


but, in addition biological growth modify fibrils orientation [4]. It is well known that the
mechanics of tissue growth can be analysed in a framework similar to that of finite defor-
mation plasticity interpreting the anelastic gradient of deformation as the growth tensor.
The main goal of the paper is to analyse the extension of finite deformation plasticity
to the case that structural directions can evolve due to mechanical coupled phenomena.

It has already been observed that the expression of the plastic dissipation takes differ-
ent forms according to the process being (globally) isotropic or not. The reader can refer
for example to the paper of Lu and Papadopoulos and of Steinmann [5,6] where an expres-
sion of the dissipation for anisotropic materials is presented. The paper will show that
these results are equivalent forms of the plastic dissipation for non-isotropic materials.

The schematization of the constitutive behaviour of anisotropic elastoplastic materials
in the field of finite deformations is intensely debated in the literature. Some constitutive
models use the total and the anelastic deformations as primary variables [6, 7] and an
additive decomposition of the total deformation. The additive decomposition of the kine-
matic process, that retains the structure of the classical infinitesimal theory of plasticity,
has been used by many authors [8, 7]. In any case it has been noted that at least for
simple shear tests of rigid-plastic materials the additive strain model leads to a spuri-
ous shear stress increase or drop, so that its applicability to this kind of cases may be
questioned [9].

We adopt the multiplicative decomposition of the gradient of deformation tensor, ini-
tially introduced by Lee [1], that is based on the decomposition of the deformation pro-
cess in an elastic and an anelastic part introducing an intermediate, eventually fictitious,
stress-free configuration of the continuum. It is well known that the multiplicative decom-
position of the deformation gradient is not univocal since it is insensitive to a rigid-body
motion. Even if in some cases, such as the isoclinic configuration of crystals originally
introduced by Mandel, the intermediate configuration can be univocally determined, in
general it is necessary to introduce some additional conditions in the constitutive model
that rules the plastic spin in order to overcome this indeterminacy [10, 11]. Moreover,
by definition, the existence of the stress-free intermediate configuration requires that the
zero stress state be an admissible state for the material.

The free energy is assumed to depend only on the elastic part of the deformation
process [5, 12, 13]. In the seventies and eighties, substantially two different approaches
were followed: in the former, to which belong, among others, the models developed by
Green, Naghdi, Casey, [14-18], the constitutive relations are developed using a free-energy
function that, according to the principle of the determinism of stress [19], is explicitly
invariant for an isomorphism applied to all the physically admissible configurations of the
continuum. This requirement leads to a free-energy function depending on the total and
the anelastic deformations that are so treated as primary variables. The second approach,
that includes the models developed for instance by Lee [1], Mandel [20], Lubliner [21],
Lubarda and Lee [22], Dashner [10], considers the full invariance requirement too re-
strictive in the development of the constitutive models so that it becomes impossible
to model materials that show a persistent anisotropic lattice like crystals [10]. For this
reason, in this approach it is assumed that the free energy be objective with respect only
to the final configuration of the deformation process. In this case the potential must de-
pend only on the elastic part of the deformation through the elastic right Cauchy-Green
deformation tensor.

The main differences between the two approaches lie in the invariance property
imposed to the free-energy function. The models using the total and the anelastic
deformations as primary variables [14-16], according to the principle of the determin-



ism of stress [19], are requested to be invariant for an isomorphism applied to all the
configurations introduced in the schematization of the kinematic process and so also to
the intermediate configuration that is treated just as any other admissible configuration
for the body. This derives from the assumption that the body is considered to be able
to reach the intermediate configuration by an elastic unloading from the final one. On
the other hand, this property appears redundant on the point of view of the constitu-
tive model developed using the multiplicative decomposition scheme and depending only
on the elastic right Cauchy-Green deformation tensor that ensures the invariance of the
free-energy function for an isomorphism applied to the final configuration. In this way,
as pointed out by Lubarda and Lee in the reply to the criticism of Casey in [17], the
invariance requirement is guaranteed also for the intermediate configuration because it is
the final configuration of an ideal deformation path obtained combining the deformation
process and the elastic unloading.

The anisotropic characteristics of the material are schematized using the structural
tensors that are added to the principal variables of the model [23-25]. The structural
tensors are defined as a set of projectors on the preferential directions of the material. In
crystal plasticity they can rotate but do not modify their orientation with respect to the
crystal directions, so their evolution is ruled by the rotational part of the deformation
gradient, obtained after a polar decomposition. An interesting discussion of crystal
plasticity can be found in the paper of Mićunović in this same issue [26]. In this paper
we refer to materials with a fibre structure, so that each fibre can stretch and slide. The
projection of the total deformation on the fibre directions then rules the evolution of the
material structure. Therefore we assume that the structural tensors evolve according to
the entire deformation gradient.

