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We consider the (KdV)/(KP-I) asymptotic regime for the Nonlinear Schrödinger Equation with a general nonlinearity. In a previous work, we have proved the convergence to the Korteweg-de Vries equation (in dimension 1) and to the Kadomtsev-Petviashvili equation (in higher dimensions) by a compactness argument. We propose a weakly transverse Boussinesq type system formally equivalent to the (KdV)/(KP-I) equation in the spirit of the work of Lannes and Saut, and then prove a comparison result with quantitative error estimates. For either suitable nonlinearities for (NLS) either a Landau-Lifshitz type equation, we derive a (mKdV)/(mKP-I) equation involving cubic nonlinearity. We then give a partial result justifying this asymptotic limit.

Introduction

In this paper, we consider the Nonlinear Schrödinger equation in

R d i ∂Ψ ∂t + ∆Ψ = Ψf (|Ψ| 2 ), (NLS) 
with the condition at infinity |Ψ(t, x)| → r 0 , where r 0 > 0 and f (r 2 0 ) = 0.

This model appears in Nonlinear Optics (cf. [START_REF] Kivshar | Dark optical solitons: physics and applications[END_REF]) and in Bose-Einstein condensation or superfluidity (cf. [START_REF] Roberts | Nonlinear Schrödinger equation as a model of superfluid helium[END_REF], [START_REF] Abid | Gross-Pitaevskii dynamics of Bose-Einstein condensates and superfluid turbulence[END_REF]). A standard well-known case is the Gross-Pitaevskii equation (GP) for which f (̺) = ̺ -1. However, for Bose condensates, other models may be used (see [START_REF] Kolomeisky | Low-Dimensional Bose Liquids: Beyond the Gross-Pitaevskii Approximation[END_REF]), such as the quintic (NLS) (f (̺) = ̺ 2 or f (̺) = ̺ 2 -r 4 0 ) in one space dimension and f (̺) = d d̺ (̺ 2 / ln(a̺)) in two space dimension. The so-called cubic-quintic (NLS) is another relevant model (cf. [START_REF] Barashenkov | Stability and evolution of the quiescent and travelling solitonic bubbles[END_REF]), for which

f (̺) = α 1 -α 3 ̺ + α 5 ̺ 2 ,
where α 1 , α 3 and α 5 are positive constants such that f has two positive roots. In Nonlinear Optics, several nonlinearities can be found in [START_REF] Kivshar | Dark optical solitons: physics and applications[END_REF]:

f (̺) = µ + α̺ ν + β̺ 2ν , f (̺) = α̺ 1 + γ tanh ̺ 2 -̺ 2 0 σ 2
or (see [START_REF] Akhmediev | Hamiltonian-versus-energy diagrams in soliton theory[END_REF]),

f (̺) = α ln(̺), f (̺) = µ + α̺ + β̺ 2 + γ̺ 3 ,
and when we take into account saturation effects, one may encounter (see [START_REF] Kivshar | Dark optical solitons: physics and applications[END_REF], [START_REF] Kivshar | Modulational instabilities and dark solitons in a generalized nonlinear Schrödinger equation[END_REF]):

f (̺) = α 1 (1 + 1 ̺0 ) ν - 1 (1 + ̺ ̺0 ) ν , f (̺) = 1 -exp 1 -̺ ̺ 0
for some parameters ν > 0, ̺ 0 > 0. In the study of the motion of nearly parallel vortex filaments, the (NLS) equation appears as a simplified model with f (̺) = (̺ -1)/̺ (see [START_REF] Banica | Global existence and collisions for certain configurations of nearly parallel vortex filaments[END_REF] and the references cited therein). Therefore, we shall assume f quite general and, without loss of generality, we normalize r 0 to 1. The energy associated with (NLS) is given by

E(Ψ) ≡ R d |∇Ψ| 2 + F (|Ψ| 2 ) dx, where 
F (̺) ≡ 1 ̺ f.
If Ψ is a solution of (NLS) which does not vanish, we may use the Madelung transform

Ψ = A exp(iφ)
and rewrite (NLS) as an hydrodynamical system with an additional quantum pressure

     ∂ t A + 2∇φ • ∇A + A∆φ = 0 ∂ t φ + |∇φ| 2 + f (A 2 ) - ∆A A = 0 or        ∂ t ρ + 2∇ • (ρU ) = 0 ∂ t U + 2U • ∇U + ∇(f (ρ)) -∇ ∆ √ ρ √ ρ = 0 (1) 
with (ρ, U ) ≡ (A 2 , ∇φ). When neglecting the quantum pressure and linearizing this Euler type system around the particular trivial solution Ψ = 1 (or (A, U ) = (1, 0)), we obtain the free wave equation

   ∂ t Ā + ∇ • Ū = 0 ∂ t Ū + 2f ′ (1)∇ Ā = 0
with associated speed of sound c s ≡ 2f ′ (1) > 0 provided f ′ (1) > 0, that is the Euler system is hyperbolic in the region ρ ≃ 1, which we will assume throughout the paper. For the rigorous justification of the free wave regime when (NLS) is the Gross-Pitaevskii equation, that is f (̺) = ̺ -1, see [START_REF] Colin | Some singular limits for evolutionary Ginzburg-Landau equations[END_REF] for weak convergences and more recently [START_REF] Béthuel | On the linear wave regime of the Gross-Pitaevskii equation[END_REF] for strong convergences. In the sequel, we shall always assume f as smooth as necessary near ̺ = 1.

1.1 The (KdV)/(KP-I) asymptotic regime for (NLS)

The (KdV)/(KP-I) asymptotic regime for (NLS) gives a description, as for the water waves system, of a wave of small amplitude which propagates at the speed of sound in the x 1 direction and (if d ≥ 2) with a slow modulation in the transverse variables x ⊥ = (x 2 , ..., x d ). More precisely, we insert the ansatz

Ψ(t, x) = 1 + ε 2 A ε (τ, z) exp(iφ ε (τ, z)) τ = ε 3 t, z 1 ≡ ε(x 1 -c s t), z ⊥ ≡ ε 2 x ⊥ (2) 
in (NLS), cancel the phase factor and separate real and imaginary parts to obtain the long wave rescaling of system (1)

         ∂ τ A ε - c s ε 2 ∂ z1 A ε + 2∂ z1 φ ε ∂ z1 A ε + 2ε 2 ∇ z ⊥ φ ε • ∇ z ⊥ A ε + 1 ε 2 (1 + ε 2 A ε ) ∂ 2 z1 φ ε + ε 2 ∆ z ⊥ φ ε = 0 ∂ τ φ ε - c s ε 2 ∂ z1 φ ε + (∂ z1 φ ε ) 2 + ε 2 |∇ z ⊥ φ ε | 2 + 1 ε 4 f (1 + ε 2 A ε ) 2 - ∂ 2 z1 A ε + ε 2 ∆ z ⊥ A ε 1 + ε 2 A ε = 0. (3) 
In this section, we assume that f is of class C 3 near ̺ = 1. On the formal level, if A ε and φ ε are indeed of order one and converge to A and φ, we must have, due to the singular terms in [START_REF] Alazard | Supercritical geometric optics for nonlinear Schrödinger equations[END_REF], for the first equation,

-c s ∂ z1 A + ∂ 2 z1 φ = 0,
and for the second one, using the Taylor expansion

f (1 + α) 2 = c 2 s α + c 2 s 2 + 2f ′′ (1) α 2 + f 3 (α), (4) 
with f 3 (α) = O(α 3 ) as α → 0, we obtain

-c s ∂ z1 φ + c 2 s A = 0.
These two constraints are actually a single one:

c s A = ∂ z1 φ, (5) 
and this comes from the fact that we are focusing on the wave propagating to the right. In order to cancel out the singular terms, we add c -1 s times the first equation of (3) to c -2 s times the z 1 derivative of the second one:

1 c s ∂ τ A ε + ∂ z1 φ ε c s + 2 ∂ z1 φ ε c s ∂ z1 A ε + (1 + ε 2 A ε )∆ z ⊥ φ ε c s + A ε ∂ z1 ∂ z1 φ ε c s +2 ∂ z1 φ ε c s ∂ z1 ∂ z1 φ ε c s + 1 + 4f ′′ (1) c 2 s A ε ∂ z1 A ε - 1 c 2 s ∂ z1 ∂ 2 z1 A ε + ε 2 ∆ z ⊥ A ε 1 + ε 2 A ε (6) = - 2ε 2 c s ∇ z ⊥ φ ε • ∇ z ⊥ A ε - ε 2 c 2 s ∂ z1 |∇ z ⊥ φ ε | 2 - 1 ε 4 c 2 s ∂ z1 [f 3 (ε 2 A ε )].
Passing to the limit ε → 0 formally in [START_REF] Youssef | Rigorous derivation of Korteweg-de Vries-type systems from a general class of nonlinear hyperbolic systems[END_REF] and using the constraint [START_REF] Barashenkov | Stability and evolution of the quiescent and travelling solitonic bubbles[END_REF] (so that φ/c s = ∂ -1 z1 A), we obtain the Korteweg-de Vries equation (KdV) in dimension d = 1, and the Kadomtsev-Petviashvili equation (KP-I)

when d ≥ 2 2 c s ∂ τ A + ΓA∂ z1 A - 1 c 2 s ∂ 3 z1 A + ∆ z ⊥ ∂ -1 z1 A = 0, (KdV)/(KP-I)
where the coefficient Γ is related to the nonlinearity f by the formula:

Γ ≡ 6 + 4 c 2 s f ′′ (1).
The (KdV)/(KP-I) flow (formally) preserves the momentum

M (A) ≡ R d A 2 dz
and the energy

E (A) ≡ R d 1 c 2 s (∂ z1 A) 2 + |∇ z ⊥ ∂ -1 z1 A| 2 + Γ 3 A 3 dz.
In dimension d = 1, the formal derivation of the (KdV) equation from the (NLS) equation in this asymptotic regime is well-known in the physics literature (see, for example, [START_REF] Zakharov | Multi-scale expansion in the theory of systems integrable by the inverse scattering transform[END_REF] and [START_REF] Kivshar | Modulational instabilities and dark solitons in a generalized nonlinear Schrödinger equation[END_REF]), and is useful in the stability analysis of dark solitons or travelling waves of small energy. We refer to [START_REF] Kivshar | Dark optical solitons: physics and applications[END_REF], [START_REF] Kivshar | Self-focusing and transverse instabilities of solitary waves[END_REF] for the occurence of the two-dimensional (KP-I) in Nonlinear Optics. In [START_REF] Berloff | Motions in a Bose condensate: X. New results on stability of axisymmetric solitary waves of the Gross-Pitaevskii equation[END_REF], this (KP-I) asymptotic regime for (NLS) is formally derived for the Gross-Pitaevskii equation (i.e. (NLS) with f (̺) = ̺ -1) in dimension d = 3, and is used to investigate the linear instability of the solitary waves of speed ≃ c s .

Before turning to the mathematical justifications of this regime for (NLS), we would like to point out that the (KdV)/(KP) equation has also been rigorously derived for hyperbolic systems by W. Ben Youssef and T. Colin ([6]) for (KdV) and W. Ben Youssef and D. Lannes ([7]) for (KP). The first rigorous justifications of this long wave asymptotic regime for (NLS) are given in the papers [START_REF] Béthuel | On the Korteweg-de Vries long-wave transonic approximation of the Gross-Pitaevskii equation I[END_REF] and [START_REF] Béthuel | On the Korteweg-de Vries long-wave approximation of the Gross-Pitaevskii equation II[END_REF], which work on the Gross-Pitaevskii equation in dimension d = 1. The point is that this equation is integrable, and these results rely on the higher order conservation laws of (GP). For (GP) in dimension d = 1, the Cauchy problem is known (see [START_REF] Béthuel | On the Korteweg-de Vries long-wave transonic approximation of the Gross-Pitaevskii equation I[END_REF]) to be globally well-posed (see also [START_REF] Zhidkov | Korteweg-de-Vries and Nonlinear Schrödinger Equations: Qualitative Theory[END_REF], [START_REF] Gallo | Schrödinger group on Zhidkov spaces[END_REF], [START_REF] Gallo | The Cauchy problem for defocusing nonlinear Schrödinger equations with non-vanishing initial data at infinity[END_REF]) in the Zhidkov space Z σ (R) ≡ {v ∈ L ∞ (R), ∂ x v ∈ H σ-1 (R)}, where σ is a positive integer. We recall the main results of [START_REF] Béthuel | On the Korteweg-de Vries long-wave transonic approximation of the Gross-Pitaevskii equation I[END_REF] and [START_REF] Béthuel | On the Korteweg-de Vries long-wave approximation of the Gross-Pitaevskii equation II[END_REF]. In Theorems 1 and 2 below, the initial datum for (GP)

i∂ t Ψ ε + ∂ 2 x Ψ ε = Ψ ε (|Ψ ε | 2 -1) is Z 3 (R) ∋ Ψ in ε (x) = (1 + ε 2 A in ε (z))e iεφ in ε (z) , z = εx,
and we denote Ψ ε ∈ C(R + , Z 3 (R)) the associated solution. For the Gross-Pitaevskii nonlinearity, we have c s = √ 2 and Γ = 6.

