
( ) ™
v ) ¥(2v +1
V— <4<, Vo<p< 2 4 AV < Oy, v).
7 <7=3 P T oW A e < Cly,v)

We now choose the parameters «, 8, v and v. In view of (66) and (70), we fix 8 = 3/2, so that
26=p8/(8—1)=3. Weset « =5/3>3/2=[. Then by (64), (65), (66) and (70) it follows that

V2<p<3, AL e + AL (oo + AL | e + [|AY |20 < C.
For the other terms, we notice that in the case 1 <+ < —*5 we have

29(2v + 1) < v +2
2w+y T 2w-1’

with equality if v = *5. We also observe that

21/+1<4V—|—2<8 i <7 tivel 8<4V—|—2<21/+1 i >7
- if v< = T i — if v>-—.
3 w—1 3 2’ eSpeCtvely 3 w1 3 2
Then we fix v =7/2 and v = -*< = 7/5 < 5/3 and using (67), (68) and (71) we obtain
8
V2sp<g, JAY (Lo + AL 2o + AL e < C.

This concludes the proof of (ii7).

(iv) We use the same inequalities as in the three-dimensional case with 1 < v < 3 and «, 8, v € (1,2)
satisfying f < o and v < a. We get

V2 <p<oo, AL L» < Cps V2<p<da-2, AL | e < Gy
23 2y(v+1)
vVo<p< AL, < C(B); Voa<p< - AV < C(B);
Sp<zra AT <) <p< Tl A <€)
+1
V2<p<2—: Al <Gy V2 <p<oo, JAY e < Gy
and +1
v v
V1<~y< V2< VIiny . < ..
_’Y_V—:[? _p<3—y’ ||A5 ||L — ~'p
Then we choose N
4 5 v 3
= - = — :37 = = -
IB 37 o 3’ v 9 ry l/_l 2 )
so that o > 8 and a > y. We infer that
V2<p<4, IAllLe < Cp.
This completes the proof in the case N = 2. O
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3.7 Proof of Proposition 17

We first recall the Fourier multiplier properties of the kernels K, KX and Kl7. We skip the proof since it
is the same as in section 5.2 in [8] and does not depend on the space dimension N.

Lemma 25 Let 1 < g < co. There exists Cy > 0 (depending also on ¢,) such that for any ¢ € (0,1), any
2< 37 <N and h € L? we have
12 % I a
+ 102, /C2  hllLa + V2, K2 % Al
102 ¢ hllgo + 102, Ve, K2 x Ao + 22|V2, K2 x Ao < Cylhllze,

La

1 bl o
+5||821K5L*h”11‘1 +82||VZLIC5L*}L”L‘I
+ 2|02 K2 % hlpa + €210, Vo, K2 x hllpa + e[ V2 K2 % hl|na < Collhl| s

and
IKC27 % | La

+ 1102 K27 * hllza +el[V2 K27 % hl| 1o
+el|02, K27 % hll Lo + €2(10:, V2, K27 % h|za + €% V2, K27 % llza < Cyllhl|za.

The proof of (21) is then divided into 5 Steps.

Step 1. There is 1 > 0 and for any 1 < ¢ < oo there exists Cy (depending also on F') such that for all
e € (0,e1),

Al Lat+ V2 AcllLa + ||831A6||L‘7 +6||821VZJ_A5||Lq =+ 52||V§J_-AEHL‘?
2
Co(IAclFza + 22102 Ac 120 + €[ V2, Acll ] ).

The proof is very similar to that of Lemma 6.2 p. 268 in [8] and thus is only sketched. Indeed, if U = pei?®
is a finite energy solution to (TW,) such that %2 < p < 2rq then the first equation in (17) can be written as

3}
WweAp = ca—(p —rg) —2div ((p> = 13) V)

and this gives

N
9¢ 99
2 _.n 2 _ 2y _ 2
2 g = et —rd) 23R (0~ ).
where Ry, is the Riesz transform (defined by Ry f = % 1 (%f) ). Tt is well-known that the Riesz transform
maps continuously LP(RY) into LP(RY) for 1 < p < co. From the above we infer that for any ¢ € (1,00)
and any j € {1,..., N} we have

Cla)llo? ~ e + Cla Z =32,

< C@p* = rollze + C@)lp* = r5llL= Vol s

721, <

and this implies

IVellze < C@)llp* = r5llze + C(@)p* = 13l =1Vl o

If ||[p? — 13|~ is sufficiently small we get |Vl e < C(q)||p> — 72llze < K(q)|lp — 7ol|ze. By scaling, this
estimate implies that for 1 < ¢ < oo,

102, ¢ellLa +€l|Vay pellra < CqH-AEHLq‘ (72)

33



Hence, by Holder’s inequality and Lemma 24 (i),
1Gelza < Co (IMelFa + €A a0 + 2002, Acl 3 + €92, AcllF)
< Oy (IAc s + 2 [10s el + 19, Acla] ).
We take the derivatives up to order 2 of (63) and then the conclusion follows from Lemma 25.