Starting with the same idea, Steinmann and Menzel have developed a thermodynamic
model for anisotropic elasto-plasticity that they claim to be quite general [5]. Starting
from the reduced dissipation inequality, they introduced a non-standard form of dissi-
pative material. The model developed in this paper is based on the same assumptions
and, being thermodynamically based, obtains similar results to Steinmann and Menzel.
However, they focused on the spatial configuration, while, in this paper, we focus on the
intermediate configuration, which is more convenient for computational purposes. We
obtain a form of the dissipation that is prone to a more direct physical interpretation,
and that can be shown to be equivalent to the one presented in [5]. A new symmetric
form of the dissipation is proposed, that avoids the use of Mandel stress tensor, more
convenient in the numerical applications.

Successively, with reference to fibre materials, we examine a model characterised by
the same structural tensors for both the elastic and the plastic potentials, focusing on
the irreversible evolution of the structural tensors; some simple examples show how the
model can be applied to fiber materials.

The model illustrated in the paper is purely phenomenological and thermodynamically
consistent: in this sense it can be regarded as a framework for developing specific models
applicable to materials with evolving material structure.

2. – Kinematics

The classical multiplicative decomposition of the deformation gradient, developed in
the context of crystal plasticity [1], is used (see fig. 1). The deformation process is ideally
decomposed in its elastic and anelastic parts introducing an intermediate, eventually
fictitious, stress free configuration Ba, so that the deformation gradient tensor and the
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Fig. 1. – Process schematization.

Jacobian of the deformation process are decomposed as

(1) F = FeFa, J = Je Ja.

In the paper, objects defined in the reference configuration B0 will be preferentially
indicated with capital letters, small letters will denote objects defined in the current
configuration Bt, while a hat will generally distinguish objects defined in the intermedi-
ate configuration Ba, unless differently specified, generally for consistency with classical
notations. To each configuration is associated a reference system, whose covariant base
vectors are indicated as GA, ĝα, ga on the reference, intermediate and current configura-
tion, respectively. The base vectors span locally the tangent spaces TP B0, Tp̂Ba, TpBt.

Introducing the covariant metric tensors G, ĝ, g of the reference, intermediate and
current configuration frameworks, respectively, it is possible to define the family of de-
formation tensors reported in table I using the transport operators (Pull-back, Push-
forward), denoted by φ∗, φ∗, respectively. The measures of deformation are defined as
difference of the convective metrics projected onto the relevant configurations. One has,
in the reference configuration

(2) 2E = φ∗ (g) − G, 2Ee = φ∗ (g) − φ∗
a (ĝ) , 2Ea = φ∗

a (ĝ) − G,

in the intermediate configuration

(3) 2Ê = φ∗
e (g) − φ∗a (G) , 2Êe = φ∗

e (g) − ĝ, 2Êa = ĝ − φ∗a (G) ,

in the spatial configuration

(4) 2e = g − φ∗ (G) , 2ee = g − φ∗e (ĝ) , 2ea = φ∗e (ĝ) − φ∗ (G) .

Note that these measures of deformation are additive.
The gradient of velocity defined in the current configuration is denoted as l : TxBt →

TxBt and is given by

(5) l = ∇�x�̇x = ḞF−1.



Table I. – Convective metrics.

Tangent space projections

B0 Ba Bt

φ∗a(•)−−−−−−−−→
F−T

a (•)F−1
a

φ∗e(•)−−−−−−−−→
F−T

e (•)F−1
e

G
φ∗a(G)−−−−→ b−1

a

φ∗e(b−1
a )=φ∗(G)

−−−−−−−−−−−→ b−1

Ca = FT
a Fa

φ∗
a(ĝ)←−−− ĝ

φ∗e(ĝ)−−−−→ ca = b−1
e = F−T

e F−1
e

C = FT F
φ∗

a(Ce)=φ∗(g)←−−−−−−−−− Ce = FT
e Fe

φ∗
e(g)←−−−− g

φ∗
a(•)←−−−−−−

FT
a (•)Fa

φ∗
e(•)←−−−−−−

FT
e (•)Fe

The tensor l so defined is a mixed-variant tensor, acting on a vector of TxBt and
yielding the derivative of the velocity in the tangent direction.

