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Rarefaction pulses for the Nonlinear Schrödinger Equation

in the transonic limit

D. Chiron∗ & M. Mariş†

Abstract

We investigate the properties of finite energy travelling waves to the nonlinear Schrödinger equation
with nonzero conditions at infinity for a wide class of nonlinearities. In space dimension two and three
we prove that travelling waves converge in the transonic limit (up to rescaling) to ground states of the
Kadomtsev-Petviashvili equation. Our results generalize an earlier result of F. Béthuel, P. Gravejat and
J-C. Saut for the two-dimensional Gross-Pitaevskii equation, and provide a rigorous proof to a conjecture
by C. Jones and P. H. Roberts about the existence of an upper branch of travelling waves in dimension
three.
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1 Introduction

We consider the nonlinear Schrödinger equation in R
N

i
∂Ψ

∂t
+∆Ψ+ F (|Ψ|2)Ψ = 0 (NLS)

with the condition |Ψ(t, x)| → r0 as |x| → ∞, where r0 > 0 and F (r20) = 0. This equation arises as a relevant
model in many physical situations, such as the theory of Bose-Einstein condensates, superfluidity (see [19],
[23], [24], [26], [25] and the surveys [37], [1]) or as an approximation of the Maxwell-Bloch system in Nonlinear
Optics (cf. [29], [30]). When F (̺) = 1− ̺, the corresponding (NLS) equation is called the Gross-Pitaevskii
equation and is a common model for Bose-Einstein condensates. The so-called “cubic-quintic” (NLS), where

F (̺) = −α1 + α3̺− α5̺
2

for some positive constants α1, α3 and α5 and F has two positive roots, is also of high interest in Physics
(see, e.g., [2]). In Nonlinear Optics, the nonlinearity F can take various forms (cf. [29]), for instance

F (̺) = −α̺ν−β̺2ν , F (̺) = −α
(
1− 1

(1 + ̺
̺0
)ν

)
, F (̺) = −α̺

(
1+γ tanh(

̺2 − ̺20
σ2

)
)
, etc., (1)

where α, β, γ, ν, σ > 0 are given constants (the second formula, for instance, was proposed to take into
account saturation effects). It is therefore important to allow the nonlinearity to be as general as possible.

The travelling wave solutions propagating with speed c in the x1-direction are the solutions of the form
Ψ(x, t) = U(x1 − ct, x2, . . . , xN ). The profile U satisfies the equation

−ic∂x1
U +∆U + F (|U |2)U = 0. (TWc)

They are supposed to play an important role in the dynamics of (NLS). Since (U, c) is a solution of (TWc) if
and only if (U,−c) is also a solution, we may assume that c ≥ 0. The nonlinearities we consider are general,
and we will merely make use of the following assumptions:

(A1) The function F is continuous on [0,+∞), of class C1 near r20, F (r
2
0) = 0 and F ′(r20) < 0.

(A2) There exist C > 0 and p0 ∈ [1, 2
N−2 ) (p0 <∞ if N = 2) such that |F (̺)| ≤ C(1 + ̺p0) for all ̺ ≥ 0.

(A3) There exist C0 > 0, α0 > 0 and ̺0 > r0 such that F (̺) ≤ −C0̺
α0 for all ̺ ≥ ̺0.

Assumptions (A1) and ((A2) or (A3)) are sufficient to guarantee the existence of travelling waves. How-
ever, in order to get some sharp results we will need sometimes more information about the behavior of F
near r20, so we will replace (A1) by

(A4) The function F is continuous on [0,+∞), of class C2 near r20, with F (r
2
0) = 0, F ′(r20) < 0 and

F (̺) = F (r20) + F ′(r20)(̺− r20) +
1

2
F ′′(r20)(̺− r20)

2 +O((̺− r20)
3) as ̺→ r20.

If F is C2 near r20, we define, as in [17],

Γ = 6− 4r40
c
2
s

F ′′(r20). (2)

The coefficient Γ is positive for the Gross-Pitaevskii nonlinearity (F (̺) = 1 − ̺) as well as for the
cubic-quintic Schrödinger equation. However, for the nonlinearity F (̺) = be−̺/α − a, where α > 0 and
0 < a < b (which arises in nonlinear optics and takes into account saturation effects, see [29]), we have
Γ = 6 + 2 ln(a/b), so that Γ can take any value in (−∞, 6), including zero. The coefficient Γ may also
vanish for some polynomial nonlinearities (see [16] for some examples and for the study of travelling waves
in dimension one in that case). In this paper we shall be concerned only with the nondegenerate case Γ 6= 0.

Notation and function spaces. For x = (x1, x2, . . . , , xN ) ∈ R
N , we denote x = (x1, x⊥), where

x⊥ = (x2, . . . , xN ) ∈ R
N−1. Given a function f defined on R

N , we denote ∇x⊥
f = ( ∂f∂x2

, . . . , ∂f
∂xN

). We will

write ∆x⊥
= ∂2

∂x2 + · · ·+ ∂2

∂xN . By ”f(t) ∼ g(t) as t→ t0” we mean limt→t0
f(t)
g(t) = 1.
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We denote by F the Fourier transform, defined by F (f)(ξ) =

∫

RN

e
−ix.ξf(x) dx whenever f ∈ L1(RN ).

Unless otherwise stated, the Lp norms are computed on the whole space R
N .

We fix an odd function χ : R → R such that χ(s) = s for 0 ≤ s ≤ 2r0, χ(s) = 3r0 for s ≥ 4r0 and
0 ≤ χ′ ≤ 1 on R+. As usually, we denote Ḣ1(RN ) = {h ∈ L1

loc(R
N ) | ∇h ∈ L2(RN )}. We define the

Ginzburg-Landau energy of a function ψ ∈ Ḣ1(RN ) by

EGL(ψ) =

∫

RN

|∇ψ|2 + (χ2(|ψ|)− r20)
2 dx.

We will use the function space

E =
{
ψ ∈ Ḣ1(RN )

∣∣ χ2(|ψ|)− r20 ∈ L2(RN )
}
=
{
ψ ∈ Ḣ1(RN )

∣∣ EGL(ψ) <∞
}
.

The basic properties of this space have been discussed in the Introduction of [17]. We will also consider the
space

X =
{
u ∈ D1,2(RN )

∣∣ χ2(|r0 − u|)− r20 ∈ L2(RN )
}
,

where D1,2(RN ) is the completion of C∞
c (RN ) for the norm ‖u‖D1,2 = ‖∇u‖L2(RN ). If N ≥ 3 it can be proved

that E = {α(r0 − u)
∣∣ u ∈ X , α ∈ C, |α| = 1}.

Hamiltonian structure. The flow associated to (NLS) formally preserves the energy

E(ψ) =

∫

RN

|∇ψ|2 + V (|ψ|2) dx,

where V is the antiderivative of −F which vanishes at r20, that is V (s) =
∫ r20
s
F (̺) d̺, as well as the momen-

tum. The momentum (with respect to the direction of propagation x1) is a functional Q defined on E (or,
alternatively, on X ) in the following way. Denoting by 〈·, ·〉 the standard scalar product in C, it has been
proven in [17] and [36] that for any ψ ∈ E we have 〈i ∂ψ∂x1

, ψ〉 ∈ Y +L1(RN ), where Y = { ∂h
∂x1

| h ∈ Ḣ1(RN )}
and Y is endowed with the norm ‖∂x1

h‖Y = ‖∇h‖L2(RN ). It is then possible to define the linear continuous

functional L on Y + L1(RN ) by

L

(
∂h

∂x1
+Θ

)
=

∫

RN

Θ(x) dx for any
∂h

∂x1
∈ Y and Θ ∈ L1(RN ).

The momentum (with respect to the direction x1) of a function ψ ∈ E is Q(ψ) = L
(
〈i ∂ψ∂x1

, ψ〉
)
.

If ψ ∈ E does not vanish, it can be lifted in the fom ψ = ρeiφ and we have

Q(ψ) =

∫

RN

(r20 − ρ2)
∂φ

∂x1
dx. (3)

Any solution U ∈ E of (TWc) is a critical point of the functional Ec = E + cQ and satisfies the standard
Pohozaev identities (see Proposition 4.1 p. 1091 in [34]):





Pc(U) = 0, where Pc(U) = E(U) + cQ(U)− 2

N − 1

∫

RN

|∇x⊥
U |2 dx, and

E(U) = 2

∫

RN

|∂x1
U |2 dx.

(4)

We denote
Cc = {ψ ∈ E

∣∣ ψ is not constant and Pc(ψ) = 0}. (5)

Using the Madelung transform Ψ =
√
̺eiθ (which makes sense in any domain where Ψ 6= 0), equation

(NLS) can be put into a hydrodynamical form. In this context one may compute the associated speed of
sound at infinity (see, for instance, the introduction of [34]):

cs =
√
−2r20F

′(r20) > 0.

Under general assumptions it was proved that finite energy travelling waves to (NLS) with speed c exist if
and only if |c| < cs (see [34, 36]).

Let us recall the existence results of nontrivial travelling waves that we use.
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Theorem 1 ([17]) Let N = 2 and assume that the nonlinearity F satisfies (A2) and (A4)and that Γ 6= 0.

(a) Suppose moreover that V is nonnegative on [0,∞). Then for any q ∈ (−∞, 0) there exists U ∈ E
such that Q(U) = q and

E(U) = inf{E(ψ)
∣∣ ψ ∈ E , Q(ψ) = q}.

(b) Without any assumption on the sign of V , there is q∞ > 0 such that for any q ∈ (−q∞, 0) there is
U ∈ E satisfying Q(U) = q and

E(U) = inf
{
E(ψ)

∣∣ ψ ∈ E , Q(ψ) = q,

∫

R2

V (|ψ|2) dx > 0
}
.

For any U satisfying (a) or (b) there exists c = c(U) ∈ (0, cs) such that U is a nonconstant solution to
(TWc(U)). Moreover, if Q(U1) < Q(U2) < 0 we have 0 < c(U1) < c(U2) < cs and c(U) → cs as q → 0.

Theorem 2 ([17]) Let N = 2. Assume that the nonlinearity F satisfies (A2) and (A4) and that Γ 6= 0.

Then there exists 0 < k∞ ≤ ∞ such that for any k ∈ (0, k∞), there is U ∈ E such that

∫

R2

|∇U|2 dx = k and

∫

R2

V (|U|2) dx+Q(U) = inf

{∫

R2

V (|ψ|2) dx+Q(ψ)
∣∣∣ ψ ∈ E ,

∫

R2

|∇ψ|2 dx = k

}
.

For any such U there exists c = c(U) ∈ (0, cs) such that the function U(x) = U(x/c) is a solution to (TWc).

Moreover, if U1, U2 are as above and

∫

R2

|∇U1|2 dx <
∫

R2

|∇U2|2 dx, then cs > c(U1) > c(U2) > 0 and we

have c(U) → cs as k → 0.

Theorem 3 ([36]) Assume that N ≥ 3 and the nonlinearity F satisfies (A1) and (A2). Then for any
0 < c < cs there exists a nonconstant U ∈ E such that Pc(U) = 0 and E(U) + cQ(U) = inf

ψ∈Cc

(E(ψ) + cQ(ψ)).

If N ≥ 4, any such U is a nontrivial solution to (TWc). If N = 3, for any U as above there exists σ > 0
such that U(x) = U(x1, σx⊥) ∈ E is a nontrivial solution to (TWc).

If (A3) holds it was proved that there is C0 > 0, depending only on F , such that for any c ∈ (0, cs) and
for any solution U ∈ E to (TWc) we have |U | ≤ C0 in R

N (see Proposition 2.2 p. 1079 in [34]). If (A3) is
satisfied but (A2) is not, one can modify F in a neighborhood of infinity in such a way that the modified
nonlinearity F̃ satisfies (A2) and (A3) and F = F̃ on [0, 2C0]. Then the solutions of (TWc) are the same
as the solutions of (TWc) with F replaced by F̃ . Therefore all the existence results above hold if (A2) is
replaced by (A3); however, the minimizing properties hold only if we replace throughout F and V by F̃ and

Ṽ , respectively, where Ṽ (s) =

∫ r20

s

F̃ (τ) dτ .

The above results provide, under various assumptions, travelling waves to (NLS) with speed close to the
speed of sound cs. We will study the behavior of travelling waves in the transonic limit c→ cs in each of the
previous situations.

1.1 Convergence to ground states for (KP-I)

In the transonic limit, the travelling waves are expected to be rarefaction pulses close, up to a rescaling, to
ground states of the Kadomtsev-Petviashvili I (KP-I) equation. We refer to [26] in the case of the Gross-
Pitaevskii equation (F (̺) = 1− ̺) in space dimension N = 2 or N = 3, and to [29], [28], [30] in the context
of Nonlinear Optics. In our setting, the (KP-I) equation associated to (NLS) is

2∂τ ζ + Γζ∂z1ζ −
1

c
2
s

∂3z1ζ +∆z⊥∂
−1
z1 ζ = 0, (KP-I)

where ∆z⊥ =

N∑

j=2

∂2zj and the coefficient Γ is related to the nonlinearity F by (2).

The (KP-I) flow preserves (at least formally) the L2 norm
∫

RN

ζ2 dz
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and the energy

E (ζ) =

∫

RN

1

c
2
s

(∂z1ζ)
2 + |∇z⊥∂

−1
z1 ζ|

2 +
Γ

3
ζ3 dz.

A solitary wave of speed 1/(2c2s), moving to the left in the z1 direction, is a particular solution of (KP-I) of
the form ζ(τ, z) = W(z1 + τ/(2c2s), z⊥). The profile W solves the equation

1

c
2
s

∂z1W + ΓW∂z1W − 1

c
2
s

∂3z1W +∆z⊥∂
−1
z1 W = 0. (SW)

Equation (SW) has no nontrivial solution in the degenerate linear case Γ = 0 or in space dimension N ≥ 4
(see Theorem 1.1 p. 214 in [20] or the begining of section 2). If Γ 6= 0, since the nonlinearity is homogeneous,
one can construct solitary waves of any (positive) speed just by using the scaling properties of the equation.
The solutions of (SW) are critical points of the associated action

S (W) = E (W) +
1

c
2
s

∫

RN

W2 dz.

The natural energy space for (KP-I) is Y (RN ), which is the closure of ∂z1C∞
c (RN ) for the (squared) norm

‖W‖2
Y (RN ) =

∫

RN

1

c
2
s

W2 +
1

c
2
s

(∂z1W)2 + |∇z⊥∂
−1
z1 W|2 dz.

From the anisotropic Sobolev embeddings (see [7], p. 323) it follows that S is well-defined and is a continuous
functional on Y (RN ) for N = 2 and N = 3. Here we are not interested in arbitrary solitary waves for (KP-I),
but only in ground states. A ground state of (KP-I) with speed 1/(2c2s) (or, equivalently, a ground state of
(SW)) is a nontrivial solution of (SW) which minimizes the action S among all solutions of (SW). We shall
denote Smin the corresponding action:

Smin = inf
{

S (W)
∣∣∣W ∈ Y (RN ) \ {0}, W solves (SW)

}
.

The existence of ground states (with speed 1/(2c2s)) for (KP-I) in dimensions N = 2 and N = 3 follows from
Lemma 2.1 p. 1067 in [21]. In dimension N = 2, we may use the variational characterization provided by
Lemma 2.2 p. 78 in [22]:

Theorem 4 ([22]) Assume that N = 2 and Γ 6= 0. There exists µ > 0 such that the set of solutions to the
minimization problem

M (µ) = inf

{
E (W)

∣∣∣W ∈ Y (R2),

∫

R2

1

c
2
s

W2 dz = µ

}
, (6)

is precisely the set of ground states of (KP-I) and it is not empty. Moreover, any sequence (Wn)n≥1 ⊂ Y (R2)

such that

∫

R2

1

c
2
s

W2
n dz → µ and E (Wn) → M (µ) contains a convergent subsequence in Y (R2) (up to

translations). Finally, we have

µ =
3

2
Smin and M (µ) = −1

2
Smin.

We emphasize that this characterization of ground states is specific to the two-dimensional case. Indeed,
since E and the L2 norm are conserved by (KP-I), it implies the orbital stability of the set of ground states
for (KP-I) if N = 2 (cf. [22]). On the other hand, it is known that this set is orbitally unstable if N = 3
(see [33]). In the three-dimensional case we need the following result, which shows that ground states are
minimizers of the action under a Pohozaev type constraint. Notice that any solution of (SW) in Y (RN )
satisfies the Pohozaev identity

∫

RN

1

c
2
s

(∂z1W)2 + |∇z⊥∂
−1
z1 W|2 + Γ

3
W3 +

1

c
2
s

W2 dz =
2

N − 1

∫

RN

|∇z⊥∂
−1
z1 W|2 dz,

which is (formally) obtained by multiplying (SW) by z⊥ · ∇z⊥∂
−1
z1 W and integrating by parts (see Theorem

1.1 p. 214 in [20] for a rigorous justification). Taking into account how travelling wave solutions to (NLS)
are constructed in Theorem 3 above, in the case N = 3 we consider the minimization problem

S∗ = inf
{

S (W)
∣∣∣W ∈ Y (R3) \ {0}, S (W) =

∫

R3

|∇z⊥∂
−1
z1 W|2 dz

}
. (7)
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Our first result shows that in space dimension N = 3 the ground states (with speed 1/(2c2s)) of (KP-I)
are the solutions of the minimization problem (7).

Theorem 5 Assume that N = 3 and Γ 6= 0. Then S∗ > 0 and the problem (7) has minimizers. Moreover,
W0 is a minimizer for the problem (7) if and only if there exist a ground state W for (KP-I) (with speed
1/(2c2s)) and σ > 0 such that W0(z) = W(z1, σz⊥). In particular, we have S∗ = Smin.

Furthermore, let (Wn)n≥1 ⊂ Y (R3) be a sequence satisfying:

(i) There are positive constants m1,m2 such that m1 ≤
∫

R3

W2
n + (∂z1Wn)

2 dz ≤ m2.

(ii)

∫

R3

1

c
2
s

W2
n +

1

c
2
s

(∂z1Wn)
2 +

Γ

3
W3
n dz → 0 as n→ ∞.

(iii) lim inf
n→∞

S (Wn) ≤ S∗.

Then there exist σ > 0, W ∈ Y (R3) \ {0}, a subsequence (Wnj
)j≥0, and a sequence (zj)j≥0 ⊂ R

3 such that
z 7→ W(z1, σ

−1z⊥) is a ground state for (KP-I) with speed 1/(2c2s) and

Wnj
(· − zj) → W in Y (R3).

We will study the behavior of travelling waves to (TWc) in the transonic limit cր cs in space dimension
N = 2 and N = 3 under the assumption Γ 6= 0 (so that (KP-I) has nontrivial solitary waves). For 0 < ε < cs,
we define c(ε) > 0 by

c(ε) =
√
c
2
s − ε2.

As already mentioned, in this asymptotic regime the travelling waves are expected to be close to ”the”
ground state of (KP-I) (to the best of our knowledge, the uniqueness of this solution up to translations has
not been proven yet). Let us give the formal derivation of this result, which follows the arguments given in
[26] for the Gross-Pitaevskii equation in dimensions N = 2 and N = 3. We insert the ansatz

U(x) = r0

(
1 + ε2Aε(z)

)
exp

(
iεϕε(z)

)
where z1 = εx1, z⊥ = ε2x⊥ (8)

in (TWc(ε)), cancel the phase factor and separate the real and imaginary parts to obtain the system




−c(ε)∂z1Aε + 2ε2∂z1ϕε∂z1Aε + 2ε4∇z⊥ϕε · ∇z⊥Aε + (1 + ε2Aε)
(
∂2z1ϕε + ε2∆z⊥ϕε

)
= 0

−c(ε)∂z1ϕε + ε2(∂z1ϕε)
2 + ε4|∇z⊥ϕε|2 −

1

ε2
F
(
r20(1 + ε2Aε)

2
)
− ε2

∂2z1Aε + ε2∆z⊥Aε

1 + ε2Aε
= 0.

(9)

Formally, if Aε → A and ϕε → ϕ as ε → 0 in some reasonable sense, then to the leading order we obtain
−cs∂z1A+ ∂2z1ϕ = 0 for the first equation in (9). Since F is of class C2 near r20, using the Taylor expansion

F
(
r20(1 + ε2Aε)

2
)
= F (r20)− c

2
sε

2Aε +O(ε4)

with F (r20) = 0 and c
2
s = −2r20F

′(r20), the second equation in (9) implies −cs∂z1ϕ+ c
2
sA = 0. In both cases,

we obtain the constraint
csA = ∂z1ϕ. (10)

We multiply the first equation in (9) by c(ε)/c2s and we apply the operator 1
c
2
s
∂z1 to the second one, then we

add the resulting equalities. Using the Taylor expansion

F
(
r20(1 + α)2

)
= −c

2
sα−

(
c
2
s

2
− 2r40F

′′(r20)
)
α2 + F3(α), where F3(α) = O(α3) as α→ 0,

we get

c
2
s − c2(ε)

ε2c2s
∂z1Aε − 1

c
2
s

∂z1

(∂2z1Aε + ε2∆z⊥Aε

1 + ε2Aε

)
+
c(ε)

c
2
s

(1 + ε2Aε)∆z⊥ϕε

+
{
2
c(ε)

c
2
s

∂z1ϕε∂z1Aε +
c(ε)

c
2
s

Aε∂
2
z1ϕε +

1

c
2
s

∂z1
(
(∂z1ϕε)

2
)
+
[1
2
− 2r40

F ′′(r20)

c
2
s

]
∂z1(A

2
ε)
}

= −2ε2
c(ε)

c
2
s

∇z⊥ϕε · ∇z⊥Aε −
ε2

c
2
s

∂z1
(
|∇z⊥ϕε|2

)
− 1

c
2
sε

4
∂z1
(
F3(ε

2Aε)
)
. (11)
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If Aε → A and ϕε → ϕ as ε→ 0 in a suitable sense, we have c
2
s − c2(ε) = ε2 and ∂−1

z1 A = ϕ/cs by (10), and
then (11) gives

1

c
2
s

∂z1A− 1

c
2
s

∂3z1A+ ΓA∂z1A+∆z⊥∂
−1
z1 A = 0,

which is (SW).

The main result of this paper is as follows.

Theorem 6 Let N ∈ {2, 3} and assume that the nonlinearity F satisfies (A2) and (A4) with Γ 6= 0. Let
(Un, cn)n≥1 be any sequence such that Un ∈ E is a nonconstant solution of (TWcn), cn ∈ (0, cs) and cn → cs

as n→ ∞ and one of the following situations occur:

(a) N = 2 and Un minimizes E under the constraint Q = Q(Un), as in Theorem 1 (a) or (b).

(b) N = 2 and Un(cn·) minimizes the functional I(ψ) := Q(ψ) +

∫

RN

V (|ψ|2) dx under the constraint
∫

RN

|∇ψ|2 dx =

∫

RN

|∇Un|2 dx, as in Theorem 2.

(c) N = 3 and Un minimizes Ecn = E + cnQ under the constraint Pcn = 0, as in Theorem 3.

Then there exists n0 ∈ N such that |Un| ≥ r0/2 in R
N for all n ≥ n0 and, denoting εn =

√
c
2
s − c2n (so

that cn = c(εn)), we have

E(Un) ∼ −csQ(Un) ∼ r20c
4
s(7− 2N)Smin

(
c
2
s − c2n

) 5−2N
2

= r20c
4
s(7− 2N)Sminε

5−2N
n (12)

and

E(Un) + cnQ(Un) ∼ c
2
sr

2
0Sminε

7−2N
n as n→ ∞. (13)

Moreover, Un can be written in the form

Un(x) = r0

(
1 + ε2nAn(z)

)
exp

(
iεnϕn(z)

)
, where z1 = εnx1, z⊥ = ε2nx⊥,

and there exist a subsequence (Unk
, cnk

)k≥1, a ground state W of (KP-I) and a sequence (zk)k≥1 ⊂ R
N such

that, denoting Ãk = Ank
(· − zk), ϕ̃k = ϕnk

(· − zk), for any 1 < p <∞ we have

Ãk → W, ∂z1Ãk → ∂z1W, ∂z1 ϕ̃k → csW and ∂2z1 ϕ̃k → cs∂z1W in W 1,p(RN ) as k → ∞.

As already mentioned, if F satisfies (A3) and (A4) it is possible to modify F in a neighborhood of
infinity such that the modified nonlinearity F̃ also satisfies (A2) and (TWc) has the same solutions as the
same equation with F̃ instead of F . Then one may use Theorems 1, 2 and 3 to construct travelling waves
for (NLS). It is obvious that Theorem 6 above also applies to the solutions constructed in this way.