Step 2. Let N = 3. There is e > 0 and for any 1 < p < 3/2 there exists C}, (also depending on F') such
that for any € € (0,e2) there holds

IAcllzr + IV Alle + 1102, Acllze + €l|02, V2, Acllze + €2(IVZ Acllr < Cp.
If 1 < ¢ < 3/2, we have by Lemma 24 (%)
e [102 Al 2 + £ V2, Adllzad| < €.
Thus for 1 < ¢ < 3/2 we infer from Step 1 that
Al za + I VaAellzat 102, Acllze + €102, Ve, Acllza + €2V, Acllze < Cg + CollAcllfaa. (73)
If 1 < p<4/3, we use (73) combined with Lemma 24 (ii7) with exponent 2p € [2,8/3) to get
AN e + IV Acll o+ 1102, Acll 2o + €102, Ve, Acllze + %[V, Acllze < G (74)

This proves Step 2 for 1 < p < 4/3. In dimension N = 3, the Sobolev inequality does not enable us
to improve the L? integrability of A. to some ¢ > 8/3. We thus rely on the decomposition of A, as
A = AL+ AL AL ATV 4 AV 4 AVT + AVIT ] exactly as in Lemma 24. We choose o = 5/3, 8 = 3/2.
By the estimates in the proof of Lemma 24 (iii) we have then

V2<p<3, 1Azl ze + A e + MZ e + AL e < C.

It remains to bound ALV, AY and AY'T in L3 . In view of (68), we choose v = 5/2, so that 32 = 3, and
thus
V2 <p<3, [AY ||Le < Cp.

We cancel out ALY by taking v = 5/3 = a. Next we turn our attention to the "bad term” AY!L. By (74)
we get

4
V1<p<§, ||Vzl-As||LP§va

hence, by the Riesz-Thorin theorem,

V4 <r<oo, €L AL |

L = ”j(vuAs)‘

LT S Cr~

Consequently, for 4 < r < 00, 2 < p < 0o and ¢ = p/(p — 1) € (1,2), using once again the Riesz-Thorin
theorem and the Holder inequality with exponents 5 and r%q we get

LAY, < O AV,
n 1 - v
:C/ (11| - | A7 x —Uslealsevisialsiend) g,
R €12

q (/ Li<ie, e 1<ia ) <6 |} dg)%q
Lr Tq
R &1 |7

< 0 /1 ) ];H ar) " <Cy

provided that TTqu > 2+ % =12/5. Now let 2 < p < 3 be fixed, so that 3/2 < ¢ < 2. Since 3/2 < ¢ < 2 and
qr— 44—:1[1 is increasing on (3/2, 2], we have 44%1(1 > 12/5. Furthermore, we have T’qu — 44—fq >12/5asr — 4.
Hence we may choose r > 4 such that Tr—fq >2+4 1 =12/5. As a consequence, we have

< C||§L-/Z{E|

V2<p<3, JAY e < Cp.
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Collecting the above estimates for AL, ... ; AY!! we deduce
V2<p<3, | Acllr < Cp.
Then we use once again (73) with exponent p/2 € (1,3/2) to infer that Step 2 holds for 1 < p < 3/2.

In order to be able to use Step 1 with some ¢ > 3/2, we need to prove that A., €,0,,A. and €2V, A.
are uniformly bounded in LP for some p > 3. This is what we will prove next.

Step 3. If N = 3, the following bounds hold:

V2<p<15/4=3.75, [ AllLr < Cp;
V2<p<18/5=3.6, £]|0s Acllr < Cp;
V2 <p<18/5=3.6, eIV, Acllzr < Cp.

Fix r € (3,00), p € (2,00) and let ¢ = p/(p — 1) € (1,2) be the conjugate exponent of p. By the

T

AN < CllAN

o[ Ja+iarf+ie 1A’ ud

SRR

~ —~ ~ q d§ r;q
< C(IAor + 167 Acllr + €L AL e / :
(IAcler + AL + Il ||L)(R3(H|&|2+Mr_q)

We bound the first parenthesis using again the Riesz-Thorin theorem: since r € (3,00), its conjugate
exponent r/(r — 1) belongs to (1,3/2) and then Step 2 holds for the exponent r instead of p, hence

(75)

A - + 1A + €L Al e = 1 Z (A e + |17 (02, A L + | F (Vo) A |-
< C( Lril) < Cr-

Z1L

Next, we compute using cylindrical coordinates

L oarens
o (L4 &2+ |€L])™0

+oo RdR +oo r&} RdR Hoo ptoo RdR
ol [ [ i s [ [ A e [ ]
1+ R)74 1 0 e

RdAR 1 [t ¢t 1 teodgy
§47T/ 77%1"'*/ 1q d&r+ > / (=L o) |-
[ o (1+4+R)™a 2/ L -2 5f(r_q—Q)}

g0
The integrals in the last line are finite provided that ;=L > 2 (for the first integral), - 2“1 > 5 (for the second
integral) and 2(;*L —2) > 1 (for the third 1ntegral) hence their sum is finite if Trfq > 5/2. Note that

i Sqq asr—>3and 3‘1 > 5/2 for g € (12,3). If 2 < p < 15/4 = 3.75 we have 15/11 < ¢ < 2 and we

may choose r > 3 (and r close to 3) such that r’fq > 5/2. Then it follows from the two estimates above that

15
V2Sp<77

4 ||A6HLP < Cp-

Now we turn our attention to the bound on £0., A.. Let r € (1,2), g € [2,00) and s € (r,q). We use the

estimates in Step 2 for ’ ai%g‘; and (59) with N = 3 for ‘ ai%g; , then we interpolate to get
iOZ5 || i9%j || a
92 A 4y 2N-1 i
H 26 H 62‘ . S er€( q )1—5 (76)
027 82182] Ls ’
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If s € (r,3), from the Sobolev inequality and the above estimate we obtain

1—

(_4+%) —

o 13

Qg

2 _2
Lo S Csprge 3¢

azl VJ_As‘

is (77)

”azlAs”L 3s < CSHa;As‘

3—s

We have —% + (—4 + 3) i:% — —13—4 + % as ¢ — oo uniformly with respect to r € [1, %} and s € [1,3]. If
q