Analogously to what done in table I, it is possible to define the family of gradient of
velocity tensors reported in table II and that are related among themselves by the pull-
back push-forward operators. The pull back of l along the diagonal of the table yields the

Table II. – Velocity tensors.

B0 Ba Bt

φ∗a(•)−−−−−−−−→
F−T

a (•)F−1
a

φ∗e(•)−−−−−−−−→
F−T

e (•)F−1
e

L = F−1Ḟ −→ b−1
a l̂ −→ b−1l

↓ ↖ ↑
L̂ = CaL ←− l̂ −→ b−1

e l
↓ ↖ ↑

ˆ̂
L = CL = FT Ḟ ←− ˆ̂

l = Ce l̂ ←− l

φ∗
a(•)←−−−−−−−−

FT
a (•)Fa

φ∗
e(•)←−−−−−−−−

FT
e (•)Fe



mixed forms of the gradient of velocity in the intermediate and reference configurations.
The remaining tensors contained in table II are covariant forms, obtained multiplying the
mixed gradient by the relevant metrics. These forms are known as convective gradients
of velocity.

It is possible to decompose each of the gradient of velocity tensors of table II in its
elastic and anelastic parts as follows:

l = ḞF−1 = le + la
def= ḞeF−1

e + FeḞaF−1
a F−1

e ,(6)

l̂ = l̂e + l̂a
def= F−1

e Ḟe + ḞaF−1
a ,(7)

L = Le + La
def= F−1

a F−1
e ḞeFa + F−1

a Ḟa,(8)
ˆ̂
l = FT

e lFe = ˆ̂
le + ˆ̂

la
def= FT

e Ḟe + FT
e FeḞaF−1

a ,(9)
ˆ̂L = FT lF = ˆ̂Le + ˆ̂La

def= FT
a FT

e ḞeFa + FT
a FT

e FeḞa,(10)

L̂ = L̂e + L̂a
def= FT

a F−1
e ḞeFa + FT

a Ḟa.(11)

It can be seen that the anelastic part of the velocity gradient of the intermediate
configuration l̂a = ḞaF−1

a has the important physical meaning of evolution of the inter-
mediate configuration, l̂a = ∂ẋa

∂xa
.

Measures of the velocity of deformation are directly obtained from the symmetric
part of the gradient of velocity tensors of table II, and can be split in their elastic and
anelastic components as sketched in table III:

(12) d = de + da = sym (le) + sym (la) .

An insight in the meaning of these tensors is given by the observation that they can
be obtained performing objective time derivatives of the metrics reported in table I. As
shown in table III the spatial velocity of deformation d is equal to half the Lie derivative
of the spatial metric, and its pull-back on the reference configuration is the convective
material velocity of deformation ˆ̂D = Ċ/2. Correspondingly, the material velocity of
deformation is given by the Lie derivative along the flux −v of the metric G, whose push-
forward on the spatial configuration is equal to − ˙b−1/2. The velocity of deformation
of the intermediate configuration is given by the backward anelastic Lie derivative La

v

of the metric ĝ for its anelastic part plus the forward elastic Lie derivative Le
v of ĝ for

its elastic part, as indicated in table III. The definition of Lie derivative and of the Lie
derivative along the flux −v is operationally defined as (see [27])

Lv(•) = = φ∗

{
d
dt

φ∗(•)(t)
}

,(13)

L−v(•) = φ∗
{

d
dτ

φ∗ (•(t − τ))
}

.(14)

The stress tensors are introduced by means of the virtual power identity as follows:

(15) Pvi =
∫

Bt

σ · ddv =
∫

B0

τ · (gl)sym dV =
∫

B0

gτ · l dV τ = Jσ.



Table III. – Rate of deformation measures.

B0 Ba Bt

φ∗a(•)−−−−−−−−→
F−T

a (•)F−1
a

φ∗e(•)−−−−−−−−→
F−T

e (•)F−1
e

1
2
L−v(G) = D =

φ∗a−−→ 1
2
Le

−v

`

b−1
a

´

=
“

b−1
a l̂
”sym

=
φ∗e−−→ −

˙
b−1

2

= De + Da =
“

b−1
a l̂e

”sym

− 1
2

˙
b−1

a

1
2
L−v(Ca) + 1

2
Ċa

φ∗
a←−− 1

2
Le

−v (ĝ) + 1
2
La

v (ĝ) =
φ∗e−−→ −

˙
b−1

e
2

+ 1
2
Lv

`

b−1
e

´

=

= d̂e + d̂a =
`

b−1
e l
´sym

1
2
Ċ =

ˆ̂
D

φ∗
a

“

ˆ̂
d
”