Theorem 1 ( [START_REF] Béthuel | On the Korteweg-de Vries long-wave transonic approximation of the Gross-Pitaevskii equation I[END_REF]) We assume d = 1, f (̺) = ̺ -1 and that the functions A in ε and φ in ε verify

||A in ε || H 3 (R) + ||∂ z φ in ε / √ 2|| H 3 (R) ≤ M.
Then, there exists ε 0 (M ) > 0 such that, if 0 < ε < ε 0 (M ), then Ψ ε can be written

Ψ ε (t, x) = (1 + ε 2 A ε (τ, z))e iεφε(τ,z) , τ = ε 3 t, z = ε(x - √ 2t), with A ε , φ ε : R + × R → R continuous, (A ε , φ ε ) |τ =0 = (A in ε , φ in ε )
, and we have, for any τ ≥ 0,

||A ε (τ ) -ζ ε (τ )|| L 2 (R) ≤ C M A in ε - ∂ z φ in ε √ 2 H 3 (R) + ε e C M τ ,
where ζ ε stands for the solution of the (KdV) equation

2 √ 2∂ τ ζ + 12ζ∂ z ζ -∂ 3 z ζ = 0 with initial datum (ζ ε ) |τ =0 = A in ε .
The error in ε is not natural, since only ε 2 appears in (3) (for d = 1). This is in particular due to the fact that the use, in [START_REF] Béthuel | On the Korteweg-de Vries long-wave transonic approximation of the Gross-Pitaevskii equation I[END_REF], of the first three pairs of nontrivial conservation laws for (GP) yields

||A ε -∂ z φ ε / √ 2|| H 3 (R) ≤ C ||A in ε -∂ z φ in ε / √ 2|| H 3 (R) + ε . (7) 
In [START_REF] Béthuel | On the Korteweg-de Vries long-wave approximation of the Gross-Pitaevskii equation II[END_REF] the authors improve this first result by replacing the ε above by ε 2 . The price to pay is the loss of more derivatives.

Theorem 2 ( [START_REF] Béthuel | On the Korteweg-de Vries long-wave approximation of the Gross-Pitaevskii equation II[END_REF]) Let s ∈ N ∪ {0}, K 0 > 0 and 0 < ε < 1 be given and assume that

A in ε H s+5 (R) + ε ∂ s+6 z A in ε L 2 (R) + ∂ z φ in ε H s+5 (R) ≤ K 0 .
Let A ε and U ε denote the solutions to the (KdV) equations

2 √ 2∂ τ ζ + 12ζ∂ z ζ -∂ 3 z ζ = 0
with initial data A in ε and ∂ z φ in ε / √ 2 respectively. Then, there exists ε 0 = ε 0 (K 0 , s) ∈ (0, 1) and K = K(K 0 , s) > 0 such that if ε ≤ ε 0 (K 0 , s), Ψ ε never vanishes and thus can be written

Ψ ε (t, x) = (1 + ε 2 A ε (τ, z))e iεφε(τ,z) , τ = ε 3 t, z = ε(x - √ 2t).
Furthermore, for any τ ≥ 0,

A ε -A ε H s (R) + ∂ z φ ε √ 2 -U ε H s (R) ≤ K ε 2 + A in ε - ∂ z φ in ε √ 2 H s (R) e Kτ .
The improvement in their proof is due to the fact that they take into account waves going to the right and to the left: see Theorem 1 in [START_REF] Béthuel | On the Korteweg-de Vries long-wave approximation of the Gross-Pitaevskii equation II[END_REF] for a precise statement. In this paper, we shall treat only the right-going wave.

In [START_REF] Chiron | The KdV/KP-I limit of the Nonlinear Schrödinger Equation[END_REF], we have investigated the (KdV)/(KP-I) limit in arbitrary dimension d and for a general nonlinearity f satisfying f ′ (1) > 0. Here is one of our results (see also in [START_REF] Chiron | The KdV/KP-I limit of the Nonlinear Schrödinger Equation[END_REF] a result in the energy space when d = 1, and a result for non well-prepared data). Here, for A in ε , φ in ε , we consider the initial datum for (NLS)

Ψ in ε (x) ≡ 1 + ε 2 A in ε (z) exp(iεφ in ε (z)), z 1 = εx 1 , z ⊥ = ε 2 x ⊥ ,
and denote Ψ ε ∈ Ψ in ε + C([0, T ε ), H s+1 (R d )) the corresponding H s+1 maximal solution. Let us recall that for initial data A in in H s with s > 1 + d/2, the (KdV)/(KP-I) equation has a unique local in time weak solution (in the distributional sense) A ∈ L ∞ ([0, τ 0 ], H s (R d )), as can be easily seen (for d ≥ 2) by cutting off low frequencies and passing to the limit. If moreover the antiderivative ∂ -1 z1 A in exists in the sense that (1 + |ξ|) s ξ - 1 1 F (A in ) ∈ L 2 (R d ) (where F is the Fourier transform), then, from the result of [START_REF] Iório | On equations of KP-type[END_REF], we know that A actually belongs to C([0, [START_REF] Ukaï | Local solutions to the Kadomtsev-Petviashvili equation[END_REF] or Lemma 3 in [START_REF] Lannes | Weakly transverse Boussinesq systems and the Kadomtsev-Petviashvili approximation[END_REF]).

τ 0 ], H s (R d ) ∩ ∂ z1 H s (R d )) (for s > 1 + d/2). If, in addition, ∆ z ⊥ ∂ -1 z1 A in ∈ ∂ z1 H s-3 (R d ), then ∆ z ⊥ ∂ -2 z1 A ∈ L ∞ ([0, τ 0 ], H s-3 (R d )) (see
Theorem 3 ([20]) Let s ∈ N be such that s > 1 + d 2

. Assume that we have a familly

(A in ε , φ in ε ) 0<ε<1 such that Λ ≡ sup 0<ε<1 ||(A in ε , ∂ z1 φ in ε , ε∇ z ⊥ φ in ε )|| H s+1 (R d ) < +∞.
Then, there exists 0 < ε 0 < 1, τ 0 > 0 and K > 0, depending only on s and Λ, such that, for 0 < ε ≤ ε 0 , T ε > τ 0 /ε 3 and there exist two real-valued functions

A ε ∈ C([0, τ 0 ], H s+1 (R d )) and φ ε ∈ C([0, τ 0 ], Ḣs+1 (R d ))∩ C([0, τ 0 ] × R d ) such that (A ε , φ ε ) |τ =0 = (A in ε , φ in ε ) and satisfying Ψ ε (t, x) = 1 + ε 2 A ε (τ, z) exp(iεφ ε (τ, z)), τ = ε 3 t, z 1 ≡ ε(x 1 -c s t), z ⊥ ≡ ε 2 x ⊥ (8) 
with 1 + ε 2 A ε ≥ 1 2 and sup 0≤τ ≤τ0

A ε H s+1 (R d ) + (∂ z1 φ in ε , ε∇ z ⊥ φ ε ) H s (R d ) ≤ K. ( 9 
)
We assume that there exists a function A in ∈ H s+1 (R d ) such that

(A in ε , ∂ z1 φ in ε , ε∇ z ⊥ φ in ε ) → (A in , c s A in , 0) in L 2 (R d )
and moreover that, if d ≥ 2,

A in ε - ∂ z1 φ in ε c s L 2 (R d ) = O(ε) and ∇ z ⊥ φ in ε L 2 (R d ) = O(1)
.

Then, we have for ε → 0 and every σ < s + 1,

A ε → ζ in C([0, τ 0 ], H σ (R d )), and 
∂ z1 φ in ε c s → ζ in C([0, τ 0 ], H σ-1 (R d ))
,

where ζ ∈ L ∞ ([0, τ 0 ], H s+1 (R d ))
is the solution of the (KdV)/(KP-I) equation with initial datum 1 A in ∈ H s+1 (R d ). Furthermore,

sup 0≤τ ≤τ0 A ε - ∂ z1 φ ε c s L 2 (R d ) = o(1), (10) 
and if d ≥ 2, sup 0≤τ ≤τ0 A ε - ∂ z1 φ ε c s L 2 (R d ) ≤ Kε and sup 0≤τ ≤τ0 ∇ z ⊥ φ ε L 2 (R d ) ≤ K. ( 11 
)
Remark 1.1 In [START_REF] Chiron | The KdV/KP-I limit of the Nonlinear Schrödinger Equation[END_REF], Lemma 1, the proof implicitly assumes that the potential function F is nonnegative. This is not a problem for the study of the (KdV) limit since, in the end, we prove that |Ψ| is uniformly close to 1. Therefore, since F (̺) ∼ c 2 s (̺ -1) 2 /4 as ̺ → 1, one can modify F away from 1 in order to have "F ≥ 0" and afterwards observe that the solution for the modified nonlinearity is actually a solution for the original one for ε small enough. However, for a correct statement of Lemma 1 in [START_REF] Chiron | The KdV/KP-I limit of the Nonlinear Schrödinger Equation[END_REF], one needs to add that F is nonnegative.

Since the above result give a description of a wave propagating at the speed of sound, it is natural to investigate the behaviour of the travelling waves of (NLS) in the transonic limit, that is for travelling waves of speed c ≃ c s , and expect a convergence, up to similar rescalings, to the (KdV)/(KP-I) solitary wave. The (KdV)/(KP-I) equation does have solitary waves provided Γ = 0 (otherwise, (KdV)/(KP-I) is linear), and 1 ≤ d ≤ 3 (see [START_REF] De Bouard | Solitary waves of generalized Kadomtsev-Petviashvili equations[END_REF] when d ≥ 2). For the Gross-Pitaevskii nonlinearity (f (̺) = ̺ -1), explicit integration of the travelling waves equation can be carried out in dimension d = 1 (see [START_REF] Tsuzuki | Nonlinear waves in the Pitaevskii-Gross equation[END_REF], [START_REF] Béthuel | Existence and properties of travelling waves for the Gross-Pitaevskii equation[END_REF]), and this convergence can be checked explicitely. Still for the Gross-Pitaevskii nonlinearity, we refer to [START_REF] Béthuel | On the KP-I transonic limit of two-dimensional Gross-Pitaevskii travelling waves[END_REF] for the proof of the transonic limit in the two dimensional case. For a more general nonlinearity f , see [START_REF] Chiron | Travelling waves for the Nonlinear Schrödinger Equation with general nonlinearity in dimension one[END_REF] for the case d = 1, using ODE techniques, and [START_REF] Chiron | Rarefaction pulses for the Nonlinear Schrödinger Equation in the transonic limit[END_REF] for the dimensions d = 2 and d = 3.

In Theorem 3, the convergence was obtained through a compactness argument, which does not provide an quantitative error estimate. The purpose of this paper is to provide a convergence result for this (KdV)/(KP-I) asymptotic regime with an error bound comparable to the one obtained in Theorem 2 of [START_REF] Béthuel | On the Korteweg-de Vries long-wave approximation of the Gross-Pitaevskii equation II[END_REF] for a general nonlinearity f and any dimension d ≥ 1. As a first remark, note that the zero mass assumption

R A(z 1 , z ⊥ ) dz 1 = 0 for every z ⊥ ∈ R d-1
, which allows to define the term ∂ -1 z1 A, is necessary in order to prove rigorously a consistency result of the (KP-I) approximation, as explained by D. Lannes in [START_REF] Lannes | Consistency of the KP approximation[END_REF]. However, this zero mass assumption is not natural from the physical point of view. This is the reason why D. Lannes and J.-C. Saut have proposed in [START_REF] Lannes | Weakly transverse Boussinesq systems and the Kadomtsev-Petviashvili approximation[END_REF] weakly transverse Boussinesq type systems that are formally equivalent to the (KP) equation but for which no zero mass assumption is needed and for which natural consistency error bounds can be proved. This is the point of view we shall adopt for our problem.

Comparing to a weakly transverse Boussinesq system

Working in the hydrodynamical variables

(A ε , U ε = (U 1 ε , U ⊥ ε ) ≡ c -1 s (∂ z1 φ ε , ∇ z ⊥ φ ε )), (3) becomes                      1 c s ∂ τ A ε - 1 ε 2 ∂ z1 A ε + 2U 1 ε ∂ z1 A ε + 2ε 2 U ⊥ ε • ∇ z ⊥ A ε + 1 ε 2 (1 + ε 2 A ε )(∂ z1 U 1 ε + ε 2 ∇ z ⊥ • U ⊥ ε ) = 0 1 c s ∂ τ U ε - 1 ε 2 ∂ z1 U ε + 2(U 1 ε ∂ z1 + ε 2 U ⊥ ε • ∇ z ⊥ )U ε + 1 c 2 s ε 4 ∂ z1 f (1 + ε 2 A ε ) 2 - 1 c 2 s ∇ z ∂ 2 z1 A ε + ε 2 ∆ z ⊥ A ε 1 + ε 2 A ε = 0. ( 12 
)
Notice that, when we neglect the quantum pressure, ( 12) is a symmetrizable hyperbolic system in the variables

(A ε , U 1 ε , εU ⊥ ε ) (and not (A ε , U 1 ε , U ⊥ ε ) due to the weak transversality), for which the symmetrizers Diag 1, c 2 s 2f ′ ((1 + ε 2 A ε ) 2 ) , ..., c 2 s 2f ′ ((1 + ε 2 A ε ) 2 ) or Diag 2 c 2 s f ′ ((1 + ε 2 A ε ) 2 ), 1, ..., 1 (13) 
can be used. Therefore, it is natural to propose, in the spirit of [START_REF] Lannes | Weakly transverse Boussinesq systems and the Kadomtsev-Petviashvili approximation[END_REF], the following Boussinesq type system

                             1 c s ∂ τ A ε - 1 ε 2 ∂ z1 A ε + 1 ε 2 ∂ z1 U 1 ε + 2U 1 ε ∂ z1 A ε + A ε ∂ z1 U 1 ε + 2ε 2 U ⊥ ε • ∇ z ⊥ A ε +(1 + ε 2 A ε )∇ z ⊥ • U ⊥ ε = 0 1 c s ∂ τ U ε - 1 ε 2 ∂ z1 U ε + 2U 1 ε ∂ z1 U ε + 2ε 2 U ⊥ ε • ∇ z ⊥ U ε + 1 ε 2 ∇ z A ε + (Γ -5)A ε ∇ z A ε - 1 c 2 s ∂ 3 z1 U ε = 0. (B ε )
Here, we have used the Taylor expansion (4) for the nonlinearity f and the definition of Γ. Notice that in this system, we have replaced A ε by U ε in the dispersive terms, which is justified by the fact that, by (5), we expect

A ε ≈ c -1 s ∂ z1 φ ε = U 1 ε .
This allows to have the structure of a symmetrizable hyperbolic system in the variables (A ε , U 1 ε , εU ⊥ ε ), since the dispersive term is then a diagonal term with constant coefficients. Indeed, we can use the symmetrizer

Σ(ε 2 A ε ) ≡ Diag 1 + (Γ -5)ε 2 A ε 1 + ε 2 A ε , 1, ..., 1 ,
the first one of ( 13) having the disadvantage of making the dispersive term with nonconstant coefficients. We may observe that if, in (B ε ), we replace

∂ 3 z1 U 1 ε and ∂ 3 z1 U ⊥ ε by ∂ 3 z1 A 1 ε and ∂ 3 z1 A ⊥
ε respectively, we no longer have a symmetrizable hyperbolic system, and the local well-posedness of the resulting system would then be a delicate issue, see [START_REF] Saut | The Cauchy problem on large time for surface waves Boussinesq systems[END_REF] for a Boussinesq system (see also [START_REF] Xu | Intermediate long wave systems for internal waves[END_REF]). In view of this very nice structure of (B ε ), we prove the following local well-posedness result.