1<5<%%1.636vvehavef%+4f%f%+g>fla8r%%. Foranyﬁxedse(1,%)wemaychooseq

sufficiently large and r € (1, 2) sufficiently close to 3 such that —2 + (—4 + 3) 1:3 > —1. Since 25 748

ki 3—s
as s /18, from (77) we get

18 _
Vp (S (1, 5) s ||821A5||Lp < Cp€ 1.
Let r € (1,2), ¢ € [3,00) and s € (r,3). Using the Sobolev inequality and (76) we have

(=4+3) 7=

o 13

I

2 _5
s S Cs e 3€

V2 A

1
HVZJ_AEHL 3s < Cp||8zlsz_As| zs

3—s

Proceeding as above we infer that

V1<p<18/5, 2|V, Acllzr < Cp.

Step 4. Conclusion in the case N = 3.
Fix 1 <p<9/5=1.8. Since 2 < 2p < 18/5 < 15/4, we may use Step 1 (with p instead of ¢) and Step 3
to deduce that

[Acllr+ VA e + ||8§1¢45||Lz> + &0V, AcllLe +€$LHV3’LAE||LP
2
< Gy (M0 + [enllOes Acllan + €21V, Acllan] ) < G (78)
Hence (21) holds for p € (1, 9/5). In particular, by the Sobolev imbeddding W1 — L5 with 1 < p<9/5

we have
V1<qg<9/2=45, | Acllpe < Cy.

On the other hand, for any 1 < p < 9/5,
ell0z Acllwrr = ell0z Acllr + €02 AcllLe + €l V2, 02 Aclle < Cp and €%[[Va, Acllwan < G,
hence by the Sobolev embdding,
V1<g<9/2=4.5, |0z AellLe + €|V, Acllna < Cy.

Thus we may apply Step 1 again to infer that (78) holds now for 1 < p < 9/4 = 2.25. By the Sobolev
3p
embedding WP — L35 we deduce as before that

V1<g<9, | AllLa + €02, AcllLa + €2 V2, Al < Cy.
Applying Step 1, we discover that (78) holds for any 1 < p < 9/2. Since 9/2 > 3, the Sobolev embedding

yields
V1<qg<oo, | Ac|lLe + €l|0s Acll e + €%V, Aclle < Cp,

and the conclusion follows using again Step 1.

Step 5. Conclusion in the case N = 2. The proof of (21) in the two-dimensional case is much easier: for
any 1 < p < %, we have by Step 1 and Lemma 24 (i) and (iv)

Mellze + IV Aellze + 1102, Acllze +€]|0:, Ve, AcllLe + €2 V2 Acllzr < G
Thus, by the Sobolev embedding WP (R?) — LZ‘%(R2),

V1<g<6, A<z < Cq and Sn[llazlAellm +enl[Va Acflra| < Co. (79)
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Applying Step 1 once again, we infer that (78) holds for any p € (1,3). Since 3 > 2, the Sobolev embedding
implies that (79) holds for any ¢ € (1, 00]. Repeating the argument we get the desired conclusion.

Since A, = e~ 2(y/1 + 2 A, — 1), uniform bounds bounds on A. and its derivatives up to order 2 follow
immediately from (21).

It remains to prove (22). The uniform bounds on 9, ¢, and £V, ¢, follow from (72) and (21).
Let U = pe’® be a finite energy solution to (TW,), from the first equation in (17) we have

0
20°A¢ = CaTnl(Pz —r3) = 2V(p?) - Vo

If p > % and ¢ € (0,¢,), using the properties of the Riesz transform we get for any j,k € {1,..., N} and

any ¢ € (1,00)

0% 0
Ry Ale < Ol q<\%f2_2H ) Vol
555 HL 1B Re(80)]20 < O A6]10 < C| g (0” =) | +CIV(?) - Tolls

In the case U = U,, p rov/ 1+ e2A(2), d(x) = epe(z), using (21) and (72) we get

82¢ 3_ 2N 1| 0A. 5_2N-—1 0A, a(ps 7_2N-1 N 0A, (9305 3_2N-1

I O : C 7 . <C a
H 817]8:Ck ‘ L (92’1 La +ee (92’1 821 La +ee ];2 H 82’]‘ 8zj = ta®
By scaling we find for j, k € {2,..., N},
82(,05 82905 a Pe
H 923 EH 021025 IIL H 020z llLe — < Gy, (80)

By assumption (A4) there is § > 0 such that F is C2 on ((rg — 26)2, (ro + 28)?). Let U = pe'® be a solution

o (TW,) such that ro —§ < p < rg+ 0. Differentiating (TW,) and using standard elliptic regularity theory
it is not hard to see that U € Wlt’f(RN) and VU € W3P(RY) for any p € (1,00) (see the proof Proposition
2.2 (ii) p. 1079 in [34]). We infer that Vp, V¢ € W3P(RYN) for p € (1, 00). Differentiating the first equation
in (17) with respect to x; we find

9? d(p? o) p? )
cax%(pz—rg)ZQV(;zl)>-v¢+2V(p2)~V(aj>+2(; )A¢+2 2A<8¢1) (81)