Let us mention that in the case of the Gross-Pitaevskii nonlinearity F (̺) = 1 − ̺ and in dimension
N = 2, F. Béthuel, P. Gravejat and J-C. Saut proved in [8] the same type of convergence for the solutions
constructed in [9]. Those solutions are global minimizers of the energy with prescribed momentum, which
allows to derive a priori bounds: for instance, their energy is small. In fact, if V is nonnegative and N = 2,
Theorem 1 provides travelling wave solutions with speed ≃ cs for |q| small and the proof of Theorem 6 is
quite similar to [8], and therefore we will focus on the other cases. However, if the potential V achieves
negative values, the minimization of the energy under the constraint of fixed momentum on the whole space
E is no longer possible, hence the approach in Theorem 2 or the local minimization approach in Theorem 1
(b). In dimension N = 3 (even for the Gross-Pitaevskii nonlinearity F (̺) = 1− ̺), the travelling waves we
deal with have high energy and momentum and are not minimizers of the energy at fixed momentum (which
are the vortex rings, see [13]). In particular, we have to show that the Un’s are vortexless (|Un| ≥ r0/2). For
the Gross-Pitaevskii nonlinearity, Theorem 6 provides a rigorous proof to the existence of the upper branch
in the so-called Jones-Roberts curve in dimension three ([26]). This upper branch was conjectured by formal
expansions and numerical simulations (however limited to not so large momentum). In dimension N = 3,
the solutions on this upper branch are expected to be unstable (see [5]), and these rarefaction pulses should
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evolve by creating vortices (cf. [3]).

It is also natural to investigate the one dimensional case. Firstly, the (KP-I) equation has to be replaced
by the (KdV) equation

2∂τ ζ + Γζ∂zζ −
1

c
2
s

∂3zζ = 0, (KdV)

and (SW) becomes
1

c
2
s

∂zW + ΓW∂zW − 1

c
2
s

∂3zW = 0.

If Γ 6= 0, the only nontrivial travelling wave for (KdV) (up to space translations) is given by

w(z) = − 3

c
2
sΓ cosh2(z/2)

,

and there holds

S (w) =

∫

R

1

c
2
s

(∂zw)
2 +

Γ

3
w3 dz +

1

c
2
s

∫

R

w2 dz =

∫

R

2

c
2
s

(∂zw)
2 dz =

48

5c6sΓ
2
.

The following result, which corresponds to Theorem 6 in dimension N = 1, was proved in [16] by using ODE
techniques.

Theorem 7 ([16]) Let N = 1 and assume that F satisfies (A4) with Γ 6= 0. Then, there are δ > 0 and
0 < c0 < cs with the following properties. For any c0 ≤ c < cs, there exists a solution Uc to (TWc)
satisfying ‖ |Uc| − r0‖L∞(R) ≤ δ. Moreover, for c0 ≤ c < cs any nonconstant solution u of (TWc) verifying

‖ |u| − r0‖L∞(R) ≤ δ is of the form u(x) = e
iθUc(x − ξ) for some θ ∈ R and ξ ∈ R. The map Uc can be

written in the form

Uc(x) = r0
(
1 + ε2Aε(z)

)
exp(iεϕε(z)), where z = εx and ε =

√
c
2
s − c2

and for any 1 ≤ p ≤ ∞,

∂zϕε → csw and Aε → w in W 1,p(R) as ε→ 0.

Finally, as ε→ 0,

E(Uc(ε)) ∼ −csQ(Uc(ε)) ∼ 5r20c
4
sS (w)

(
c
2
s − c2(ε)

) 3
2

= ε3
48r20
c
2
sΓ

2

and

E(Uc(ε)) + c(ε)Q(Uc(ε)) ∼ c
2
sr

2
0S (w)ε5 =

48r20
5c4sΓ

2
ε5.

Remark 8 In the one-dimensional case it can be easily shown that the mapping (c0, cs) ∋ c 7→ (Ac −
r0, ∂zφ) ∈W 1,p(R), where Uc = Ac exp(iφ), is continuous for every 1 ≤ p ≤ ∞.

A natural question is to investigate the dynamical counterparts of Theorems 6 and 7. If Ψ0
ε is an initial

datum for (NLS) of the type

Ψ0
ε(x) = r0

(
1 + ε2A0

ε(z)
)
exp

(
iεϕ0

ε(z)
)
,

with z = (z1, z⊥) = (εx1, ε
2x⊥) and csA

0
ε ≃ ∂z1ϕ

0
ε, we use for Ψε the ansatz at time t > 0, for some functions

Aε, ϕε depending on (τ, z),

Ψε(t, x) = r0

(
1 + ε2Aε(τ, z)

)
e
iεϕε(τ,z), τ = csε

3t, z1 = ε(x1 − cst), z⊥ = ε2x⊥.

Similar computations imply that, for times τ of order one (that is t of order ε−3), we have csAε ≃ ∂z1ϕε and
Aε converges to a solution of the (KP-I) equation. This (KP-I) asymptotic dynamics for the Gross-Pitaevskii
equation in dimension N = 3 is formally derived in [5] and is used to investigate the linear instability of
the solitary waves of speed close to cs =

√
2. The one-dimensional analogue, where the (KP-I) equation

has to be replaced by the corresponding Korteweg-de Vries equation, can be found in [39] and [28]. The
rigorous mathematical proofs of these regimes have been provided in [18] in arbitrary space dimension and
for a general nonlinearity F (the coefficient Γ might even vanish), respectively in [11] for the one dimensional
Gross-Pitaevskii equation by using the complete integrability of the equation (more precisely, the existence
of sufficiently many conservation laws).
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1.2 Scheme of the proof of Theorem 6

In case (a) there is a direct proof of Theorem 6 which is quite similar to the one in [8]. Moreover, it follows
from Proposition 5.12 in [17] that if (Un, cn) satisfies (a) then it also satisfies (b), so it suffices to prove
Theorem 6 in cases (b) and (c).

The first step is to give sharp asymptotics for the quantities minimized in [17] and [36] in order to prove
the existence of travelling waves, namely to estimate

Imin(k) = inf
{∫

R2

V (|ψ|2) dx+Q(ψ)
∣∣ ψ ∈ E ,

∫

R2

|∇ψ|2 dx = k
}

as k → 0

and

Tc = inf
{
E(ψ) + cQ(ψ)

∣∣ ψ ∈ E , ψ is not constant, E(ψ) + cQ(ψ) =

∫

R3

|∇x⊥
ψ|2 dx} as c→ cs.

These bounds are obtained by plugging test functions with the ansatz (8) into the corresponding minimization
problems, where (Aε, ϕε) ≃ (A, c−1

s ∂−1
z1 A) and A is a ground state for (KP-I). A similar upper bound for

Imin(k) was already a crucial point in [17] to rule out the dichotomy of minimizing sequences.

Proposition 9 Assume that F satisfies (A2) and (A4) with Γ 6= 0. Then:

(i) If N = 2, we have as k → 0

Imin(k) ≤ − k

c
2
s

− 4k3

27r40c
12
s S 2

min

+O(k5).

(ii) If N = 3, the following upper bound holds as ε→ 0 (that is, as c(ε) → cs):

Tc(ε) ≤ c
2
sr

2
0Smin(c

2
s − c2(ε))

1
2 +O

(
(c2s − c2(ε))

3
2

)
= c

2
sr

2
0Sminε+O(ε3).

The second step is to derive upper bounds for the energy and the momentum. In space dimension
three (case (c)) this is tricky. Indeed, if Uc is a minimizer of Ec under the constraint Pc = 0, the only

information we have is about Tc =

∫

RN

|∇x⊥
Uc|2 dx (see the first identity in (4)). In particular, we have

no a priori bounds on

∫

RN

∣∣∣∂Uc
∂x1

∣∣∣
2

dx, Q(Uc) and the potential energy

∫

RN

V (|Uc|2) dx. Using an averaging

argument we infer that there is a sequence (Un, cn) for which we have ”good” bounds on the energy and the
momentum. Then we prove a rigidity property of ”good sequences”: any sequence (Un, cn) that satisfies the
”good bounds” has a subsequence that satisfies the conclusion of Theorem 6. This rigid behavior combined
with the existence of a sequence with ”good bounds” and a continuation argument allow us to conclude that
Theorem 6 holds for any sequence (Un, cn) with cn → cs (as in (c)). More precisely, we will prove:

Proposition 10 Let N ≥ 3 and assume that F satisfies (A1) and (A2). Then:

(i) For any c ∈ (0, cs) and any minimizer U of Ec in Cc we have Q(U) < 0.

(ii) The function (0, cs) ∋ c 7−→ Tc ∈ R+ is decreasing, thus has a derivative almost everywhere.

(iii) The function c 7−→ Tc is left continuous on (0, cs). If it has a derivative at c0, then for any minimizer
U0 of Ec0 under the constraint Pc0 = 0, scaled so that U0 solves (TWc0), there holds

dTc
dc |c=c0

= Q(U0).

(iv) Let c0 ∈ (0, cs). Assume that there is a sequence (cn)n≥1 such that cn > c0, cn → c0 and for any n
there is a minimizer Un ∈ E of Ecn on Ccn which solves (TWcn) and the sequence (Q(Un))n≥1 is bounded.
Then c 7−→ Tc is continuous at c0.

(v) Let 0 < c1 < c2 < cs. Let Ui be minimizers of Eci on Cci , i = 1, 2, such that Ui solves (TWci).
Denote q1 = Q(U1) and q2 = Q(U2). Then we have

T 2
c1

q21
− c21 ≥ T 2

c2

q22
− c22.
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(vi) If N = 3, F verifies (A4) and Γ 6= 0, there exist a constant C > 0 and a sequence εn → 0 such that
for any minimizer Un ∈ E of Ec(εn) on Cc(εn) which solves (TWc(εn)) we have

E(Un) ≤
C

εn
and |Q(Un)| ≤

C

εn
.

Proposition 11 Assume that N = 3, (A2) and (A4) hold and Γ 6= 0. Let (Un, εn)n≥1 be a sequence such
that εn → 0, Un minimizes Ec(εn) on Cc(εn), satisfies (TWc(εn)) and there exists a constant C > 0 such that

E(Un) ≤
C

εn
and |Q(Un)| ≤

C

εn
for all n.

Then there is a subsequence of (Un, c(εn))n≥1 which satisfies the conclusion of Theorem 6.

Proposition 12 Let N = 3 and suppose that (A2) and (A4) hold with Γ 6= 0. There are K > 0 and ε∗ > 0
such that for any ε ∈ (0, ε∗) and for any minimizer U of Ec(ε) on Cc(ε) scaled so that U satisfies (TWc(ε))
we have

E(U) ≤ K

ε
and |Q(U)| ≤ K

ε
.

It is now obvious that the proof of Theorem 6 in the three-dimensional case follows directly from Propo-
sitions 11 and 12 above.

The most difficult and technical point in the above program is to prove Proposition 11. Let us describe
our strategy to carry out that proof, as well as the proof of Theorem 6 in the two-dimensional case.

Once we have a sequence of travelling waves to (NLS) with ”good bounds” on the energy and the
momentum and speeds that tend to cs, we need to show that those solutions do not vanish and can be lifted.
We recall the following result, which is a consequence of Lemma 7.1 in [17]:

Lemma 13 ([17]) Let N ≥ 2 and suppose that the nonlinearity F satisfies (A1) and ((A2) or (A3)). Then
for any δ > 0 there is M(δ) > 0 such that for all c ∈ [0, cs] and for all solutions U ∈ E of (TWc) such that
‖∇U‖L2(RN ) < M(δ) we have

‖ |U | − r0‖L∞(RN ) ≤ δ.

In the two-dimensional case the lifting properties follow immediately from Lemma 13. However, in

dimension N = 3, for travelling waves Uc(ε) which minimize Ec(ε) on Cc(ε) the quantity
∥∥∥∂Uc(ε)

∂x1

∥∥∥
2

L2
is large,

of order ≃ ε−1 as ε→ 0. We give a lifting result for those solutions, based on the fact that ‖∇x⊥
Uc(ε)‖2L2 =

N−1
2 Tc(ε) is sufficiently small.

Proposition 14 We consider a nonlinearity F satisfying (A1) and ((A2) or (A3)). Let U ∈ E be a travelling
wave to (NLS) of speed c ∈ [0, cs].

(i) If N ≥ 3, for any 0 < δ < r0 there exists µ = µ(δ) > 0 such that

∥∥∥ ∂U
∂x1

∥∥∥
L2(RN )

· ‖∇x⊥
U‖N−1

L2(RN )
≤ µ(δ) implies ‖ |U | − r0‖L∞(RN ) ≤ δ.

(ii) If N ≥ 4 and, moreover, (A3) holds or
∥∥∥ ∂U
∂x1

∥∥∥
L2(RN )

· ‖∇x⊥
U‖N−1

L2(RN )
≤ 1, then for any δ > 0 there

is m(δ) > 0 such that
∫

RN

|∇x⊥
U |2 dx ≤ m(δ) implies ‖ |U | − r0‖L∞(RN ) ≤ δ.

As an immediate consequence, the three-dimensional travelling wave solutions provided by Theorem 3
have modulus close to r0 (hence do not vanish) as c→ cs:

Corollary 15 Let N = 3 and consider a nonlinearity F satisfying (A2) and (A4) with Γ 6= 0. Then, the
travelling wave solutions Uc(ε) to (NLS) provided by Theorem 3 which satisfy an additional bound E(Uc(ε)) ≤
C
ε (with C independent on ε) verify

‖ |Uc(ε)| − r0‖L∞(R3) → 0 as ε→ 0.

In particular, for ε sufficiently close to 0 we have |Uc(ε)| ≥ r0/2 in R
3.
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Proof. By the the second identity in (4) we have

∫

R3

∣∣∣
∂Uc(ε)

∂x1

∣∣∣
2

dx =
1

2
E(Uc(ε)) ≤

C

ε
.

Moreover, the first identity in (4) and Proposition 9 (ii) imply

∫

R3

|∇x⊥
Uc(ε)|2 dx = Ec(ε)(Uc(ε)) = Tc(ε) ≤ Cε.

Hence
∥∥∥∂Uc(ε)

∂x1

∥∥∥
L2(R3)

‖∇x⊥
Uc(ε)‖2L2(R3) ≤ C

√
ε and the result follows from Proposition 14 (ii). �

We give now some properties of the two-dimensional travelling wave solutions provided by Theorem 2.

Proposition 16 Let N = 2 and assume that F verifies (A2) and (A4) with Γ 6= 0. Then there exist
constants C1, C2, C3, C4 > 0 and 0 < k∗ < k∞ such that all travelling wave solutions Uk provided by

Theorem 2 with 0 < k =

∫

R2

|∇Uk|2 dx < k∗ satisfy |Uk| ≥ r0/2 in R
2,

C1k ≤ −Q(Uk) ≤ C2k, C1k ≤
∫

R2

V (|Uk|2) dx ≤ C2k, C1k ≤
∫

R2

(χ2(|Uk|)− r20)
2 dx ≤ C2k (14)

and have a speed c(Uk) =
√
c
2
s − ε2k satisfying

C3k ≤ εk ≤ C4k. (15)

At this stage, we know that the travelling waves provided by Theorems 2 and 3 do not vanish if their
speed is sufficiently close to cs. Using the above lifting results, we may write such a solution Uc in the form

Uc(x) = ρ(x)eiφ(x) = r0
√
1 + ε2Aε(z) e

iεϕε(z), where ε =
√

c
2
s − c2, z1 = εx1, z⊥ = ε2x⊥, (16)

and we use the same scaling as in (8). The interest of writing the modulus in this way (and not as in (8)) is
just to simplify a little bit the algebra and to have expressions similar to those in [8]. Since Aε = 2Aε+ε

2A2
ε,

bounds in Sobolev spaces for Aε imply similar Sobolev bounds for Aε and conversely. We shall now find
Sobolev bounds for Aε and ϕε. It is easy to see that (TWc) is equivalent to the following system for the
phase ϕ and the modulus ρ (in the original variable x):





c
∂

∂x1
(ρ2 − r20) = 2div(ρ2∇φ),

∆ρ− ρ|∇φ|2 + ρF (ρ2) = −cρ ∂φ
∂x1

.

(17)

Multiplying the second equation by 2ρ, we write (17) in the form





2div((ρ2 − r20)∇φ)− c
∂

∂x1
(ρ2 − r20) = −2r20∆φ,

∆(ρ2 − r20)− 2|∇Uc|2 + 2ρ2F (ρ2) + 2c(ρ2 − r20)
∂φ

∂x1
= −2cr20

∂φ

∂x1
.

(18)

Let η = ρ2 − r20. We apply the operator −2c
∂

∂x1
to the first equation in (18) and we take the Laplacian of

the second one, then we add the resulting equalities to get

[
∆2 − c

2
s∆+ c2

∂2

∂x21

]
η = ∆

(
2|∇Uc|2 − 2cη

∂φ

∂x1
− 2ρ2F (ρ2)− c

2
sη

)
+ 2c

∂

∂x1
(div(η∇φ)). (19)

Since c
2
s = −2r20F

′(r20), using the Taylor expansion

2(s+ r20)F (s+ r20) + c
2
ss = − c

2
s

r20

(
1− r40F

′′(r20)

c
2
s

)
s2 + r20F̃3(s),
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where F̃3(s) = O(s3) as s → 0, we see that the right-hand side in (19) is at least quadratic in (η, φ). Then
we perform a scaling and pass to the variable z = (εx1, ε

2x⊥) (where ε =
√
c
2
s − c2), so that (19) becomes

{
∂4z1 − ∂2z1 − c

2
s∆z⊥ + 2ε2∂2z1∆z⊥ + ε4∆2

z⊥

}
Aε = Rε, (20)

where Rε contains terms at least quadratic in (Aε, ϕε):

Rε = {∂2z1 + ε2∆z⊥}
[
2(1 + ε2Aε)

(
(∂z1ϕε)

2 + ε2|∇z⊥ϕε|2
)
+ ε2

(∂z1Aε)
2 + ε2|∇z⊥Aε|2

2(1 + ε2Aε)

]

− 2cε2∆z⊥(Aε∂z1ϕε) + 2cε2
N∑

j=2

∂z1∂zj (Aε∂zjϕε)

+ {∂2z1 + ε2∆z⊥}
[
c
2
s

(
1− r40F

′′(r20)

c
2
s

)
A2
ε −

1

ε4
F̃3(r

2
0ε

2Aε)
]
.

In the two-dimensional case, uniform bounds (with respect to ε) in Sobolev spaces have been derived in [8]
by using (20) and a bootstrap argument. This technique is based upon the fact that some kernels related to
the linear part in (20), such as

F
−1
( ξ21
ξ41 + ξ21 + c

2
s|ξ⊥|2 + 2ε2ξ21 |ξ⊥|2 + ε4|ξ⊥|4

)
and F

−1
( ε2|ξ⊥|2
ξ41 + ξ21 + c

2
s|ξ⊥|2 + 2ε2ξ21 |ξ⊥|2 + ε4|ξ⊥|4

)

are bounded in Lp(R2) for p in some interval [2, p̄), uniformly with respect to ε. However, this is no longer
true in dimension N = 3: the above mentioned kernels are not in L2(R3) (but their Fourier transforms are
uniformly bounded), and from the analysis in [23], the kernel

F
−1
( ξ21
ξ41 + ξ21 + c

2
s|ξ⊥|2

)

is presumably too singular near the origin to be in Lp(R3) if p ≥ 5/3. This lack of integrability of the kernels
makes the analysis in the three dimensional case much more diffcult than in the case N = 2.

One of the main difficulties in the three dimensional case is to prove that for ε sufficiently small, Aε is
uniformly bounded in Lp for some p > 2. To do this we use a suitable decomposition of Aε in the Fourier
space (see the proof of Lemma 24 below). Then we improve the exponent p by using a bootstrap argument,
combining the iterative argument in [8] (which uses the quadratic nature of Rε in (20)) and the appropriate
decomposition of Aε in the Fourier space. This leads to some Lp bound with p > 3 = N . Once this bound
is proved, the proof of the W 1,p bounds follows the scheme in [8]. We get:

Proposition 17 Under the assumptions of Theorem 6, there is ε0 > 0 such that Aε ∈ W 4,p(RN ) and
∇ϕe ∈ W 3,p(RN ) for all ε ∈ (0, ε0) and all p ∈ (1,∞). Moreover, for any p ∈ (1,∞) there exists Cp > 0
satisfying for all ε ∈ (0, ε0)

‖Aε‖Lp + ‖∇Aε‖Lp + ‖∂2z1Aε‖Lp + ε‖∂z1∇z⊥Aε‖Lp + ε2‖∇2
z⊥

Aε‖Lp ≤ Cp and (21)

‖∂z1ϕε‖Lp + ε‖∇z⊥ϕε‖Lp + ‖∂2z1ϕε‖Lp + ε‖∇z⊥∂z1ϕε‖Lp + ε2‖∇2
z⊥
ϕε‖Lp

+‖∂3z1ϕε‖Lp + ε‖∇z⊥∂
2
z1ϕε‖Lp + ε2‖∇2

z⊥
∂z1ϕε‖Lp ≤ Cp.

(22)

The estimate (21) is also valid with Aε instead of Aε.

Once these bounds are established, the estimates in Proposition 9 show that (c−1
s ∂z1ϕn)n≥0 is a mini-

mizing sequence for the problem (6) if N = 2, respectively for the problem (7) if N = 3. Since Theorems 4
and 5 provide compactness properties for minimizing sequences, we get (pre)compactness of (c−1

s ∂z1ϕn)n≥0

in Y (RN ) →֒ L2(RN ), and then we complete the proof of Theorem 6 by standard interpolation in Sobolev
spaces.
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1.3 On the higher dimensional case

It is natural to ask what happens in the transsonic limit in dimension N ≥ 4. Firstly, it should be noticed
that even for the Gross-Pitaevskii nonlinearity the problem is critical if N = 4 and supercritical in higher
dimensions, hence Theorem 3 does not apply directly.

The first crucial step is to investigate the behaviour of Tc as c → cs. In particular, in order to be able
to use Proposition 14 to show that the solutions are vortexless in this limit, we would need to prove that
Tc → 0 as c → cs. We have not been able to prove (or disprove) this in dimension N = 4 and N = 5,
except for the case Γ = 0. Quite surprisingly, for nonlinearities satisfying (A3) and (A4) (this is the case for
both the Gross-Pitaevskii and the cubic-quintic nonlinearity), this is not true in dimension higher than 5,
as shown by the following

Proposition 18 Suppose that F satisfies (A3) and (A4) (and Γ is arbitrary). If N ≥ 6, there exists δ > 0
such that for any 0 ≤ c ≤ cs and for any nonconstant solution U ∈ E of (TWc), we have

E(U) + cQ(U) ≥ δ.

In particular,
inf

0<c<cs

Tc > 0.

The same conclusion holds if N ∈ {4, 5} provided that Γ = 0.

Therefore we do not know if the solutions constructed in Theorem 3 (for a subcritical nonlinearity) may
vanish or not as c → cs if N ≥ 6. On the other hand we can show, in any space dimension N ≥ 4, that we
cannot scale the solutions in order to have compactness and convergence to a localized and nontrivial object
in the transonic limit as soon as the quantity E + cQ tends to zero.

Proposition 19 Let N ≥ 4 and suppose that F satisfies (A2), (A3) and (A4) (and Γ is arbitrary). Assume
that there exists a sequence (Un, cn) such that cn ∈ (0, cs], Un ∈ E is a nonconstant solution of (TWcn)
and Ecn(Un) → 0 as n → ∞. Then, for n large enough, there exist αn, βn, λn, σn ∈ R, An ∈ H1(RN ) and
ϕn ∈ Ḣ1(RN ) uniquely determined such that

Un(x) = r0

(
1 + αnAn(z)

)
exp

(
iβnϕn(z)

)
, where z1 = λnx1, z⊥ = σnx⊥,

αn → 0 and ‖An‖L∞(RN ) = ‖An‖L2(RN ) = ‖∂z1ϕn‖L2(RN ) = ‖∇z⊥ϕn‖L2(RN ) = 1.

Then we have cn → cs and
‖∂z1An‖L2(RN ) → 0 as n→ +∞.

Consequently, even if one could show that Tc → 0 as c → cs in space dimension 4 or 5, we would not
have a nontrivial limit (after rescaling) of the corresponding rarefaction pulses.