←−−−− 1
2
La

v (Ce) =
ˆ̂
d

φ∗
e(d)←−−−− 1

2
Lvg = d = de + da =

= 1
2
Ċe + sym

“

Ce l̂a

”

= 1
2
Le

vg + da

φ∗
a(•)←−−−−−−

FT
a (•)Fa

φ∗
e(•)←−−−−−−

FT
e (•)Fe

Using the different gradient of velocity tensors defined in table II, according to the
relevant metric, the virtual power can be given any of the equivalent forms summarized in
table IV. The stress tensors are summarized in table V. In it on the diagonal are reported
the mixed forms of the stress tensors known as Mandel stresses, obtained multiplying
the contravariant form times the appropriate metric. The other contravariant forms are
obtained by push-forward or pull-back, adding the relevant contravariant metric (not
indicated in the table).

The definitions of the tensors reported in table V are

Se = φ∗
e (τ ) = F−1

e τF−T
e Elastic second Piola-Kirchhoff(16a)

stress tensor,

S = φ∗ (τ ) = φ∗
a (Se) = F−1

a SeF−T
a Second Piola-Kirchhoff stress tensor,(16b)

Table IV. – Virtual power.

B0 Ba Bt

T · L Te · b−1
a l̂ bτ · b−1l

R

B0
Σ · L̂ Σe · l̂ beτ · b−1

e l dV

S · ˆ̂
D Se · ˆ̂

d gτ · l



Table V. – The stress tensor family.

B0 Ba Bt

T Te bτ
↓ ↖ ↑ ↑
Σ Σe beτ
↓ ↑ ↖ ↑
S Se gτ

φ∗
a(•)←−−−−−−−−

F−1
a (•)F−T

a

φ∗
e(•)←−−−−−−−−

F−1
e (•)F−T

e

Σe = CeSe Mandel stress tensor,(16c)

Σ = C−1
a CS Mandel stress tensor on B0,(16d)

Te = baΣe,(16e)
T = CS.(16f)

3. – Constitutive model

Much attention has recently received the problem of setting a consistent model for
anisotropic elasto-plasticity at large strains [6, 5, 12, 8, 28] and it seems that there are
still several open questions. In this section a model of anisotropic elasto-plasticity is
developed allowing for the evolution of the material directions. The constitutive model
is developed in a thermodynamical consistent framework, defining a free energy and
exploiting the dissipation inequality.

Some definitions and results are preliminary recalled (see [24, 29]). It is well known
that [27, p. 220] any function of G, C and θ [the temperature] is necessarily isotropic. To
describe non-isotropic materials then requires the introduction of additional variables.

Let O(3) denote the group of orthogonal transformations, O(3) = {Q ∈ LinR |
QT Q = I}; a scalar-valued function f of tensorial arguments D is said to be invariant
relative to the symmetry group G ⊂ O(3) if

(17) f
(
Q−T DQ−1

)
= f (D) ∀Q ∈ G.

If G ≡ O (3) the function is said to be isotropic.
If the material group is characterized by symmetry with respect to special directions,

then the invariant group is given by those transformations that leave unchanged some
structural tensors Mi:

(18) G0 = {Q ∈ O (3) : QMiQT = Mi}.

The structural tensors are the invariant projectors generated from the unit vectors of
the principal material directions �Ai as [29]

(19) Mi = �Ai ⊗ �Ai, i = 1, 2, 3.



By virtue of Neumann’s principle, the symmetry group of a given material must be
included in the symmetry group of any tensor function in any constitutive laws of the
material. In fact the principle of isotropy of space [24,25] states that

Theorem 1. Let f be an anisotropic scalar valued function of a set of variables {Di}, then
f is invariant relative to the symmetry group G0 (18) if and only if it can be expressed
as an isotropic function of {Di} and of the set of structural tensors {Mj} as follows:

(20) f ({Di}) = f̂ ({Di}, {Mj}) = f̂
(
{QDiQT }, {QMjQT }

)
∀Q ∈ O (3) .

To the function f̂ can be applied the general representation theorem for scalar-valued
isotropic functions [23-25].

Theorem 2. A scalar-valued isotropic function f of a finite number of tensor agencies
and relative to any compact point symmetry group can be represented as a function of a
complete and irreducible set of invariants of the tensorial arguments.

Lists of sets of invariants for one, two, three or more variables has been furnished in
the literature for various types of material symmetry [30,23,31].

Theorem 1 and Theorem 2 enable us to express f̂ in terms of a list of invariants of
the tensor {Di} and of the structure tensors {Mj}.