U =U., p(x) =roy/1+e2A:(2) and ¢(x) = epe(x), we perform a scaling and then we use (21), (72) and
(80) to get, for 1 < ¢ < oo and all & sufficiently small,

o =) |, == 5% e
— =c < Cqe .
La 821 La
HaQ(pj) % < HBQ(P2)‘ ’7‘ 256 1— 2NH3 Ae 6906 <Cq€6+1’q2N7
0r? Oy llLa 02 20l 9y Il 124 022 llp2all 9z llz2e —
e P P T e B e N - R et
8x16mk (9.’L‘k 8w18xk L2a (9.’L‘k L2a 6zlazk L2a (9Zk L2a
Ha(p2) 82¢ Ha Pz)’ 82¢ 6+ 1=2N HaAg 82(p5 C 64 1=2N
_ _ = £ q R — _— £ q
Ory  0z3lipe = Il Oy llp20ll 92 I L2a 0z llzzall 922 llp2e = 71 ’
H@(/ﬂ) %6 ’ H ‘ 9%¢ ‘ g 1= gNHaA 8. <
. =c € a
Oz, Ox10xp llLa = I dzy, lp2all 910z 1 L2a Oz Wp2all 9210z L2 = 71
_ 3 1-2N 2N H < C 3+1 2N
H 0z ‘Lq 621 La ~ ’
L 1-2N 824p5 34 1=2N 82¢ L 1-2N 824)05 1-2N
<O d H H S
Ha | 022 lpa =707 o 022 Il. "l S
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64 1=2N .
< Cge” @ . From (81) and the above estimates
La

1-2 2
Hence ||A¢||lpa < Cue®t + and then Haa(p ) ~A¢‘

Z1
we infer that HA 09 ‘ < O, As before, this implies Hi’
(9331 « — 1 ’ ’ 8x18mi8xj La

i,j5 € {1,...,N}. By scaling we find

2N
<0y T for any

33905 0% e 2| gz e
v. + w2 .
H 0z3 H + 022 lLa 0z ¢
Then (22) follows from the last estimate, (72) and (80). O

3.8 Proof of Proposition 11

Let (Uy,en)n>1 be a sequence as in Proposition 11. We denote ¢, = /¢2 — 2. By Corollary 15 we have
[ 1Un| = 7ol| Lo rsy — 0 as n — oo, hence |Uy,| > % in R? for all sufficiently large n, say n > ng. For n > ng
we have a lifting as in Theorem 6 or in (16), that is

Un(@) = pu(@)e® @) = o (1+ 24, (2)) €973 = rpy/T+ 2 A, (5) €902,

where 21 = e,x1, 21 = €2z, Let W,, = 0,,¢,/¢s. Our aim is to show that (W, )n>n, is a minimizing
sequence for .7, in the sense of Theorem 5. To that purpose we expand the functional E. (U,) in terms of
the (KP-I) action of W,, = 0., ¢, /cs. Recall that by (28) we have

1 2
B, (un) = 5n7‘8 /3 2 (821 $n — CnAn) + (9, ‘Pn)z(QAn + 53;14%) +1|V., ‘Pn‘Q(l + 5$LA7L)2
R n

T 2
(0, An)? + IV AP+ A2+ (5 - 1) AL+ SVa(E2AL)
— an?l(“)Zlapn dz.

By Proposition 17, (A;,)n>n, is bounded in WHP(RY) for all p € (1,00), hence it is bounded in L>(R?).
Since F(r3(14+e%2A.)) = F(r3) —2e2A. + O(e*A?) = —c?(e)e? Ac —e* A. + O(e* A, ), from the second equation
in (9), Lemma 23 and Proposition 17 we get

Hazﬁpn - C'rL14n||L2 = O(gi) (82)

1 2
In particular, we have / - (legan — ann> dz = (’)(ei) as n — oco.

R3 €
By Proposition 17, 9., ¢, € WP(RY) for p € (1,00). Integrating by parts we have

82 n 2 63 n
/ (02, 4n)* = % dz = _/ <An - W) (83114” + m‘P) d=
RN C'n, RN Cpn, Cn

From the above identity, the Cauchy-Schwarz inequality, (82) and Proposition 17 we get

2 2
2 (6Z180n) 1 1 2 219071
outp- B (L 1Y [ -2

Cn

6
.A Zl
Cn

’ RN L2

Similarly, using (82), Hélder’s inequality and Proposition 17 we find

2 3
A2 _ (02 n) dz| + 43 (021 0n) d
R3 " Cg R3 C:S)’

(621 @n

S

3
+| [ 4200, - dz| + \ A (0., )2 — DePn)” &:| = 02
R3 .
Since (An)n>n, is bounded in L*°(R?), using Lemma 23 we find

/ |VZL‘Pn|2(1+E%An)2dZ:/ |VZJPn‘2dZ+O(E721):C / |vha "Wa |2d2+0( n)-
R3 R3
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Recall that Vy(a) = O(a?*) as a — 0, hence Proposition 17 implies that

2
[ 200 + IV AP+ V(A 2 = OE2).
RS

n

Inserting the above estimates into (28) we obtain

Ec(sn) (Un) _ /
CET%&‘H R3

From the above estimate and the upper bound on E. (U,) = T, given by Proposition 9 (i¢) we infer that

Ec(sn) (Un)
2rie,

V. o'W,

Z1 Y2

2 1 T 1
+ 3 (0, Wh)? + 3 w3+ = W2dz+ O(E2) =.2W,) + O(E2).  (83)

T,
+0(E}) = 55— 4+ 0(2) < Fin + O(e2) = S, + O(E2).