2 Three-dimensional ground states for (KP-I)

We recall the anisotropic Sobolev inequality (see [7], p. 323): for N ≥ 2 and for any 2 ≤ p < 2(2N−1)
2N−3 , there

exists C = C(p,N) such that for all Θ ∈ C∞
c (RN ) we have

‖∂z1Θ‖Lp(RN ) ≤ C‖∂z1Θ‖1−
(2N−1)(p−2)

2p

L2(RN )
‖∂2z1Θ‖

N(p−2)
2p

L2(RN )
‖∇z⊥Θ‖

(N−1)(p−2)
2p

L2(RN )
. (23)

This shows that the energy E is well-defined on Y (RN ) if N = 2 or N = 3. By (23) and the density of
∂z1C

∞
c (R3) in Y (R3) we get for any w ∈ Y (R3):

‖w‖L3(R3) ≤ C‖w‖
1
6

L2(R3)‖∂z1w‖
1
2

L2(R3)‖∇z⊥∂
−1
z1 w‖

1
3

L2(R3). (24)
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On the other hand, the following identities hold for any solution W ∈ Y (RN ) of (SW):





∫

RN

1

c
2
s

(∂z1W)2 + |∇z⊥∂
−1
z1 W|2 + Γ

2
W3 +

1

c
2
s

W2 dz = 0

∫

RN

−1

c
2
s

(∂z1W)2 + 3|∇z⊥∂
−1
z1 W|2 + Γ

3
W3 +

1

c
2
s

W2 dz = 0

∫

RN

1

c
2
s

(∂z1W)2 + |∇z⊥∂
−1
z1 W|2 + Γ

3
W3 +

1

c
2
s

W2 dz =
2

N − 1

∫

RN

|∇z⊥∂
−1
z1 W|2 dz.

(25)

The first identity is obtained by multiplying (SW) by ∂−1
z1 W and integrating, whereas the two other equalities

are the Pohozaev identities associated to the scalings in the z1 and z⊥ variables respectively. Formally, they
are obtained by multiplying (SW) by z1W and z⊥ ·∇z⊥∂

−1
z1 W respectively and integrating by parts (see [20]

for a complete justification). Combining the equalities in (25) we get





∫

RN

1

c
2
s

(∂z1W)2 dz =
N

N − 1

∫

RN

|∇z⊥∂
−1
z1 W|2 dz

Γ

6

∫

RN

W3 dz = − 2

N − 1

∫

RN

|∇z⊥∂
−1
z1 W|2 dz

∫

RN

1

c
2
s

W2 dz =
7− 2N

N − 1

∫

RN

|∇z⊥∂
−1
z1 W|2 dz.

(26)

Notice that for N ≥ 4 we have 7− 2N < 0 and the last equality implies W = 0.

We recall the following results about the ground states of (SW) and the compactness of minimizing
sequences in Y (R3).

Lemma 20 ([20], [21]) Let N = 3 and Γ 6= 0.

(i) For λ ∈ R
∗, denote Iλ = inf

{
‖w‖2

Y (R3) |
∫

R3

w3(z) dz = λ
}
. Then for any λ ∈ R

∗ we have Iλ > 0 and

there is wλ ∈ Y (R3) such that

∫

R3

w3
λ(z) dz = λ and ‖wλ‖2Y (R3) = Iλ. Moreover, any sequence (wn)n≥1 ⊂

Y (R3) such that

∫

R3

w3
n(z) dz → λ and ‖wn‖2Y (R3) → Iλ has a subsequence that converges in Y (R3) (up to

translations) to a minimizer of Iλ.

(ii) There is λ∗ ∈ R
∗ such that w∗ ∈ Y (R3) is a ground state for (SW) (that is, minimizes the action S

among all solutions of (SW)) if and only if w∗ is a minimizer of Iλ∗ .

The first part of Lemma 20 is a consequence of the proof of Theorem 3.2 p. 217 in [20] and the second
part follows from Lemma 2.1 p. 1067 in [21].

Proof of Theorem 5. Given w ∈ Y (R3) and σ > 0, we denote P (w) =

∫

R3

1

c
2
s

w2 +
1

c
2
s

|∂z1w|2 +
Γ

3
w3 dz

and wσ(z) = w(z1,
z⊥
σ ). It is obvious that

∫

R3

wpσ dz = σ2

∫

R3

wp dz,

∫

R3

|∂z1(wσ)|2 dz = σ2

∫

R3

|∂z1w|2 dz and

∫

R3

|∇z⊥∂
−1
z1 (wσ)|2 dz =

∫

R3

|∇z⊥∂
−1
z1 (w)|2w|2 dz.

Let w∗ be a ground state for (SW) (the existence of w∗ is guaranteed by Lemma 20 above). Since w∗

satisfies (25), we have P (w∗) = 0 and S (w∗) =

∫

R3

|∇z⊥∂
−1
z1 (w∗)|2w|2 dz. Consider w ∈ Y (R3) such that

w 6= 0 and P (w) = 0. Then
Γ

3

∫

R3

w3 dz = − 1

c
2
s

∫

R3

w2 + |∂z1w|2 dz < 0 and it is easy to see that there is
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σ > 0 such that

∫

R3

w3
σ dz =

∫

R3

(w∗)3 dz = λ∗. From Lemma 20 it follows that ‖wσ‖2Y (R3) ≥ ‖w∗‖2
Y (R3),

that is

σ2

c
2
s

∫

R3

w2 + |∂z1w|2 dz +
∫

R3

|∇z⊥∂
−1
z1 w|

2 dz ≥ 1

c
2
s

∫

R3

(w∗)2 + |∂z1w∗|2 dz +
∫

R3

|∇z⊥∂
−1
z1 w

∗|2 dz.

Since P (w) = 0 and P (w∗) = 0 we have

σ2

c
2
s

∫

R3

w2 + |∂z1w|2 dz = −σ2Γ

3

∫

R3

w3 dz = −Γ

3

∫

R3

(w∗)3 dz =
1

c
2
s

∫

R3

(w∗)2 + |∂z1w∗|2 dz

and the previous inequality gives

∫

R3

|∇z⊥∂
−1
z1 w|

2 dz ≥
∫

R3

|∇z⊥∂
−1
z1 w

∗|2 dz, that is S (w) ≥ S (w∗). So far

we have proved that the set P = {w ∈ Y (R3) | w 6= 0, P (w) = 0} is not empty and any ground state w∗

of (SW) minimizes the action S in this set. It is then clear that for any σ > 0, w∗
σ also belongs to P and

mnimizes S on P.

Conversely, let w ∈ P be such that S (w) = S∗. Let w∗ be a ground state for (SW). It is clear that∫

R3

|∇z⊥∂
−1
z1 w|

2 dz = S∗ =

∫

R3

|∇z⊥∂
−1
z1 w

∗|2 dz. As above, there is a unique σ > 0 such that

∫

R3

w3
σ dz =

∫

R3

(w∗)3 dz = λ∗ and then we have

∫

R3

w2
σ + |∂z1wσ|2 dz =

∫

R3

(w∗)2 + |∂z1w∗|2 dz. We find ‖wσ‖2Y (R3) =

‖w∗‖2
Y (R3) = Iλ∗ , thus wσ is a minimizer for Iλ∗ and Lemma 20 (ii) implies that wσ is a ground state for

(SW).

Let (Wn)n≥1 be a sequence satisfying (i), (ii) and (iii). We have P (Wn) → 0 and

Γ

3

∫

R3

W3
n dz = P (Wn)−

1

c
2
s

∫

R3

W2
n + |∂z1Wn|2 dz ∈

[−2m2

c
2
s

,−m1

2c2s

]
for all n sufficiently large.

We infer that there are n0 ∈ N, σ, σ̄ > 0 and a sequence (σn)n≥n0 ⊂ [σ, σ̄] such that

∫

R3

((Wn)σn
)3 dz = λ∗

for all n ≥ n0. Moreover,

‖(Wn)σn
‖2

Y (R3) =
σ2
n

c
2
s

∫

R3

W2
n + |∂z1Wn|2 dz +

∫

R3

|∇z⊥∂
−1
z1 Wn|2 dz

= σ2
n

(
P (Wn)−

Γ

3

∫

R3

W3
n

)
+ (S (Wn)− P (Wn))

= (σ2
n − 1)P (Wn) + S (Wn)−

Γ

3

∫

R3

(Wn)
3
σn
dz.

Passing to the limit in the above equality we get

lim inf
n→∞

‖(Wn)σn
‖2

Y (R3) = lim inf
n→∞

S (Wn)−
Γ

3
λ∗ ≤ S∗ −

Γ

3
λ∗ = S (w∗)− Γ

3

∫

R3

(w∗)3 dz = ‖w∗‖2
Y (R3) = Iλ∗ .

Hence there is a subsequence of ((Wn)σn
)n≥1 which is a minimizing sequence for Iλ∗ . Using Lemma 20 we

infer that there exist a subsequence (nj)j≥1 such that σnj
→ σ ∈ [σ, σ̄], a sequence (zj)j≥1 ⊂ R

3 and a
minimizer W of Iλ∗ (hence a ground state for (SW)) such that (Wnj

)σnj
(· − zj) → W in Y (R3). It is then

straightforward that Wnj
(· − zj) → W 1

σ
in Y (R3). �

We may give an alternate proof of Theorem 5 which does not rely directly on the analysis in [20], [21] by
following the strategy of [36], which can be adapted to our problem up to some details.

3 Proof of Theorem 6

3.1 Proof of Proposition 9

For some given real valued functions Aε and ϕε, we consider the mapping

Uε(x) = |Uε|(x)eiφ(x) = r0

(
1 + ε2Aε(z)

)
e
iεϕε(z), where z = (z1, z⊥) = (εx1, ε

2x⊥).
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It is obvious that Uε ∈ E provided that Aε ∈ H1(RN ) and ∇ϕε ∈ L2(RN ). If ε is small and Aε is uniformly
bounded in R

N , Uε does not vanish and the momentum Q(Uε) is given by

Q(Uε) = −
∫

RN

(|Uε|2 − r20)
∂φ

∂x1
dx = −ε5−2Nr20

∫

RN

(
2Aε + ε2A2

ε

)∂ϕε
∂z1

dz,

while the energy of Uε is

E(Uε) =

∫

RN

|∇Uε|2 + V (|Uε|2) dx

= ε5−2Nr20

∫

RN

(∂z1ϕε)
2
(
1 + ε2Aε

)2
+ ε2|∇z⊥ϕε|2

(
1 + ε2Aε

)2
+ ε2(∂z1Aε)

2 + ε4|∇z⊥Aε|2

+ c
2
sA

2
ε + ε2c2s

(
1− 4r40

3c2s
F ′′(r20)

)
A3
ε +

c
2
s

ε4
V4

(
ε2Aε

)
dz,

where we have used the Taylor expansion

V
(
r20(1 + α)2

)
= r20

{
c
2
sα

2 + c
2
s

(
1− 4r40

3c2s
F ′′(r20)

)
α3 + c

2
sV4(α)

}
= r20c

2
s

{
α2 +

(Γ
3
− 1
)
α3 + V4(α)

}
(27)

with V4(α) = O(α4) as α→ 0. Consequently, with c
2
s = c2(ε) + ε2 we get

Ec(ε)(Uε) = E(Uε) + c(ε)Q(Uε)

= ε5−2Nr20

∫

RN

(∂z1ϕε)
2
(
1 + ε2Aε

)2
+ ε2|∇z⊥ϕε|2

(
1 + ε2Aε

)2
+ ε2(∂z1Aε)

2 + ε4|∇z⊥Aε|2

+ c
2
sA

2
ε + ε2c2s

(
1− 4r40

3c2s
F ′′(r20)

)
A3
ε +

c
2
s

ε4
V4

(
ε2Aε

)
− c(ε)

(
2Aε + ε2A2

ε

)
∂z1ϕε dz

= ε7−2Nr20

∫

RN

1

ε2

(
∂z1ϕε − c(ε)Aε

)2
+ (∂z1ϕε)

2(2Aε + ε2A2
ε) + |∇z⊥ϕε|2(1 + ε2Aε)

2 + (∂z1Aε)
2

+ ε2|∇z⊥Aε|2 +A2
ε + c

2
s

(
1− 4r40

3c2s
F ′′(r20)

)
A3
ε +

c
2
s

ε6
V4(ε

2Aε)− c(ε)A2
ε∂z1ϕε dz. (28)

Since the first term in the last integral is penalised by ε−2, in order to get sharp estimates on Ec(ε) one needs
∂z1ϕε ≃ c(ε)Aε.

Let N = 3. By Theorem 5, there exists a ground state A ∈ Y (R3) for (SW). It follows from Theorem 4.1
p. 227 in [21] that A ∈ Hs(R3) for any s ∈ N. Let ϕ = cs∂

−1
z1 A. We use (28) with Aε(z) =

λcs
c(ε)A(λz1, z⊥)

and ϕε(z) = ϕ(λz1, z⊥). For ε > 0 small and λ ≃ 1 (to be chosen later) we define

Uε(x) = |Uε|(x)eiφε(x) = r0

(
1 + ε2

cs

c(ε)
λA(z)

)
e
iεϕ(z), where z = (z1, z⊥) = (ελx1, ε

2x⊥).

Notice that Uε does not vanish if ε is sufficiently small. Since ∂z1ϕ = csA, we have ∂z1ϕε(z) = λ∂z1ϕ(λz1, z⊥) =
λcsA(λz1, z⊥) = c(ε)Aε(z) and therefore

λEc(ε)(Uε) = c
2
sr

2
0ε

∫

R3

λ3
cs

c(ε)
A2
(
2A+ ε2

cs

c(ε)
λA2

)
+ λ2|∇z⊥∂

−1
z1 A|

2
(
1 + ε2

cs

c(ε)
λA
)2

+
λ4

c2(ε)
(∂z1A)

2

+ ε2
λ2

c2(ε)
|∇z⊥A|2 +

λ2

c2(ε)
A2 +

c
3
s

c3(ε)
λ3
(
1− 4r40

3c2s
F ′′(r20)

)
A3 +

1

ε6
V4

(
ε2

cs

c(ε)
λA
)

− λ3
cs

c(ε)
A3 dz

= c
2
sr

2
0ε

∫

R3

λ3
cs

c(ε)

(
1 +

c
2
s

c2(ε)

[Γ
3
− 1
])
A3 + λ2|∇z⊥∂

−1
z1 A|

2
(
1 + ε2

cs

c(ε)
λA
)2

+
λ4

c2(ε)
(∂z1A)

2

+
λ2

c2(ε)
A2 + ε2

λ2

c2(ε)
|∇z⊥A|2 + ε2λ4

c
2
s

c2(ε)
A4 +

1

ε6
V4

(
ε2

cs

c(ε)
λA
)
dz.
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On the other hand,

λ

∫

R3

|∇⊥Uε|2 dx = r20ε

∫

R3

|∇z⊥ϕ|2
(
1 + ε2λ

cs

c(ε)
A
)2

+ ε2λ2
c
2
s

c2(ε)
|∇z⊥A|2 dz

= c
2
sr

2
0ε

∫

R3

|∇z⊥∂
−1
z1 A|

2
(
1 + ε2λ

cs

c(ε)
A
)2

+ ε2
λ2

c2(ε)
|∇z⊥A|2 dz.

Hence Uε satisfies the constraint Pc(ε)(Uε) = 0 (or equivalently Ec(ε)(Uε) =

∫

R3

|∇⊥Uε|2 dx) if and only if

G(λ, ε2) = 0, where

G(λ, ε2) =

∫

R3

λ3
cs

c(ε)

(
1 +

c
2
s

c2(ε)

[Γ
3
− 1
])
A3 + λ2|∇z⊥∂

−1
z1 A|

2
(
1 + ε2

cs

c(ε)
λA
)2

+
λ4

c2(ε)
(∂z1A)

2

+
λ2

c2(ε)
A2 + ε2

λ2

c2(ε)
|∇z⊥A|2 + ε2λ4

c
2
s

c2(ε)
A4 +

1

ε6
V4

(
ε2

cs

c(ε)
λA
)
dz

−
∫

R3

|∇z⊥∂
−1
z1 A|

2
(
1 + ε2λ

cs

c(ε)
A
)2

+ ε2
λ2

c2(ε)
|∇z⊥A|2 dz.

Denote ǫ = ε2. Since A is a ground state for (SW), it satisfies the Pohozaev identities (25). The last of these

identities is S (A) =

∫

R3

|∇z⊥∂
−1
z1 A|

2 dz, or equivalently

G(λ = 1, ǫ = 0) = 0.

A straightforward computation using (26) gives

∂G

∂λ |(λ=1,ǫ=0)
=

∫

R3

ΓA3 + 2|∇z⊥∂
−1
z1 A|

2 +
4

c
2
s

(∂z1A)
2 +

2

c
2
s

A2 dz = 3

∫

R3

|∇z⊥∂
−1
z1 A|

2 6= 0.

Then the implicit function theorem implies that there exists a function ǫ 7−→ λ(ǫ) = 1 +O(ǫ) = 1 +O(ε2)
such that for all ǫ sufficiently small we have G(λ(ǫ), ǫ) = 0, that is Uc(ε) satisfies the Pohozaev identity
Pc(ε)(Uε) = 0. Choosing λ = λ(ε2) and taking into account the last indetity in (25), we find

Tc(ε) ≤ Ec(ε)(Uε) =

∫

R3

|∇⊥Uε|2 dx = c
2
sr

2
0ε

∫

R3

|∇z⊥∂
−1
z1 A|

2 +O(ε3) = c
2
sr

2
0εSmin +O(ε3)

and the proof of (ii) is complete.

Next we turn our attention to the case N = 2. Let A = c
−1
s ∂z1ϕ ∈ Y (R2) be a ground state of (SW).

The existence of A is given by Theorem 4. By Theorem 4.1 p. 227 in [20] we have A ∈ Hs(R2) for all s ∈ N.
For ε small, we define the map

Uε(x) = |Uε|(x)eiφε(x) = r0

(
1 + ε2

cs

c(ε)
A(z)

)
e
iεϕ(z), where z = (z1, z2) = (εx1, ε

2x2).

From the above computations and (26) we have

kε =

∫

R2

|∇Uε|2 dx = r20ε

∫

R2

(∂z1ϕε)
2
(
1 + ε2Aε

)2
+ ε2(∂z1Aε)

2 + ε2(∂z2ϕε)
2
(
1 + ε2Aε

)2
+ ε4(∂z2Aε)

2 dz

= r20c
2
sε

∫

R2

A2
(
1 +

ε2cs
c(ε)

A
)2

+
ε2

c2(ε)
(∂z1A)

2 + ε2(∂z2∂
−1
z1 A)

2
(
1 +

ε2cs
c(ε)

A
)2

+
ε4

c2(ε)
(∂z2A)

2 dz

= r20c
2
s

{
ε

∫

R2

A2 dz + ε3
∫

R2

(
2A3 +

(∂z1A)
2

c
2
s

+ (∂z2∂
−1
z1 A)

2
)
dz +O(ε5)

}

= r20c
2
s

{
ε
3

2
c
2
sS (A) + ε3

(
2− 12

Γ
− 1

2

)
S (A) +O(ε5)

}

It is easy to see that ε 7→ kε is a smooth increasing diffeomorphism from an interval [0, ε̄] onto an interval

[0, k̄ = k̄ε̄], and that ε =
kε

r20c
2
s‖A‖2L2

+ O(k3ε) =
kε

3
2r

2
0c

4
sS (A)

+ O(k3ε) as ε → 0. Moreover, denoting

Uσε (x) = Uε(x/σ) we have ∫

R2

|∇Uσε |2 dx =

∫

R2

|∇Uε|2 dx

17



because N = 2. Using the test function Uσε , it follows that

Imin(kε) ≤ I(Uσε ) for any σ > 0.

Since Q(Uε) < 0, the mapping

σ 7−→ I(Uσε ) = Q(Uσε ) +

∫

R2

V (|Uσε |2) dx = σQ(Uε) + σ2

∫

R2

V (|Uε|2) dx

achieves its minimum at σ0 =
−Q(Uε)

2

∫

R2

V (|Uε|2)
> 0, and the minimum value is I(Uσ0

ε ) =
−Q2(Uε)

4

∫

R2

V (|Uε|2) dx
.

Hence

Imin(kε) ≤ I(Uσ0
ε ) =

−Q2(Uε)

4

∫

R2

V (|Uε|2) dx
.

Using (27) and (26) we find
∫

R2

V (|Uε|2) dx = c
2
sr

2
0ε

∫

R2

A2 + ε2
(Γ
3
− 1
)
A3 +

1

ε4
V4(ε

2A) dz

=
3

2
c
4
sr

2
0S (A)ε− c

2
sr

2
0

(Γ
3
− 1
) 6
Γ

S (A)ε3 +O(ε5)

and

Q(Uε) = −εr20cs
∫

R2

(
2A2 + ε2A3

)
dz = −3r20c

3
sS (A)ε+ r20cs

6

Γ
S (A)ε3.

Finally we obtain

Imin(kε) +
kε
c
2
s

≤ −Q2(Uε)

4

∫

R2

V (|Uε|2) dx
+

1

c
2
s

∫

R2

|∇Uε|2 dx

= −
(
−3c2s +

6
Γε

2
)2
r40c

2
sS

2(A)ε2

4
[
3
2 c

2
s −

(
2− 6

Γ

)
ε2 +O(ε4)

]
r20c

2
sS (A)ε

+

[
3

2
r20c

2
sε+ r20

(3
2
− 12

Γ

)
ε3 +O(ε5)

]
S (A)

= −
(
3r20c

2
sε

3 +O(ε5)
)
S (A)

2
[
3c2s −

(
4− 12

Γ

)
ε2 +O(ε4)

] = −1

2
r20S (A)ε3 +O(ε5)

= −1

2
r20S (A)

[
kε

3
2r

2
0c

4
sS (A)

+O(k3ε)

]3
+O

((
kε

3
2r

2
0c

4
sS (A)

+O(k3ε)

)5
)

=
−4k3ε

27r40cs
12S 2

min

+O(k5ε).

Since ε 7−→ kε is a diffeomorphism from [0, ε̄] onto [0, k̄], Proposition 9 (i) is proven. �

3.2 Proof of Proposition 10

Given a function f defined on R
N and a, b > 0, we denote fa,b(x) = f(x1

a ,
x⊥

b ).

By Proposition 2.2 p. 1078 in [34], any solution of (TWc) belongs to W
2,p
loc (R

N ) for all p ∈ [2,∞), hence
to C1,α(RN ) for all α ∈ (0, 1).

(i) Let U be a minimizer of Ec = E + cQ on Cc (where Cc is as in (5)) such that ψ solves (TWc). Then
U satisfies the Pohozaev identities (4).

If Q(U) > 0, let Ũ(x) = U(−x1, x⊥), so that Q(Ũ) = −Q(U) < 0 and Pc(Ũ) = Pc(U) − 2cQ(U) =
−2cQ(U) < 0. Since for any function φ ∈ E we have

Pc(φa,1) =
1

a

∫

RN

∣∣∣ ∂φ
∂x1

∣∣∣
2

dx+ a
N − 3

N − 1

∫

RN

|∇x⊥
φ|2 dx+ cQ(φ) + a

∫

RN

V (|φ|2) dx, (29)
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we see that there is a0 ∈ (0, 1) such that Pc(Ũa0,1) = 0 . We infer that

Tc ≤ Ec(Ũa0,1) =
2

N − 1

∫

RN

|∇x⊥
Ũa0,1|2 dx = a0

2

N − 1

∫

RN

|∇x⊥
U |2 dx = a0Ec(U) = a0Tc,

contradicting the fact that Tc > 0. Thus Q(U) ≤ 0.

Assume that Q(U) = 0. From the identities (4) with Q(U) = 0 we get

∫

RN

∣∣∣ ∂U
∂x1

∣∣∣
2

dx = − 1

N − 2

∫

RN

V (|U |2) dx and

∫

RN

|∇x⊥
U |2 dx = −N − 1

N − 2

∫

RN

V (|U |2) dx. (30)

Since U ∈ E and U is not constant, necessarily

∫

RN

V (|U |2) dx = −(N−2)

∫

RN

∣∣∣ ∂U
∂x1

∣∣∣
2

dx < 0 and this implies

that the potential V must achieve negative values. Then it follows from Theorem 2.1 p. 100 in [15] that there

is ψ̃0 ∈ E such that

∫

RN

|∇ψ̃0|2 dx = inf
{∫

RN

|∇φ|2 dx
∣∣∣ φ ∈ E ,

∫

RN

V (|φ|2) dx = −1
}
. Using Theorem 2.2

p. 102 in [15] we see that there is σ > 0 such that, denoting ψ0 = (ψ̃0)σ,σ and −v0 =

∫

RN

V (|ψ0|2) dx = −σN ,

we have ∆ψ0 + F (|ψ0|2)ψ0 = 0 in R
N . Hence ψ0 solves (TW0) and

∫

RN

|∇ψ0|2 dx = inf
{∫

RN

|∇φ|2 dx
∣∣∣ φ ∈ E ,

∫

RN

V (|φ|2) dx = −v0
}
.