Proposition 1 Let Λ > 0 and s ∈ N be such that s > 3 + d 2 . Assume that 0 < ε < 1 and that (A in ε , U in ε ) is an initial datum for (B ε ) such that (A in ε , U in,1 ε , εU in,⊥ ε ) H s (R d ) ≤ Λ.
Then, there exists τ * > 0 and K depending only on Λ and s (and not on ε ∈ (0, 1)) such that (B ε ) has a unique solution

(A ε , U 1 ε , εU ⊥ ε ) ∈ L ∞ ([0, τ * ], H s (R d ))
, and this solution satisfies

sup 0≤τ ≤τ * (A ε , U 1 ε , εU ⊥ ε ) H s (R d ) ≤ K. (14) 
Moreover, if U in ε is a gradient vector field, then for 0 ≤ τ ≤ τ * , U ε (τ ) is also a gradient vector field.

As it is the case in [START_REF] Lannes | Weakly transverse Boussinesq systems and the Kadomtsev-Petviashvili approximation[END_REF], let us emphasize that if d ≥ 2, we do not control a priori U ⊥ ε but only εU ⊥ ε , due to the anistropy of the scaling. We now stress the link between the system (B ε ) and the (KdV) and the (KP-I) equations.

Proposition 2 Assume d = 1, s ∈ N such that s ≥ 5 and let 0 < ε < 1 and Λ > 0 be given. Let

(A in ε , U in ε ) be such that (A in ε , U in ε ) H s (R) ≤ Λ, and let (A ε , U ε ) ∈ L ∞ ([0, τ * ], H s (R))
be the solution of (B ε ) for the initial datum (A in ε , U in ε ) provided by Proposition 1. Then, for some constant K depending only on Λ, we have

sup 0≤τ ≤τ * A ε -U ε H s-2 (R) ≤ K A in ε -U in ε H s-2 (R) + ε 2 . ( 15 
)
Moreover, if ζ ε ∈ C(R + , H s (R)) is the solution of the (KdV) equation 2 c s ∂ τ ζ ε + Γζ ε ∂ z ζ ε - 1 c 2 s ∂ 3 z ζ ε = 0, (ζ ε ) |τ =0 = A in ε ,
then for some constant K depending only on Λ, sup

[0,τ0] A ε -ζ ε H s-5 (R) + sup [0,τ0] U ε -ζ ε H s-5 (R) ≤ K( A in ε -U in ε H s-2 (R) + ε 2 ). ( 16 
)
Of course, the comparison ( 16) is meaningless if A in ε -U in ε is not small, which has to be related to the constraint [START_REF] Barashenkov | Stability and evolution of the quiescent and travelling solitonic bubbles[END_REF].

Proposition 3 Assume d ≥ 2, s ∈ N such that s > 3 + d 2
and let 0 < ε < 1 and Λ > 0 be given. Let

(A ε , U 1 ε , εU ⊥ ε ) ∈ L ∞ ([0, τ * ], H s (R d )) be, as in Proposition 1, a solution of (B ε ) for an initial datum (A in ε , U in ε ) such that U in ε is a gradient vector field and (A in ε , U in,1 ε , εU in,⊥ ε ) H s (R d ) ≤ Λ.
Then, for some constant K depending only on Λ, we have, for

0 ≤ τ ≤ τ * ,    ∂ 2 z1 (A ε -U 1 ε ) H s-3 (R d ) ≤ K ∂ 2 z1 (A in ε -U in ε ) H s-3 (R d ) + ε 2 ∂ z1 (A ε -U 1 ε ) H s-2 (R d ) ≤ K ∂ z1 (A in ε -U in ε ) H s-2 (R d ) + ε , (17) 
as well as

A ε -U 1 ε L 2 (R d ) + ε U ⊥ ε L 2 (R d ) ≤ K A in ε -U in,1 ε L 2 (R d ) + ε U in,⊥ ε L 2 (R d ) + ε . (18) 
Moreover, if we have a family of initial data

(A in ε , U in,1 ε , εU in,⊥ ε ) 0<ε<1 such that U in ε is a gradient vector field (A in ε , U in ε ) H s (R d ) ≤ Λ, A in ε -U in,1 ε L 2 (R d ) ≤ Λε, U in,⊥ ε L 2 (R d ) ≤ Λ
and, for some

ζ in ∈ H s (R d ), (A in ε , U in,1 ε ) → (ζ in , ζ in ) in L 2 (R d ),
then we have, for any 0 ≤ σ < s,

A ε → ζ and U 1 ε → ζ in C([0, τ * ], H σ (R d )), where ζ ∈ L ∞ ([0, τ * ], H s (R d )) solves the (KP-I) equation 2 c s ∂ τ ζ + Γζ∂ z1 ζ - 1 c 2 s ∂ 3 z1 ζ + ∆ z ⊥ ∂ -1 z1 ζ = 0, ζ |τ =0 = ζ in .
Remark 1 The estimates in [START_REF] Chiron | Three long-wave asymptotic regimes for the Nonlinear Schrödinger Equation[END_REF] are very anisotropic due to the fact that the natural bound is on εU ⊥ ε and not on U ⊥ ε , but we can use that

∂ z1 U ⊥ ε = ∇ z ⊥ U 1
ε since U ε is a gradient to improve the bounds. Note that in [START_REF] Lannes | Weakly transverse Boussinesq systems and the Kadomtsev-Petviashvili approximation[END_REF], the convergence of the weakly transverse Boussinesq system to uncoupled (KP) equations is shown (see Theorem 1 there) by a WKB expansion. Here, the wave propagating to the left is trivial. The hypothesis for Theorem 1 in [START_REF] Lannes | Weakly transverse Boussinesq systems and the Kadomtsev-Petviashvili approximation[END_REF] are not exactly the same as in Proposition 3: for instance, we do not impose conditions like

∂ 2 z2 ζ in ∈ ∂ 2 z1 H s (R 2
). The proof of Proposition 3 relies on a compactness argument close to [START_REF] Chiron | The KdV/KP-I limit of the Nonlinear Schrödinger Equation[END_REF], and not a WKB expansion.

The link between the Boussinesq system (B ε ) and the (KdV) and the (KP-I) equations being clarified, we can state our main result.

Theorem 4 Let Λ > 0, 0 < ε < 1 and s ∈ N be such that s > 3 + d 2 . Assume that (A in ε , φ in ε ) is such that (A in ε , ∂ z1 φ in ε , ∇ z ⊥ φ in ε ) H s (R d ) ≤ Λ.
Then, there exists 0 < ε 0 < 1 and K depending on Λ and s such that, for 0 < ε < ε 0 , (NLS) has a unique solution

Ψ ε ∈ Ψ in ε + C([0, τ 0 /ε 3 ], H s (R d ))
, with τ 0 ≥ 1/(KΛ), that can be written

Ψ ε (t, x) = 1 + ε 2 A ε (τ, z) exp(iεφ ε (τ, z)), τ = ε 3 t, z 1 ≡ ε(x 1 -c s t), z ⊥ ≡ ε 2 x ⊥ with 1 + ε 2 A ε ≥ 1 2 and A ε C([0,τ0],H s (R d )) + ∂ z1 φ ε , ε∇ z ⊥ φ ε C([0,τ0],H s-1 (R d )) ≤ K. Denoting (A ε , U 1 ε , U ⊥ ε ) ∈ L ∞ ([0, τ * ], H s (R d )) the solution to (B ε ) for the initial datum (A in ε , c -1 s ∂ z1 φ in ε , c -1 s ∇ z ⊥ φ in ε ), we have, for 0 ≤ τ ≤ min(τ 0 , τ * ), A ε , ∂ z1 φ ε c s , ε∇ z ⊥ φ ε c s -(A ε , U 1 ε , εU ⊥ ε ) H s-1 (R d ) ≤ Kε 2 τ.
This result is quite close to Theorem 1 in [START_REF] Béthuel | On the Korteweg-de Vries long-wave approximation of the Gross-Pitaevskii equation II[END_REF], where the functions (A ε + U ε )/2 and (A ε -U ε )/2 are shown to be ε 2 close to the solutions of two (KdV) equation with appropriate initial data. Here, we compare directly to the Boussinesq system (B ε ) via an estimate of the τ -derivative of (A ε , U ε ). The estimates of Proposition 2 and 3 can thus be transposed to (A ε , U ε ), leading in particular to the following corollary.

Corollary 1 If d = 1 and under the assumptions of Theorem 4 with s ≥ 5, we have, for 0 < ε < ε 0 and some constant K depending only on Λ, sup

[0,min(τ0,τ * )] A ε -ζ ε H s (R) + U ε -ζ ε H s (R) ≤ K A in ε -U in ε H s (R) + ε 2 where ζ ε ∈ C(R + , H s (R)) denotes the solution to the (KdV) equation 2 c s ∂ τ ζ ε + Γζ ε ∂ z ζ ε - 1 c 2 s ∂ 3 z ζ ε = 0, (ζ ε ) |τ =0 = A in ε .
Proof of Corollary 1.

Denoting (A ε , U ε ) ∈ L ∞ ([0, τ * ], H s (R)) the solution to (B ε ), we have sup [0,τ0] A ε , ∂ z φ ε c s -(A ε , U ε ) H s-1 (R) ≤ Kε 2 τ ≤ Kε 2
by Theorem 4, since s ≥ 5 > 3 + 1/2. Moreover, since s ≥ 5, applying Proposition 2, there holds sup

[0,τ0] A ε -ζ ε H s-5 (R) + sup [0,τ0] U ε -ζ ε H s-5 (R) ≤ K( A in ε -U in ε H s-2 (R) + ε 2 )
where

ζ ε solves (KdV) with initial datum A in ε . As a consequence, sup [0,min(τ0,τ * )] A ε -ζ ε H s-5 (R) + U ε -ζ ε H s-5 (R) ≤ K sup [0,min(τ0,τ * )] A ε , ∂ z φ ε c s -(A ε , U ε ) H s-1 (R) + A ε -ζ ε H s-5 (R) + U ε -ζ ε H s-5 (R) ≤ K A in ε -U in ε H s-2 (R) + ε 2 ,
as desired.

Notice that we obtain in this way in dimension d = 1 a comparison result with the (KdV) equation with an error O(ε 2 ) as in Theorem 2 ( [START_REF] Béthuel | On the Korteweg-de Vries long-wave approximation of the Gross-Pitaevskii equation II[END_REF]), with assumptions that are basically the same (note that we do not need the L 2 boundedness of the "ε∂ s+6 z A in ε " derivative). Of course, the convergence by compactness in Theorem 3 holds in a larger space than the one where we prove quantitative error bounds. Our result holds for a general nonlinearity and does not rely on the integrability of the one dimensional Gross-Pitaevskii equation but only on singular hyperbolic systems. However, since we do not benefit of the a priori bounds deduced from the integrability (as in [START_REF] Béthuel | On the Korteweg-de Vries long-wave transonic approximation of the Gross-Pitaevskii equation I[END_REF]), we do not have an exponential bound on the error but work on a bounded interval in τ . Note that from our previous discussion, no reasonable comparison result with the (KP-I) equation itself has to be expected.