2
2rgen

S (W) =
Similarly we have

2
/ Ve, Upl® dz = TSE”/ (142 4,)% Vo, onl? + €| Va, An|* dz = Tgt?&”/ ’vziaz_llwn dz + O(e},).
R3 R3

R3

Since U, satisfies the Pohozaev identity E. (U,) = / |V., Un|? dz, comparing the above equation to the
R3
expression of E.,_(Up,) in (83) we find
1 2 Los 1o 2

In order to apply Theorem 5, we have to check that there is m; > 0 such that for all n sufficiently large
there holds

W2+ (0, W,)? dz > my.
R3

By Lemma 22, there are k > 0 depending only on F' and ny; > ng such that
Vo >ny1, ||Anllpe > k.

Since A,, tends to 0 at infinity, after a translation we may assume that
40(0)] = | Au = > k.

By Proposition 17 we know that for all p € (1,00) there is C}, > 0 such that ||A,|lwi» < Cp for any n > ny.
Then Morrey’s inequality (see e.g. Theorem IX.12 p. 166 in [14]) implies that for any « € (0,1) there is
Cs > 0 such that for all n > ng and all z,y € R® we have |A4,(z) — A, (y)| < Culr — y|*. We infer that
|An| > k/2 in B,(0) for some r > 0 independent of n, hence there is m; > 0 such that

[Anllzz = | Anllz2(B,0)) = 2ma.
From (82) it follows that ||[W,, — Ay||2 — 0 as n — oo, hence
Whallzz > [[WhallL2(s, 0)) = ma for all n sufficiently large.

Then Theorem 5 implies that there exist W € #(R3), a subsequence of (W, )n>n, (still denoted
(Wi )n>no ), and a sequence (2"),>n, C R? such that

Wi(-—2") =W in Z(R%).

Moreover, there is o > 0 such that z — W(z, 12, ) is a ground state (with speed 1/(2¢2)) of (KP-I). We
will prove that ¢ = 1.

Let 2" = (z—l ZI) - We denote Wi, = Wy (- — 2"), Ay = Ay (- = 2"), @n = on(- — 2"), Up = Un(- — ™).

en’ €2

It is obvious that Un satisfies (TW,, ) and all the previous estimates hold with fln, on and Un instead of
An, pn and Uy, respectively.
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Since W, = L9, ¢, and W, — W in % (R?), we have

Cs
Oz P — €WV, 92 Bn — €0, W and V. @n — V., 07W in L*(R?). (84)

z Z1 Y2

Integrating by parts, then using the Cauchy-Schwarz inequality, Proposition 17 and (82) we find

J.

< Han@n - CnAnHL"’Haglszjn - Cna;‘in”L2 = 0(5%)7

831 @n - Cnazl An

2 N -
dz = —/ (02 P — ann)(afl P — cnafl Ap)dz
R3

hence ||02, @, — €005, Ay |12 = O(e,) — 0. Since ¢, — c, from (82) and (84) we get
A, =W and 0., Ay — 9,V in L*(R®)  asn — oo. (85)

It is obvious that A,, @, and &, satisfy (11). Let ¢ € C°(R?®). We multiply (11) by %, integrate by
parts, then pass to the limit as n — co. We use Proposition 17, (84) and (85) and after a straightforward
computation we discover that W satisfies the equation (SW) in D’(R?). This implies that necessarily o = 1
and W is a ground state of speed 1/(2¢2) to (KP-I). In particular, W satisfies the Pohozaev identities (25)
and (26).

Since W, — W in Z(R?), we have .7 (W,) = S (W,) — .Z(W) and (83) implies

Ec(En) (Un)

2.2
CsToén

=S (Wa) +0(e3) = S (W) +0(1) = Fruin + 0(1),

that is (13) holds. Using the expression for the momentum in (3), then (84), (85), Proposition 17 and the
Pohozaev identities (25) and (26) we get

En _ En 2 9 Opn - 1 2 42 dpn 2 2 _
77"87C‘Z’Q(Un) = 2 /}Rg(pnfro)a—gljl dx = é R3(2An(z)+€nAn(z))a—Zl(z) dz — é o W (2)dz = S (W).

Hence —c¢;Q(U,,) ~ r3¢ S mine ™t as n — oo. Together with (13) this implies that (U, ),>n, satisfies (12).

By Proposition 17 we know that (An)nan (8Z1/~1n)n2n0, (021 @n)n>n, and (5‘21 @n)n>n, are bounded in

z

LP(R3) for 1 < p < oo. From (84), (85) and standard interpolation in LP spaces we find as n — oo
A, =W, O Ay = W, 0,8, =W and  0Z¢, — 0, W in LP (86)

for any p € (1, 00).

Proceeding as in [8] (see Lemma 4.6 p. 262 and Proposition 6.1 p. 266 there) one can prove that
for any multiindex o € NV with |a| < 2, the sequences (%A, )n>ng, (0202, An)nsngs (002, $n)nsn, and
(0%0%, ¢n)n>n, are bounded in LP(R?) for 1 < p < oco. Then by interpolation we see that (86) holds in
WLP(R3) for all p € (1, 00). O

3.9 Proof of Theorem 6 completed in the case N = 2

Assume that N = 2. Let (Up,,c,) be a sequence of travelling waves to (NLS) satisfying assumption (b) in
Theorem 6 such that ¢, — ¢5 as n — co. Let &, = /c2 — ¢2. By Theorem 1 we have / |VU,|*dz — 0 as
R2

n — oo and then Lemma 13 implies that || |U,| — 7|

~ — 0; in particular, for n sufficiently large we have a
lifting U, () = py,(x)e'®r @) = ry (1 + 5,21An(z))ei5"“""(z) as in (8) and the conclusion of Proposition 17 holds
for A,, and ¢,. As in the proof of Proposition 11 we obtain