Since all minimizers of this problem solve (TW0) (after possibly rescaling), we know that they are C1 in R
N

and then Theorem 2 p. 314 in [35] imply that they are all radially symmetric (after translation). In particular,

we have Q(ψ0) = 0 and

∫

RN

∣∣∣∂ψ0

∂xj

∣∣∣
2

dx =
1

N

∫

RN

|∇ψ0|2 dx for j = 1, . . . , N . By Lemma 2.4 p. 104 in [15] we

know that ψ0 satisfies the Pohozaev identity

∫

RN

|∇ψ0|2 dx = − N

N − 2
v0. It follows that Pc(ψ0) = 0, hence

ψ0 ∈ Cc and we infer that Ec(ψ0) ≥ Tc, that is
2

N − 1

∫

RN

|∇x⊥
ψ0|2 dx ≥ 2

N − 1

∫

RN

|∇x⊥
U |2 dx. Taking

into account (30) and the radial symmetry of ψ0, this gives v0 ≥ −
∫

RN

V (|U |2) dx.
On the other hand, by scaling it is easy to see that ψ0 is a minimizer of the functional φ 7−→ ‖∇φ‖2L2(RN )

in the set P =
{
φ ∈ E

∣∣∣
∫

RN

|∇φ|2 dx = − N

N − 2

∫

RN

V (|φ|2) dx
}
. By (30) we have U ∈ P, hence

‖∇U‖2L2(RN ) ≥ ‖∇ψ0‖2L2(RN ) and consequently −
∫

RN

V (|U |2) dx ≥ v0. Thus ‖∇U‖2L2(RN ) = ‖∇ψ0‖2L2(RN ),∫

RN

V (|U |2) dx =

∫

RN

V (|ψ0|2) and U minimizes ‖∇ · ‖2L2(RN ) in the set
{
φ ∈ E

∣∣∣
∫

RN

V (|φ|2) dx = −v0
}
.

By Theorem 2.2 p. 103 in [15], U solves the equation ∆U + λF (|U |2)U = 0 in D′(RN ) for some λ > 0 and
using the Pohozaev identity associated to this equation we see that λ = 1, hence U solves (TW0). Since U
also solves (TWc) for some c > 0 and ∂U

∂x1
is continuous, we must have ∂U

∂x1
= 0 in R

N . Together with the
fact that U ∈ E , this implies that U is constant, a contradiction. Therefore we cannot have Q(U) = 0 and
we conclude that Q(U) < 0.

(ii) Fix c0 ∈ (0, cs) and let U0 ∈ E be a minimizer of Ec0 on Cc0 , as given by Theorem 3. It follows from
(29) that Pc((U0)a,1) =

1
aRc,U0(a), where

Rc,U0
(a) =

∫

RN

∣∣∣∂U0

∂x1

∣∣∣
2

dx+ acQ(U0) + a2
[
N − 3

N − 1

∫

RN

|∇x⊥
U0|2 dx+

∫

RN

V (|u0|2) dx
]

(31)

is a polynomial in a of degree at most 2. It is clear that Rc,U0(0) > 0, Rc0,U0(1) = Pc0(U0) = 0 and for
any c > c0 we have Rc,U0(1) = Pc0(U0) + (c − c0)Q(U0) < 0 because Q(U0) < 0. Hence there is a unique
a(c) ∈ (0, 1) such that Rc,U0

(a(c)) = 0, which means Pc((U0)a(c),1) = 0. We infer that

Tc ≤ Ec((U0)a(c),1) =
2

N − 1

∫

RN

|∇x⊥
(U0)a(c),1|2 dx = a(c)

2

N − 1

∫

RN

|∇x⊥
U0|2 dx = a(c)Tc0 . (32)
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Since a(c) ∈ (0, 1), we have proved that Tc < Tc0 whenever c0 ∈ (0, cs) and c ∈ (c0, cs), thus c 7−→ Tc is
decreasing. By a well-known result of Lebesgue, the function c 7−→ Tc has a derivative a.e.

(iii) Notice that (32) holds whenever c0, Uc0 are as above and a(c) is a positive root of Rc,U0
. Using the

Pohozaev identities (4) we find

2

∫

RN

∣∣∣∂U0

∂x1

∣∣∣
2

dx =
2

N − 1

∫

RN

|∇x⊥
U0|2 dx− c0Q(U0) = Tc0 − c0Q(U0) and then

N − 3

N − 1

∫

RN

|∇x⊥
U0|2 dx+

∫

RN

V (|u0|2) dx = −c0Q(U0)−
∫

RN

∣∣∣∂U0

∂x1

∣∣∣
2

dx = −1

2
c0Q(U0)−

1

2
Tc0 . (33)

We now distinguish two cases: Rc,U0 has degree one or two.

Case (a): If
N − 3

N − 1

∫

RN

|∇x⊥
U0|2 dx +

∫

RN

V (|u0|2) dx = 0, then Rc,U0 has degree one and we have
∫

RN

∣∣∣∂U0

∂x1

∣∣∣
2

dx + c0Q(U0) = 0 because Pc0(U0) = 0. Since Rc,U0
is an affine function, we find a(c) = c0

c for

all c > 0, hence a(c0) = 1. Moreover, the left-hand side in (33) is zero, thus we have c0Q(U0) + Tc0 = 0 and

consequently a′(c0) = − 1
c0

= Q(U0)
Tc0

.

Case (b): If
N − 3

N − 1

∫

RN

|∇x⊥
U0|2 dx +

∫

RN

V (|u0|2) dx 6= 0, Rc,U0
has degree two, and the discriminant

of this second-order polynomial is equal to

∆c,U0
= (c2 − c20)Q

2(U0) + T 2
c0 .

Consequently Rc,U0
has real roots as long as (c2 − c20)Q

2(U0) + T 2
c0 ≥ 0. It is easy to see that if there are

real roots, at least one of them is positive. Indeed, Rc,U0
(0) > 0 > R′

c,U0
(0). If ∆c,U0

≥ 0, no matter of the

sign of the leading order coefficient N−3
N−1

∫
RN |∇x⊥

U0|2 dx +
∫
RN V (|u0|2) dx 6= 0, the smallest positive root

a(c) of Rc,U0 is given by the formula

a(c) =
−cQ(U0)−

√
(c2 − c20)Q

2(U0) + T 2
c0

−c0Q(U0)− Tc0
=

−c0Q(U0) + Tc0

−cQ(U0) +
√

(c2 − c20)Q
2(U0) + T 2

c0

. (34)

Therefore, the function c 7−→ a(c) is defined on the interval [c̃0,∞) where c̃0 =

√
c20 −

T
c20

Q2(U0)
< c0, it is

differentiable on (c̃0,∞) and a(c0) = 1. Moreover, a straightforward computation gives a′(c0) =
Q(U0)
Tc0

. Note

that in Case (a), the last expression in (34) is equal to c0
c , which is then indeed a(c).

By (32) we have Tc ≤ a(c)Tc0 and passing to the limit we get lim
c→c0, c<c0

Tc ≤ lim
c→c0, c<c0

a(c)Tc0 = Tc0 .

Since c 7−→ Tc is decreasing, Tc > Tc0 for c < c0 and we see that it is left contiuous at c0. Moreover, we have

Tc − Tc0
c− c0

≤ a(c)− a(c0)

c− c0
Tc0 for c > c0, respectively

Tc − Tc0
c− c0

≥ a(c)− a(c0)

c− c0
Tc0 for c ∈ [c̃0, c0).

Passing to the limit in the above inequalities we obtain, since a′(c0) =
Q(U0)
Tc0

in Cases (a) and (b),

lim sup
c→c0, c>c0

Tc − Tc0
c− c0

≤ a′(c0)Tc0 = Q(U0), respectively lim inf
c→c0, c<c0

Tc − Tc0
c− c0

≥ a′(c0)Tc0 = Q(U0).

It is then clear that if c 7−→ Tc is differentiable at c0, necessarily
dTc
dc |c=c0

= Q(U0).

(iv) Fix c∗ ∈ (c0, cs). Passing to a subsequence we may assume that c0 < cn < c∗ for all n and
Q(Un) → −q0 ≤ 0. Then Tc0 > Tcn > Tc∗ > 0 and (c20 − c2n)Q

2(Un) + T 2
cn > (c20 − c2n)Q

2(Un) + T 2
c∗ > 0 for

all sufficiently large n. Hence for large n we may use (32) and (34) with (cn, c0) instead of (c0, c) and we get

Tc0 ≤ −cnQ(Un) + Tcn

−c0Q(Un) +
√
(c20 − c2n)Q

2(Un) + T 2
cn

Tcn .
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Since Tcn has a positive limit, passing to the limit as n → ∞ in the above inequality and using the mono-
tonicity of c 7−→ Tc we get Tc0 ≤ lim inf

n→∞
Tcn = lim inf

c→c0, c>c0
Tc. This and the fact that Tc is decreasing and left

continuous imply that Tc is continuous at c0.

(v) Let 0 < c1 < c2 < cs and U1, U2, q1 = Q(U1) < 0, q2 = Q(U2) < 0 be as in Proposition 10

(v). If c21 ≤ c22 −
T 2
c2

q22
, the inequality in Proposition 10 (v) obviously holds. From now on we assume that

c21 > c22 −
T 2
c2

q22
. The two discriminants ∆c2,U1

= (c22 − c21)q
2
1 + T 2

c1 and ∆c1,U2
= (c21 − c22)q

2
2 + T 2

c2 are positive:

since 0 < c1 < c2 for the first one, and by the assumption c21 > c22 −
T 2
c2

q22
for the second one. Therefore, we

may use (32) and (34) with the couples (c1, c2), respectively (c2, c1) instead of (c0, c) to get

Tc2 ≤ −c1q1 + Tc1

−c2q1 +
√
(c22 − c21)q

2
1 + T 2

c1

Tc1 , respectively Tc1 ≤ −c2q2 + Tc2

−c1q2 +
√

(c21 − c22)q
2
2 + T 2

c2

Tc2 .

Since Tci > 0, we must have

−c1q1 + Tc1

−c2q1 +
√
(c22 − c21)q

2
1 + T 2

c1

· −c2q2 + Tc2

−c1q2 +
√
(c21 − c22)q

2
2 + T 2

c2

≥ 1.

We set y1 = − Tc1

c1q1
> 0, and recast this inequality as

1 + y1
c2
c1

+
√

c22
c21

− 1 + y21

≥
−c1q2 +

√
(c21 − c22)q

2
2 + T 2

c2

−c2q2 + Tc2
=

1 +

√
1− c22

c21
+

T 2
c2

c21q
2
2

c2
c1

− Tc2

c1q2

. (35)

Denoting, for y ∈ R, g(y) =
1 + y

c2
c1

+
√

c22
c21

− 1 + y2
, (35) is exactly

g
(
− Tc1
c1q1

)
= g(y1) ≥ g

(√
1− c22

c21
+

T 2
c2

c21q
2
2

)
.

If we show that g is increasing, then we obtain

− Tc1
c1q1

≥
√
1− c22

c21
+

T 2
c2

c21q
2
2

, or
T 2
c1

q21
− c21 ≥ T 2

c2

q22
− c22,

which is the desired inequality. To check that g is increasing, we simply compute

g′(y) =

c22
c21

− 1 +
c2
c1

√
c22
c21

− 1 + y2 − y

(c2
c1

+

√
c22
c21

− 1 + y2
)2
√
c22
c21

− 1 + y2

,

which is positive since c2
c1
> 1 and

√
c22
c21

− 1 + y2 > |y|.

(vi) Since c 7−→ −Tc is increasing, by a well-known result of Lebesgue this map is differentiable a.e., the

function c 7−→ dTc

dc belongs to L1
loc(0, cs) and for any 0 < c1 < c2 < cs we have

∫ c2

c1

−dTc
dc

dc ≤ −Tc2 + Tc1 .

We recall that c(ε) =
√
c
2
s − ε2 for all ε ∈ (0, cs). If N = 3, (A2) and ( A4) hold and Γ 6= 0, by Proposition

9 (ii) there is K > 0 such that Tc(ε) ≤ Kε for all sufficiently small ε. Thus for n ∈ N large we have

∫ c(1/n)

c(2/n)

−dTc
dc

dc ≤ Tc(2/n) − Tc(1/n) ≤ Tc(2/n) ≤
2K

n
.
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Hence there exists cn ∈ (c(2/n), c(1/n)) such that c 7→ Tc is differentiable at cn and

−dTc
dc |c=cn

≤ 1

c( 1n )− c( 2n )
· 2K
n

≤ K ′n.

Let εn =
√
c
2
s − c2n, so that c(εn) = cn. Since c(2/n) ≤ cn ≤ c(1/n), we have 1

n ≤ εn ≤ 2
n , so that εn → 0 as

n→ ∞. Let Un be a minimizer of Ecn on Ccn , scaled so that Un solves (TWcn). From (i) and (iii) we get

|Q(Un)| = −Q(Un) = −dTc
dc |c=cn

≤ K ′n ≤ 2K ′

εn
.

Since E(Un) + cnQ(Un) = Tcn = O(εn), it follows that

E(Un) ≤ −cnQ(Un) + Tcn ≤ K ′′

εn

and the proof is complete. �

3.3 Proof of Proposition 12

We postpone the proof of Proposition 11 and we prove Proposition 12.

Let (εn)n≥1 be the sequence given by Proposition 10 (vi). For each n let Un ∈ E be a minimizer of Ecn on
Ccn which solves (TWcn). Passing to a subsequence if necessary and using Proposition 11, we may assume
that (εn)n≥1 is strictly decreasing, that (εn, Un)n≥1 satisfies the conclusion of Theorem 6 and

1

2
r20c

4
sSmin

1

εn
< E(Un) < 2r20c

4
sSmin

1

εn
, (36)

1

2
r20c

3
sSmin

1

εn
< −Q(Un) < 2r20c

3
sSmin

1

εn
for all n. (37)

We shall argue by contradiction. More precisely, we shall prove by contradiction that there exists ε∗ > 0
such that for any ε ∈ (0, ε∗) and for any minimizer U of Ec(ε) on Cc(ε) scaled so that U satisfies (TWc(ε)),
we have

|Q(U)| ≤ 5r20c
3
sSmin

ε
.

In view of Proposition 9 (ii), we then infer that

E(U) = Tc(ε) − c(ε)Q(U) ≤ K

ε

for some constant K depending only on r0, cs and Smin, which is the desired result. We thus assume that
there exist infinitely many n’s such that there is ε̃n ∈ (εn, εn−1) and there is a minimizer Ũn of Ec(ε̃n) on
Cc(ε̃n) which satisfies (TWc(ε̃n)) and

|Q(Ũn)| = −Q(Ũn) > 5r20c
3
sSmin

1

ε̃n
. (38)

Passing again to a subsequence of (εn)n≥1, we may assume that (38) holds for all n ≥ 1. Then for each
n ∈ N

∗ we define

In =
{
ε ∈ (εn, εn−1)

∣∣∣ for all ε′ ∈ [εn, ε] and for any minimizer Uε′ of Ec(ε′) on Cc(ε′)

which solves (TWc(ε′)) there holds |Q(Uε′)| ≤ 4r20c
3
sSmin · 1

ε′

}

and
ε#n = sup In.

By Proposition 10 (v), for ε′ ∈ (εn, cs) and for any minimizer Uε′ of Ec(ε′) on Cc(ε′) which solves (TWc(ε′))
we have

T 2
c(ε′)

Q2(Uε′)
+ (ε′)2 ≥

T 2
c(εn)

Q2(Un)
+ ε2n,
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which can be written as
Q2(Uε′)

T 2
c(ε′)

≤ Q2(Un)

T 2
c(εn)

+ (ε2n − (ε′)2)Q2(Un)
and this gives

(ε′)2Q2(Uε′) ≤
(ε′)2Q2(Un)T

2
c(ε′)

T 2
c(εn)

+ (ε2n − (ε′)2)Q2(Un)
. (39)

The mapping ε 7−→ Tc(ε) is right continuous (because c 7−→ Tc is left continuous) and using (37) we find

lim
ε′→εn, ε′>εn

(ε′)2Q2(Un)T
2
c(ε′)

T 2
c(εn)

+ (ε2n − (ε′)2)Q2(Un)
= ε2nQ

2(Un) < (2r20c
3
sSmin)

2.

Thus all ε′ ∈ (εn, εn−1) sufficiently close to εn belong to In. In particular, In is not empty. On the other
hand, (38) implies that any ε′ ∈ (ε̃n, εn−1) does not belong to In, hence ε

#
n = sup In ∈ (εn, ε̃n] ⊂ (εn, εn−1).

Let U#
n be a minimizer of Ec(ε#n ) on Cc(ε#n ) which solves (TWc(ε#n )). We claim that

|Q(U#
n )| = 4r20c

3
sSmin

1

ε#n
. (40)

Indeed, proceeding as in (39) we have for any ε′ ∈ (εn, ε
#
n ) and any minimizer Uε′ of Ec(ε′) on Cc(ε′) which

satisfies (TWc(ε′))

(ε#n )
2Q2(U#

n ) ≤

(
ε#n
ε′

)2
(ε′)2Q2(Uε′)T

2
c(ε#n )

T 2
c(ε′) +

(
1−

(
ε#n
ε′

)2)
(ε′)2Q2(Uε′)

. (41)

Notice that (ε′)2Q2(Uε′) ≤ (4r20c
3
sSmin)

2 because ε′ ∈ In. In particular, Q(Uε′) is bounded as ε′ ∈ (εn, ε
#
n ).

Since c(ε′) ց c(ε#n ) as ε′ ր ε#n , Proposition 10 (iv) implies that c 7−→ Tc is continuous at c(ε#n ). Then
passing to lim inf as ε′ ր ε#n in (41) we get (ε#n )

2Q2(U#
n ) ≤ (4r20c

3
sSmin)

2. We conclude that ε#n ∈ In.

Next, for any ε′ ∈ (ε#n , cs) and any minimizer Uε′ of Ec(ε′) on Cc(ε′) that solves (TWc(ε′)), inequality (39)

holds with ε#n and U#
n instead of εn and Un, respectively. The limit of the right-hand side as ε′ ց ε#n is

(ε#n )
2Q2(U#

n ). If ε#n |Q(U#
n | < 4r20c

3
sSmin, as above we infer that there is δn > 0 such that [ε#n , ε

#
n +δn] ⊂ In,

contradicting the fact that ε#n = sup In. The claim (40) is thus proved.

Now we turn our attention to the sequence (ε#n , U
#
n )n≥1. It is clear that ε

#
n → 0 (because ε#n ∈ (εn, εn−1)).

By Proposition 9 (ii) there is K > 0 such that

E(U#
n ) + c(ε#n )Q(U#

n ) = Ec(ε#n )(U
#
n ) = Tc(ε#n ) ≤ Kε#n

and using (40) we find |E(U#
n )| ≤ K′

ε#n
for some constant K ′ > 0 and for all n sufficiently large. Hence we

may use Proposition 11 and we infer that there is a subsequence (ε#nk
, U#

nk
)k≥1 which satisfies the conclusion

of Theorem 6. In particular, we have

lim
k→∞

ε#nk
|Q(U#

nk
)| = r20c

3
sSmin

and this contradicts the fact that U#
nk

satisfies (40). Proposition 12 is thus proven. �

3.4 Proof of Proposition 14

(i) Since U ∈ E , we have |U | − r0 ∈ H1(RN ) (see the Introduction of [17]) and then
∣∣∣ ∂
∂xi

(|U | − r0)
∣∣∣ ≤

∣∣∣ ∂U
∂xi

∣∣∣
a.e. in R

N . It is well-known (see, for instance, [14] p. 164) that for any φ ∈ H1(RN ) there holds

‖φ‖L2∗ (RN ) ≤ CS

N∏

i=1

∥∥∥ ∂φ
∂xi

∥∥∥
1
N

L2(RN )
.

We infer that

‖ |U | − r0‖L2∗ (RN ) ≤ CS

N∏

i=1

∥∥∥ ∂U
∂xi

∥∥∥
1
N

L2(RN )
≤ CS

∥∥∥ ∂U
∂x1

∥∥∥
1
N

L2(RN )
· ‖∇x⊥

U‖
N

N−1

L2(RN )
. (42)
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Assume first that (A2) holds. If
∥∥∥ ∂U∂x1

∥∥∥
L2(RN )

· ‖∇x⊥
U‖N−1

L2(RN )
≤ 1, from (42) we get ‖ |U |− r0‖L2∗ (RN ) ≤ CS .

Let Ũ(x) = e−
icx1

2 U(x). Then Ũ ∈ H1
loc(R

N ) and Ũ solves the equation

∆Ũ +

(
c2

4
+ F (|Ũ |2)

)
Ũ = 0 in R

N .

Since ‖Ũ‖L2∗ (B(x,1)) ≤ C for any x ∈ R
N and for some constant C > 0, using the above equation and a

standard bootstrap argument (which works thanks to (A2)), we infer that ‖Ũ‖W 2,p(B(x, 1
2n0 )) ≤ C̃p for some

n0 ∈ N, C̃p > 0 and for any x ∈ R
N and any p ∈ [2,∞). This clearly implies ‖U‖W 2,p(B(x, 1

2n0 )) ≤ Cp for

any x ∈ R
N and any p ∈ [2,∞). In particular, using the Sobolev embedding we see that there is L > 0

(independent on U) such that ‖∇U‖L∞(RN ) ≤ L.

Fix δ > 0. If there is x0 ∈ R
N such that | |U(x0)| − r0| ≥ δ, we infer that ‖ |U(x)| − r0| ≥ δ

2 for any

x ∈ B(x0,
δ
2L ) and consequently

‖ |U | − r0‖L2∗ (RN ) ≥
δ

2

(
LN

(
B(x0

δ

2L
)

)) 1
2∗

=
δ

2

(
δ

2L

) N
2∗ (

LN (B(0, 1))
) 1

2∗ . (43)

Let µ(δ) = min
(
1, δ2

(
δ
2L

) N
2∗
(
LN (B(0, 1))

) 1
2∗
)
. From (42) and (43) we infer that | |U(x)| − r0| < δ for any

solution U ∈ E of (TWc) satisfying
∥∥∥ ∂U∂x1

∥∥∥
L2(RN )

· ‖∇x⊥
U‖N−1

L2(RN )
≤ µ(δ).

If (A3) holds, it follows from the proof of Proposition 2.2 p. 1078-1080 in [34] thet there is L > 0,
independent on U , such that ‖∇U‖L∞(RN ) ≤ L. The rest of the proof is as above.

(ii) By Proposition 2.2 p. 1078 in [34] we know that U ∈ W 2,p
loc (R

N ) for any p ∈ [2,∞). In particular,
U ∈ C1(RN ) . As in the proof of (i) we see that there is L > 0, independent on U , such that ||∇U‖L∞(RN ) ≤
L.

Fix δ > 0 and assume that there is x0 = (x01, . . . , x
0
N ) such that | |U(x0)| − r0| ≥ δ. Then we have

| |U(x)| − r0| ≥ δ
2 for any x ∈ B(x0, δ

2L ) and, in particular, | |U(x1, x
0
2, . . . , x

0
N )| − r0| ≥ δ

2 for any x1 ∈ [x01 −
δ
2L , x

0
1+

δ
2L ]. We infer that | |U(x1, x⊥)|−r0| ≥ δ

4 for any x1 ∈ [x01− δ
2L , x

0
1+

δ
2L ] and any x⊥ ∈ BRN−1(x0⊥,

δ
4L ).

Consequently

‖ |U(x1, ·)| − r0‖
L

2(N−1)
N−3 (RN−1)

≥ δ
4

(
LN−1

(
BRN−1

(
x0⊥,

δ
4L

))) N−3
2(N−1)

≥ δ
4

(
δ
4L

)N−3
2
(
LN−1(BRN−1(0, 1))

) N−3
2(N−1) = Kδ

N−1
2

for all x1 ∈ [x01 − δ
2L , x

0
1 +

δ
2L ]. Using the Sobolev inequality in R

N−1 we get for x1 ∈
[
x01 − δ

2L , x
0
1 +

δ
2L

]
,

∫

RN−1

|∇x⊥
U(x1, x⊥)|2 dx⊥ ≥ 1

C̃2
S

‖ |U(x1, ·)| − r0‖2
L

2(N−1)
N−3 (RN−1)

≥ K2

C̃2
S

δN−1.