Expanding in powers of ε

One natural way to get error estimates would be to justify an expansion of A ε and φ ε in powers of ε. These expansions are indeed justified for the WKB asymptotics: see, e.g., [START_REF] Gérard | Remarques sur l'analyse semi-classique de l'équation de Schrödinger non linéaire[END_REF], [START_REF] Grenier | Semiclassical limit of the nonlinear Schrödinger equation in small time[END_REF], [START_REF] Chiron | Geometric optics and boundary layers for nonlinear Schrödinger equations[END_REF]. In the physical literature, this is actually the way the (KP-I) equation is formally derived for (NLS) (see [START_REF] Berloff | Motions in a Bose condensate: X. New results on stability of axisymmetric solitary waves of the Gross-Pitaevskii equation[END_REF], [START_REF] Kivshar | Dark optical solitons: physics and applications[END_REF], [START_REF] Papanicolaou | Semitopological solitons in planar ferromagnets[END_REF]). We would like to point out that, in view of the fact that the limit is singular, this power expansion is not formally correct in the sense that this requires very strong well-preparedness assumptions on the initial data and this expansion can not be valid at arbitrary order. We consider the system [START_REF] Béthuel | Existence and properties of travelling waves for the Gross-Pitaevskii equation[END_REF], where ∂ -1 z1 U 1 ε stands for c -1 s φ ε :

                 1 c s ∂ τ A ε - 1 ε 2 ∂ z1 A ε + 2U 1 ε ∂ z1 A ε + 2ε 2 (∇ z ⊥ ∂ -1 z1 U 1 ε ) • ∇ z ⊥ A ε + 1 ε 2 (1 + ε 2 A ε )[∂ z1 U 1 ε + ε 2 ∆ z ⊥ ∂ -1 z1 U 1 ε ] = 0 1 c s ∂ τ U 1 ε - 1 ε 2 ∂ z1 U 1 ε + 2U 1 ε ∂ z1 U 1 ε + 2ε 2 (∇ z ⊥ ∂ -1 z1 U 1 ε ) • ∇ z ⊥ U 1 ε + 1 ε 2 ∂ z1 A ε + 1 c 2 s ε 4 ∂ z1 [f ([1 + ε 2 A ε ] 2 ) -c 2 s ε 2 A ε ] = 1 c 2 s ∂ z1 ∂ 2 z1 A ε + ε 2 ∆ z ⊥ A ε 1 + ε 2 A ε .
We assume a formal expansion

A ε = A 0 + εA 1 + ε 2 A 2 + ..., U 1 ε = U 1 0 + εU 1 1 + ε 2 U 1 2 + ...,
where the functions A k and U 1 k are localized, insert this into [START_REF] Béthuel | Existence and properties of travelling waves for the Gross-Pitaevskii equation[END_REF] and collect the terms of the same formal order in ε. We then consider initial data having the same expansions:

A in ε = A in 0 + εA in 1 + ε 2 A in 2 + ..., U in,1 ε = U in,1 0 + εU in,1 1 + ε 2 U in,1 2 + ... .
At order ε -2 , we obtain U 1 0 = A 0 (and this is natural in view of ( 5)). The terms of order ε -1 provide

U 1 1 = A 1
and we point out that this is indeed a constraint of well-preparedness on the terms A 1 and U 1 1 at initial time, since we must have

U in,1 1 = A in 1
, and this condition is not natural, even though in [START_REF] Berloff | Motions in a Bose condensate: X. New results on stability of axisymmetric solitary waves of the Gross-Pitaevskii equation[END_REF], the expansion only involves even powers of ε. We now turn to the terms of order ε 0 :

         1 c s ∂ τ U 1 0 + 2U 1 0 ∂ z1 U 1 0 - 1 c 2 s ∂ 3 z1 A 0 + (Γ -5)A 0 ∂ z1 A 0 + ∂ z1 A 2 -∂ z1 U 1 2 = 0 1 c s ∂ τ A 0 + A 0 ∂ z1 U 1 0 + 2U 1 0 ∂ z1 A 0 + ∆ z ⊥ ∂ -1 z1 U 1 0 + ∂ z1 U 1 2 -∂ z1 A 2 = 0.
We can solve this equation in (A 2 , U 1 2 ) if and only if the two equations are compatible, that is if and only if

A 0 = U 1 0 is a solution of 2 c s ∂ τ A 0 - 1 c 2 s ∂ 3 z1 A 0 + ΓA 0 ∂ z1 A 0 + ∆ z ⊥ ∂ -1 z1 A 0 = 0,
which is (KdV)/(KP-I). Then, using the (KdV)/(KP-I) equation for A 0 , we are left with

∂ z1 A 2 -∂ z1 U 1 2 = 1 c s ∂ τ A 0 + 3A 0 ∂ z1 A 0 + ∆ z ⊥ ∂ -1 z1 A 0 = 1 2c 2 s ∂ 3 z1 A 0 + 3 - Γ 2 A 0 ∂ z1 A 0 + 1 2 ∆ z ⊥ ∂ -1 z1 A 0 , that is A 2 = U 1 2 + 1 2c 2 s ∂ 2 z1 A 0 + 1 4 (6 -Γ)A 2 0 + 1 2 ∆ z ⊥ ∂ -2 z1 A 0 . (19) 
Here again, we obtain a strong constraint on (A 2 , U 1 2 ) at the initial time:

A in 2 = U in,1 2 + 1 2c 2 s ∂ 2 z1 A in 0 + 1 4 (6 -Γ)(A in 0 ) 2 - 1 2 ∆ z ⊥ ∂ -2 z1 A in 0 ,
which is not natural since the rigorous results in Theorems 2, 3, 4 do not make such preparedness assumptions on the initial data. Moreover, in dimensions d ≥ 2, the term ∆ z ⊥ ∂ -2 z1 A in 0 is not well-defined in general: for instance, if

A in 0 = ∂ z1 {e -z 2 1 -z 2 2 } = -2z 1 e -z 2 1 -z 2 2 , then ∂ 2 z2 ∂ -1 z1 A in 0 = 2(2z 2 2 -1)e -z 2 1 -z 2 2 has no z 1 antiderivative in L 2 .
The terms of order ε 1 give

         1 c s ∂ τ U 1 1 - 1 c 2 s ∂ 3 z1 A 1 + (Γ -5)A 0 ∂ z1 A 1 + (Γ -5)A 1 ∂ z1 A 0 + 2U 1 0 ∂ z1 U 1 1 + 2U 1 1 ∂ z1 U 1 0 + ∂ z1 A 3 -∂ z1 U 1 3 = 0 1 c s ∂ τ A 1 + A 0 ∂ z1 U 1 1 + A 1 ∂ z1 U 1 0 + 2U 1 0 ∂ z1 A 1 + 2U 1 1 ∂ z1 A 0 + ∆ z ⊥ ∂ -1 z1 U 1 1 + ∂ z1 U 1 3 -∂ z1 A 3 = 0.
Here again, we have a compatibility condition between these two equations, which implies that A 1 = U 1 1 must verify the (KdV)/(KP-I) equation linearized around

A 0 2 c s ∂ τ A 1 + ΓA 0 ∂ z1 A 1 + ΓA 1 ∂ z1 A 0 - 1 c 2 s ∂ 3 z1 A 1 + ∆ z ⊥ ∂ -1 z1 A 1 = 0,
and it remains (since

A 0 = U 1 0 and A 1 = U 1 1 ) ∂ z1 A 3 -∂ z1 U 1 3 = 1 c s ∂ τ A 1 + A 0 ∂ z1 U 1 1 + A 1 ∂ z1 U 1 0 + 2U 1 0 ∂ z1 A 1 + 2U 1 1 ∂ z1 A 0 + ∆ z ⊥ ∂ -1 z1 U 1 1 = 3 - Γ 2 ∂ z1 (A 0 A 1 ) + 1 2c 2 s ∂ 2 z1 A 1 + 1 2 ∆ z ⊥ ∂ -1 z1 A 1 .
In [START_REF] Berloff | Motions in a Bose condensate: X. New results on stability of axisymmetric solitary waves of the Gross-Pitaevskii equation[END_REF], the expansion is assumed even in ε, hence A 1 = U 1 1 = 0, and then it is natural to choose A 3 = U 1 3 = 0. For the terms of order ε 2 , we have, for some coefficient q 3 coming from the Taylor expansion of f ((1+α) 2 ):

                     1 c s ∂ τ U 1 2 - 1 c 2 s ∂ 3 z1 A 2 + 1 c 2 s ∂ z1 (A 0 ∂ 2 z1 A 0 ) - 1 c 2 s ∂ z1 ∆ z ⊥ A 0 +(Γ -5)∂ z1 (A 2 A 0 ) + (Γ -5)A 1 ∂ z1 A 1 + 3q 3 A 2 0 ∂ z1 A 0 +2∂ z1 (U 1 0 U 1 2 ) + 2U 1 1 ∂ z1 U 1 1 + 2(∇ z ⊥ ∂ -1 z1 U 1 0 ) • ∇ z ⊥ U 1 0 + ∂ z1 A 4 -∂ z1 U 1 4 = 0 1 c s ∂ τ A 2 + A 0 ∂ z1 U 1 2 + A 2 ∂ z1 U 1 0 + A 1 ∂ z1 U 1 1 + 2U 1 0 ∂ z1 A 2 + 2U 1 2 ∂ z1 A 0 + 2U 1 1 ∂ z1 A 1 +2(∇ z ⊥ ∂ -1 z1 U 1 0 ) • ∇ z ⊥ A 0 + ∆ z ⊥ ∂ -1 z1 U 1 2 + A 0 ∆ z ⊥ ∂ -1 z1 U 1 0 + ∂ z1 U 1 4 -∂ z1 A 4 = 0.
Compatibility of the second equation with the first one then implies

1 c s ∂ τ (A 2 + U 1 2 ) - 1 c 2 s ∂ 3 z1 A 2 + (Γ -5)∂ z1 (A 0 A 2 ) + ΓA 1 ∂ z1 A 1 + ∂ z1 (q 3 A 3 0 ) + 2∂ z1 (U 1 0 A 2 ) + 1 c 2 s ∂ z1 (A 0 ∂ 2 z1 A 0 ) + ∂ z1 (2A 0 U 1 2 ) + A 0 ∂ z1 U 1 2 + A 2 ∂ z1 A 0 + 2A 0 ∂ z1 A 2 + 2U 1 2 ∂ z1 A 0 (20) +4(∇ z ⊥ ∂ -1 z1 U 1 0 ) • ∇ z ⊥ A 0 + ∆ z ⊥ ∂ -1 z1 U 1 2 + A 0 ∆ z ⊥ ∂ -1 z1 A 0 - 1 c 2 s ∂ z1 ∆ z ⊥ A 0 = 0.
Using the expression (19) of A 2 in terms of U 1 2 and the (KdV)/(KP-I) equation for A 0 , we obtain

1 c s ∂ τ (U 1 2 -A 2 ) + 1 4 (6 -Γ)A 0 ∆ z ⊥ ∂ -1 z1 A 0 + Γ 8 ∆ z ⊥ ∂ -1 z1 (A 2 0 ) + 1 4 ∆ 2 z ⊥ ∂ -3 z1 A 0 + ∂ z1 {...} = 0,
where the term {...} depends on A 1 , U 1 2 , A 0 . Here again, we observe that the term ∆ 2 z ⊥ ∂ -3 z1 A 0 is not welldefined in general, and that the expression ∆ z ⊥ ∂ -1 z1 (A 2 0 ) is not in L 2 since A 2 0 ≥ 0 (when A 0 is non trivial). This means that if d ≥ 2, the expansion is not formally correct up to the cancellation of the terms of order ε 2 .

We would like to point out another difficulty when we cancell the terms of order ε 2 , and restrict ourselves to the dimension d = 1. Under weak assumptions on the nonlinearity, the Cauchy problem for (NLS) is known to be locally well-posed in Ψ in + H 1 , see [START_REF] Gallo | The Cauchy problem for defocusing nonlinear Schrödinger equations with non-vanishing initial data at infinity[END_REF]. This implies in particular that when we lift Ψ = Ae iϕ , we must have, by Sobolev imbedding, the existence of the limits ϕ(t, ±∞) as well as ϕ(t, ±∞) = ϕ in (t, ±∞) for any t ≥ 0. Note that we consider here only solutions with |Ψ| ≈ 1. As a consequence, the (generalized Riemann, say 

) integral R U ε dz = R U 0 dz + ε R U 1 dz + ε 2 R U 2 dz + ... must
∂ τ R A 2 dz = 1 4 (6 -Γ)∂ τ R A 2 0 dz = 0, (21) 
since the (KdV) flow conserves the L 2 norm. On the other hand, (20) becomes

1 c s ∂ τ (A 2 + U 2 ) - 1 2c 2 s ∂ 3 z (A 2 + U 2 ) + Γ -4 2 ∂ z (A 0 (A 2 + U 2 )) + 3∂ z (A 0 [A 2 + U 2 ]) = 1 2c 2 s ∂ 3 z 1 2c 2 s ∂ 2 z A 0 + 1 4 (6 -Γ)A 2 0 + 1 2c 2 s ∂ 2 z A 0 + 1 4 (6 -Γ)A 2 0 ∂ z A 0 - Γ -4 2 1 2c 2 s ∂ 2 z A 0 + 1 4 (6 -Γ)A 2 0 -ΓA 1 ∂ z A 1 - 1 c 2 s ∂ z (A 0 ∂ 2 z A 0 ) -∂ z (q 3 A 3 0 ), and since 2∂ 2 z A 0 ∂ z A 0 = ∂ z [(∂ z A 0 ) 2 ] and 3A 2 0 ∂ z A 0 = ∂ z [A 3 0 ]
, all the terms in the right-hand side are zderivatives except the term involving A 2 0 in the before last line. Therefore, formal z integration of the above equation provides, still assuming R U 2 dz constant,

1 c s ∂ τ R A 2 dz = (Γ -4)(Γ -6) 8 R A 2 0 dz,
which contradicts (21) (when A 0 is non trivial), except in the particular cases Γ = 6 which happens for the Gross-Pitaevskii nonlinearity since f ′′ = 0 everywhere, or Γ = 4. This second argument suggest that we may not in general be able to cancel out the terms in ε 2 with an expansion in ε.