102, 0n — cnAnlle = O(2) and 102, on — 0z Apllr2 = Oen) as n — 0o. (87)
Let k,, = / |VU,(2)|? dz. We denote W,, = ¢; 1., p,. By (87) we have |W,, — A,||z> = O(e2). Asin
RQ

82 n 2
the proof of Proposition 11 we find ’/ (02, A40)% = (0, W) dz| = ‘/ (0., A40)% — Gz on)” dz| = O(£2).
R2 R2

2
s
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Using (87) and Proposition 17 we get

kr,

[ VU do=eurd [ 0ol (14 2242 4 200 A 4 2B @uain (14 AL + 2h(00 40
R2 R2

eurd [ (Ouga)? de b b [ (2400000 + (0o Aa)? + (Buain)?) di + OED)
R2 R2

1
enric? / W2 dz + e3r2c2 / (2wf; 5 (00 W) + (9,02 W) ) dz + O(5). (88)
R2 s

Inverting this expansion we find the following expression of €, in terms of k,:

k k3 1
L= n _ n IW3 & (., W, 3 d kP
T T | A A VAo /Rz(w"*cz(alw) +020,W07) =+ O (59

Recall that the mapping U, (c,-) is a minimizer of the functional I(v)) = Q(v) + / V(|¢|?) dz under
R2

the constraint / |V1)|? dz = k,,. Using this information, Proposition 9 (), the fact that ¢2 = ¢2 — 2 and
R2
(89) we get

QU / V(Un[2) di = I(Un(en)) =  Loin (k)
k A3 )
< 2 77’” " 5
= < 2 2Tr§el2 2 - O(k"))
k3 A3

+O(ky). (90)

—k,
T WA, 20T

min

Moreover, using the Taylor expansion (27), we find

T 2A,
Wﬂfwwﬂ%%/(ﬁ+%P_Qﬁ+E@;%dz
]R2 R2

n 1
3 fond

and by (3) we have

(24, +2242) %Z‘ dz.
2

Taking into account (87) and the equality c2 = ¢2 — 2, then using expansion of ¢, in terms of k, (89) we
get

QU /V|U|

/R?( 2AW+A)dz+€i/]R2< AQW +{—71} 12 )dz+0(52)>

S

QU = —eurt [

R2

r W2 )
=ric? <5n||Wn — A2, — e /R2 W2 dz + &3 /R2 [g - 2} W3 + 2 " odz+ O(e%))
T 2
=ric? (—sn W?l dz—%—si’t/r [5—2}1/\/2 VCV" dz+ O(e )>
R2 R2 s
= —k,+ L&’(W )+ O(kD) (91)
" rgedWallga ! "
Inserting (91) into (90) we discover
K3 K3 4k3
A R n k5 k5
TOC ”WNH y(w )+O( n) 0C5||W || 277’4 10°7n211n +O( n)’
that is 1 4
6 2
S (Wn) < 2 WhllZ: - MHWnHB + O(k;,)
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or equivalently

1 1 2\3 1 3
EWa) =S Wa) = | Wedz<—o—(5) - (5IWal}:) +OG2). 92
( ) ( ) cg R2 n A% = 2yr?11n 3 cz” HL + ( n) ( )
As in the proof of Proposition 11, it follows from Lemma 22 and Proposition 17 that there are some positive
constants my, mso such that

my < [Whallze < mo for all sufficiently large n.

[Wh
Denote \, = I ”L2

Let

. Passing to a subsequence if necessary we may assume that \,, — A, where A € (0, +00).
WH#(2) = fW(Mz 'uzz)
)\721 1, )\121 2/
where 1 is as in Theorem 4. Then Wi satisfies
1 w2 o M 2 #y _ M
= W) dz = — W dz = p and EWT) = Z=EWn).
R

2 2 Ao Jre 2 "

Plugging this into (92) and recalling that p = %fmin, we infer that

1 20\ 3 1
EWE) = §3(5’<W>_ o (%) +O02) = =5 Fain + O(2).

Therefore (W7 ),,>n, is a minimizing sequence for (6).

By Theorem 4 we infer that there exist a subsequence of (W#),,>,,, still denoted Wi ),>,, a sequence

(2" n>ne = (23 28 ) n>n, C R? and a ground state W (with speed 1/(2¢2)) of (KP-I) such that W# (-—z") —
W strongly in % (R?)as n — oo.

Let 2" = (L/\Z{L “—/\zg) and U, = U(- — a), An(z) = A, (z1 T f\b—zg) Bu(z) =
©n (Zl — 2l - é\%zg) Wa(z) = W, (zl — ¥zl 2 — %zg) We denote W(z) = QW( 21, Mz 22)
It is obvious that U, (z) = ro (1 +e2A4,(2 )) ien@n(2) is a solution to (TW,, ) with the same properties as

U, and the functions A,,, P,y Wi satisfy the same estimates as A, ¢, and W, respectively. Moreover, we
have W,, = 10., 5, and W,, — W strongly in % (R?) as n — oco.

Cs

It is clear that A,, ¢, and &, satisfy (11). For any fixed ¢ € C2°(R3) we mutiply (11) by 1, integrate
by parts, then pass to the limit as n — oo. Proceeding as in the proof of Proposition 11 we find that W
satisfies equation (SW) in D’(R?). We know that W also solves (SW) and comparing the equations for W

and W we infer that (/\—3 — 2—:) 9., W =01in R? . Since 9., W # 0, A > 0 and p > 0, we have necessarily
A = u, that is W = W.