Let �Ai be tangent to a set of material directions, so that Mi = �Ai⊗ �Ai is the associated
projector. These vectors transform according to

âi = φ∗a( �Ai) = Fa
�Ai,(21)

ai = φ∗( �Ai) = F �Ai(22)

and the structural tensors in the intermediate and spatial configurations are

m̂i = âi ⊗ âi = Fa
�Ai ⊗ Fa

�Ai = FaMiFT
a ,(23)

mi = ai ⊗ ai = F �Ai ⊗ F �Ai = FMiFT .(24)

The tensors defined in this way are contravariant. They yield the component of a
covector on the material direction �Ai projected in the transformed direction of �Ai, i.e.

m̂iGA =
(
GA · �Ai

)
�̂ai,(25)

miga = (ga · �ai)�ai =
(
GA · �Ai

)
�ai.(26)

Since Mi is a projector, one has

(27) Mn
i = Mi mn

i = mi‖ai‖2(n−1).

The transformations of the symmetry group defined by (18) are mixed variant tensors
whose push-forward is

(28) φ∗Q = FQF−1.



The symmetry groups relative to two different configurations differing for a superim-
posed diffeomorphism are related by Noll’s rule:

G0a = φ∗aG0 = {φ∗aQ},(29)
G0t = φ∗G0 = {φ∗Q},(30)

so that one has

(31) (φ∗Q)mi (φ∗Q)T = FQF−1miF−T QtFT = FMiFT = mi.

3.1. Helmoltz free energy . – Let G0 be the (elastic) material symmetry group of the
continuous. By virtue of the results reported in the previous section, the anisotropic
Helmoltz free energy can be expressed as a scalar-valued isotropic function of the elas-
tic deformation gradient and of the structural tensors m̂i, that define the symmetry
properties of the material in the intermediate configuration, as follows:

(32) ψ̂ = ψ (Fe, m̂i) .

The requirement of objectivity (rigid rotation of the reference framework) implies
that the free energy remains unchanged for a rigid-body motion applied to the deformed
configuration [36, p. 252], [27, p. 194]:

(33) F+
e

def= QFe; m̂+
i

def= Qm̂i|Q ∈ {SO3} → ψ
(
F+

e , m̂+
i

)
= ψ (Fe, m̂i) .

Relation (33) implies (see [27]) that the free energy depends on the elastic deformation
through the elastic right Cauhcy-Green deformation tensor defined in table I, so that

(34) ψ = ψ (Ce, m̂i) .

By virtue of the representation theorems 1 and 2 [30, 23] the free energy can be
represented as a function of a complete set of invariants of its arguments. Since Ce

is a covariant tensor, in order to perform its trace, and the trace of its iterates, the
contravariant metric ĝ� has to be used. A list of the invariants can be obtained following
the method indicated by Itskov [32]; it is given by the power up to the order 3 of the
symmetric arguments. Accounting for (27) the independent invariants reduce to

(35)
tr(Ce), tr(C2

e), tr(C3
e), tr(m̂i)

tr(Cem̂i) tr(C2
em̂i), tr(m̂im̂j) i 
= j 
= k

, tr(m̂im̂jm̂k), tr(Cem̂im̂j)

The trace of mi can be replaced by ‖âi‖2.

3.2. Mechanical dissipation. – Assuming, for a general deformation process, that all
the balance equations hold and supposing that an elastic free-energy potential ψ exists,
it is well known that the second law of thermodynamics can be written for isothermal
processes in the form [33]:

D = τ · l − ρ0ψ̇ ≥ 0,(36)
with ρ0 = mass density in the reference configuration.



Alternative forms of the dissipation can be obtained using any one of the expressions
of the internal power listed in table IV.

This relation represents the particularization to isothermal processes of the Clausius-
Plank inequality. According to the maximum dissipation principle we can obtain a full
set of constitutive relations for a general (objective) material.

The free energy refers to the intermediate configuration, although the material di-
rections are defined in the material framework; introducing their push-forward into the
elastic configuration (23) one has

(37) Da = Se · ˆ̂l − ρ0ψ̇(Ce, m̂i).

Splitting the dot product of the external power in its elastic and anelastic parts,
taking account of the symmetry of Se and performing the material derivative of the free
energy (37) gives

(38) Da = Se · ˆ̂de + Se · ˆ̂da − ρ0∇Ce
ψ̂ · Ċe − ρ0

∑
i=1,n

∇m̂i
ψ̂ · ˙̂mi.