Integrating the above inequality on [x01 − δ
2L , x

0
1 + δ

2L ] we obtain ‖∇x⊥
U‖2L2(RN ) ≥ K2

LC̃2
S

δN = K1δ
N . We

conclude that if ‖∇x⊥
U‖2L2(RN ) < min(1,K1δ

N ), then necessarily | |U | − r0| < δ in R
N . �

3.5 Proof of Proposition 16

It follows from Lemma 4.1 in [17] that there are k0 > 0, C1, C2 > 0 such that for all ψ ∈ E with

∫

R2

|∇ψ|2 dx ≤
k0 we have

C1

∫

R2

(χ2(|ψ|)− r20)
2 dx ≤

∫

R2

V (|ψ|2) dx ≤ C2

∫

R2

(χ2(|ψ|)− r20)
2 dx. (44)

We recall that in space dimension two, nontrivial solutions Uk to (TWc) have been constructed in Theorem
2 by considering the minimization problem

minimize I(ψ) = Q(ψ) +

∫

R2

V (|ψ|2) dx in E under the constraint

∫

R2

|∇ψ|2 dx = k. (Ik)
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If Uk is a minimizer for (Ik), there is ck > 0 such that Uk = (Uk)ck,ck solves (TWck) and minimizes

Eck = E + ckQ in the set
{
ψ ∈ E

∣∣∣
∫

R2

|∇ψ|2 dx = k
}
. Moreover, we have ck → cs as k → 0. Lemma 13

implies that |Uk| → r0 uniformly on R
2 as k → 0; in particular, there is k1 > 0 such that if k ∈ (0, k1), we

have |Uk| ≥ r0
2 in R

2. From the Pohozaev identities (4) we get ckQ(Uk) + 2

∫

R2

V (|Uk|2) dx = 0, and this

gives

Imin(k) = I(Uk) =
1

ck
Q(Uk) +

1

c2k

∫

R2

V (|Uk|2) dx =
1

2ck
Q(Uk) = − 1

c2k

∫

R2

V (|Uk|2) dx. (45)

By Lemma 5.2 in [17] there is k2 > 0 such that − 2k
c
2
s
≤ Imin(k) ≤ − k

c
2
s
for all k ∈ (0, k2). Since ck → cs as

k → 0, the estimates (14) follow directly from (44) and (45).

It remains to prove (15). By Proposition 9, there is µ0 > 0 such that for k sufficiently small we have
Imin(k) ≤ − k

c
2
s
− µ0k

3. By scaling we have

1

c2k

(
Eck(Uk)−

∫

R2

|∇Uk|2 dx
)
=

1

c2k

(
ckQ(Uk) +

∫

R2

V (|Uk|2) dx
)
= I(Uk) = Imin(k) ≤ − k

c
2
s

− µ0k
3.

Since c
2
s − c2k = ε2k and

∫

R2

|∇Uk|2 dx = k, we get

Eck(Uk) ≤ k
(
1− c2k

c
2
s

)
− µ0c

2
kk

3 =
kε2k
c
2
s

− µ0c
2
kk

3. (46)

The second Pohozaev identity (4) yields Eck(Uk) = 2

∫

R2

|∂2Uk|2 dx ≥ 0, thus 0 ≤ k
(
ε2k
c
2
s
− µ0c

2
kk

2
)
and this

implies
ε2k
c
2
s

≥ µ0c
2k2.

Since c ≥ cs/2 for k small, the left-hand side inequality in (15) follows.

In order to prove the second inequality in (15), we need the next Lemma. In the case of the Gross-
Pitaevskii nonlinearity, this result follows from Lemma 2.12 p. 597 in [8]. In the case of general nonlinearities,
it was proved in [17].

Lemma 21 ([8, 17]) Let N ≥ 2. There is β∗ > 0 such that any solution U = ρeiφ ∈ E of (TWc) verifying
r0 − β∗ ≤ ρ ≤ r0 + β∗ satisfies the identities

E(U) + cQ(U) =
2

N

∫

RN

|∇ρ|2 dx and (47)

2

∫

RN

ρ2|∇φ|2 dx = c

∫

RN

(ρ2 − r20)∂1φ dx = −cQ(U). (48)

Furthermore, there exist a1, a2 > 0 such that

a1‖ρ2 − r20‖L2(RN ) ≤ ‖∇U‖L2(RN ) ≤ a2‖ρ2 − r20‖L2(RN ). (49)

Proof. Identity (48) is Lemma 7.3 (i) in [17]. Formally, it follows by multiplying the first equation in (17)
by φ and integrating by parts over RN ; see [17] for a rigorous justification.

Combining the two Pohozaev identities in (4), we have

(N − 2)

∫

RN

|∇U |2 dx+N

∫

RN

V (|U |2) dx+ c(N − 1)Q(U) = 0.

Using that |∇U |2 = |∇ρ|2 + ρ2|∇φ|2, we infer from (48)

N(E(U) + cQ(U)) = 2

∫

RN

|∇U |2 dx+ cQ(U) = 2

∫

RN

|∇ρ|2 dx+
(
2

∫

RN

ρ2|∇φ|2 dx+ cQ(U)
)

= 2

∫

RN

|∇ρ|2 dx,
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and this establishes (47). The estimate (49) has been proven in [17] (see inequality (7.17) there). �

We come back to the proof of Proposition 16. We write Uk = ρeiφ and we denote η = ρ2 − r20, so that ρ,
φ and η satisfy (17)−(19) (with ck instead of c). Taking the Fourier transform of (19) we get

η̂(ξ) =
|ξ|2

|ξ|4 + c
2
s|ξ|2 − c2kξ

2
1

F

(
−2|∇Uk|2 + 2ckη

∂φ

∂x1
+ 2ρ2F (ρ2) + c

2
sη

)

−2ck

N∑

j=1

ξ1ξj
|ξ|4 + c

2
s|ξ|2 − c2kξ

2
1

F

(
η
∂φ

∂xj

)
.

(50)

It is easy to see that 2ρ2F (ρ2) + c
2
sη = O((ρ2 − r20)

2) = O(η2), hence

‖F
(
2ρ2F (ρ2) + c

2
sη
)
‖L∞(RN ) ≤ ‖2ρ2F (ρ2) + c

2
sη‖L1(RN ) ≤ C‖η‖2L2(RN ).

Since r0 − β∗ < |Uk| < r0 + β∗ if k is sufficiently small and |∇Uk|2 = |∇ρ|2 + ρ2|∇φ|2, using (49) we get

∥∥∥F
(
η
∂φ

∂xj

)∥∥∥
L∞(RN )

≤
∥∥∥η ∂φ
∂xj

∥∥∥
L1(RN )

≤ ‖η‖L2(RN )

∥∥∥ ∂φ
∂xj

∥∥∥
L2(RN )

≤ C‖η‖2L2(RN )

and ‖F (|∇Uk|2)‖L∞(RN ) ≤ ‖∇Uk‖2L2(RN ) ≤ C‖η‖2L2(RN ). Coming back to (50) we discover

|η̂(ξ)| ≤ C‖η‖2L2(RN ) ·
|ξ|2

|ξ|4 + c
2
s|ξ|2 − c2kξ

2
1

.

Using Plancherel’s formula and the above estimate we find

‖η‖2L2(RN ) =
1

(2π)N

∫

RN

|η̂(ξ)|2 dξ ≤ C‖η‖4L2(RN )

∫

RN

|ξ|4
(|ξ|4 + c

2
s|ξ|2 − c2kξ

2
1)

2
dξ. (51)

If N = 2, a straightforward computation using polar coordinates gives (see the proof of (2.59) p. 598 in [9]):

∫

R2

|ξ|4
(|ξ|4 + c

2
s|ξ|2 − c2kξ

2
1)

2
dξ =

π

cs

√
c
2
s − c2k

=
π

csεk
.

From to (51) we get ‖η‖2L2(R2) ≤ C
εk
‖η‖4L2(R2) and taking into account (49) we infer that εk ≤ C‖η‖2L2(R2) ≤

C̃‖∇Uk‖2L2(R2) = C̃k. �

Notice that at this stage, we have only upper bounds on the energy of travelling waves, and we will have
to prevent convergence towards the trivial solution to (SW). This will be done with the help of the following
result. It was proven in [9] in the case of the Gross-Pitaevskii nonlinearity (see Proposition 2.4 p. 595 there).
We extend the proof to general nonlinearities.

Lemma 22 Let N ≥ 2 and assume that (A1) holds and F is twice differentiable at r20. There is C > 0,
depending only on N and on F , such that any travelling wave U ∈ E of (NLS) of speed c ∈ [0, cs] such that
r0
2 ≤ |U | ≤ 3r0

2 satisfies

‖ |U | − r0‖L∞(RN ) ≥ C(c2s − c2) = Cε2(U).

Proof. Let U ∈ E be a travelling wave such that r0
2 ≤ |U | ≤ 3r0

2 in R
N . Then U ∈ W 2,p

loc (R
N ), ∇U ∈

W 1,p(RN ) for all p ∈ [2,∞) (see Proposition 2.2 p. 1078-1079 in [34]), and U admits a lifting U = ρeiφ,
where ρ and φ satisfy (17). Since U ∈ E we have ρ2 − r20 ∈ H1(RN ) and then it is easy to see that
ρ2−r20
ρ ∈ H1(RN ). Multiplying the second equation in (17) by

ρ2−r20
ρ and integrating by parts we get

∫

RN

(
1 +

r20
ρ2

)
|∇ρ|2 dx+

∫

RN

(ρ2 − r20)|∇φ|2 − (ρ2 − r20)F (ρ
2)− c(ρ2 − r20)

∂φ

∂x1
dx = 0. (52)

Denote δ = ‖ |U | − r0‖L∞(RN ) = ‖ρ− r0‖L∞(RN ). We have

∫

RN

(
1 +

r20
ρ2

)
|∇ρ|2 dx ≥

(
1 +

r20
(r0 + δ)2

)∫

RN

|∇ρ|2 dx and (53)
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∣∣∣
∫

RN

(ρ2 − r20)|∇φ|2 dx
∣∣∣ ≤

∫

RN

|ρ2 − r20|
ρ2

ρ2|∇φ|2 dx ≤ 2r0δ + δ2

(r0 − δ)2

∫

RN

|∇U |2 dx. (54)

There is C̃ > 0 such that |F (s2) − F ′(r20)(s
2 − r20)| ≤ C̃(s2 − r20)

2 for all s ∈ [ r02 ,
3r0
2 ]. Remember that

−F ′(r20) = 2a2 and cs = 2ar0, thus

−(ρ2 − r20)F (ρ
2) ≥ −F ′(r20)(ρ

2 − r20)
2 − C̃|ρ2 − r20|3 ≥

(
2a2 − C̃(2r0δ + δ2)

)
(ρ2 − r20)

2. (55)

Using (48) and (3), then (52) and (53)-(55) we get

−2cQ(U) = 2

∫

RN

ρ2|∇φ|2 dx+ c

∫

RN

(ρ2 − r20)
∂φ

∂x1
dx

= 2

∫

RN

ρ2|∇φ|2 dx+

∫

RN

(
1 +

r20
ρ2

)
|∇ρ|2 dx+

∫

RN

(ρ2 − r20)|∇φ|2 − (ρ2 − r20)F (ρ
2) dx

≥ 2

∫

RN

ρ2|∇φ|2 dx+

∫

RN

(
1 +

r20
(r0 + δ)2

)
|∇ρ|2 − 2r0δ + δ2

(r0 − δ)2
|∇U |2 +

(
2a2 − C̃(2r0δ + δ2)

)
(ρ2 − r20)

2 dx

and we infer that there exists K > 0, depending only on F , such that

−2cQ(U) ≥ 2(1−Kδ)

∫

RN

|∇U |2 + a2(ρ2 − r20)
2 dx. (56)

On the other hand, using (3) we have

−Q(U) =
2ar0
cs

∫

RN

(ρ2 − r20)
∂φ

∂x1
dx ≤ 1

cs

∫

RN

r20

∣∣∣ ∂φ
∂x1

∣∣∣
2

+ a2(ρ2 − r20)
2 dx

≤ 1

cs

∫

RN

r20
(r0 − δ)2

ρ2
∣∣∣ ∂φ
∂x1

∣∣∣
2

+ a2(ρ2 − r20)
2 dx ≤ 1

cs

r20
(r0 − δ)2

∫

RN

|∇U |2 + a2(ρ2 − r20)
2 dx.

(57)

Since U is not constant we have

∫

RN

|∇U |2 + a2(ρ2 − r20)
2 dx > 0 and comparing (56) and (57) we get

c

cs

r20
(r0 − δ)2

≥ 1−Kδ.

If δ > 1
2K the conclusion of Lemma 22 holds because ε(U) is bounded. Otherwise, the previous inequality

is equivalent to
r20

(r0−δ)2
1

1−Kδ ≥ cs√
c
2
s−ε

2(U)
. There are K1, K2 > 0 such that

r20
(r0−δ)2

1
1−Kδ ≤ 1 + K1δ and

cs√
c
2
s−ε

2
≥ 1 +K2ε

2 for all δ ∈ [0, 1
2K ] and all ε ∈ [0, cs) and we infer that 1 +K1δ ≥ 1 +K2ε

2(U), that is

δ = ‖ |U | − r0‖L∞(RN ) ≥ K2

K1
ε2(U). �

3.6 Initial bounds for Aε

Let Uc ∈ E be a travelling wave to (NLS) of speed c provided by Theorems 1 or 2 if N = 2, respectively
by Theorem 3 if N = 3, such that r0

2 ≤ |U | ≤ 3r0
2 in R

N . As in (16), we write Uc(x) = ρ(x)eiφ(x) =

r0
√

1 + ε2Aε(z) e
iεϕε(z), where ε =

√
c
2
s − c2, z1 = εx1, z⊥ = ε2x⊥. According to Proposition 2.2 p.

1078-1079 in [34] we have

‖Uc‖C1
b
(RN ) ≤ C and ‖∇Uc‖W 1,p(RN ) ≤ Cp for p ∈ [2,∞).

By scaling, we obtain the initial (rough) estimates

‖Aε‖L∞ ≤ C

ε2
, ‖∂z1Aε‖L∞ ≤ C

ε3
, ‖∇z⊥Aε‖L∞ ≤ C

ε4
, ‖∂z1ϕε‖L∞ ≤ C

ε2
, ‖∇z⊥ϕε‖L∞ ≤ C

ε3
(58)

and
∥∥∥∂

2Aε

∂z21

∥∥∥
Lp

≤ Cpε
−4+ 2N−1

p ,
∥∥∥ ∂2Aε

∂z1∂zj

∥∥∥
Lp

≤ Cpε
−5+ 2N−1

p ,
∥∥∥ ∂2Aε

∂zj∂zk

∥∥∥
Lp

≤ Cpε
−6+ 2N−1

p (59)

for any p ∈ [2,∞) and all j, k ∈ {2, . . . , N}. We have:
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Lemma 23 Assume that (A2) and (A4) are satisfied and Γ 6= 0. Let Uc be a solution to (TWc) provided
by Theorem 2 if N = 2, respectively by Theorem 3 if N = 3 and let ε =

√
c
2
s − c2. If N = 3 we assume

moreover that E(Uc) ≤ K
ε , where K does not depend on ε.

There exist ε0 > 0 and C > 0 (depending only on F , N , K) such that Uc admits a lifting as in (16)
whenever ε ∈ (0, ε0) and the following estimate holds:

∫

RN

|∂z1ϕε|2 + |∇z⊥ϕε|2 +A2
ε + |∂z1Aε|2 + ε2|∇z⊥Aε|2 dz ≤ C.

Proof. If N = 2 it follows from Theorem 2 that k =

∫

R2

|∇Uc|2 dx is small if ε is small. Using Lemma 13

in the case N = 2, respectively Corollary 15 if N = 3, we infer that |Uc| is arbitrarily close to r0 if ε is
sufficiently small and then it is clear that we have a lifting as in (16).

We will repeatedly use the fact that there is a constant C depending only on F such that

C|∂jUc|2 ≥ |∂j(ρ2)|2 + |∂jφ|2 for 1 ≤ j ≤ N.

In view of the Taylor expansion of V near r20, for ε sufficiently close to 0 (so that |Uc| is sufficiently close to
r0) we have

V (|Uc|2) ≥ C(|Uc| − r0)
2.

By scaling, we infer that for some δ1 > 0 depending only on F there holds

E(Uc) =

∫

RN

|∇Uc|2 + V (|Uc|2) dx ≥ δ1ε
5−2N

∫

RN

|∂z1ϕε|2 +A2
ε dz.

In the case N = 2 it follows from Proposition 16 that E(Uc) ≤ Cε for some C independent of ε. In the
case N = 3 we use the assumption E(Uc) ≤ K

ε . In both cases the previous inequality implies that
∫

RN

|∂z1ϕε|2 +A2
ε dz ≤ C. (60)

We have Ec(Uc) = Tc = O(ε) if N = 3 by Proposition 9 (ii), respectively Ec(Uc) = O(kε2) = O(ε3) by (46)
and (15) in the case N = 2. From the Pohozaev identity Pc(Uc) = 0 (see (4)) we deduce

2r20ε
7−2N

N − 1

∫

RN

|∇z⊥ϕε|2 + ε2|∇z⊥Aε|2 dz ≤ C
2

N − 1

∫

RN

|∇⊥Uc|2 dx = CEc(Uc) = O(ε7−2N ).

Thus we get ∫

RN

|∇z⊥ϕε|2 + ε2|∇z⊥Aε|2 dz ≤ C. (61)

Furthermore, by scaling the identity (47) in Lemma 21 we obtain

r20ε
7−2N

∫

RN

|∂z1Aε|2 dz ≤ C

∫

RN

|∂x1
ρ|2 dx ≤ C

∫

RN

|∇ρ|2 dx = C
N

2
Ec(Uc) = O(ε7−2N ),

so that ∫

RN

|∂z1Aε|2 dz ≤ C. (62)

Gathering (60), (61) and (62) yields the desired inequality. �

Using the above estimates, we shall find Lq bounds for Aε. The proof is based on equation (20), that is
{
∂4z1 − ∂2z1 − c

2
s∆z⊥ + 2ε2∂2z1∆z⊥ + ε4∆2

z⊥

}
Aε = Rε, (20)

where

Rε = {∂2z1 + ε2∆z⊥}
[
2(1 + ε2Aε)

(
(∂z1ϕε)

2 + ε2|∇z⊥ϕε|2
)
+ ε2

(∂z1Aε)
2 + ε2|∇z⊥Aε|2

2(1 + ε2Aε)

]

− 2cε2∆z⊥(Aε∂z1ϕε) + 2cε2
N∑

j=2

∂z1∂zj (Aε∂zjϕε)

+ {∂2z1 + ε2∆z⊥}
[
c
2
s

(
1− r40F

′′(r20)

c
2
s

)
A2
ε −

1

ε4
F̃3(r

2
0ε

2Aε)
]
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and we recall that F̃3(α) = O(α3) as α→ 0.
Let

Dε(ξ) = ξ41 + ξ21 + c
2
s|ξ⊥|2 + 2ε2ξ21 |ξ⊥|2 + ε4|ξ⊥|4 = (ξ21 + ε2|ξ⊥|2)2 + ξ21 + c

2
s|ξ⊥|2.

We will consider the following kernels:

K1
ε(z) = F

−1
( ξ21
Dε(ξ)

)
, K⊥

ε (z) = F
−1
( |ξ⊥|2
Dε(ξ)

)
and K1,j

ε (z) = F
−1
( ξ1ξj
Dε(ξ)

)
, j = 2, . . . , N.

Then we may rewrite (20) as a convolution equation

Aε =
(
K1
ε + ε2K⊥

ε

)
∗Gε + 2cε2K⊥

ε ∗ (Aε∂z1ϕε)− 2c(ε)ε2
N∑

j=2

K1,j
ε ∗ (Aε∂zjϕε), (63)

where

Gε = (1 + ε2Aε)
(
(∂z1ϕε)

2 + ε2|∇z⊥ϕε|2
)
+ ε2

(∂z1Aε)
2 + ε2|∇z⊥Aε|2

4(1 + ε2Aε)

+
c
2
s

4
(Γ− 2)A2

ε −
1

ε4
F̃3(r

2
0ε

2Aε).

Lemma 24 The following estimates hold for N = 2, 3 and ε small enough:

(i) For all 2 ≤ p ≤ ∞ we have ‖∂z1Aε‖Lp + ε‖∇z⊥Aε‖Lp ≤ Cε
6
p
−3.

(ii) There exists C > 0 such that ‖Aε‖L3q ≤ Cε−
2
3 ‖Aε‖

2
3

L2q for any 1 ≤ q ≤ ∞.

(iii) If N = 3, for any 2 ≤ p < 8/3 there is Cp > 0 such that ‖Aε‖Lp(R3) ≤ Cp.

(iv) If N = 2, for any 2 ≤ p < 4 there is Cp > 0 such that ‖Aε‖Lp(R2) ≤ Cp.

Proof. For (i), it suffices to notice that the estimate is true for p = 2 by Lemma 23 and for p = ∞ by (58),
therefore it holds for any 2 ≤ p ≤ ∞ by interpolation. For (ii) we just interpolate the exponent 3q between
2q and ∞ and we use (58):

‖Aε‖L3q ≤ ‖Aε‖
2
3

L2q‖Aε‖
1
3

L∞ ≤ Cε−
2
3 ‖Aε‖

2
3

L2q .

Next we prove (iii). As already mentioned, a uniform Lp bound (for 2 ≤ p ≤ 8/3) on the kernels K1
ε ,

ε2K⊥
ε and ε2K1,j

ε is established in [8] by using a Sobolev estimate. Unfortunately this is no longer possible
in dimension N = 3. We thus rely on a suitable decomposition of Aε in the Fourier space. Some terms are
controlled by using the energy bounds in Lemma 23, the others by using (63).

We consider a set of parameters α, β, γ ∈ (1, 2) and ν > 5/2 with α ≥ β and α ≥ γ (to be fixed later).
For ε ∈ (0, 1), let

EI = {ξ ∈ R
N
∣∣ |ξ⊥| < 1}, EII = {ξ ∈ R

N
∣∣ |ξ⊥| > ε−α}, EIII = {ξ ∈ R

N
∣∣ ε−β ≤ |ξ⊥| ≤ ε−α, |ξ1| < 1},

EIV = {ξ ∈ R
N
∣∣ ε−γ ≤ |ξ⊥| ≤ ε−α, 1 ≤ |ξ1|ν ≤ |ξ⊥|}, EV = {ξ ∈ R

N
∣∣ 1 ≤ |ξ⊥| ≤ ε−α, |ξ1|ν > |ξ⊥|},

EV I = {ξ ∈ R
N
∣∣ 1 ≤ |ξ⊥| < ε−β , |ξ1| < 1}, EV II = {ξ ∈ R

N
∣∣ 1 ≤ |ξ⊥| < ε−γ , 1 ≤ |ξ1|ν ≤ |ξ⊥|}.

It is easy to see that the sets EI , . . . , EV II are disjoint and cover R
N . For J ∈ {I, . . . , V II} we denote

AJ
ε = F−1(Âε1EJ ), so that Aε = AI

ε + · · ·+AV II
ε , and we estimate each term separately.

For AI
ε we use

‖∇z⊥AI
ε‖L2 = ‖ξ⊥Âε1{|ξ⊥|<1}‖L2 ≤ ‖Âε1{|ξ⊥|≤1}‖L2 ≤ ‖ÂE‖L2 = ‖AE‖L2 ≤ C.

By Lemma 23, Aε and ∂z1Aε are uniformly bounded in L2, thus we have

‖AI
ε‖L2 + ‖∂z1AI

ε‖L2 ≤ C.
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Hence AI
ε is uniformly bounded in H1, and using the Sobolev embedding we deduce

∀ 2 ≤ p ≤ 6, ‖AI
ε‖Lp ≤ C. (64)

We will use the Riesz-Thorin theorem to bound AII
ε : if 1 < q = p

p−1 < 2 is the conjugate exponent of

p ∈ (2,∞), there holds

‖AII
ε ‖Lp ≤ C‖ÂII

ε ‖Lq .