In particular, we have S(W,) = ¥ (W,) — L (W) = Fomin as n — oo. Since / VU, |? dx = ky,
using (91) and (88) we get .
ki,

EWUn) +cnQUn) = 46—
() Q) = Sl

S Wn) +O(k3) ~ 2122 S nin as n — 0o.

Hence (13) holds. As in the proof of Proposition 11 we have

QU =~ [ (-5 = —rden [ (2An(e) + 242N GG d

~ =2r2cse, | W3(2)dz = =3ri3.S(W)e,
RQ

The above computation and (13) imply (12).
Finally, the convergence in (86) as well as the similar property in W1?(R?) are proven exactly as in the
three dimensional case. (]
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4 The higher dimensional case

4.1 Proof of Proposition 18

We argue by contradiction. Suppose that the assumptions of Proposition 18 hold and there is a sequence
(Un)n>1 C € of nonconstant solutions to (TW,, ) such that E. (U,) — 0 as n — +oco0. By Proposition 14
(i) we have |Un| — 1o > 0 uniformly in RY. Hence for n sufficiently large we have the lifting U, (x) =
pn ()€ (@) We write

1Un]

To

B, = -1, so that pn =ro(l+ B,) and B, -0 asn— oo.

Recall that U, satisfies the Pohozaev identities (4). The identity P. (U,) = 0 can be written as

/ oU,12 N-3
RN 6$1

N —
Using the formula (3) for Q(U,,) and the Taylor expansion (27) for V(r3(1 + B,)?) we get

|VMU 12 dz + c,Q(U, / V(|U,|?) dz = 0.

0B, |2 d¢ N -3
2 n 1 n 2 1 2
7b]£N S| @B S TV B (14 BP0
Ogn r
where V(o) = O(a*) as o — 0. After rearranging terms, the above equality yields
N -3 N -3
/ (O, n — cn n)2+(8118n) +7|vau¢n| (1+Bn ) +N7|VILB |2+57216721 dx
RN

== [ (0028, + B2+ E(5 L) B+ EVi(B,) — 20,6, do
R6

r
— [ 2 52} B3 dx— cﬁ/ Va(B,) dz —/ (O, 6n)?B2 dz
3 RN RN RN

+/]RN n(( Oy bn — cnBBr)? — 3¢3 B (0, b — Cn n)) da

and this can be written as

N -3 N -3
/]RN (D21 On = cnlBn)? + (00, Bn)® + N7|vﬂu¢n| (1+Bn)* + m‘vaBnF +en(1—By)B; de
r
= —gci . B3 dz — ¢? /RN Vi(B,) dx — /RN (O, Pn)* B2 dx (93)

B (00 = euBu)? — 50,500,610 cuB)

For n sufficiently large we have 18, < (1 — B,)B2 < 352 and then all the terms in the left-hand side of

(93) are nonnegative. We will ﬁnd an upper bound for the right-hand side of (93). First we notice that the
third integral there is nonnegative. Since B,, — 0 in L™ and Vj(a) = O(a?) as a — 0, we have

¢ /RN Va(Br) dx] < C|Bull3s < ClIBnllp=1Bnll3s. (04)
Using the fact that ||B,||z~ < 1/4 for n large enough and the inequality 2ab < a® + b%, we get
1
/ B0 = B = 80aBol O = cnl)) da < */ (2160 — cuBn)? dx+9c3/ B de. (95)
RN 5 . N

It is easy to see that B,, € H*(RY) (see the Introduction of [17]). We recall the critical Sobolev embedding:
for any h € HY(RY) (with N > 3) there holds

1 N-1
1Bl g2, < CllO Bl L2l Bl LY (96)
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Assume first that N > 6. Then 2* = % < 3. Using the Sobolev embedding (96) and the fact that
1Bl is bounded we get

2" 2%( )
Bal|Zar < Cll0a Bull 21 Va, Balla ™ (97)

1BallZs < 1Bz

Using the inequalities || B, |74 < ||Bn|l=|/Bs|/3s and 1+ B, > 1/2 for n large, we deduce from (93) that
/RN (2, Pn = calBn)® + (02, Bn)? + |v:m_¢n|2 + |vx¢Bn|2 + 572133 de < C||Bn|‘%3- (98)
From (98) and (97) we obtain

IV, @ll3 + 190, Ball3e + Ve, Ballie < CUBAIEs < ClOw Bl 127 Ve, Ball 5 - (99)

Assume now that (N =4 or N =5) and I' # 0. From (93), (94) and (95) we get
/ (Oay 6 — €nBn)® + (02, 80)° + [V 0nl” + [V, Bul* + 78} do < C|| By 14 (100)
RN

We have 2* =4 if N =4 and 2* = 1—30 < 4 if N =5. By the Sobolev embedding we have

Nfl)

1Ball7s < IBullz= 2 w1 (101)
The two inequalities above give
s 2N 2
IV, @ll3 + 190, Ball3e + Ve, Ballie < ClBAls < ClOw Bl 527 Ve, Ball 5 - (102)
From either (99) or (102) we obtain
s 2N 2
10, Ball3e < Clow Bl 57 [V, Bull 2
2N—-6 2N—2
which gives (0, Bnl|2° < C||V4, Byl 27", or equivalently
N-1
||a:r:18n||L2 < CHszBn”g;g)' (103)
Now we plug (103) into (98) or (100) to discover
2(N— 1)

IVa, Bulli2 < Cl102,Ball 7V, B || = <CIV.. B, IIL

Since % > 2 we infer that there is a constant m > 0 such that ||V, B,|/r2z > m for all sufficiently large

n. On the other hand U, satisfies the Pohozaev identity P._ (U,) = 0, hence for large n we have

2 2 1
E. (U,) = 7/]1@ Vo, Unl?dz > i rg/R V., Bn|*dz > i 1r3m2

N -1 1
This contradicts the assumption that E. (U,) — 0 as n — oco. The proof of Proposition 18 is complete. O

Remark 26 We do not know whether T, tends to zero or not as ¢ — ¢5 if N =4 or N =5 and I" # 0.