The expression of the material derivative of ψ can be obtained writing ψ̂a(Ce, m̂i) as
ψ̂a(F−T

a CF−1
a ,FaMiFT

a ) and performing the material derivatives in the reference config-
uration. For a purely elastic increment of deformation (Ḟa = 0 → da = 0;Da = 0) (38)
becomes

(39) (Se − 2ρ0∇Ce
ψ) · Ċe

2
−

∑
i=1,n

∇m̂i
ψ̂ ·

(
φ∗a(Ṁi)

)
= 0

that yields the elastic constitutive equation Se = 2ρ0∇Ce
ψ̂ and the condition that for

an elastic (non-dissipative) step must be Ṁi = 0∀i.
For a general deformation process one gets, from (38) and the elastic constitutive

equation, the reduced dissipation inequality

(40) Da = Se · ˆ̂da −
∑

i=1,n

ρ0∇m̂i
ψ̂ · ˙̂mi ≥ 0.

Expression (40) of the dissipation contains symmetric tensors, but the time deriva-
tive of m̂i is not objective. The previous expression is similar to the one obtained by
Steinmann and Menzel [5]. Recalling that

(41) La
v(m̂i) = ˙̂mi − 2[̂lim̂i]sym,

the dissipation (40) takes the form

(42) Da = Se · ˆ̂da −
∑

i=1,n

ρ0∇m̂i
ψ · La

v(m̂i) − 2
∑

i=1,n

ρ0∇m̂i
ψ ·

[̂
lam̂i

]sym

.



A pull-back on the material frame yields

(43) D0 = S · ˆ̂Da −
∑

i=1,n

ρ0∇Mi
ψ0 · Ṁi − 2

∑
i=1,n

ρ0∇Mi
ψ0 · [LaMi]

sym
.

Two possible scenarios are then included in the model: the material directions can
undergo mechanical evolution, at the expenses of energy dissipation due to the thermo-
dynamical forces −ρ0∇Mi

ψ0; if material directions do not evolve, in any case they are
dragged due to plastic deformations; the last term in (43) is therefore associated to the
anelastic velocity of deformation. In order to get the flow rule for it we go back to (38),
rewriting the dissipation in the intermediate configuration introducing the mixed variant
stress tensor Σe = CeSe, the so-called Mandel stress:

(44) Da = Σe · l̂a − 2
∑

i=1,n

ρ0∇m̂i
ψ ·

[̂
lam̂i

]sym

−
∑

i=1,n

ρ0∇m̂i
ψ · La

v(m̂i).

Observing that

(45) ∇m̂i
ψ ·

[̂
lam̂i

]sym

= ∇m̂i
ψm̂i · l̂a

(where the symmetry of m̂i has been used), eq. (44) becomes

(46) Da =

⎛
⎝Σe − 2

∑
i=1,n

ρ0∇m̂i
ψm̂i

⎞
⎠ · l̂a −

∑
i=1,n

ρ0∇m̂i
ψ · La

v(m̂i)

Next we introduce, on the intermediate configuration, the dual thermodynamic forces

ẑi = ρ0∇m̂i
ψ,(47)

ŷ = 2ρ0

⎛
⎝Ce∇Ce

ψ −
∑

i=1,n

∇m̂i
ψm̂i

⎞
⎠ ,

so that the dissipation can be written as

(48) Da =
∑

i=1,n

(
ŷ · l̂a − ẑi · La

v(m̂i)
)

.

It is remarkable that the tensor ŷ is symmetric, as can be checked by direct evaluation.
This is due to the fact that ψ is an isotropic function of Ce and m̂i An alternative
expression of the dissipation is obtained multiplying expression (46) for the convective



metric Ce and recalling eq. (9):

Da =
∑

i=1,n

2ρ0

(
∇Ce

ψ̂ − C−1
e ∇m̂i

ψ̂m̂i

)
· ˆ̂la − ẑi · La

v(m̂i)(49)

=

⎛
⎝Se − 2

∑
i=1,n

C−1
e ẑim̂i

⎞
⎠ · ˆ̂la − ẑi · La

v(m̂i)

= ˆ̂yi · ˆ̂la − ẑi · La
v(m̂i).

Anelastic constitutive equations compatible with the dissipation inequality are de-
veloped within the framework of the generalized standard dissipative material [34], that
is, we postulate the existence of an admissible elastic domain E(ŷi, ẑi) and make use of
the maximum dissipation principle, stating that the actual value of the thermodynamic
forces maximize expression (49) among all their admissible values.

Let

(50) E = {(ŷ, ẑ) : χ̂ (ŷ, ẑi) ≤ 0}.