Thus it suffices to bound ‖ÂII
ε ‖Lq . Using the Hölder inequality with exponents 2

q and 2
2−q , we have

‖ÂII
ε ‖qLq =

∫

R3

(
(|ξ1|+ ε|ξ⊥|)|Âε|

)q
×

1{|ξ⊥|>ε−α}

(|ξ1|+ ε|ξ⊥|)q
dξ

≤ ‖(|ξ1|+ ε|ξ⊥|)Âε‖qL2

(∫

R3

1{|ξ⊥|≥ε−α}

(|ξ1|+ ε|ξ⊥|)
2q

2−q

dξ

) 2−q
q

≤ Cq(‖∂z1Aε‖L2 + ε‖∇z⊥Aε‖L2)q

(∫ ∞

ε−α

RdR

(εR)
3q−2
2−q

) 2−q
q

.

(We have computed the integral in ξ1 and we used cylindrical coordinates for the third line.) Provided that
3q−2
2−q > 2 (or, equivalently, q > 6/5), the last integral in R is

C(q)ε−
3q−2
2−q × εα

5q−6
2−q ≤ Cq

as soon as α ≥ 3q−2
5q−6 = 2+p

6−p , that is p ≤ 6 − 8
α+1 . Notice that 2 < 6 − 8

α+1 < 6 because α > 1. By Lemma
23 we get

∀ 2 ≤ p ≤ 6− 8

α+ 1
, ‖AII

ε ‖Lp ≤ C(α). (65)

Using similar arguments, we have

‖AIII
ε ‖qLp ≤ C‖ÂIII

ε ‖qLq

= C

∫

R3

(
ε|ξ⊥| · |Âε|

)q
×

1{ε−β≤|ξ⊥|≤ε−α, |ξ1|<1}

(ε|ξ⊥|)q
dξ

≤ C(ε‖∇z⊥Aε‖L2)q

(∫

R3

1{ε−β≤|ξ⊥|≤ε−α, |ξ1|≤1}

(ε|ξ⊥|)
2q

2−q

dξ

) 2−q
q

≤ Cq

(
ε−

2q
2−q

∫ ε−α

ε−β

dR

R
4q−4
2−q

+1

) 2−q
q

≤ Cq

if β 4q−4
2−q − 2q

2−q ≥ 0, that is 2β ≥ q
(q−1) = p. Consequently,

∀ 2 ≤ p ≤ 2β, ‖AIII
ε ‖Lp ≤ C(β). (66)

Similarly we get a bound for AIV
ε :

‖AIV
ε ‖qLp ≤ C(ε‖∇z⊥Aε‖L2)q

(∫

R3

1{ε−γ≤|ξ⊥|≤ε−α, 1≤|ξ1|ν≤|ξ⊥|}

(ε|ξ⊥|)
2q

2−q

dξ

) 2−q
q

≤ Cq

(
ε−

2q
2−q

∫ ε−α

ε−γ

R
1
ν dR

R
4q−4
2−q

+1

) 2−q
q

≤ Cq

provided that γ 4q−4
2−q − 2q

2−q −
γ
ν ≥ 0, which is equivalent to p ≤ 2γ(2ν+1)

2ν+γ (notice that 2γ(2ν+1)
2ν+γ > 2 because

γ > 1). Therefore,

∀ 2 ≤ p ≤ 2γ(2ν + 1)

2ν + γ
, ‖AIV

ε ‖Lp ≤ C(ν). (67)
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We use the fact that ‖∂z1Aε‖L2 is bounded independently of ε (see part (i)) in order to estimate AV
ε :

‖AV
ε ‖qLp ≤ C‖ÂV

ε ‖qLq

= C

∫

R3

|ξ1Âε|q ×
1{1≤|ξ⊥|≤ε−α, |ξ⊥|<|ξ1|ν}

|ξ1|q
dξ

≤ C‖∂z1Aε‖qL2

(∫

R3

1{1≤|ξ⊥|≤ε−α, |ξ⊥|≤|ξ1|ν}

|ξ1|
2q

2−q

dξ

) 2−q
2

≤ C

(∫ ε−α

1

RdR

R( 2q
2−q

−1)/ν

) 2−q
2

,

by using cylindrical coordinates in the fourth line. We have 2q
2−q > 1 for q ∈ [1, 2) and the last integral is

bounded independently of ε as soon as 1
ν

(
2q
2−q − 1

)
> 2, that is p < 4ν+2

2ν−1 . It is obvious that 4ν+2
2ν−1 > 2 for

ν > 1/2. As a consequence, we get

∀ 2 ≤ p <
4ν + 2

2ν − 1
, ‖AV

ε ‖Lp ≤ C(p). (68)

We use the convolution equation (63) to estimate AV I
ε and AV II

ε . Applying the Fourier transform to (63)
we obtain the pointwise bound

|Âε(ξ)| =
∣∣∣
(
K̂1
ε + ε2K̂⊥

ε

)
Ĝε + 2c(ε)K̂⊥

ε F (Aε∂z1ϕε)− 2c(ε)ε2
N∑

j=2

K̂1,j
ε F (Aε∂zjϕε)

∣∣∣

≤ C
(
|K̂1
ε |+ ε2|K̂⊥

ε |+ ε2
N∑

j=2

|K̂1,j
ε |
)(

‖Ĝε‖L∞ + ‖F (Aε∂z1ϕε)‖L∞ +
N∑

j=2

‖F (Aε∂zjϕε)‖L∞

)
.

The estimates in Lemma 23 and the boundedness of F : L1 → L∞ imply that the second factor is bounded
independently of ε. Therefore

|Âε(ξ)| ≤ C
(
|K̂1
ε |+ ε2|K̂⊥

ε |+ ε2
N∑

j=2

|K̂1,j
ε |
)
≤ C

ξ21 + ε2|ξ⊥|2 + ε2|ξ1| · |ξ⊥|
Dε(ξ)

≤ C
ξ21 + ε2|ξ⊥|2

Dε(ξ)
(69)

because 2ε2|ξ1| · |ξ⊥| ≤ ξ21 + ε4|ξ⊥|2. If ξ ∈ EV I we have |ξ1| ≤ 1 and 1 ≤ |ξ⊥| ≤ ε−β ≤ ε−2 (because β < 2),
hence there is some constant C depending only on cs such that

C|ξ⊥|2 ≥ Dε(ξ) = ξ41 + ξ21 + c
2
s|ξ⊥|2 + 2ε2ξ21 |ξ⊥|2 + ε4|ξ⊥|4 ≥ |ξ⊥|2

C
.

Using the Riesz-Thorin theorem with exponents 2 < p <∞ and q = p/(p−1) ∈ (1, 2) as well as (69) we find

‖AV I
ε ‖qLp ≤ C‖ÂV I

ε ‖qLq

≤ C

∫

R3

1{1≤|ξ⊥|≤ε−β , |ξ1|≤1}

(ξ21 + ε2|ξ⊥|2)q
|ξ⊥|2q

dξ

≤ C

∫

R3

1{1≤|ξ⊥|≤ε−β , |ξ1|≤1}

(
ξ2q1

|ξ⊥|2q
+ ε2q

)
dξ

≤ C

∫

|ξ⊥|≥1

dξ⊥
|ξ⊥|2q

+ Cε2q−2β ≤ Cq

provided that q > 1 and q ≥ β. We have q ≥ β if and only if p ≤ β
β−1 . It is obvious that β

β−1 > 2 because
1 < β < 2. Hence we obtain

∀ 2 ≤ p ≤ β

β − 1
, ‖AV I

ε ‖Lp ≤ C(β). (70)
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In order to estimate AV II
ε we notice that for ξ ∈ EV II we have 1 ≤ |ξ⊥| ≤ ε−γ and 1 ≤ |ξ1|ν ≤ |ξ⊥|, thus

|ξ1|2 ≤ |ξ⊥| ≤ ε−2 because ν ≥ 5/2 > 2 and γ ≤ 2. Hence there exists C > 0 depending only on cs such that

C|ξ⊥|2 ≥ Dε(ξ) = ξ41 + ξ21 + c
2
s|ξ⊥|2 + 2ε2ξ21 |ξ⊥|2 + ε4|ξ⊥|4 ≥ |ξ⊥|2

C
.

Using (69) we get

‖AV II
ε ‖qLp ≤ C

∫

R3

1{1≤|ξ⊥|≤ε−γ , 1≤|ξ1|ν≤|ξ⊥|}

(
ξ2q1

|ξ⊥|2q
+ ε2q

)
dξ

≤ C

∫

|ξ⊥|≥1

|ξ⊥|
2q+1

ν

|ξ⊥|2q
dξ⊥ + Cε2q

∫ ε−γ

1

R1+ 1
ν dR ≤ Cq

provided that 2q − 2q+1
ν > 2 and 2q − γ(2 + 1

ν ) ≥ 0. These inequalities are equivalent to p < 2ν+1
3 and

p ≤ γ(2ν+1)
γ(2ν+1)−2ν , respectively. Since ν > 5/2, we have 2ν+1

3 > 2 and 4ν
2ν+1 > 5/3 and ν

ν−1 < 5/3. It is easy to

see that γ(2ν+1)
γ(2ν+1)−2ν > 2 if and only if γ < 4ν

2ν+1 , and that γ(2ν+1)
γ(2ν+1)−2ν >

2ν+1
3 if and only if γ < ν

ν−1 . Hence





∀ 1 ≤ γ ≤ ν

ν − 1
, ∀ 2 ≤ p <

2ν + 1

3
, ‖AV II

ε ‖Lp ≤ C(p, ν)

∀ ν

ν − 1
< γ ≤ 5

3
, ∀ 2 ≤ p ≤ γ(2ν + 1)

γ(2ν + 1)− 2ν
, ‖AV II

ε ‖Lp ≤ C(γ, ν).

(71)

We now choose the parameters α, β, γ and ν. In view of (66) and (70), we fix β = 3/2, so that
2β = β/(β − 1) = 3. We set α = 5/3 > 3/2 = β. Then by (64), (65), (66) and (70) it follows that

∀ 2 ≤ p ≤ 3, ‖AI
ε‖Lp + ‖AII

ε ‖Lp + ‖AIII
ε ‖Lp + ‖AV I

ε ‖Lp ≤ C.

For the other terms, we notice that in the case 1 ≤ γ ≤ ν
ν−1 we have

2γ(2ν + 1)

2ν + γ
≤ 4ν + 2

2ν − 1
,

with equality if γ = ν
ν−1 . We also observe that

2ν + 1

3
<

4ν + 2

2ν − 1
<

8

3
if ν <

7

2
, respectively

8

3
<

4ν + 2

2ν − 1
<

2ν + 1

3
if ν >

7

2
.

Then we fix ν = 7/2 and γ = ν
ν−1 = 7/5 < 5/3 and using (67), (68) and (71) we obtain

∀ 2 ≤ p <
8

3
, ‖AIV

ε ‖Lp + ‖AV
ε ‖Lp + ‖AV II

ε ‖Lp ≤ C.

This concludes the proof of (iii).

(iv) We use the same inequalities as in the three-dimensional case with 1 < ν < 3 and α, β, γ ∈ (1, 2)
satisfying β ≤ α and γ ≤ α. We get

∀ 2 ≤ p <∞, ‖AI
ε‖Lp ≤ Cp; ∀ 2 ≤ p ≤ 4α− 2, ‖AII

ε ‖Lp ≤ Cp;

∀ 2 ≤ p ≤ 2β

2− β
, ‖AIII

ε ‖Lp ≤ C(β); ∀ 2 ≤ p ≤ 2γ(ν + 1)

γ + ν(2− γ)
, ‖AIV

ε ‖Lp ≤ C(β);

∀ 2 ≤ p < 2
ν + 1

ν − 1
, ‖AV

ε ‖Lp ≤ Cp; ∀ 2 ≤ p <∞, ‖AV I
ε ‖Lp ≤ Cp

and

∀ 1 ≤ γ ≤ ν

ν − 1
, ∀ 2 ≤ p <

ν + 1

3− ν
, ‖AV II

ε ‖Lp ≤ Cp.

Then we choose

β =
4

3
, α =

5

3
, ν = 3−, γ =

ν

ν − 1
=

3

2

+

,

so that α > β and α > γ. We infer that

∀ 2 ≤ p < 4, ‖Aε‖Lp ≤ Cp.

This completes the proof in the case N = 2. �
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3.7 Proof of Proposition 17

We first recall the Fourier multiplier properties of the kernels K1
ε , K⊥

ε and K1,j
ε . We skip the proof since it

is the same as in section 5.2 in [8] and does not depend on the space dimension N .

Lemma 25 Let 1 < q < ∞. There exists Cq > 0 (depending also on cs) such that for any ε ∈ (0, 1), any
2 ≤ j ≤ N and h ∈ Lq we have

‖K1
ε ⋆ h‖Lq

+ ‖∂z1K1
ε ⋆ h‖Lq + ‖∇z⊥K1

ε ⋆ h‖Lq

+ ‖∂2z1K
1
ε ⋆ h‖Lq + ε‖∂z1∇z⊥K1

ε ⋆ h‖Lq + ε2‖∇2
z⊥

K1
ε ⋆ h‖Lq ≤ Cq‖h‖Lq ,

‖K⊥
ε ⋆ h‖Lq

+ ε‖∂z1K⊥
ε ⋆ h‖Lq + ε2‖∇z⊥K⊥

ε ⋆ h‖Lq

+ ε2‖∂2z1K
⊥
ε ⋆ h‖Lq + ε3‖∂z1∇z⊥K⊥

ε ⋆ h‖Lq + ε4‖∇2
z⊥

K⊥
ε ⋆ h‖Lq ≤ Cq‖h‖Lq

and

‖K1,j
ε ⋆ h‖Lq

+ ‖∂z1K1,j
ε ⋆ h‖Lq + ε‖∇z⊥K1,j

ε ⋆ h‖Lq

+ ε‖∂2z1K
1,j
ε ⋆ h‖Lq + ε2‖∂z1∇z⊥K1,j

ε ⋆ h‖Lq + ε3‖∇2
z⊥

K1,j
ε ⋆ h‖Lq ≤ Cq‖h‖Lq .

The proof of (21) is then divided into 5 Steps.

Step 1. There is ε1 > 0 and for any 1 < q < ∞ there exists Cq (depending also on F ) such that for all
ε ∈ (0, ε1),

‖Aε‖Lq+ ‖∇zAε‖Lq + ‖∂2z1Aε‖Lq + ε‖∂z1∇z⊥Aε‖Lq + ε2‖∇2
z⊥

Aε‖Lq

≤ Cq

(
‖Aε‖2L2q + ε2

[
‖∂z1Aε‖L2q + ε‖∇z⊥Aε‖L2q

]2)
.

The proof is very similar to that of Lemma 6.2 p. 268 in [8] and thus is only sketched. Indeed, if U = ρeiφ

is a finite energy solution to (TWc) such that r0
2 ≤ ρ ≤ 2r0 then the first equation in (17) can be written as

2r20∆φ = c
∂

∂x1
(ρ2 − r20)− 2div

(
(ρ2 − r20)∇φ

)

and this gives

2r20
∂φ

∂xj
= cRjR1(ρ

2 − r20)− 2
N∑

k=1

RjRk

(
(ρ2 − r20)

∂φ

∂xk

)
,

where Rk is the Riesz transform (defined by Rkf = F−1
(
iξk
|ξ| f̂

)
). It is well-known that the Riesz transform

maps continuously Lp(RN ) into Lp(RN ) for 1 < p < ∞. From the above we infer that for any q ∈ (1,∞)
and any j ∈ {1, . . . , N} we have

∥∥∥ ∂φ
∂xj

∥∥∥
Lq

≤ C(q)‖ρ2 − r20‖Lq + C(q)

N∑

k=1

∥∥∥(ρ2 − r20)
∂φ

∂xj

∥∥∥
Lq

≤ C(q)‖ρ2 − r20‖Lq + C(q)‖ρ2 − r20‖L∞‖∇φ‖Lq

and this implies
‖∇φ‖Lq ≤ C(q)‖ρ2 − r20‖Lq + C(q)‖ρ2 − r20‖L∞‖∇φ‖Lq .

If ‖ρ2 − r20‖L∞ is sufficiently small we get ‖∇φ‖Lq ≤ C̃(q)‖ρ2 − r20‖Lq ≤ K(q)‖ρ − r0‖Lq . By scaling, this
estimate implies that for 1 < q <∞,

‖∂z1ϕε‖Lq + ε‖∇z⊥ϕε‖Lq ≤ Cq‖Aε‖Lq . (72)
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Hence, by Hölder’s inequality and Lemma 24 (ii),

‖Gε‖Lq ≤ Cq

(
‖Aε‖2L2q + ε2‖Aε‖3L3q + ε2‖∂z1Aε‖2L2q + ε4‖∇z⊥Aε‖2L2q

)

≤ Cq

(
‖Aε‖2L2q + ε2

[
‖∂z1Aε‖L2q + ε‖∇z⊥Aε‖L2q

]2)
.

We take the derivatives up to order 2 of (63) and then the conclusion follows from Lemma 25.

Step 2. Let N = 3. There is ε2 > 0 and for any 1 < p < 3/2 there exists Cp (also depending on F ) such
that for any ε ∈ (0, ε2) there holds

‖Aε‖Lp + ‖∇Aε‖Lp + ‖∂2z1Aε‖Lp + ε‖∂z1∇z⊥Aε‖Lp + ε2‖∇2
z⊥

Aε‖Lp ≤ Cp.

If 1 ≤ q ≤ 3/2, we have by Lemma 24 (i)

ε
[
‖∂z1Aε‖L2q + ε‖∇z⊥Aε‖L2q

]
≤ C.

Thus for 1 < q ≤ 3/2 we infer from Step 1 that

‖Aε‖Lq + ‖∇zAε‖Lq+ ‖∂2z1Aε‖Lq + ε‖∂z1∇z⊥Aε‖Lq + ε2‖∇2
z⊥

Aε‖Lq ≤ Cq + Cq‖Aε‖2L2q . (73)

If 1 < p < 4/3, we use (73) combined with Lemma 24 (iii) with exponent 2p ∈ [2, 8/3) to get

‖Aε‖Lp + ‖∇zAε‖Lp+ ‖∂2z1Aε‖Lp + ε‖∂z1∇z⊥Aε‖Lp + ε2‖∇2
z⊥

Aε‖Lp ≤ Cp. (74)

This proves Step 2 for 1 < p < 4/3. In dimension N = 3, the Sobolev inequality does not enable us
to improve the Lq integrability of Aε to some q > 8/3. We thus rely on the decomposition of Aε as
Aε = AI

ε +AII
ε +AIII

ε +AIV
ε +AV

ε +AV I
ε +AV II

ε , exactly as in Lemma 24. We choose α = 5/3, β = 3/2.
By the estimates in the proof of Lemma 24 (iii) we have then

∀ 2 ≤ p ≤ 3, ‖AI
ε‖Lp + ‖AII

ε ‖Lp + ‖AIII
ε ‖Lp + ‖AV I

ε ‖Lp ≤ C.

It remains to bound AIV
ε , AV

ε and AV II
ε in L3− . In view of (68), we choose ν = 5/2, so that 4ν+2

2ν−1 = 3, and
thus

∀ 2 ≤ p < 3, ‖AV
ε ‖Lp ≤ Cp.

We cancel out AIV
ε by taking γ = 5/3 = α. Next we turn our attention to the ”bad term” AV II

ε . By (74)
we get

∀ 1 < p <
4

3
, ‖∇z⊥Aε‖Lp ≤ Cp,

hence, by the Riesz-Thorin theorem,

∀ 4 < r <∞, ‖ξ⊥Âε‖Lr = ‖F (∇z⊥Aε)‖Lr ≤ Cr.

Consequently, for 4 < r < ∞, 2 < p < ∞ and q = p/(p − 1) ∈ (1, 2), using once again the Riesz-Thorin
theorem and the Hölder inequality with exponents r

q and r
r−q we get

‖AV II
ε ‖qLp ≤ C‖ÂV II

ε ‖qLq

= C

∫

R3

(|ξ⊥| · |Âε|)q ×
1{1≤|ξ⊥|≤ε−γ , 1≤|ξ1|ν≤|ξ⊥|}

|ξ⊥|q
dξ

≤ C‖ξ⊥Âε‖qLr

(∫

R3

1{1≤|ξ⊥|≤ε−γ , 1≤|ξ1|ν≤|ξ⊥|}

|ξ⊥|
rq

r−q

dξ
) r−q

r

≤ Cr,q

(∫ ε−γ

1

R1+ 1
ν

R
rq

r−q

dR
) r−q

r ≤ Cr,q

provided that rq
r−q > 2 + 1

ν = 12/5. Now let 2 ≤ p < 3 be fixed, so that 3/2 < q ≤ 2. Since 3/2 < q ≤ 2 and

q 7−→ 4q
4−q is increasing on (3/2, 2], we have 4q

4−q > 12/5. Furthermore, we have rq
r−q → 4q

4−q > 12/5 as r → 4.

Hence we may choose r > 4 such that rq
r−q > 2 + 1

ν = 12/5. As a consequence, we have

∀ 2 ≤ p < 3, ‖AV II
ε ‖Lp ≤ Cp.

34



Collecting the above estimates for AI
ε, ... , AV II

ε we deduce

∀ 2 ≤ p < 3, ‖Aε‖Lp ≤ Cp.

Then we use once again (73) with exponent p/2 ∈ (1, 3/2) to infer that Step 2 holds for 1 < p < 3/2.

In order to be able to use Step 1 with some q > 3/2, we need to prove that Aε, εn∂z1Aε and ε2n∇z⊥Aε

are uniformly bounded in Lp for some p > 3. This is what we will prove next.

Step 3. If N = 3, the following bounds hold:





∀ 2 ≤ p < 15/4 = 3.75, ‖Aε‖Lp ≤ Cp;

∀ 2 ≤ p < 18/5 = 3.6, ε‖∂z1Aε‖Lp ≤ Cp;

∀ 2 ≤ p < 18/5 = 3.6, ε2‖∇z⊥Aε‖Lp ≤ Cp.

Fix r ∈ (3,∞), p ∈ (2,∞) and let q = p/(p − 1) ∈ (1, 2) be the conjugate exponent of p. By the
Riesz-Thorin theorem and the Hölder inequality with exponents r

q and r
r−q we have

‖Aε‖qLp ≤ C‖Âε‖qLq

= C

∫

R3

[
(1 + |ξ1|2 + |ξ⊥|) · |Âε|

]q
× dξ

(1 + |ξ1|2 + |ξ⊥|)q

≤ C
(
‖Âε‖Lr + ‖ξ21Âε‖Lr + ‖ξ⊥Âε‖Lr

)q(∫

R3

dξ

(1 + |ξ1|2 + |ξ⊥|)
rq

r−q

) r−q
r

. (75)

We bound the first parenthesis using again the Riesz-Thorin theorem: since r ∈ (3,∞), its conjugate
exponent r/(r − 1) belongs to (1, 3/2) and then Step 2 holds for the exponent r instead of p, hence

‖Âε‖Lr + ‖ξ21Âε‖Lr + ‖ξ⊥Âε‖Lr = ‖F (Aε)‖Lr + ‖F (∂2z1Aε)‖Lr + ‖F (∇z⊥Aε)‖Lr

≤ C
(
‖Aε‖L r

r−1
+ ‖∂2z1Aε‖L r

r−1
+ ‖∇z⊥Aε‖L r

r−1

)
≤ Cr.

Next, we compute using cylindrical coordinates

∫

R3

dξ

(1 + |ξ1|2 + |ξ⊥|)
rq

r−q

≤ 4π
[ ∫ 1

0

∫ +∞

0

RdR

(1 +R)
rq

r−q

dξ1 +

∫ +∞

1

∫ ξ21

0

RdR

ξ
2rq
r−q

1

dξ1 +

∫ +∞

1

∫ +∞

ξ21

RdR

R
rq

r−q

dξ1

]

≤ 4π
[ ∫ +∞

0

RdR

(1 +R)
rq

r−q

+
1

2

∫ +∞

1

ξ41

ξ
2rq
r−q

1

dξ1 +
1

rq
r−q − 2

∫ +∞

1

dξ1

ξ
2( rq

r−q
−2)

1

]
.

The integrals in the last line are finite provided that rq
r−q > 2 (for the first integral), 2rq

r−q > 5 (for the second

integral) and 2( rq
r−q − 2) > 1 (for the third integral), hence their sum is finite if rq

r−q > 5/2. Note that
rq
r−q → 3q

3−q as r → 3 and 3q
3−q > 5/2 for q ∈ ( 1511 , 3). If 2 < p < 15/4 = 3.75 we have 15/11 < q < 2 and we

may choose r > 3 (and r close to 3) such that rq
r−q > 5/2. Then it follows from the two estimates above that

∀ 2 ≤ p <
15

4
, ‖Aε‖Lp ≤ Cp.