We finally point out that in [START_REF] Lannes | Weakly transverse Boussinesq systems and the Kadomtsev-Petviashvili approximation[END_REF], the convergence of the weakly transverse Boussinesq system to the (KP) equation was shown through an expansion in ε similar to the one discussed here, which leads, similarly to [START_REF] Chiron | Geometric optics and boundary layers for nonlinear Schrödinger equations[END_REF], to hypothesis like

∂ 2 z2 ζ in ∈ ∂ 2 z1 H s (R 2
). The results in Theorems 1, 2 and 3 do not rely on the justification of some expansion in ε. Actually, expanding in ε with even powers so that the equations are solved up to the natural error O(ε 2 ) suggest that we may compare the true solution (A ε , U ε ) to the approximate one (A 0 + ε 2 A 2 , U 0 + ε 2 U 2 ) up to an error O(ε 2 ). The condition [START_REF] Chiron | Geometric optics and boundary layers for nonlinear Schrödinger equations[END_REF] appears then somehow unnatural because the terms (ε 2 A 2 , ε 2 U 2 ) involved are of the order of the error O(ε 2 ).

1.4 Formal derivation of (gKdV)/(gKP-I) equation in the degenerate case Γ = 0

When Γ = 6 + 4 c 2 s f ′′ (1) = 0, (KdV) 
/(KP-I) is a linear dispersive equation. In order to see nonlinear effects, it is thus natural to enlarge the size of the data. It turns out that the natural scaling is now

Ψ(t, x) = 1 + εA ε (τ, z) exp(iφ ε (τ, z)) τ = ε 3 t, z 1 ≡ ε(x 1 -c s t), z ⊥ ≡ ε 2 x ⊥ . (22) 
Plugging this into (NLS), we obtain the system

         ∂ τ A ε - c s ε 2 ∂ z1 A ε + 2 ε ∂ z1 φ ε ∂ z1 A ε + 2ε∇ z ⊥ φ ε • ∇ z ⊥ A ε + 1 ε 2 (1 + εA ε ) ∂ 2 z1 φ ε + ε 2 ∆ z ⊥ φ ε = 0 ∂ τ φ ε - c s ε 2 ∂ z1 φ ε + 1 ε (∂ z1 φ ε ) 2 + ε|∇ z ⊥ φ ε | 2 + 1 ε 3 f (1 + εA ε ) 2 - ∂ 2 z1 A ε + ε 2 ∆ z ⊥ A ε 1 + εA ε = 0. ( 23 
)
As ε → 0 and if A ε → A and φ ε → φ, we infer as above that at leading order, for both equations

c s A = ∂ z1 φ. (24) 
However, it has to be noticed that [START_REF] Colin | Some singular limits for evolutionary Ginzburg-Landau equations[END_REF] has also singular terms of order ε -1 . Assuming that f is of class C 4 near ̺ = 1 and using the Taylor expansion

f (1 + α) 2 = c 2 s α + c 2 s 2 + 2f ′′ (1) α 2 + 2f ′′ (1) + 4 3 f ′′′ (1) α 3 + f 4 (α),
with f 4 (α) = O(α 4 ) as α → 0, the formally singular terms in system [START_REF] Colin | Some singular limits for evolutionary Ginzburg-Landau equations[END_REF] give

       1 ε 2 ∂ 2 z1 φ ε -c s ∂ z1 A ε + 1 ε 2∂ z1 φ ε ∂ z1 A ε + A ε ∂ 2 z1 φ ε = O(1) c s ε 2 c s A ε -∂ z1 φ ε + 1 ε (∂ z1 φ ε ) 2 + (c 2 s /2 + 2f ′′ (1))A 2 ε = O(1).
We recall that Γ = 0 if and only if -2f ′′ (1) = 3c 2 s . Furthermore, since c s A ε = ∂ z1 φ ε + O(ε), we infer for both equations in the above system (formally)

∂ z1 φ ε -c s A ε = - 3ε 2 c s A 2 ε + O(ε 2 ). ( 25 
)
Adding c -1 s times the first equation of ( 23) to c -2 s ∂ z1 times the second one, we get (using

-2f ′′ (1) = 3c 2 s ), 1 c s ∂ τ A ε + 1 c s ∂ z1 φ ε - 1 c 2 s ∂ z1 ∂ 2 z1 A ε + ε 2 ∆ z ⊥ A ε 1 + εA ε + (1 + εA ε )∆ z ⊥ φ ε + 1 c 2 s 6f ′′ (1) + 4f ′′′ (1) A 2 ε ∂ z1 A ε + 1 c s ε 2∂ z1 φ ε ∂ z1 A ε + A ε ∂ 2 z1 φ ε + 1 c s ∂ z1 [(∂ z1 φ ε ) 2 ] - 5c s 2 ∂ z1 (A 2 ε ) (26) = - 2ε c s ∇ z ⊥ φ ε • ∇ z ⊥ A ε - ε c 2 s ∂ z1 [ |∇ z ⊥ φ ε | 2 ] - 1 c 2 s ε 3 ∂ z1 [f 4 (εA ε )].
We have to pay attention to the second line in [START_REF] Ding | Local Schrödinger flow into Kähler manifolds[END_REF] due to the factor ε -1 . Using [START_REF] De Laire | Travelling waves for the Landau-Lifshitz equation: nonexistence of small energy solutions and asymptotic behaviour at infinity[END_REF], the leading (quadratic) order terms cancel out and the second line in ( 26) is

1 c s ε 2∂ z1 A ε c s A ε - 3ε 2 c s A 2 ε + A ε ∂ z1 c s A ε - 3ε 2 c s A 2 ε + 1 c s ∂ z1 [(c s A ε - 3ε 2 c s A 2 ε ) 2 ] -5c s A ε ∂ z1 A ε + O(ε) = -15A 2 ε ∂ z1 A ε + O(ε).
As a consequence, passing to the (formal) limit ε → 0 in (26) yields the modified (KdV)/(KP-I) equation

2 c s ∂ τ A - 1 c 2 s ∂ 3 z1 A + Γ ′ A 2 ∂ z1 A + ∆ z ⊥ ∂ -1 z1 A = 0, (mKdV)/(mKP-I)
where the coefficient

Γ ′ ≡ 4f ′′′ (1) c 2 s - 24 
involves a third order derivative of f at 1. The nature of (mKdV)/(mKP-I) strongly depends on the sign of Γ ′ : it is defocusing for Γ ′ > 0 (without solitary waves) but focusing when Γ ′ < 0 (with solitary waves). Indeed, in dimension d = 1, we have two solitons of speed -1/(2c s )

w ± (z) ≡ ± -6/(Γ ′ c 2 s ) cosh(z) (recall that (mKdV)/(mKP-I) is odd in A: if A is a solution, so is -A),
and if d ≥ 2, we have existence of (at least two) nontrivial solitary waves to (mKP-I) if and only if d = 2 and Γ ′ < 0 (cf. [START_REF] De Bouard | Solitary waves of generalized Kadomtsev-Petviashvili equations[END_REF]).

We can clearly go further and derive more generally (gKdV)/(gKP-I) equations from (NLS) when suitable coefficients like Γ and Γ ′ vanish. More precisely, for some given m ∈ N, assume that f is of class C m+3 near ̺ = 1 and that we have

f (j) (1) (j + 1)! = (-1) j+1 c 2 s 4 for 1 ≤ j < m + 2, ( 27 
)
the equality for j = 1 being always true by definition of c s , namely c s = 2f ′ (1). If m = 1, this requires f ′′ (1) = -3c 2 s /2, which holds true if Γ = 0. Consider now (f is supposed smooth enough) the Taylor expansion of f ((1 + α) 2 ) near the origin:

1 c 2 s f ((1 + α) 2 ) = m+1 k=1 q k α k + q m+2 α m+2 + O(α m+3 ) = m+2 k=1 0 ≤ ℓ ≤ j j + ℓ = k f (j) (1)2 ℓ-j ℓ!(j -ℓ)! α k + O(α m+3 ).
The ansatz ( 2) and ( 22) are then changed for

Ψ(t, x) = 1 + ε 2 m+1 A ε (τ, z) exp(iε 1-m 1+m φ ε (τ, z)) τ = ε 3 t, z 1 ≡ ε(x 1 -c s t), z ⊥ ≡ ε 2 x ⊥ . (28) 
Inserting this into (NLS) yields, with

U ε ≡ c -1 s ∇ z φ ε ,                                    1 c s ∂ τ A ε - 1 ε 2 ∂ z1 A ε + 2ε 2 m+1 -2 U 1 ε ∂ z1 A ε + 2ε 2 m+1 U ⊥ ε • ∇ z ⊥ A ε + 1 ε 2 (1 + ε 2 m+1 A ε ) ∂ z1 U 1 ε + ε 2 ∇ z ⊥ • U ⊥ ε = 0 1 c s ∂ τ U 1 ε - 1 ε 2 ∂ z1 U 1 ε + 2ε 2 m+1 -2 U 1 ε ∂ z1 U 1 ε + 2ε 2 m+1 U ⊥ ε • ∇ z ⊥ U 1 ε + m+1 k=1 kq k ε 2(k-1) m+1 -2 A k-1 ε ∂ z1 A ε +(m + 2)q m+2 A m+1 ε ∂ z1 A ε + O(ε 2 m+1 ) - 1 c 2 s ∂ z1 ∂ 2 z1 A ε + ε 2 ∆ z ⊥ A ε 1 + ε 2 m+1 A ε = 0. ( 29 
)
Comparing the singular terms in both equations, we obtain

           ∂ z1 U 1 ε -∂ z1 A ε + ε 2 m+1 2U 1 ε ∂ z1 A ε + A ε ∂ z1 U 1 ε = O(ε 2 ) ∂ z1 A ε -∂ z1 U 1 ε + 2ε 2 m+1 U 1 ε ∂ z1 U 1 ε + m+1 k=2 kq k ε 2(k-1) m+1 A k-1 ε ∂ z1 A ε = O(ε 2 ).
For m = 0, we recover the constraint (5), and for m = 1, we obtain [START_REF] De Laire | Travelling waves for the Landau-Lifshitz equation: nonexistence of small energy solutions and asymptotic behaviour at infinity[END_REF]. When m ≥ 1, this system is also a single constraint. Indeed, letting ǫ ≡ ε 2/(m+1) , so that ǫ m+1 = ε 2 , we shall see that the two equations in the above system formally reduce to the single constraint

U 1 ε = A ε - 3 2 ǫA 2 ε + 2ǫ 2 A 3 ε - 5 2 ǫ 3 A 4 ε + ... + (-1) m m + 2 2 ǫ m A m+1 ε + O(ǫ m+1 ). ( 30 
)
For the first equation, this follows immediately by induction on m. Formally integrating in z 1 , the second one can be written

A ε -U 1 ε + ǫ(U 1 ε ) 2 + m+1 k=2 q k ǫ k-1 A k ε = O(ǫ m+1 ).
From [START_REF] Germain | Long wave limits for Schrödinger maps[END_REF] and after a little algebra, this is equivalent to

m+1 k=2 (-1) k k + 1 2 ǫ k-1 A k ε + m+1 k=2 (-1) k (k + 1)(k -1)(k + 6) 24 ǫ k-1 A k ε + m+1 k=2 q k ǫ k-1 A k ε = O(ǫ m+1 ), that is to ∀2 ≤ k ≤ m + 1, q k = (-1) k-1 (k + 1)(k + 2)(k + 3) 24 . (31) 
The relation ( 31) is actually verified when the f (j) (1)'s verify [START_REF] Gallo | Schrödinger group on Zhidkov spaces[END_REF], as can be seen by noticing that then, for ̺ → 1,

f (̺) = m+1 j=1 f (j) (1) j! (̺ -1) j + O((̺ -1) m+2 ) = m+1 j=1 c 2 s 4 (-1) j+1 (j + 1)(̺ -1) j + O((̺ -1) m+2 ) = c 2 s 4 +∞ j=1 (-1) j+1 (j + 1)(̺ -1) j + O((̺ -1) m+2 ) = c 2 s 4 1 - 1 ̺ 2 + O((̺ -1) m+2 ), thus, for α → 0, 1 c 2 s f ((1 + α) 2 ) = 1 4 1 - 1 (1 + α) 4 + O(α m+2 ) = m+1 k=1 (-1) k-1 (k + 1)(k + 2)(k + 3) 24 α k + O(α m+2 ).
Note that when [START_REF] Germain | Long wave limits for Schrödinger maps[END_REF] is satisfied, we have

ǫ 2U 1 ε ∂ z1 A ε + A ε ∂ z1 U 1 ε + 2ǫU 1 ε ∂ z1 U 1 ε + m+1 k=2 kq k ǫ k-1 A k-1 ε ∂ z1 A ε = (-1) m ǫ m+1 24 (m + 2)(m + 3)(m + 4)(m + 5)A m+1 ε ∂ z1 A ε + O(ǫ m+2 ). ( 32 
)
Adding now the two equations of (29) and using (32), we infer

1 c s ∂ τ A ε + U 1 ε - 1 c 2 s ∂ z1 ∂ 2 z1 A ε + ε 2 ∆ z ⊥ A ε 1 + ǫA ε + (1 + ǫA ε )∇ z ⊥ • U ⊥ ε + (m + 2)q m+2 A m+1 ε ∂ z1 A ε + (-1) m 24 (m + 2)(m + 3)(m + 4)(m + 5)A m+1 ε ∂ z1 A ε (33) = -2ǫU ⊥ ε • ∇ z ⊥ U 1 ε -2ǫU ⊥ ε • ∇ z ⊥ A ε + O(ǫ),
where the O(ǫ) contains the remainder in the Taylor expansion and the contribution coming from [START_REF] Iório | On equations of KP-type[END_REF]. The formal limit is then the (gKdV)/(gKP-I) equation

2 c s ∂ τ A + Γ (m) A m+1 ∂ z1 A + ∆ z ⊥ ∂ -1 z1 A - 1 c 2 s ∂ 3 z1 A = 0, (gKdV)/(gKP-I)
where the coefficient Γ (m) involves a derivative of order f (m+2) of f at ρ = 1 and is defined by

Γ (m) ≡ (m + 2)q m+2 + (-1) m 24 (m + 2)(m + 3)(m + 4)(m + 5),
and clearly

Γ (0) = Γ if m = 0 and Γ (1) = Γ ′ if m = 1. It is also clear that Γ (m) vanishes if and only if q m+2 = (-1) m+1 (m+3)(m+4)(m+5)

24

, which is (31

) for k = m + 2.
Remark 2 As we have seen during the computation, the nonlinearity given by

f (̺) = c 2 s 4 1 - 1 ̺ 2 ,
at least locally near ̺ = 1, is extremely specific. Indeed, all the coefficients Γ (m) , m ∈ N ∪ {0} vanish for this nonlinearity, in view of the fact that f (j) (1) = (-1) j+1 (j + 1)! c 2 s 4 for any j ∈ N 0 .