The maximum dissipation principle and the stress admissibility condition can be enforced
using the Lagrangian multiplier method, so that we can write the following constrained
minimization problem:

min
ŷ∗,ẑ∗

i

max
λ̇∗

L̂
(
ŷ∗, ẑ∗i , λ̇

∗
)

= −Da

(
ˆ̂y∗, ẑ∗i

)
+ λ̇∗χ̂ (ŷ, ẑi) ,

whose optimality conditions are

d̂a = λ̇∇ŷχ̂ (ŷ, ẑi)(51a)

La
v(m̂i) = λ̇∇zi

χ̂ (ŷ, ẑi)(51b)
χ̂ (ŷ, ẑi) = 0(51c)

completed by the Kuhn-Tucker conditions

(51d) λ̇ ≥ 0 χ̂ (ŷ, ẑi) ≤ 0 λ̇χ̂ (ŷ, ẑi) = 0.

Summarizing, the full set of constitutive relations on the intermediate configuration
is given by eqs. (47), (51a)-(51d).

Only the symmetric part of the anelastic velocity gradient is thus defined through
associated evolution flow rules. This is in agreement with the statement that the anelastic
spin requires specific constitutive equations.

4. – Some consequences of the model

4.1. Yield function. – The equations of the model have been set in the intermediate
configuration, since it is the natural frame for defining the free energy. However, the
elastic domain is more naturally defined in the spatial configuration; in order to account



for anisotropy, applying the representation theorem, the function χt must be an isotropic
function of its arguments and of the structural tensors mi, i.e.

(52) E = {(y, zi) : χ
(
y, z,mi,g,g�

)
≤ 0},

where the dependence on the covariant and contravariant metrics, necessary for perform-
ing the trace operations, have been explicitly added. Indeed, the covariant metric applied
to the tensors y,mi produces their mixed form, and the same does the contravariant met-
ric with zi, e.g., the trace of y2 is obtained through the explicit operation y · g · y : g.
The yield function can then be represented in the intermediate configuration by means
of a pull back operation, that is tantamount with performing a change of variables,

(53) χ̂
(
ˆ̂y, ẑi, m̂i

)
= χ

(
ˆ̂y, ẑi, m̂i,Ce,C−1

e

)
.

An alternate strategy is to set the constitutive equations in the spatial framework,
thus projecting forward the free energy. The spatial formulation has been thoroughly
investigated by Steinmann and Menzel [5], and it is able to shed light on the meaning of
the thermodynamic variable y. A detailed discussion is beyond the limit of the present
work and will be the object of a forthcoming paper, more focused on computational
developments.

4.2. The isotropic case. – In an isotropic material all the directions are equivalent,
or, alternatively, all the material tensors vanish, Mi = 0,∀i. The standard expression of
the free energy is thus recovered, and the dissipation (42) takes the form

(54) D|ogg = Se · ˆ̂da ≥ 0.

The previous expression refers to stress and rate of deformation measures defined in
the intermediate configuration. It can be equivalently expressed using stress and rate of
deformation measures defined in the different configurations, using the results of table IV
and table II. In particular, after some algebra, one has

Bt Dt = τ · la = τ · da,(55a)

Ba Da = Se · ˆ̂la = Se · ˆ̂da(55b)

= Σe · l̂
T

a ,(55c)

B0 D0 = S · ˆ̂La(55d)

= Σ · L̂T

a = T · LT
a .(55e)

The form (55e) of the dissipation has also been found by Lu and Papadopoulos [6].
It is underlined that in order to obtain the previous forms of dissipation it is sufficient

that ˙̂mi = 0,∀i. The thermodynamic force ŷ, since ẑi = 0, melts down to the Mandel
stress Σe and ˆ̂y → Se. The associated flow rule becomes then

(56) ˆ̂
la = λ̇∇Se

χ (Se) .



4.3. Evolution of the material directions. – A detailed examination of all the possible
cases that can be described by the evolution of the material directions is not the goal of the
present work, neither is the illustration of specific forms of the constitutive equations. The
model presented here has been cast in an associated setting. In general, therefore, plastic
deformation and evolution of the structural tensors occur together, and the calibration
of the plastic potential requires accurate experimental check. In order to discuss some
simple examples, the yield function is split in two parts, one, χ1, depending on the internal
stress y and the structural tensors, the other, χ2, depending on zi and the structural
tensors, so that the classical form of plasticity is preserved. When χ2(zi,mi) = 0 the
material direction Ai can evolve, and this can happen in either one of two ways: either the
vector rotates, keeping the unitary norm, or its norm can be modified, without rotation,
or a combination of the two. The second situation does not modify the anisotropic
properties of the material, but modifies its response to external actions, since the internal
energy depends on mi. This effect can, thus, produce hardening in a specific direction,
not necessarily produced by plastic deformations (that occur only if also χ1 = 0). The
increase in the stiffness of polymer materials due to stretching of the oriented chains can
be modeled in this way.