Now we turn our attention to the bound on ε∂z1Aε. Let r ∈ (1, 32 ), q ∈ [2,∞) and s ∈ (r, q). We use the

estimates in Step 2 for
∥∥∥ ∂2Aε

∂zi∂zj

∥∥∥
Lr

and (59) with N = 3 for
∥∥∥ ∂2Aε

∂zi∂zj

∥∥∥
Lq
, then we interpolate to get

∥∥∥∂
2Aε

∂z21

∥∥∥
Ls

+ ε
∥∥∥ ∂2Aε

∂z1∂zj

∥∥∥
Ls

+ ε2
∥∥∥∇2

⊥Aε

∥∥∥
Ls

≤ Cr,qε
(−4+ 2N−1

q )
1− r

s
1− r

q . (76)
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If s ∈ (r, 3), from the Sobolev inequality and the above estimate we obtain

‖∂z1Aε‖
L

3s
3−s

≤ Cs‖∂2z1Aε‖
1
3

Ls‖∂z1∇⊥Aε‖
2
3

Ls ≤ Cs,r,qε
− 2

3 ε
(−4+ 5

q )
1− r

s
1− r

q . (77)

We have − 2
3 +

(
−4 + 5

q

)
1− r

s

1− r
q

→ − 14
3 + 4r

s as q → ∞ uniformly with respect to r ∈ [1, 32 ] and s ∈ [1, 3]. If

1 < s < 18
11 ≈ 1.636 we have − 14

3 + 4r
s → − 14

3 + 6
s > −1 as r → 3

2 . For any fixed s ∈ (1, 1811 ) we may choose q

sufficiently large and r ∈ (1, 32 ) sufficiently close to 3
2 such that − 2

3 +
(
−4 + 5

q

)
1− r

s

1− r
q

> −1. Since 3s
3−s ր 18

5

as sր 18
11 , from (77) we get

∀ p ∈
(
1,

18

5

)
, ‖∂z1Aε‖Lp ≤ Cpε

−1.

Let r ∈ (1, 32 ), q ∈ [3,∞) and s ∈ (r, 3). Using the Sobolev inequality and (76) we have

‖∇z⊥Aε‖
L

3s
3−s

≤ Cp‖∂z1∇z⊥Aε‖
1
3

Ls‖∇2
z⊥

Aε‖
2
3

Ls ≤ Cs,r,qε
− 5

3 ε
(−4+ 5

q )
1− r

s
1− r

q .

Proceeding as above we infer that

∀ 1 < p < 18/5, ε2‖∇z⊥Aε‖Lp ≤ Cp.

Step 4. Conclusion in the case N = 3.
Fix 1 < p < 9/5 = 1.8. Since 2 < 2p < 18/5 < 15/4, we may use Step 1 (with p instead of q) and Step 3

to deduce that

‖Aε‖Lp+ ‖∇zAε‖Lp + ‖∂2z1Aε‖Lp + εn‖∂z1∇z⊥Aε‖Lp + ε2n‖∇2
z⊥

Aε‖Lp

≤ Cp

(
‖Aε‖2L2p +

[
εn‖∂z1Aε‖L2p + ε2n‖∇z⊥Aε‖L2p

]2)
≤ Cp. (78)

Hence (21) holds for p ∈ (1, 9/5). In particular, by the Sobolev imbeddding W 1,p →֒ L
3p

3−p with 1 < p < 9/5
we have

∀ 1 < q < 9/2 = 4.5, ‖Aε‖Lq ≤ Cq.

On the other hand, for any 1 < p < 9/5,

ε‖∂z1Aε‖W 1,p = ε‖∂z1Aε‖Lp + ε‖∂2z1Aε‖Lp + ε‖∇z⊥∂z1Aε‖Lp ≤ Cp and ε2‖∇z⊥Aε‖W 1,p ≤ Cp,

hence by the Sobolev embdding,

∀ 1 < q < 9/2 = 4.5, ε‖∂z1Aε‖Lq + ε‖∇z⊥Aε‖Lq ≤ Cq.

Thus we may apply Step 1 again to infer that (78) holds now for 1 < p < 9/4 = 2.25. By the Sobolev

embedding W 1,p →֒ L
3p

3−p , we deduce as before that

∀ 1 < q < 9, ‖Aε‖Lq + ε‖∂z1Aε‖Lq + ε2‖∇z⊥Aε‖Lq ≤ Cq.

Applying Step 1, we discover that (78) holds for any 1 < p < 9/2. Since 9/2 > 3, the Sobolev embedding
yields

∀ 1 < q ≤ ∞, ‖Aε‖Lp + ε‖∂z1Aε‖Lp + ε2‖∇z⊥Aε‖Lp ≤ Cp,

and the conclusion follows using again Step 1.

Step 5. Conclusion in the case N = 2. The proof of (21) in the two-dimensional case is much easier: for
any 1 < p < 3

2 , we have by Step 1 and Lemma 24 (i) and (iv)

‖Aε‖Lp + ‖∇zAε‖Lp + ‖∂2z1Aε‖Lp + ε‖∂z1∇z⊥Aε‖Lp + ε2‖∇2
z⊥

Aε‖Lp ≤ Cp.

Thus, by the Sobolev embedding W 1,p(R2) →֒ L
2p

2−p (R2),

∀ 1 < q < 6, ‖Aε‖Lq ≤ Cq and εn

[
‖∂z1Aε‖Lq + εn‖∇z⊥Aε‖Lq

]
≤ Cq. (79)
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Applying Step 1 once again, we infer that (78) holds for any p ∈ (1, 3). Since 3 > 2, the Sobolev embedding
implies that (79) holds for any q ∈ (1,∞]. Repeating the argument we get the desired conclusion.

Since Aε = ε−2(
√
1 + ε2Aε − 1), uniform bounds bounds on Aε and its derivatives up to order 2 follow

immediately from (21).

It remains to prove (22). The uniform bounds on ∂z1ϕε and ε∇z⊥ϕε follow from (72) and (21).
Let U = ρeiφ be a finite energy solution to (TWc), from the first equation in (17) we have

2ρ2∆φ = c
∂

∂x1
(ρ2 − r20)− 2∇(ρ2) · ∇φ.

If ρ ≥ r0
2 and c ∈ (0, cs), using the properties of the Riesz transform we get for any j, k ∈ {1, . . . , N} and

any q ∈ (1,∞)

∥∥∥ ∂2φ

∂xj∂xk

∥∥∥
Lq

= ‖RjRk(∆φ)‖Lq ≤ C‖∆φ‖Lq ≤ C
∥∥∥ ∂

∂x1
(ρ2 − r20)

∥∥∥
Lq

+ C‖∇(ρ2) · ∇φ‖Lq .

In the case U = Uε, ρ(x) = r0
√
1 + ε2Aε(z), φ(x) = εϕε(z), using (21) and (72) we get

∥∥∥ ∂2φ

∂xj∂xk

∥∥∥
Lq

≤ ε3−
2N−1

q

∥∥∥∂Aε

∂z1

∥∥∥
Lq

+Cε5−
2N−1

q

∥∥∥∂Aε

∂z1
· ∂ϕε
∂z1

∥∥∥
Lq

+Cε7−
2N−1

q

N∑

j=2

∥∥∥∂Aε

∂zj
· ∂ϕε
∂zj

∥∥∥
Lq

≤ Cqε
3− 2N−1

q .

By scaling we find for j, k ∈ {2, . . . , N},
∥∥∥∂

2ϕε
∂z21

∥∥∥
Lq

+ ε
∥∥∥ ∂2ϕε
∂z1∂zj

∥∥∥
Lq

+ ε2
∥∥∥ ∂2ϕε
∂zj∂zk

∥∥∥
Lq

≤ Cq. (80)

By assumption (A4) there is δ > 0 such that F is C2 on ( (r0 − 2δ)2, (r0 +2δ)2). Let U = ρeiφ be a solution
to (TWc) such that r0 − δ ≤ ρ ≤ r0 + δ. Differentiating (TWc) and using standard elliptic regularity theory
it is not hard to see that U ∈W 4,p

loc (R
N ) and ∇U ∈W 3,p(RN ) for any p ∈ (1,∞) (see the proof Proposition

2.2 (ii) p. 1079 in [34]). We infer that ∇ρ, ∇φ ∈W 3,p(RN ) for p ∈ (1,∞). Differentiating the first equation
in (17) with respect to x1 we find

c
∂2

∂x21

(
ρ2 − r20

)
= 2∇

(
∂(ρ2)

∂x1

)
· ∇φ+ 2∇(ρ2) · ∇

(
∂φ

∂x1

)
+ 2

∂(ρ2)

∂x1
∆φ+ 2ρ2∆

(
∂φ

∂x1

)
. (81)

If U = Uε, ρ(x) = r0
√
1 + ε2Aε(z) and φ(x) = εϕε(x), we perform a scaling and then we use (21), (72) and

(80) to get, for 1 < q <∞ and all ε sufficiently small,

∥∥∥ ∂
2

∂x21

(
ρ2 − r20

) ∥∥∥
Lq

= ε4+
1−2N

q

∥∥∥∂
2Aε

∂z21

∥∥∥
Lq

≤ Cqε
4+ 1−2N

q ,

∥∥∥∂
2(ρ2)

∂x21
· ∂φ
∂x1

∥∥∥
Lq

≤
∥∥∥∂

2(ρ2)

∂x21

∥∥∥
L2q

∥∥∥ ∂φ
∂x1

∥∥∥
L2q

= ε6+
1−2N

q

∥∥∥∂
2Aε

∂z21

∥∥∥
L2q

∥∥∥∂ϕε
∂z1

∥∥∥
L2q

≤ Cqε
6+ 1−2N

q ,

∥∥∥ ∂
2(ρ2)

∂x1∂xk
· ∂φ
∂xk

∥∥∥
Lq

≤
∥∥∥ ∂

2(ρ2)

∂x1∂xk

∥∥∥
L2q

∥∥∥ ∂φ
∂xk

∥∥∥
L2q

= ε8+
1−2N

q

∥∥∥ ∂2Aε

∂z1∂zk

∥∥∥
L2q

∥∥∥∂ϕε
∂zk

∥∥∥
L2q

≤ Cqε
6+ 1−2N

q ,

∥∥∥∂(ρ
2)

∂x1
· ∂

2φ

∂x21

∥∥∥
Lq

≤
∥∥∥∂(ρ

2)

∂x1

∥∥∥
L2q

∥∥∥∂
2φ

∂x21

∥∥∥
L2q

= ε6+
1−2N

q

∥∥∥∂Aε

∂z1

∥∥∥
L2q

∥∥∥∂
2ϕε
∂z21

∥∥∥
L2q

≤ Cqε
6+ 1−2N

q ,

∥∥∥∂(ρ
2)

∂xk
· ∂2φ

∂x1∂xk

∥∥∥
Lq

≤
∥∥∥∂(ρ

2)

∂xk

∥∥∥
L2q

∥∥∥ ∂2φ

∂x1∂xk

∥∥∥
L2q

= ε8+
1−2N

q

∥∥∥∂Aε

∂zk

∥∥∥
L2q

∥∥∥ ∂2ϕε
∂z1∂zk

∥∥∥
L2q

≤ Cqε
7+ 1−2N

q ,

∥∥∥∂(ρ
2)

∂x1

∥∥∥
Lq

= ε3+
1−2N

q

∥∥∥∂Aε

∂z1

∥∥∥
Lq

≤ Cqε
3+ 1−2N

q ,

∥∥∥∂
2φ

∂x21

∥∥∥
Lq

= ε3+
1−2N

q

∥∥∥∂
2ϕε
∂z21

∥∥∥
Lq

≤ Cqε
3+ 1−2N

q and
∥∥∥∂

2φ

∂x2k

∥∥∥
Lq

= ε5+
1−2N

q

∥∥∥∂
2ϕε
∂z2k

∥∥∥
Lq

≤ Cqε
3+ 1−2N

q .
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Hence ‖∆φ‖Lq ≤ Cqε
3+ 1−2N

q and then
∥∥∥∂(ρ

2)

∂x1
· ∆φ

∥∥∥
Lq

≤ Cqε
6+ 1−2N

q . From (81) and the above estimates

we infer that
∥∥∥∆
(
∂φ

∂x1

)∥∥∥
Lq

≤ Cqε
4+ 1−2N

q . As before, this implies
∥∥∥ ∂3φ

∂x1∂xi∂xj

∥∥∥
Lq

≤ Cqε
4+ 1−2N

q for any

i, j ∈ {1, . . . , N}. By scaling we find

∥∥∥∂
3ϕε
∂z31

∥∥∥
Lq

+ ε
∥∥∥∇z⊥

∂2ϕε
∂z21

∥∥∥
Lq

+ ε2
∥∥∥∇2

z⊥

∂ϕε
∂z1

∥∥∥
Lq

≤ Cq.

Then (22) follows from the last estimate, (72) and (80). �

3.8 Proof of Proposition 11

Let (Un, εn)n≥1 be a sequence as in Proposition 11. We denote cn =
√
c
2
s − ε2n. By Corollary 15 we have

‖ |Un| − r0‖L∞(R3) → 0 as n→ ∞, hence |Un| ≥ r0
2 in R

3 for all sufficiently large n, say n ≥ n0. For n ≥ n0
we have a lifting as in Theorem 6 or in (16), that is

Un(x) = ρn(x)e
iφn(x) = r0

(
1 + ε2nAn(z)

)
e
iεnϕn(z) = r0

√
1 + ε2nAn(z) e

iεnϕn(z),

where z1 = εnx1, z⊥ = ε2nx⊥. Let Wn = ∂z1ϕn/cs. Our aim is to show that (Wn)n≥n0
is a minimizing

sequence for S∗ in the sense of Theorem 5. To that purpose we expand the functional Ecn(Un) in terms of
the (KP-I) action of Wn = ∂z1ϕn/cs. Recall that by (28) we have

Ecn(un) = εnr
2
0

∫

R3

1

ε2n

(
∂z1ϕn − cnAn

)2
+ (∂z1ϕn)

2(2An + ε2nA
2
n) + |∇z⊥ϕn|2(1 + ε2nAn)

2

+ (∂z1An)
2 + ε2n|∇z⊥An|2 +A2

n + c
2
s

(Γ
3
− 1
)
A3
n +

c
2
s

ε6n
V4(ε

2
nAn)

− cnA
2
n∂z1ϕn dz.

By Proposition 17, (An)n≥n0
is bounded in W 1,p(RN ) for all p ∈ (1,∞), hence it is bounded in L∞(R3).

Since F (r20(1+ε
2Aε)) = F (r20)−c

2
sε

2Aε+O(ε4A2
ε) = −c2(ε)ε2Aε−ε4Aε+O(ε4Aε), from the second equation

in (9), Lemma 23 and Proposition 17 we get

‖∂z1ϕn − cnAn‖L2 = O(ε2n). (82)

In particular, we have

∫

R3

1

ε2n

(
∂z1ϕn − cnAn

)2
dz = O(ε2n) as n→ ∞.

By Proposition 17, ∂z1ϕn ∈W 2,p(RN ) for p ∈ (1,∞). Integrating by parts we have

∫

RN

(∂z1An)
2 − (∂2z1ϕn)

2

c2n
dz = −

∫

RN

(
An − ∂z1ϕn

cn

)(
∂2z1An +

∂3z1ϕn

cn

)
dz

From the above identity, the Cauchy-Schwarz inequality, (82) and Proposition 17 we get

∣∣∣
∫

RN

(∂z1An)
2− (∂2z1ϕn)

2

c
2
s

dz
∣∣∣ ≤

(
1

c2n
− 1

c
2
s

)∫

RN

(∂2z1ϕn)
2 dz+

∥∥∥An−
∂z1ϕn
cn

∥∥∥
L2

∥∥∥∂2z1An+
∂3z1ϕn

cn

∥∥∥
L2

= O(ε2n).

Similarly, using (82), Hölder’s inequality and Proposition 17 we find

∣∣∣
∫

R3

A2
n − (∂z1ϕn)

2

c
2
s

dz
∣∣∣+
∣∣∣
∫

R3

A3
n − (∂z1ϕn)

3

c
3
s

dz
∣∣∣

+
∣∣∣
∫

R3

A2
n∂z1ϕn − (∂z1ϕn)

3

c
2
s

dz
∣∣∣+
∣∣∣
∫

R3

An(∂z1ϕn)
2 − (∂z1ϕn)

3

cs
dz
∣∣∣ = O(ε2n).

Since (An)n≥n0 is bounded in L∞(R3), using Lemma 23 we find

∫

R3

|∇z⊥ϕn|2(1 + ε2nAn)
2 dz =

∫

R3

|∇z⊥ϕn|2 dz +O(ε2n) = c
2
s

∫

R3

|∇z⊥∂
−1
z1 Wn|2 dz +O(ε2n).
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Recall that V4(α) = O(α4) as α→ 0, hence Proposition 17 implies that

∫

R3

ε2nA
2
n(∂z1ϕn)

2 + ε2n|∇z⊥An|2 +
c
2
s

ε6n
V4(ε

2
nAn) dz = O(ε2n).

Inserting the above estimates into (28) we obtain

Ec(εn)(Un)

c
2
sr

2
0εn

=

∫

R3

∣∣∣∇z⊥∂
−1
z1 Wn

∣∣∣
2

+
1

c
2
s

(∂z1Wn)
2 +

Γ

3
W3
n +

1

c
2
s

W2
n dz +O(ε2n) = S (Wn) +O(ε2n). (83)

From the above estimate and the upper bound on Ecn(Un) = Tcn given by Proposition 9 (ii) we infer that

S (Wn) =
Ec(εn)(Un)

c
2
sr

2
0εn

+O(ε2n) =
Tcn

c
2
sr

2
0εn

+O(ε2n) ≤ Smin +O(ε2n) = S∗ +O(ε2n).

Similarly we have

∫

R3

|∇x⊥
Un|2 dx = r20εn

∫

R3

(1 + ε2nAn)
2|∇x⊥

ϕn|2 + ε2n|∇x⊥
An|2 dz = r20c

2
sεn

∫

R3

∣∣∣∇z⊥∂
−1
z1 Wn

∣∣∣
2

dz +O(ε3n).

Since Un satisfies the Pohozaev identity Ecn(Un) =

∫

R3

|∇z⊥Un|2 dz, comparing the above equation to the

expression of Ecn(Un) in (83) we find

∫

R3

1

c
2
s

(∂z1Wn)
2 +

Γ

3
W3
n +

1

c
2
s

W2
n dz = O(ε2n).

In order to apply Theorem 5, we have to check that there is m1 > 0 such that for all n sufficiently large
there holds ∫

R3

W2
n + (∂z1Wn)

2 dz ≥ m1.

By Lemma 22, there are k > 0 depending only on F and n1 ≥ n0 such that

∀n ≥ n1, ‖An‖L∞ ≥ k.

Since An tends to 0 at infinity, after a translation we may assume that

|An(0)| = ‖An‖L∞ ≥ k.

By Proposition 17 we know that for all p ∈ (1,∞) there is Cp > 0 such that ‖An‖W 1,p ≤ Cp for any n ≥ n0.
Then Morrey’s inequality (see e.g. Theorem IX.12 p. 166 in [14]) implies that for any α ∈ (0, 1) there is
Cα > 0 such that for all n ≥ n0 and all x, y ∈ R

3 we have |An(x) − An(y)| ≤ Cα|x − y|α. We infer that
|An| ≥ k/2 in Br(0) for some r > 0 independent of n, hence there is m1 > 0 such that

‖An‖L2 ≥ ‖An‖L2(Br(0)) ≥ 2m1.

From (82) it follows that ‖Wn −An‖L2 → 0 as n→ ∞, hence

‖Wn‖L2 ≥ ‖Wn‖L2(Br(0)) ≥ m1 for all n sufficiently large.

Then Theorem 5 implies that there exist W ∈ Y (R3), a subsequence of (Wn)n≥n0 (still denoted
(Wn)n≥n0

), and a sequence (zn)n≥n0
⊂ R

3 such that

Wn(· − zn) → W in Y (R3).

Moreover, there is σ > 0 such that z 7−→ W(z, 1
σ z⊥) is a ground state (with speed 1/(2c2s)) of (KP-I). We

will prove that σ = 1.

Let xn =
(
zn1
εn
,
zn
⊥

ε2n

)
. We denote W̃n = Wn(· − zn), Ãn = An(· − zn), ϕ̃n = ϕn(· − zn), Ũn = Un(· − xn).

It is obvious that Ũn satisfies (TWcn) and all the previous estimates hold with Ãn, ϕ̃n and Ũn instead of
An, ϕn and Un, respectively.
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Since W̃n = 1
cs
∂z1 ϕ̃n and W̃n → W in Y (R3), we have

∂z1 ϕ̃n → csW, ∂2z1 ϕ̃n → cs∂z1W and ∇z⊥ ϕ̃n → cs∇z⊥∂
−1
z1 W in L2(R3). (84)

Integrating by parts, then using the Cauchy-Schwarz inequality, Proposition 17 and (82) we find

∫

R3

∣∣∣∂2z1 ϕ̃n − cn∂z1Ãn

∣∣∣
2

dz = −
∫

R3

(∂z1 ϕ̃n − cnÃn)(∂
3
z1 ϕ̃n − cn∂

2
z1Ãn) dz

≤ ‖∂z1 ϕ̃n − cnÃn‖L2‖∂3z1 ϕ̃n − cn∂
2
z1Ãn‖L2 = O(ε2n),

hence ‖∂2z1 ϕ̃n − cn∂z1Ãn‖L2 = O(εn) → 0. Since cn → cs, from (82) and (84) we get

Ãn → W and ∂z1Ãn → ∂z1W in L2(R3) as n→ ∞. (85)

It is obvious that Ãn, ϕ̃n and εn satisfy (11). Let ψ ∈ C∞
c (R3). We multiply (11) by ψ, integrate by

parts, then pass to the limit as n → ∞. We use Proposition 17, (84) and (85) and after a straightforward
computation we discover that W satisfies the equation (SW) in D′(R3). This implies that necessarily σ = 1
and W is a ground state of speed 1/(2c2s) to (KP-I). In particular, W satisfies the Pohozaev identities (25)
and (26).

Since W̃n → W in Y (R3), we have S (Wn) = S (W̃n) → S (W) and (83) implies

Ec(εn)(Un)

c
2
sr

2
0εn

= S (Wn) +O(ε2n) = S (W) + o(1) = Smin + o(1),

that is (13) holds. Using the expression for the momentum in (3), then (84), (85), Proposition 17 and the
Pohozaev identities (25) and (26) we get

− εn
r20c

3
s

Q(Un) =
εn
r20c

3
s

∫

R3

(ρ2n−r20)
∂φn
∂x1

dx =
1

c
3
s

∫

R3

(2An(z)+ε
2
nA

2
n(z))

∂ϕn
∂z1

(z) dz −→ 2

c
2
s

∫

R3

W2(z) dz = S (W).

Hence −csQ(Un) ∼ r20c
4
sSminε

−1 as n→ ∞. Together with (13) this implies that (Un)n≥n0
satisfies (12).