Remark 3 If one prefers to express A ε in terms of U 1 ε in [START_REF] Germain | Long wave limits for Schrödinger maps[END_REF], one obtains

A ε = m+1 k=1 1 • 3 • ... • (2k -1) k! ǫ k-1 [U 1 ε ] k + O(ǫ m+1 ). (34) 
Indeed, ( 30) provides (formally)

ǫU 1 ε = +∞ j=0 (-1) j j + 2 2 ǫ j+1 A j+1 ε + O(ǫ m+1 ) = 1 2 ∂ ǫ +∞ j=0 (-1) j ǫ j+2 A j+1 ε + O(ǫ m+1 ) = 1 2 ∂ ǫ ǫ 2 A ε 1 + ǫA ε + O(ǫ m+1 ) = 1 2 1 - 1 (1 + ǫA ε ) 2 + O(ǫ m+1 ), hence 1 + ǫA ε = (1 -2ǫU 1 ε ) -1/2 + O(ǫ m+1
) and the result follows by Taylor expansion. We would like to conclude this section with a discussion on the free wave regime studied in [START_REF] Béthuel | On the linear wave regime of the Gross-Pitaevskii equation[END_REF]. This wave regime holds for an initial datum for (NLS) of the type

Ψ in (x) = 1 + εA in ε (z) exp(iφ in ε (z)) z ≡ εx (35) 
and relies on the ansatz

Ψ(t, x) = 1 + εA ε (t, z) exp(iφ ε (t, z)) t = εt, z ≡ εx. (36) 
The main result in [START_REF] Béthuel | On the linear wave regime of the Gross-Pitaevskii equation[END_REF] is the following.

Theorem 5 ([10]) Let Λ > 0 and s ∈ R be such that s > 1 + d 2 .
We consider an initial datum for the Gross-Pitaevskii equation

i ∂Ψ ∂t + ∆Ψ = Ψ(|Ψ| 2 -1) (GP) of the type Ψ in ε (x) = (1 + εA in ε (z)) exp(iφ in ε (z)), z = εx, with A in ε H s+1 (R d ) + ∇ z φ in ε H s (R d ) ≤ Λ.
Then, there exists a positive constant

K 0 = K 0 (s, d) such that if K 0 εΛ ≤ 1, then (GP) has a unique solution Ψ ε ∈ Ψ in ε + C([0, 1/(K 0 εΛ)], H s+1 (R d , C
) with initial datum Ψ in ε , which can be written under the form (36) with

sup 0≤t≤1/(K0εΛ) A ε (t) H s+1 (R d ) + ∇ z φ ε (t) H s (R d ) ≤ K 0 Λ and 1 2 ≤ ρ = 1 + εA ε ≤ 2. ( 37 
)
Furthermore, if (a ε , u ε ) denotes the solution to the free wave equation

     ∂ t a ε + 2∇ z • u ε = 0 ∂ t u ε + 1 2 ∇ z a ε = 0 ( 38 
)
with intial datum (A in ε , ∇ z φ in ε ), then, for 0 ≤ t ≤ 1/(K 0 εΛ), there holds (A ε , U ε )(t) -(a ε , u ε )(t) H s-2 (R d )×H s-2 (R d ) ≤ K 0 εt Λ 2 + εΛ . ( 39 
)
This underlines that the free wave regime is a good approximation for large t, namely t ≪ ε -1 . Actually, t ≈ 1 (t ≃ ε -1 ) is the time scale for the Euler regime, and since we linearize around a constant state, we expect that the asymptotics hold for large t. We may refer to, e.g., [START_REF] Chiron | Three long-wave asymptotic regimes for the Nonlinear Schrödinger Equation[END_REF] for a survey on the different long wave regimes for (NLS) (Euler regime, wave regime, ...). In the case d = 1, m = 1, the initial datum for the (mKdV) regime is also of the type [START_REF] Kivshar | Self-focusing and transverse instabilities of solitary waves[END_REF]. However, due to the cancellation of Γ and the nonlinear preparedness assumption [START_REF] De Laire | Travelling waves for the Landau-Lifshitz equation: nonexistence of small energy solutions and asymptotic behaviour at infinity[END_REF] of the data, we formally obtain solutions on a much larger time interval τ ≃ 1, that is t ≈ ε -3 or t ≈ ε -2 .

Remark 4 It seems that actually, in Theorem 5, the norm

A in ε H s+1 (R d ) needs to be replaced by A in ε H s (R d ) + ε A in ε H s+1 (R d )
, and similarly in [START_REF] Komineas | Topology and dynamics in ferromagnetic media[END_REF]. Indeed, in Proposition 1 in [START_REF] Béthuel | On the linear wave regime of the Gross-Pitaevskii equation[END_REF], we see that "z" is controled in

H s , but the imaginary part of z is 2 ∇ρ ρ , with ρ = 1 + εA ε , so that only ε A in ε H s+1 (R d ) is involved and not just A ε H s+1 (R d )
. This means that the right-hand side of (39) should presumably be replaced by K 0 εt(Λ 2 + Λ).

Some rigorous justification of the (gKdV)/(gKP-I) equation

We present here our rigorous convergence result to the (gKdV)/(gKP-I) equation, but, as we shall see, it does not hold on the scale τ = ε 3 t ≈ 1.

Determining the right time scale. When one wants to justify the (gKdV)/(gKP-I) asymptotic regime, the main difficulty is the presence, in systems ( 23) and ( 29), of singular terms with nonconstant coefficient. In comparison with the justification of the (KdV)/(KP-I) limit, where we prove first the Sobolev bounds and then the error estimate involving the preparedness assumption, the difficulty for proving the (gKdV)/(gKP-I) limit on the natural time scale τ = ε 3 t is to break down a vicious circle: the Sobolev bounds depend on the preparation of the data, which itself depends on the Sobolev bounds. Despite our efforts, we have not been able to solve this problem, even working in a space of analytic functions. Another aspect which appears for this problem on the time scale τ = ε 3 t ≈ 1 is that we always have to expand much further than the expected natural order. For instance, the constraint [START_REF] Germain | Long wave limits for Schrödinger maps[END_REF], namely, considering d = 1 for simplicity,

U ε = A ε - 3 2 ǫA 2 ε + 2ǫ 2 A 3 ε - 5 2 ǫ 3 A 4 ε + ... + (-1) m m + 2 2 ǫ m A m+1 ε + O(ǫ m+1 ), requires to expand (A ε , U ε ) up to O(ǫ m+1
). However, this induces in the equations a consistency error only O(1) due to the singular term in 1/ε 2 = 1/ǫ m+1 . Hence we may hope to prove only

(A ε , U ε ) -(A 0 , U 0 ) - ǫ(A 1 , U 1 ) -... -ǫ m (A m , U m ) = O(1)
, which is useless. Furthermore, we do not have any equation for the evolution of (A 1 , U 1 ), (A 2 , U 2 ) ... and there is clearly no uniqueness when solving [START_REF] Germain | Long wave limits for Schrödinger maps[END_REF]. Expanding (A ε , U ε ) up to O(ǫ m+r ) for some r ≥ 1 provides a consistency error O(ǫ r-1 ), which is not sufficient for proving that (30) remains true, except for r ≥ m + 2. When m = 1, hence ǫ = ε, this means that we have to expand

(A ε , U ε ) up to O(ε 4 ) instead of the natural O(ε 2
). This is the same mechanism which shows that the Sobolev bounds at one order require an expansion of the data at a much larger order. As a consequence, it is natural to work on a smaller time scale. In view of the result of [START_REF] Béthuel | On the linear wave regime of the Gross-Pitaevskii equation[END_REF] given in Theorem 5, the wave time scale seems natural. Notice that for an initial datum of the form

Ψ in (x) = 1 + ǫA in ε (z) exp i ǫ ε φ in ε (z) z ≡ εx,
where the small parameter ε 2 ≪ ǫ ≪ 1 may be different from ε (compare with [START_REF] Komineas | Vortex dynamics in two-dimensional antiferromagnets[END_REF]), the free wave regime holds for t ≪ (εǫ) -1 . We thus introduce the time scale θ = εǫt = ǫt, that is we replace [START_REF] Colin | Justification of and long-wave correction to Davey-Stewartson systems from quadratic hyperbolic systems[END_REF] by

Ψ(t, x) = 1 + ǫA ε (θ, z) exp i ǫ ε φ ε (θ, z) θ = εǫt, z 1 ≡ ε(x 1 -c s t), z ⊥ ≡ ε 2 x ⊥ , (40) 
which changes (3) for a system with U ε ≡ c -1 s ∇ z φ ε where the singular terms have constant coefficients:

         ∂ θ A ε - c s ǫ ∂ z1 A ε + 2U 1 ε ∂ z1 A ε + 2ε 2 U ⊥ ε • ∇ z ⊥ A ε + 1 ǫ (1 + ǫA ε ) ∂ z1 U 1 ε + ε 2 ∇ z ⊥ • U ⊥ ε = 0 ∂ θ U ε - c s ǫ ∂ z1 U ε + 2U 1 ε ∂ z1 U ε + 2ε 2 U ⊥ ε • ∇ z ⊥ U ε + 1 ǫ 2 ∇ z f (1 + ǫA ε ) 2 = ε 2 ǫ ∇ z ∂ 2 z1 A ε + ε 2 ∆ z ⊥ A ε 1 + ǫA ε .
(41) The free wave regime studied in [START_REF] Béthuel | On the linear wave regime of the Gross-Pitaevskii equation[END_REF] then holds for θ ≪ 1.

Approximation of the right-going wave by the Burgers equation for θ ≈ 1. Let us investigate what can be shown concerning an expansion in ε for the one dimensional situation with only one wave propagating to the right. We then try to expand further in ǫ = ε the result in [START_REF] Béthuel | On the linear wave regime of the Gross-Pitaevskii equation[END_REF] with the assumption that the wave going to the left is negligible. This leads us to consider the one dimensional system, where θ = ε 2 t and

U ε = c -1 s ∂ z φ ε ,          1 c s ∂ θ A ε - 1 ε ∂ z A ε + 2U ε ∂ z A ε + 1 ε (1 + εA ε )∂ z U ε = 0 1 c s ∂ θ U ε - 1 ε ∂ z U ε + 2U ε ∂ z U ε + 1 c 2 s ε 2 ∂ z f ([1 + εA ε ] 2 ) = ε∂ z ∂ 2 z A ε 1 + εA ε . (42) 
When plugging a formal expansion in ε for A ε = A 0 + εA 1 + ... and U ε = U 0 + εU 1 + ... into (42) and arguing as in section 1.3, we find that A 0 = U 0 verifies the (inviscid) Burgers equation (sometimes, it is also called the Hopf equation) 2 c s ∂ θ a + Γa∂ z a = 0 [START_REF] Leblond | KP lumps in ferromagnets: a three-dimensional KdV-Burgers model[END_REF] under the additional hypothesis that

U in 1 -A in 1 = Γ -6 4 [A in 0 ] 2 ,
so that the relation U 1 -A 1 = Γ-6 4 A 2 0 holds true for positive times. Here is a rigorous result in this direction, without this last extra assumption (as [START_REF] Chiron | Geometric optics and boundary layers for nonlinear Schrödinger equations[END_REF] was not necessary for proving the convergence to the (KdV)/(KP-I) equation but required by the expansion in ε). We emphasize that we focus on the right-going wave.

Proposition 4 Assume d = 1, Λ > 0 and s ∈ N be such that s ≥ 3. We consider an initial datum

(A in ε , U in ε ) for (42) verifying A in ε ≤ Λ and U in ε ≤ Λ. ( 44 
)
Then, there exists θ * > 0 and a positive constant

ε 0 = ε 0 (Λ, s) such that if 0 < ε ≤ ε 0 , then (42) has a unique solution (A ε , U ε ) ∈ C([0, θ * ], H s (R) × H s-1 (R)) with initial datum (A in ε , U in ε ), verifying sup 0≤θ≤θ * A ε (θ) H s (R) + ∂ z φ ε (θ) H s-1 (R) ≤ K 0 Λ and 1 2 ≤ ρ = 1 + εA ε ≤ 2. ( 45 
) Furthermore, if a ε ∈ C([0, θ 0 ], H s (R))
denotes the solution to the (inviscid) Burgers equation

2 c s ∂ θ a + Γa∂ z a = 0 with intial datum A in ε , then, for 0 ≤ θ ≤ min(θ 0 , θ * ), there holds A ε (θ) -a ε (θ) H s-3 (R) + U ε (θ) -a ε (θ) H s-3 (R) ≤ K( A in ε -U in ε H s-1 (R) + εθ).
This result provides an expansion for A ε and U ε up to O(ε) uniformly for 0 ≤ θ ≤ min(θ 0 , θ * ) ≈ 1, whereas the result in Theorem 5 ( [START_REF] Béthuel | On the linear wave regime of the Gross-Pitaevskii equation[END_REF]) takes into account left and right-going waves but is restricted to 0 ≤ θ ≪ 1. If Γ = 0, the approximation a ε has a nontrivial dynamics on the time scale θ ≈ 1. We shall now investigate what happens when Γ = 0, on the time scale θ. More precisely, we shall work up to θ | ln ε|.