In order to illustrate this effect, the simple stretching of a specimen having a family
of fibres in the 1-direction is examined. Therefore the material is transversely isotropic,
and the only relevant structural tensor is M1 = �G1 ⊗ �G1. The specimen is subjected to
a series of stretching processes, such that they maintain the same shape, but the axis
of stretching rotates in the 12 plane. The deformation process is ruled by the following
gradient of deformation tensor

(57) F = F1Q F1 =

⎡
⎣ λ 0 0

0 1√
λ

0
0 0 1√

λ

⎤
⎦ ,

where Q is a rotation matrix in the plane 12, characterised by the angle α that the 1-axis
forms with the direction of stretch. The deformation process chosen corresponds to an
uniaxial stress state when the direction of stretch coincides with the 1-axis. For all the
other stretch directions in the plane 12, because of the anisotropy of the specimen, the
stress state is no longer uniaxial, but the 33 component of the stress is always zero.

We consider a simplified elastic potential proposed by Holzapfel and Gasser [3] for
the media wall of human arteria, composed by two contributions, the first anisotropic
and the second isotropic:

(58) ψ̂ =
k

2
(
tr(C̄e : m̂i) − 1

)2 + c
(
tr(C̄e) − r

)
.

The modified elastic Cauchy-Green tensor C̄e is obtained from a split of the defor-
mation gradient in a spherical and a distortional part, according to the expression

(59) F = (J1/3I)F̄.

In this way the elastic potential (58) rules only the deviatoric deformation process. The
material is then assumed incompressible. This form of the elastic potential for arterial
walls was first proposed by Fung [35]. The values of the material constants are k =
0.8393, c = 3, proposed in [3] for the media. The potential (58) is quite crude, containing
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Fig. 2. – (Colour on-line) Simple stretching of a specimen having a set of fibres in direction 1.
a) component of the second Piola-Kirchhoff tensor in the direction of stretching (kPa); b) 11
component of the structural tensor; c) component of the second Piola-Kirchhoff tensor in the
direction normal to stretching (kPa).

only the first invariant of the deformation tensor, so that a not very accurate prediction
of the stresses is expected, but it can effectively be used for our purposes.

Also in the yield function χ2 only the first invariant of the thermodynamic force is
considered,

(60) χ̂2(ẑ1) = tr(ẑ1 : m̂1) − μ0,

μ0 being an activation energy for chains disentanglement. The hypothesis is made that
disentanglement starts well before any plastic deformation can occur, that is reasonable
for soft tissues and polymers in the glass transition region. In this way we can investigate
the effects of the evolution of the structural tensor.

Figure 2 compares the response of the specimen for four directions of stretching (α =
0, π/6, π/4, π/3) and with the response of the anisotropic specimen to a stretching in the
1-direction in the case the structural tensor is considered to remain constant. Comparing
the latter (black curve) with the magenta curve relative to the case α = 0 but with
evolving structural tensor, the stiffening effect induced by the fibre orientation can be
observed. Stretching the specimen in other directions also causes elongation in the chains,
as can be seen from the diagram of the 11 component of the structural tensor M1,
and stress arises also in the transverse direction. Given the simplicity of the anelastic
potential (60), the fibre direction does not rotate in this example, and the evolution of
the structural tensor is linear.

5. – Conclusions

The main findings of the study can be summarized as follows. Elastic anisotropic
behaviour can be effectively described introducing suitable structural tensors in the free-
energy functional, using the representation theorem of isotropic functions. The same is



needed in general for the yield function; in the case of isotropy it depends on an internal
force that is given by the sum of the gradient of the free energy with respect to the
elastic deformation tensor (the elastic stress tensor) plus the gradients of the free energy
with respect to the structural tensors, since the rotation of the structural directions
due to anelastic deformations generates energy dissipation. An eventual additional limit
condition on the thermodynamic variables conjugated to the structural tensors rules the
evolution of the material directions.

The equations of the model have been presented in the intermediate configuration,
that is convenient for computational purposes. In forthcoming works the various forms
of the limit conditions will be examined, and their consequences on simple deformation
patterns, and the computational implementation will be discussed; indeed the exponential
algorithm widely used in finite deformation plasticity is not applicable to non-isotropic
models, and a specific integration algorithm has to be used.
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