By Proposition 17 we know that (Ãn)n≥n0 , (∂z1Ãn)n≥n0 , (∂z1 ϕ̃n)n≥n0 and (∂2z1 ϕ̃n)n≥n0 are bounded in
Lp(R3) for 1 < p <∞. From (84), (85) and standard interpolation in Lp spaces we find as n→ ∞

Ãn → W, ∂z1Ãn → ∂z1W, ∂z1 ϕ̃n → csW and ∂2z1 ϕ̃n → cs∂z1W in Lp (86)

for any p ∈ (1,∞).
Proceeding as in [8] (see Lemma 4.6 p. 262 and Proposition 6.1 p. 266 there) one can prove that

for any multiindex α ∈ N
N with |α| ≤ 2, the sequences (∂αÃn)n≥n0 , (∂

α∂z1Ãn)n≥n0 , (∂
α∂z1 ϕ̃n)n≥n0 and

(∂α∂2z1 ϕ̃n)n≥n0
are bounded in Lp(R3) for 1 < p < ∞. Then by interpolation we see that (86) holds in

W 1,p(R3) for all p ∈ (1,∞). �

3.9 Proof of Theorem 6 completed in the case N = 2

Assume that N = 2. Let (Un, cn) be a sequence of travelling waves to (NLS) satisfying assumption (b) in

Theorem 6 such that cn → cs as n→ ∞. Let εn =
√
c
2
s − c2n. By Theorem 1 we have

∫

R2

|∇Un|2 dx→ 0 as

n→ ∞ and then Lemma 13 implies that ‖ |Un| − r0‖L∞ → 0; in particular, for n sufficiently large we have a

lifting Un(x) = ρn(x)e
iφn(x) = r0

(
1+ ε2nAn(z)

)
e
iεnϕn(z) as in (8) and the conclusion of Proposition 17 holds

for An and ϕn. As in the proof of Proposition 11 we obtain

‖∂z1ϕn − cnAn‖L2 = O(ε2n) and ‖∂2z1ϕn − cn∂z1An‖L2 = O(εn) as n→ ∞. (87)

Let kn =

∫

R2

|∇Un(x)|2 dx. We denote Wn = c
−1
s ∂z1ϕn. By (87) we have ‖Wn − An‖L2 = O(ε2n). As in

the proof of Proposition 11 we find
∣∣∣
∫

R2

(∂z1An)
2 − (∂z1Wn)

2 dz
∣∣∣ =

∣∣∣
∫

R2

(∂z1An)
2 − (∂2z1ϕn)

2

c
2
s

dz
∣∣∣ = O(ε2n).
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Using (87) and Proposition 17 we get

kn =

∫

R2

|∇Un|2 dx = εnr
2
0

∫

R2

(∂z1ϕn)
2(1 + ε2nAn)

2 + ε2n(∂z1An)
2 + ε2n(∂z2ϕn)

2(1 + ε2nAn)
2 + ε4n(∂z2An)

2 dz

= εnr
2
0

∫

R2

(∂z1ϕn)
2 dz + ε3nr

2
0

∫

R2

(
2An(∂z1ϕn)

2 + (∂z1An)
2 + (∂z2ϕn)

2
)
dz +O(ε5n)

= εnr
2
0c

2
s

∫

R2

W2
n dz + ε3nr

2
0c

2
s

∫

R2

(
2W3

n +
1

c
2
s

(∂z1Wn)
2 + (∂z2∂

−1
z1 Wn)

2
)
dz +O(ε5n). (88)

Inverting this expansion we find the following expression of εn in terms of kn:

εn =
kn

r20c
2
s‖Wn‖2L2

− k3n
r60c

6
s‖Wn‖8L2

∫

R2

(
2W3

n +
1

c
2
s

(∂z1Wn)
2 + (∂z2∂

−1
z1 Wn)

2
)
dz +O(k5n). (89)

Recall that the mapping Un(cn·) is a minimizer of the functional I(ψ) = Q(ψ) +

∫

R2

V (|ψ|2) dx under

the constraint

∫

R2

|∇ψ|2 dx = kn. Using this information, Proposition 9 (i), the fact that c2n = c
2
s − ε2n and

(89) we get

cnQ(Un) +

∫

R2

V (|Un|2) dx = c2nI(Un(cn·)) = c2nImin(kn)

≤ c2n

(
−kn

c
2
s

− 4k3n
27r40c

12
s S 2

min

+O(k5n)

)

= − kn +
k3n

r40c
6
s‖Wn‖4L2

− 4k3n
27r40c

10
s S 2

min

+O(k5n). (90)

Moreover, using the Taylor expansion (27), we find

∫

R2

V (|Un|2) dx = r20c
2
sεn

∫

R2

(
A2
n + ε2n

[Γ
3
− 1
]
A3
n +

V4(ε
2
nAn)

ε4n

)
dz

and by (3) we have

Q(Un) = −εnr20
∫

R2

(
2An + ε2nA

2
n

)∂ϕn
∂z1

dz.

Taking into account (87) and the equality c2n = c
2
s − ε2n, then using expansion of εn in terms of kn (89) we

get

cnQ(Un)+

∫

R2

V (|Un|2) dx

= r20c
2
s

(
εn

∫

R2

(
− 2AnWn +A2

n

)
dz + ε3n

∫

R2

(
−A2

nWn +
[Γ
3
− 1
]
A3
n +

1

c
2
s

AnWn

)
dz +O(ε5n)

)

= r20c
2
s

(
εn‖Wn −An‖2L2 − εn

∫

R2

W2
n dz + ε3n

∫

R2

[Γ
3
− 2
]
W3
n +

W2
n

c
2
s

dz +O(ε5n)

)

= r20c
2
s

(
−εn

∫

R2

W2
n dz + ε3n

∫

R2

[Γ
3
− 2
]
W3
n +

W2
n

c
2
s

dz +O(ε5n)

)

= − kn +
k3n

r40c
4
s‖Wn‖6L2

S (Wn) +O(k5n). (91)

Inserting (91) into (90) we discover

k3n
r40c

4
s‖Wn‖6L2

S (Wn) +O(k5n) ≤
k3n

r40c
6
s‖Wn‖4L2

− 4k3n
27r40c

10
s S 2

min

+O(k5n),

that is

S (Wn) ≤
1

c
2
s

‖Wn‖2L2 − 4

27c6sS
2
min

‖Wn‖6L2 +O(k2n)
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or equivalently

E (Wn) = S (Wn)−
1

c
2
s

∫

R2

W2
n dz ≤ − 1

2S 2
min

(2
3

)3
·
( 1

c
2
s

‖Wn‖2L2

)3
+O(k2n). (92)

As in the proof of Proposition 11, it follows from Lemma 22 and Proposition 17 that there are some positive
constants m1, m2 such that

m1 ≤ ‖Wn‖2L2 ≤ m2 for all sufficiently large n.

Denote λn =
‖Wn‖

2
L2

c
2
s

. Passing to a subsequence if necessary we may assume that λn → λ, where λ ∈ (0,+∞).

Let

W#
n (z) =

µ2

λ2n
Wn

( µ
λn
z1,

µ2

λ2n
z2

)
,

where µ is as in Theorem 4. Then W#
n satisfies

∫

R2

1

c
2
s

(W#
n )2 dz =

µ

λn

∫

R2

1

c
2
s

W2
n dz = µ and E (W#

n ) =
µ3

λ3n
E (Wn).

Plugging this into (92) and recalling that µ = 3
2Smin, we infer that

E (W#
n ) =

µ3

λ3n
E (Wn) ≤ − 1

2S 2
min

(2µ
3

)3
+O(k2n) = −1

2
Smin +O(k2n).

Therefore (W#
n )n≥n0

is a minimizing sequence for (6).

By Theorem 4 we infer that there exist a subsequence of (W#
n )n≥n0 , still denoted (W#

n )n≥n0 , a sequence
(zn)n≥n0 = (zn1 , z

n
2 )n≥n0 ⊂ R

2 and a ground stateW (with speed 1/(2c2s)) of (KP-I) such thatW#
n (·−zn) −→

W strongly in Y (R2)as n→ ∞.

Let xn =
(

µ
εnλn

zn1 ,
µ2

ε2nλ
2
n
zn2

)
and Ũn = U(· − xn), Ãn(z) = An

(
z1 − µ

λn
zn1 , z2 − µ2

λ2
n
zn2

)
, ϕ̃n(z) =

ϕn

(
z1 − µ

λn
zn1 , z2 − µ2

λ2
n
zn2

)
, W̃n(z) = Wn

(
z1 − µ

λn
zn1 , z2 − µ2

λ2
n
zn2

)
. We denote W̃(z) = λ2

µ2W(λµz1,
λ2

µ2 z2).

It is obvious that Ũn(x) = r0

(
1 + ε2nÃn(z)

)
e
iεnϕ̃n(z) is a solution to (TWcn) with the same properties as

Un and the functions Ãn, ϕ̃n, W̃n satisfy the same estimates as An, ϕn and Wn, respectively. Moreover, we
have W̃n = 1

cs
∂z1 ϕ̃n and W̃n −→ W̃ strongly in Y (R2) as n→ ∞.

It is clear that Ãn, ϕ̃n and εn satisfy (11). For any fixed ψ ∈ C∞
c (R3) we mutiply (11) by ψ, integrate

by parts, then pass to the limit as n → ∞. Proceeding as in the proof of Proposition 11 we find that W̃
satisfies equation (SW) in D′(R2). We know that W also solves (SW) and comparing the equations for W
and W̃ we infer that

(
λ3

µ3 − λ5

µ5

)
∂z1W = 0 in R

2 . Since ∂z1W 6= 0, λ > 0 and µ > 0, we have necessarily

λ = µ, that is W̃ = W.

In particular, we have S (Wn) = S (W̃n) −→ S (W) = Smin as n → ∞. Since

∫

R2

|∇Un|2 dx = kn,

using (91) and (88) we get

E(Un) + cnQ(Un) =
k3n

r40c
4
s‖Wn‖6L2

S (Wn) +O(k5n) ∼ ε3nr
2
0c

2
sSmin as n→ ∞.

Hence (13) holds. As in the proof of Proposition 11 we have

Q(Un) = −
∫

R2

(ρ2n − r20)
∂φ

∂x1
= −r20εn

∫

R2

(2An(z) + ε2nA
2
n(z))

∂ϕn
∂z1

(z) dz

∼ −2r20csεn

∫

R2

W2(z) dz = −3r20c
3
sS (W)εn.

The above computation and (13) imply (12).
Finally, the convergence in (86) as well as the similar property in W 1,p(R2) are proven exactly as in the

three dimensional case. �
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4 The higher dimensional case

4.1 Proof of Proposition 18

We argue by contradiction. Suppose that the assumptions of Proposition 18 hold and there is a sequence
(Un)n≥1 ⊂ E of nonconstant solutions to (TWcn) such that Ecn(Un) → 0 as n → +∞. By Proposition 14
(ii) we have |Un| → r0 > 0 uniformly in R

N . Hence for n sufficiently large we have the lifting Un(x) =
ρn(x)e

iφn(x). We write

Bn =
|Un|
r0

− 1, so that ρn = r0(1 + Bn) and Bn → 0 as n→ ∞.

Recall that Un satisfies the Pohozaev identities (4). The identity Pcn(Un) = 0 can be written as
∫

RN

∣∣∣∂Un
∂x1

∣∣∣
2

+
N − 3

N − 1
|∇x⊥

Un|2 dx+ cnQ(Un) +

∫

RN

V (|Un|2) dx = 0.

Using the formula (3) for Q(Un) and the Taylor expansion (27) for V (r20(1 + Bn)2) we get

r20

∫

RN

∣∣∣∂Bn
∂x1

∣∣∣
2

+ (1 + Bn)2
∣∣∣∂φn
∂x1

∣∣∣
2

+
N − 3

N − 1
|∇x⊥

Bn|2 +
N − 3

N − 1
(1 + Bn)2|∇x⊥

φn|2

− cn(2Bn + B2
n)
∂φn
∂x1

+ c
2
s

(
B2
n +

(Γ
3
− 1
)
B3
n + V4(Bn)

)
dx = 0,

where V4(α) = O(α4) as α→ 0. After rearranging terms, the above equality yields
∫

RN

(∂x1φn − cnBn)2 + (∂x1Bn)2 +
N − 3

N − 1
|∇x⊥

φn|2(1 + Bn)2 +
N − 3

N − 1
|∇x⊥

Bn|2 + ε2nB2
n dx

= −
∫

R6

(∂x1
φn)

2(2Bn + B2
n) + c

2
s

(Γ
3
− 1
)
B3
n + c

2
sV4(Bn)− cnB2

n∂x1
φn dx

= −
[Γ
3
c
2
s − ε2n

] ∫

RN

B3
n dz − c

2
s

∫

RN

V4(Bn) dx−
∫

RN

(∂x1φn)
2B2

n dx

+

∫

RN

Bn
(
(∂x1

φn − cnBn)2 − 3cnBn(∂x1
φn − cnBn)

)
dx

and this can be written as
∫

RN

(∂x1φn − cnBn)2 + (∂x1Bn)2 +
N − 3

N − 1
|∇x⊥

φn|2(1 + Bn)2 +
N − 3

N − 1
|∇x⊥

Bn|2 + ε2n(1− Bn)B2
n dx

= −Γ

3
c
2
s

∫

RN

B3
n dz − c

2
s

∫

RN

V4(Bn) dx−
∫

RN

(∂x1
φn)

2B2
n dx

+

∫

RN

Bn
(
(∂x1φn − cnBn)2 − 3cnBn(∂x1φn − cnBn)

)
dx.

(93)

For n sufficiently large we have 1
2Bn ≤ (1 − Bn)B2

n ≤ 3
2B2

n and then all the terms in the left-hand side of
(93) are nonnegative. We will find an upper bound for the right-hand side of (93). First we notice that the
third integral there is nonnegative. Since Bn → 0 in L∞ and V4(α) = O(α4) as α→ 0, we have

∣∣∣c2s
∫

RN

V4(Bn) dx
∣∣∣ ≤ C‖Bn‖4L4 ≤ C‖Bn‖L∞‖Bn‖3L3 . (94)

Using the fact that ‖Bn‖L∞ ≤ 1/4 for n large enough and the inequality 2ab ≤ a2 + b2, we get
∫

RN

Bn
(
(∂x1

φn − cnBn)2 − 3cnBn(∂x1
φn − cnBn)

)
dx ≤ 1

2

∫

RN

(∂x1
φn − cnBn)2 dx+ 9c2s

∫

RN

B4
n dx. (95)

It is easy to see that Bn ∈ H1(RN ) (see the Introduction of [17]). We recall the critical Sobolev embedding:
for any h ∈ H1(RN ) (with N ≥ 3) there holds

‖h‖
L

2N
N−2

≤ C‖∂x1
h‖

1
N

L2‖∇x⊥
h‖

N−1
N

L2 . (96)
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Assume first that N ≥ 6. Then 2∗ = 2N
N−2 ≤ 3. Using the Sobolev embedding (96) and the fact that

‖Bn‖L∞ is bounded we get

‖Bn‖3L3 ≤ ‖Bn‖3−2∗

L∞ ‖Bn‖2
∗

L2∗ ≤ C‖∂x1
Bn‖

2∗

N

L2 ‖∇x⊥
Bn‖

2∗(N−1)
N

L2 . (97)

Using the inequalities ‖Bn‖4L4 ≤ ‖Bn‖L∞‖Bn‖3L3 and 1 + Bn ≥ 1/2 for n large, we deduce from (93) that

∫

RN

(∂x1φn − cnBn)2 + (∂x1Bn)2 + |∇x⊥
φn|2 + |∇x⊥

Bn|2 + ε2nB2
n dx ≤ C‖Bn‖3L3 . (98)

From (98) and (97) we obtain

‖∇x⊥
φn‖2L2 + ‖∂x1

Bn‖2L2 + ‖∇x⊥
Bn‖2L2 ≤ C‖Bn‖3L3 ≤ C‖∂x1

Bn‖
2

N−2

L2 ‖∇x⊥
Bn‖

2N−2
N−2

L2 . (99)

Assume now that (N = 4 or N = 5) and Γ 6= 0. From (93), (94) and (95) we get

∫

RN

(∂x1
φn − cnBn)2 + (∂x1

Bn)2 + |∇x⊥
φn|2 + |∇x⊥

Bn|2 + ε2nB2
n dx ≤ C‖Bn‖4L4 . (100)

We have 2∗ = 4 if N = 4 and 2∗ = 10
3 < 4 if N = 5. By the Sobolev embedding we have

‖Bn‖4L4 ≤ ‖Bn‖4−2∗

L∞ ‖Bn‖2
∗

L2∗ ≤ C‖Bn‖2
∗

L2∗ ≤ C‖∂x1
Bn‖

2∗

N

L2 ‖∇x⊥
Bn‖

2∗(N−1)
N

L2 . (101)

The two inequalities above give

‖∇x⊥
φn‖2L2 + ‖∂x1

Bn‖2L2 + ‖∇x⊥
Bn‖2L2 ≤ C‖Bn‖4L4 ≤ C‖∂x1

Bn‖
2

N−2

L2 ‖∇x⊥
Bn‖

2N−2
N−2

L2 . (102)

From either (99) or (102) we obtain

‖∂x1
Bn‖2L2 ≤ C‖∂x1

Bn‖
2

N−2

L2 ‖∇x⊥
Bn‖

2N−2
N−2

L2 ,

which gives ‖∂x1
Bn‖

2N−6
N−2

L2 ≤ C‖∇x⊥
Bn‖

2N−2
N−2

L2 , or equivalently

‖∂x1
Bn‖L2 ≤ C‖∇x⊥

Bn‖
N−1
N−3

L2 . (103)

Now we plug (103) into (98) or (100) to discover

‖∇x⊥
Bn‖2L2 ≤ C‖∂x1Bn‖

2
N−2

L2 ‖∇x⊥
Bn‖

2N−2
N−2

L2 ≤ C‖∇x⊥
Bn‖

2(N−1)
N−3

L2 .

Since 2(N−1)
N−3 > 2 we infer that there is a constant m > 0 such that ‖∇x⊥

Bn‖L2 ≥ m for all sufficiently large
n. On the other hand Un satisfies the Pohozaev identity Pcn(Un) = 0, hence for large n we have

Ecn(Un) =
2

N − 1

∫

RN

|∇x⊥
Un|2 dx ≥ 2

N − 1
r20

∫

RN

|∇x⊥
Bn|2 dx ≥ 1

N − 1
r20m

2.

This contradicts the assumption that Ecn(Un) → 0 as n→ ∞. The proof of Proposition 18 is complete. �

Remark 26 We do not know whether Tc tends to zero or not as c→ cs if N = 4 or N = 5 and Γ 6= 0.

4.2 Proof of Proposition 19

Let N ≥ 4 and let (Un, cn)n≥1 be a sequence of nonconstant, finite energy solutions solution of (TWcn) such
that Ecn(Un) → 0. By Proposition 14 (ii) we have |Un| → r0 > 0 uniformly in R

N , hence for n sufficiently
large we may write

Un(x) = ρn(x)e
iφn(x) = r0

(
1 + αnAn(z)

)
exp

(
iβnϕn(z)

)
where z1 = λnx1, z⊥ = σnx⊥,
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and αn = 1
r0
‖ρn − r0‖L∞ → 0. Using the Pohozaev identity Pcn(Un) = 0 and (47) we have

2

N − 1

∫

RN

|∇x⊥
Un(x)|2 dx = E(Un) + cnQ(Un) =

2

N

∫

RN

|∇ρn|2 dx.

Since Un ∈ E and Un is not constant, we have

∫

RN

|∇x⊥
Un(x)|2 dx > 0 and the above identity implies that

ρn is not constant. The equality E(Un) + cnQ(Un) =
2

N

∫

RN

|∇ρn|2 dx can be written as

(
1− 2

N

)∫

RN

|∇ρn|2 dx+

∫

RN

ρ2n|∇φn|2 dx+ cnQ(Un) +

∫

RN

V (ρ2n) dx = 0.

Since ρn → r0 uniformly in R
N as n→ ∞, for n large we have V (ρ2n) ≥ 0 and from the last identity we infer

that 0 > cnQ(Un) =

∫

RN

(r20 − ρ2n)
∂φ

∂x1
dx, which implies ‖∂x1φn‖L2 > 0. We must have ‖∇x⊥

φn‖L2 > 0

(otherwise φ would depend only on x1, contradicting the fact that

∫

RN

|∇φn|2 dx is finite).

The choice of αn implies ‖An‖L∞ = 1. Since An, ∂z1φn and ∇z⊥φn are nonzero, by scaling it is easy to
see that

‖An‖L2 = ‖∂z1ϕn‖L2 = ‖∇z⊥ϕn‖L2 = 1 (104)

if and only if

λnσ
N−1
n =

‖ |Un| − r0‖2L∞

‖ |Un| − r0‖2L2

, λnβn = ‖∂x1φn‖L2

‖ |Un| − r0‖L∞

‖ |Un| − r0‖L2

, βnσn = ‖∇x⊥
φn‖L2

‖ |Un| − r0‖L∞

‖ |Un| − r0‖L2

.

Since N ≥ 3, the above equalities allow to compute λn, βn and σn. Hence the scaling parameters
(αn, βn, λn, σn) are uniquely determined if (104) holds and ‖An‖L∞ = 1.

The Pohozaev identity Pcn(Un) = 0 gives
∫

RN

λ2nβ
2
n(∂z1ϕn)

2
(
1 + αnAn

)2
+ α2

nλ
2
n(∂z1An)

2

+
N − 3

N − 1
β2
nσ

2
n|∇z⊥ϕn|2

(
1 + αnAn

)2
+
N − 3

N − 1
α2
nσ

2
n|∇z⊥An|2 +

1

r20
V
(
r20(1 + αnAn)

2
)
dz

= 2cn

∫

RN

2λnαnβnAn∂z1ϕn + λnα
2
nβnA

2
n∂z1ϕn dz. (105)

By (104), the right-hand side of (105) is O(λnαnβn). Since αn → 0 and ‖An‖L∞ = 1 for n large enough we
have 1 + αnAn ≥ 1/2, and by (27) we get V (r20(1 + αnAn)

2) ≥ 1
2r

2
0c

2
sα

2
nA

2
n. If N ≥ 3 all the terms in the

left-hand side of (105) are non-negative and we infer that
∫

RN

λ2nβ
2
n(∂z1ϕn)

2 + α2
nA

2
n dz = O(λnαnβn).

From the normalization (104) it follows that

λ2nβ
2
n = O(λnαnβn), and α2

n = O(λnαnβn),

which yields

C1 ≤ λnβn
αn

≤ C2 for some C1, C2 > 0. (106)

Let θn = λnβn

αn
. We use the Taylor expansion (27) for the potential V , multiply (105) by 1

α2
n
and write the

resulting equality in the form
∫

RN

(
θn∂z1ϕn − cnAn

)2
+ λ2n(∂z1An)

2 +
N − 3

N − 1

θ2nσ
2
n

λ2n
|∇z⊥ϕn|2

(
1 + αnAn

)2
+
N − 3

N − 1
σ2
n|∇z⊥An|2

+ (c2s − c2n)A
2
n dz

= −
∫

RN

θ2nαn(∂z1ϕn)
2
(
2An + αnA

2
n

)
+ c

2
sαn

(Γ
3
− 1
)
A3
n + c

2
s

V4(αnAn)

α2
n

− 2cnθnαnA
2
n∂z1ϕn dz.

45



By (104) and (106) the right-hand side of the above equality is O(αn). If N ≥ 3 all the terms in the left-hand

side are nonnegative. In particular, we get (c2s−c2n)
∫

RN

A2
n dz = c

2
s−c2n = O(αn), so that cn → cs. Assuming

that N ≥ 4, we also infer that

∫

RN

λ2n(∂z1An)
2 +

σ2
n

λ2n
|∇z⊥ϕn|2 dz = O(αn).

Together with (104) and (106), this implies

σ2
n

λ2n
= O(αn) and

∫

RN

(∂z1An)
2 dz = O

(αn
λ2n

)
. (107)

The Pohozaev identity Pcn(Un) = 0 and (104) imply that for each n such that 1 + αnAn ≥ 1
2 we have

Ecn(Un) =
2

N − 1

∫

RN

|∇⊥Un|2 dx

=
2r20

(N − 1)λnσ
N−1
n

∫

RN

β2
nσ

2
n|∇z⊥ϕn|2

(
1 + αnAn

)2
+ α2

nσ
2
n|∇z⊥An|2 dz

≥ r20α
2
nθ

2
n

2(N − 1)λ3nσ
N−3
n

∫

RN

|∇z⊥ϕn|2 dz ≥
α2
n

Cλ3nσ
N−3
n

. (108)

However, in view of (107) we have

α2
n

λ3nσ
N−3
n

=
α2
n

λNn (σn/λn)N−3
≥
(αn
λ2n

)N/2 α2
n

Cα
N/2
n α

(N−3)/2
n

=
(αn
λ2n

)N/2 1

Cα
(2N−7)/2
n

. (109)

Notice that α
(2N−7)/2
n → 0 as αn → 0 because N ≥ 4. The fact that Ecn(Un) −→ 0, (108) and (109) imply

that αn

λ2
n
→ 0 as n→ +∞. Then using (107) we find

∫

RN

(∂z1An)
2 dz = O

(αn
λ2n

)
→ 0

and the proof is complete. �
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[10] F. Béthuel, P. Gravejat and J-C. Saut, Existence and properties of travelling waves for the
Gross-Pitaevskii equation. Stationary and time dependent Gross-Pitaevskii equations, 55-103, Contemp.
Math., 473, Amer. Math. Soc., Providence, RI, (2008).
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