Justification of the (gKdV)/(gKP-I) equation for large θ. Here, we make the assumption [START_REF] Gallo | Schrödinger group on Zhidkov spaces[END_REF] for some m ∈ N, and recall that ǫ = ε 2/(m+1) . Since we shall work for θ | ln ε|, there holds τ = ǫ m θ ǫ m | ln ε|, so that the solution ζ(τ ) to (gKdV)/(gKP-I) has moved from ≈ ǫ m | ln ε| ≪ 1 from its initial value. As a consequence, any error estimate between A ε and ζ(τ ) for θ |ln ε| is meaningful only if the error is ≪ ǫ m | ln ε|. Since we shall justify an expansion in ǫ, this will force us to solve the equations up to an error O(ǫ m+1 ). Proceeding in this way, we shall then prove a Gronwall estimate which roughly reads

A ε (θ) -(A 0 + ǫA 1 + ... + ǫ m+1 A m+1 )(τ ) + U ε (θ) -(U 0 + ǫU 1 + ... + ǫ m+1 U m+1 )(τ ) ǫ m+1 e C0θ , ( 46 
)
where A 0 = U 0 = ζ(τ ). For θ |ln ε| ≈ |ln ǫ|, the right-hand side remains small. Clearly, in this expansion, the terms ǫ m+1 A m+1 and ǫ m+1 U m+1 are useless in view of the error ≥ ǫ m+1 , but they are necessary in order to have a consistency error in O(ǫ m+1 ). This leads to constraints such as [START_REF] Chiron | Geometric optics and boundary layers for nonlinear Schrödinger equations[END_REF] or

U in 1 -A in 1 = Γ-6 4 [A in 0 ]
2 for the Burgers equation. We have seen that for (A 1 , U 1 ), (A 2 , U 2 ) ... , we have no evolution equation on the time scale τ (but they are (formally) stationnary on the time scale θ). Therefore, it may seem strange to justify an expansion which seems up to O(ǫ m+1 ) without knowing the true dynamics of (A 1 , U 1 ), (A 2 , U 2 ) ... However, this is not unconsistent, since for θ |ln ǫ|, the term ǫU 1 for instance, has moved from its initial condition of at most ǫ × τ = ǫ m+1 θ, which is much smaller than ǫ m+1 e C0θ when θ is large.

Our result is based on an expansion in ǫ, thus we shall have the above mentioned constraints on the initial data, such as

∆ z ⊥ ∂ -2 z1 ζ in ∈ H s+1 (R d
), although we believe that they are actually not necessary. In view of the form of ( 46), note that a distinction has to be made between the case m = 1 and the case m ≥ 2. Indeed, we have seen that we wish to have

||A ε (θ) -ζ(τ )|| = ||U ε (θ) -ζ(τ )|| = o(ǫ m |ln ε|)
, and a priori, we infer from [START_REF] Roberts | Nonlinear Schrödinger equation as a model of superfluid helium[END_REF] that

||A ε (θ) -ζ(τ )|| = ||U ε (θ) -ζ(τ )|| ≈ ǫ. If m = 1, it is true that ǫ = o(ǫ m |ln ε|), but if m ≥ 2,
this is no longer the case, which means that we can not compare both A ε and U ε to ζ in a significant way. Indeed, in view of [START_REF] Germain | Long wave limits for Schrödinger maps[END_REF], that is

U ε -A ε - 3 2 ǫA 2 ε + 2ǫ 2 A 3 ε - 5 2 ǫ 3 A 4 ε + ... + (-1) m m + 2 2 ǫ m A m+1 ε = O(ǫ m+1 ),
we can not have at the same time A 1 = 0 and U 1 = 0. In the case m ≥ 2, we shall privilege the comparison of ζ to the amplitude A ε and then impose A 1 = A 2 = ... = A m-1 = 0, which in turn implies, via [START_REF] Germain | Long wave limits for Schrödinger maps[END_REF], a strong constraint on the expansion of U ε at the initial time, both for U in,1

ε and for U in,⊥ ε = ∇ z ⊥ ∂ -1 z1 U in,1 ε
(since U ε is a gradient vector field). This is the reason why we shall present two results. The first one (Theorem 6 below) in one space dimension and where we want to compare the amplitude A ε to ζ, which requires A 1 = A 2 = ... = A m-1 = 0, in particular at the initial time. The second one (Theorem 7 below) in space dimension d ≥ 2, and where we compare the first component of the gradient vector field

U ε to ζ, which requires U 1 1 = U 1 2 = ... = U 1 m-1 = 0.
Of course when d = 1, one could make a statement where we compare

U ε to ζ (with U 1 1 = U 1 2 = ... = U 1 m-1 = 0). However, in dimension d ≥ 2
, since U ε is a gradient vector field, this imposes some constraints in the expansion in ǫ for U 1 ε and U ⊥ ε , which prevents the comparison between A ε and ζ (since we must have A 1 = A 2 = ... = A m-1 = 0), at least when m ≥ 2. We may now state our main results for this section.

Theorem 6 We assume d = 1. Let Λ > 0, s, m ∈ N such that s ≥ 2 and (27) holds. We fix ζ in ∈ H s+5 (R) and denote ζ ∈ C([0, τ * ], H s+5 (R)) the solution to the (gKdV) equation 2 c s ∂ τ ζ + Γ (m) ζ m+1 ∂ z ζ - 1 c 2 s ∂ 3 z ζ = 0 for the initial datum ζ in . We fix A in m ∈ H s+5 (R) and consider an initial datum (A in ε , U in ε = ∂ z φ in ε ) for (41) satisfying A in ε -ζ in -ǫ m A in m H s (R) ≤ Λε 2 = Λǫ m+1 , and 
U in ε -A in ε - 3 2 ǫ[A in ε ] 2 + 2ǫ 2 [A in ε ] 3 - 5 2 ǫ 3 [A in ε ] 4 + ... + (-1) m m + 2 2 ǫ m [A in ε ] m+1 H s (R) ≤ Λε 2 = Λǫ m+1 .
Then, there exist two (small) positive constants µ and ε 0 > 0, depending only on s, Λ and the functions ζ in and A in m such that (41) has a unique solution

(A ε , U ε ) ∈ C([0, µ|ln ǫ|], H s (R) × H s-1 (R)) if 0 < ε ≤ ε 0 .
Moreover, there exists a positive constant C, depending only on s, Λ and the functions ζ in and A in m such that, for θ ∈ [0, µ|ln ǫ|], we have

A ε (θ) -ζ(ǫ m θ) H s (R) ≤ C(ǫ m A in m H s (R) + ǫ m+1 e θ/(2µ) ) ≤ Cǫ m and U ε (θ) -A ε - 3 2 ǫA 2 ε + 2ǫ 2 A 3 ε - 5 2 ǫ 3 A 4 ε + ... + (-1) m m + 2 2 ǫ m A m+1 ε (θ) H s-1 (R) ≤ Cǫ m+1 e θ/(2µ) ≤ Cǫ m+ 1 2 .
We recall that the assumption

A in ε -ζ in -ǫ m A in m H s (R) ≤ Λε 2 = Λǫ m+1 corresponds to the hypothesis A 1 = A 2 = ... = A m-1 = 0 at θ = 0.
Our second result holds in arbitrary dimension d ≥ 1. Since we privilege the vector field U ε , we no longer compute U 1 ε from A ε by (30) but compute A ε from U 1 ε by [START_REF] Kivshar | Dark optical solitons: physics and applications[END_REF]. [START_REF] Gallo | Schrödinger group on Zhidkov spaces[END_REF] holds. We fix

Theorem 7 We assume d ≥ 1. Let Λ > 0, s, m ∈ N such that s > 1 + d 2 and ( 
ζ in ∈ H s+5 (R d ) and assume moreover, if d ≥ 2, that ζ in ∈ ∂ z1 H s+5 (R d ) and ∆ z ⊥ ∂ -1 z1 ζ in ∈ ∂ z1 H s+2 (R d ).
We then denote ζ ∈ C([0, τ * ], H s (R d )) the solution to the (gKdV)/(gKP-I) equation

2 c s ∂ τ ζ + Γ (m) ζ m+1 ∂ z1 ζ + ∆ z ⊥ ∂ -1 z1 ζ - 1 c 2 s ∂ 3 z1 ζ = 0
for the initial datum ζ in . We consider an initial datum

(A in ε , U in ε = ∇ z φ in ε ) for (41) satisfying U in ε = ∇ z ∂ -1 z1 ζ in and A in ε - m+1 k=1 1 • 3 • ... • (2k -1) k! ǫ k-1 [U 1 ε ] k H s (R d ) ≤ Λǫ m+1 = Λε 2 .
Then, there exist two (small) positive constants µ and ε 0 , depending only on s, d, Λ and the function ζ in such that (41) has a unique solution

(A ε , U ε ) ∈ C([0, µ|ln ǫ|], H s (R d ) × H s-1 (R d ))
. Moreover, there exists a positive constant C, depending only on s, d, Λ and the function ζ in such that, for θ ∈ [0, µ|ln ǫ|], we have

U 1 ε (θ) -ζ(ǫ m θ) H s-1 (R d ) ≤ Cǫ m+1 e θ/(2µ) ≤ Cǫ m+ 1 2 , εU ⊥ ε (θ) H s-1 (R d ) ≤ Cǫ m+1 e θ/(2µ) ≤ Cǫ m+ 1 2 ,
and

A ε (θ) - m+1 k=1 1 • 3 • ... • (2k -1) k! ǫ k-1 [U 1 ε (θ)] k H s (R d ) ≤ Cǫ m+1 e θ/(2µ) ≤ Cǫ m+ 1 2 .
As an illustration for these two theorems, take m = 1,

U in = ∇ z ∂ -1 z1 ζ in , and A in = ζ in + 3 2 [ζ in ] 2 .
Then, we prove that A ε (θ) and U 1 ε (θ) are equal to ζ(εθ)+O(ε) uniformly for 0 ≤ θ ≤ µ|ln ε|, whereas ζ has moved from its initial condition about ε|ln ε| ≫ ε. Theorems 6 and 7 then provide a justification of the (gKdV)/(gKP-I) limit on the time scale t (εǫ) -1 |ln ǫ| ≈ ε -1-2 m+1 |ln ε|, which is much smaller than the expected one t ε -3 (recall m ≥ 1), but much larger than the natural one for the free wave regime t ≪ (εǫ) -1 with both left and right going waves (cf. Theorem 5 due to [START_REF] Béthuel | On the linear wave regime of the Gross-Pitaevskii equation[END_REF]), or the time scale t ≈ ε -2 which is suitable for a right going wave approximated by the Burgers equation (see Proposition 4).

In [START_REF] Colin | Justification of and long-wave correction to Davey-Stewartson systems from quadratic hyperbolic systems[END_REF], T. Colin and D. Lannes justify the Davey-Stewartson approximation for WKB initial data in hyperbolic systems. Their situation bears some common feature with our one: the transport equation (analogous to the free wave equation for us) governs formally the dynamics on the time scale say t ≃ 1/δ, and the diffractive (formal) approximation holds on the time scale t ≃ 1/δ 2 , where δ is some samall parameter. However, the rigorous justification of the Davey-Stewartson approximation in [START_REF] Colin | Justification of and long-wave correction to Davey-Stewartson systems from quadratic hyperbolic systems[END_REF] is for times t |ln δ|/δ, which is here again much smaller than the diffractive scale t ≃ 1/δ 2 , but much larger than the transport scale t ≪ δ -1 . However, in [START_REF] Colin | Justification of and long-wave correction to Davey-Stewartson systems from quadratic hyperbolic systems[END_REF], this is the occurrence of resonances which prevent the approximation to hold up to times of order t ≃ 1/δ 2 , whereas in our situation, this is the occurrence of nonlinear singular terms. It is then not completely clear on which time scale the (gKdV)/(gKP-I) approximation is valid. We shall study this problem numerically in some forthcoming work.

Similarly to the (KdV)/(KP-I) limit, we may wonder what is known for the (gKdV)/(gKP-I) asymptotic limit for the travelling waves. Concerning the one dimensional problem, we refer to [START_REF] Chiron | Travelling waves for the Nonlinear Schrödinger Equation with general nonlinearity in dimension one[END_REF], where the ODE argument still works for the (gKdV) limit as soon as the (gKdV) equation has solitary waves, that is the nonlinearity is even, or focusing and odd. In particular, when Γ = 0 > Γ ′ , this gives rise to two branches of solutions in the transonic limit. In higher dimension, note that the (gKP-I) equation which is not (KP-I) (that is with nonlinearity which is not quadratic) has travelling wave only if d = 2 and the nonlinearity is either cubic focusing or quartic (see [START_REF] De Bouard | Solitary waves of generalized Kadomtsev-Petviashvili equations[END_REF]). In [START_REF] Chiron | Travelling waves for the Nonlinear Schrödinger Equation with general nonlinearity in dimension two[END_REF], we have investigated numerically the existence and properties of the travelling waves for (NLS) in dimension two. In the focusing case Γ = 0 > Γ ′ for (mKP-I), we have also obtained, as in [START_REF] Chiron | Travelling waves for the Nonlinear Schrödinger Equation with general nonlinearity in dimension one[END_REF], two branches of solutions in the transonic limit. So far, we do not know any mathematical result concerning this convergence to (mKP-I) for the travelling waves.