4.2 Proof of Proposition 19

Let N > 4 and let (U, ¢s)n>1 be a sequence of nonconstant, finite energy solutions solution of (TW,_ ) such
that E., (U,) — 0. By Proposition 14 (ii) we have |U,| — ro > 0 uniformly in R, hence for n sufficiently
large we may write

Un(z) = pn(x)ew”(“:) =10 (1 + anAn(z)) exp (zﬂngan(z)) where 21 = \,z1, 2. =o,1,
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and o, = %Hpn —1g|lp~ — 0. Using the Pohozaev identity P. (U,) = 0 and (47) we have

2

2
2| V., Un@)de = E(U,) + ¢ n:f/ Von|? da.
N*l/]RN| LU (@) de (Uyn) + cnQ(U,) N RN| pnl” dx

Since U,, € £ and U, is not constant, we have / |V, Un(x)]* dz > 0 and the above identity implies that
RN

2
pr is not constant. The equality E(U,,) + ¢, Q(U,) = N/ |Vpn|? dx can be written as
RN
2 2 2 2 2 _
1 N [V pn|*dx + PV on|* dx + ¢, Q(Uy) + V(ps)dx = 0.
RN RN RN

Since p,, — 7o uniformly in RY as n — oo, for n large we have V(p2) > 0 and from the last identity we infer

that 0 > ¢, Q(U,) = / (rg — pi)%
RN 83:1

(otherwise ¢ would depend only on z, contradicting the fact that / |V, |? dz is finite).
RN

dz, which implies |0y, ¢dn|lr2z > 0. We must have |V, épn|r2 > 0

The choice of «,, implies |A,| L~ = 1. Since A,,, J.,¢, and V., ¢, are nonzero, by scaling it is easy to
see that
|Anlle = 10z, ¢nllL2 = ||VZJ_<Pn||L2 =1 (104)

if and only if

N LA
o=

U,|— Tol|| Lo
A £y [1Un] = 7ol
[HUn[ = 7ollZ-

Ul = rollz2”

[1Un| = rollz~

AnbBn = (|0, Ol L2 THUn] = rollzz

Bnon = ||V90¢ ¢n||L2

Since N > 3, the above equalities allow to compute A,, B, and o,. Hence the scaling parameters
(atn, B, An, 0p) are uniquely determined if (104) holds and ||A, || L~ = 1.

The Pohozaev identity P. (U,) = 0 gives

2
/ Aiﬁi(azlnpn)z(lJranAn) +a2X\2(0,,A,)?

N -3 2 N-3
+ B2V enl (14 andn) + T a2o2 |V, Al + V(r0(1+anAn)2) dz
=2¢, /]R N 22X B A0y, o + M2 B A0, 0, dz. (105)

By (104), the right-hand side of (105) is O(A,a,By). Since o, — 0 and ||Ay ||z = 1 for n large enough we
have 1+ a, A, > 1/2, and by (27) we get V(r3(1 + a,4,)?) > 3r3c2a2A2. If N > 3 all the terms in the
left-hand side of (105) are non-negative and we infer that

/Amm%%Fﬂ%ﬁwzam%m»
RN

From the normalization (104) it follows that
232 = O(MnainfBn), and a2 = O(\nanfn),

which yields

AnBn
Let 6, "ﬁ = We use the Taylor expansion (27) for the potential V', multiply (105) by 2 and write the
rebultlng equahty in the form

C; < < Cy for some C1, Cy > 0. (106)

2 N —36%02 2 N-3
L (Badon = ) + X0, A0 + 1 B2 Vs P (14 000) + 5 odIVo AP
+ (2 —2)A2 dz
r : Vi(anAn)
= — /]RN oian(azl%)Q <2An + oznAi) + cian (g — 1>Ai + c§4a7% - 2cn6nanAi821<pn dz.
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By (104) and (106) the right-hand side of the above equality is O(«,,). If N > 3 all the terms in the left-hand

side are nonnegative. In particular, we get (¢2 —c2) / A2 dz =2 —c2 = O(ay), so that ¢, — ¢;. Assuming
N

that N > 4, we also infer that

2
[ A0 40) + V., nf? dz = O(an).

Together with (104) and (106), this implies

0',,21 2 [07%
% =0()  and /RN (0., A)? d = 0(7%) (107)

The Pohozaev identity P., (U,) = 0 and (104) imply that for each n such that 1+ o, 4, > 1 we have

2

E. (U,) = 1 /RN V.U, |? dz

272 2
= (N — 1); o1 /]RN 7’2LO-’72L|VZLSD77I|2(1 + anAn) + O‘iai‘vzlAnF dz
nvn

2292 2
Toangn / 2 an
V. on|”dz > —<—. 108
2 SN DN ® IRNI Lol CNBoN (108)
However, in view of (107) we have
2 2 N/2 2 N/2
W a, > (‘Lﬂ) O (%) _ (109)
Mo W S\ caE ) gapr
Notice that a{?N~/% 5 0 as a,, — 0 because N > 4. The fact that E. (U,) — 0, (108) and (109) imply
that §# — 0 as n — +oo. Then using (107) we find
2 - Qnp,
/RN(azlAn) dz = O(A%) =0
and the proof is complete. O
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