The main ingredient in the proofs for the above results is to use the trick of E. Grenier ([31]). The idea is to write the wave function Ψ solution to (NLS) under the form Ψ = a exp(iϕ), where ϕ is real-valued but a is complex-valued, which is a modified Madelung transform where amplitude and phase are no longer the true ones. Then, we do not split (NLS) separating real and imaginary parts, which would lead to the first system in (1), but decide instead to solve

   ∂ t a + 2∇φ • ∇a + a∆ϕ = i∆a ∂ t ϕ + |∇ϕ| 2 + f (|a| 2 ) = 0.
The point is that if (a, ϕ) solves this system, then Ψ = a exp(iϕ) solves (NLS). The advantage of this system is that it is a symmetrizable hyperbolic system (if f ′ > 0, which will be the case here) with a skew adjoint, constant coefficient, perturbation for which existence or comparison results can be easily derived.

Derivation of the (mKdV)/(mKP-I) equation from the Landau-Lifshitz model

In the Landau-Lifshitz model for planar ferromagnets in the case of an easy-plane anisotropy, the spin density [START_REF] Landau | On the theory of the dispersion of magnetic permeability in ferromagnetic bodies[END_REF], [START_REF] Komineas | Topology and dynamics in ferromagnetic media[END_REF], [START_REF] Komineas | Vortex dynamics in two-dimensional antiferromagnets[END_REF], [START_REF] Papanicolaou | Semitopological solitons in planar ferromagnets[END_REF]) the equation

m = m(t, x) = (m 1 , m 2 , m 3 ) ∈ S 2 , t ∈ R + , x ∈ R d , obeys (see
∂m ∂t = m × (∆m -m 3 e 3
), e 3 ≡ (0, 0, 1).

(LL)

The physical dimensions are d = 1, 2 or 3. The Landau-Lifshitz equation (LL) formally conserves the energy

R d |∇m| 2 + m 2 3 dx.
Concerning the local well-posedness of (LL), we shall use the following result.

Theorem 8 Let s ∈ N with s > + d 2 . If m in ∈ C(R d , S 2 ) verifies ∇m in ∈ H s (R d , (R d ) 3 ), then there exists t * = 1 C(s, d)||∇m in || H s > 0 such that (LL) has a unique solution m ∈ L ∞ ([0, t * ], S 2 ) with ∇m ∈ L ∞ ([0, t * ], H s ((R d ) 3 )).
The proof of Theorem 8 is omitted, since it follows from the arguments in [START_REF] Sulem | On the continuous limit for a system of classical spins[END_REF] (the extra term m 3 e 3 is harmless), or in [START_REF] Ding | Local Schrödinger flow into Kähler manifolds[END_REF], where the heat flow into the manifold S 2 is used, which would lead for (LL) to the parabolic regularization:

∂m ν ∂t = ν(∆m ν + |∇m ν | 2 m ν -m ν 3 e 3 ) + m ν × (∆m ν -m ν 3 e 3 ),
and then letting ν → 0.

The equation (LL) may be recast as a Nonlinear Schrödinger type equation by using the stereographic projection

Ψ ≡ m 1 + im 2 1 + m 3 ,
which is valid for m 3 = -1. This transforms (LL) into the nonlinear Schrödinger type equation

i ∂Ψ ∂t + ∆Ψ + 1 -|Ψ| 2 1 + |Ψ| 2 Ψ = 2 Ψ 1 + |Ψ| 2 d j=1 (∂ j Ψ) 2 , ( 47 
)
which also possesses the gauge invariance, but which is quasilinear and not semilinear as (NLS). We may also find the hydrodynamical form by using the Madelung transform Ψ = Ae iϕ , provided Ψ does not vanish, which yields

         ∂ t A + 2 1 -A 2 1 + A 2 (∇ϕ) • ∇A + A∆ϕ = 0 ∂ t ϕ + 1 -A 2 1 + A 2 |∇ϕ| 2 + A 2 -1 A 2 + 1 - ∆A A + 2|∇A| 2 1 + A 2 = 0 (48) or, in variables (ρ ≡ A 2 , U ≡ ∇ x ϕ),            ∂ t ρ + 2 1 -ρ 1 + ρ U • ∇ρ + 2ρ∇ • U = 0 ∂ t U + ∇ 1 -ρ 1 + ρ |U | 2 + ∇ ρ -1 ρ + 1 -∇ ∆ √ ρ √ ρ + ∇ |∇ρ| 2 2ρ(1 + ρ) = 0. (49) 
Notice that here, the speed of sound is equal to 2

d dρ ρ -1 ρ + 1 |ρ=1 = 1
, and that the associated Euler type system (in the long wave regime) is different from the usual one. The result below will no longer rely on the trick of E. Grenier, where we allow the amplitude to be complex valued, thus we shall work with the true hydrodynamical variables (ρ = A 2 , U = ∇ x ϕ). In order to put forward the (mKdV)/(mKP-I) limit, we follow [START_REF] Papanicolaou | Semitopological solitons in planar ferromagnets[END_REF] (although this work was related to the question of travelling waves), and make the long wave ansatz

Ψ(t, x) = 1 + εA ε (τ, z) exp(iφ ε (τ, z)) τ = ε 3 t, z 1 ≡ ε(x 1 -t), z ⊥ ≡ ε 2 x ⊥ , (50) 
which is actually similar to the one used in section 1.4 when Γ = 0. We plug ( 50) in ( 47) and deduce as above the system

                     ∂ τ A ε - 1 ε 2 ∂ z1 A ε - 2A ε 2 + εA ε ∂ z1 φ ε ∂ z1 A ε + ε 2 ∇ z ⊥ φ ε • ∇ z ⊥ A ε + 2 ε 2 (1 + εA ε ) ∂ 2 z1 φ ε + ε 2 ∆ z ⊥ φ ε = 0 ∂ τ φ ε - 1 ε 2 ∂ z1 φ ε - A ε 2 + εA ε (∂ z1 φ ε ) 2 + ε 2 |∇ z ⊥ φ ε | 2 + 1 ε 2 • A ε 2 + εA ε - ∂ 2 z1 √ 1 + εA ε + ε 2 ∆ z ⊥ √ 1 + εA ε ε √ 1 + εA ε + ε 2(1 + εA ε )(2 + εA ε ) (∂ z1 A ε ) 2 + ε 2 |∇ z ⊥ A ε | 2 = 0. ( 51 
) The singular terms in ε -2 are - 1 ε 2 ∂ z1 A ε + 2 ε 2 ∂ 2 z1 φ ε and - 1 ε 2 ∂ z1 φ ε + 1 2ε 2 A ε ,
which gives as before the constraint A = 2∂ z1 φ (comparing to the case of the (NLS) equation, since

√ 1 + εA ε = 1 + εA ε /2 + O(ε 2
), there is an extra factor 2 to the formula "c s A = ∂ z1 φ"). As in subsection 1.4, the formally singular terms in (51) reduce, for both equations, to the single preparedness condition:

2∂ z1 φ ε -A ε = - ε 2 A 2 ε + O(ε 2 ) or A ε = 2∂ z1 φ ε + 2ε(∂ z1 φ ε ) 2 + O(ε 2 ). ( 52 
) Noticing that α 2+α = α 2 -α 2 4 + α 3 8 + O α→0 (α 4
), we add here again the first equation of ( 51) to 2∂ z1 times the second one and get

∂ τ A ε + 2∂ z1 φ ε -2∂ z1 ∂ 2 z1 √ 1 + εA ε + ε 2 ∆ z ⊥ √ 1 + εA ε ε √ 1 + εA ε + 2(1 + εA ε )∆ z ⊥ φ ε -∂ z1 (A ε + F 1 (εA ε ))(∂ z1 φ ε ) 2 -(A ε + F 2 (εA ε ))∂ z1 φ ε ∂ z1 A ε + 1 ε 2A ε ∂ 2 z1 φ ε -A ε ∂ z1 A ε + 3 4 A 2 ε ∂ z1 A ε = 2ε 2 A ε 2 + εA ε ∇ z ⊥ φ ε • ∇ z ⊥ A ε (53) - 1 ε 3 ∂ z1 [f 4 (εA ε )] -ε∂ z1 (∂ z1 A ε ) 2 + ε 2 |∇ z ⊥ A ε | 2 (1 + εA ε )(2 + εA ε ) + ε 2 ∂ z1 A ε 2 + εA ε |∇ z ⊥ φ ε | 2 .
Here, we have f 4 (α) = O(α 4 ) and F 1 (α), F 2 (α) = O(α) as α → 0. As in the previous subsection, in the second line of (53), the formally singular term

{2A ε ∂ 2 z1 φ ε -A ε ∂ z1 A ε }/ε becomes, in view of (52), -A 2 ε ∂ z1 A ε , hence (53 
) implies, on the formal level, if A ε → A and φ ε → φ, with A = ∂ z1 φ, the convergence to the (mKdV)/(mKP-I) focusing equation

2∂ τ A -∂ 3 z1 A - 3 2 A 2 ∂ z1 A + ∆ z ⊥ ∂ -1 z1 A = 0.
For a slightly different model, where the Maxwell equation is taken into account, H. Leblond in [START_REF] Leblond | KP lumps in ferromagnets: a three-dimensional KdV-Burgers model[END_REF] also derives (formally) an asymptotic regime given by the (mKP) equation. In the work [START_REF] Germain | Long wave limits for Schrödinger maps[END_REF] by P. Germain and F. Rousset, the (KdV)/(KP-I) asymptotic regime is studied starting from the Schrödinger map problem into a manifold in a general geometrical framework, which includes the (LL) equation as a particular case. Their result proves the convergence to a geometrical (KdV)/(KP-I) equation in a scaling comparable to (2) and includes as a particular case the (NLS) equation, that is the results presented in section 1.1. It turns out that for (LL), this would lead to the linear Airy equation (for the phase ϕ such that m = e iϕ ∈ S 1 ⊂ S 2 ) on the time scale τ ≈ 1. The method of proof is different since the target is a general manifold, whereas our analysis of (LL) relies on the stereographic projection. Concerning (LL), we shall prove the following justification of the (mKdV)/(mKP-I) asymptotic regime. We give a statement close to the one in Theorem 7, but here again, in dimension d = 1, one could write down the result where we compare the amplitude A ε to ζ, allowing an expansion of A in ε up to O(ε 2 ), similar to Theorem 6. Note that we work here in the variables θ = ε 2 t and z = (z 1 , z ⊥ ) = (εx 1 , ε 2 x ⊥ ), so that [START_REF] Taylor | Partial Differential Equations[END_REF] with

U ε ≡ ∇ z φ ε is changed for                      ∂ θ A ε - 1 ε ∂ z1 A ε - 2εA ε 2 + εA ε U 1 ε ∂ z1 A ε + ε 2 U ⊥ ε • ∇ z ⊥ A ε + 2 ε (1 + εA ε ) ∂ z1 U 1 ε + ε 2 ∇ z ⊥ • U ⊥ ε = 0 ∂ θ U ε - 1 ε ∂ z1 U ε -∇ z εA ε 2 + εA ε [U 1 ε ] 2 + ε 2 |U ⊥ ε | 2 + 1 ε ∇ z A ε 2 + εA ε -∇ z ∂ 2 z1 √ 1 + εA ε + ε 2 ∆ z ⊥ √ 1 + εA ε √ 1 + εA ε + ε 2 ∇ z (∂ z1 A ε ) 2 + ε 2 |∇ z ⊥ A ε | 2 (1 + εA ε )(2 + εA ε ) = 0. ( 54 
)
Theorem 9 Let Λ > 0 and s ∈ N be such that s > 1 + d 2 . We fix

ζ in ∈ H s+6 (R d ) and assume moreover, if d ≥ 2, that ζ in ∈ ∂ z1 H s+6 (R d ) and ∆ z ⊥ ∂ -1 z1 ζ in ∈ ∂ z1 H s+3 (R d ). We then denote ζ ∈ C([0, τ * ], H s+6 (R d )) the solution to the (mKdV)/(mKP-I) equation 2∂ τ ζ -∂ 3 z1 ζ - 3 2 ζ 2 ∂ z1 ζ + ∆ z ⊥ ∂ -1 z1 ζ = 0
for the initial datum ζ in . We consider an initial datum (A in ε , ∇ z φ in ) for (54) such that

∇ z φ in = 1 2 ∇ z ∂ -1 z1 ζ in and A in ε -ζ in - ε 2 [ζ in ] 2 H s (R d ) + ε A in ε -ζ in - ε 2 [ζ in ] 2 H s+1 (R d ) ≤ Λε 2 .
Then, there exists two (small) positive constants ε 0 and µ, depending only on s, d, Λ and the function

ζ in such that, if 0 < ε < ε 0 , ( 54 
) has a unique solution (A ε , U ε ) ∈ C([0, µ|ln ε|], H s (R d ) × H s+1 (R d ))
. Moreover, there exists a positive constant C, depending only on s, d, Λ and the function ζ in such that, for θ ∈ [0, µ|ln ε|],

we have

2U 1 ε (θ) -ζ(εθ) H s (R d ) + 2εU ⊥ ε (θ) -ε∇ z ⊥ ζ(εθ) H s (R d ) ≤ Cε 2 e θ/(2µ) ≤ Cε 3 2
and

A ε (θ) -ζ(εθ) - ε 2 ζ 2 (εθ) H s (R d ) + ε A ε (θ) -ζ(εθ) - ε 2 ζ 2 (εθ) H s+1 (R d ) ≤ Cε 2 e θ/(2µ) ≤ Cε 3 2 so that in particular A ε (θ) -ζ(εθ) H s (R d ) ≤ Cε.
In connection with this result, an analogous convergence from (LL) to (mKdV)/(mKP-I) holds for the travelling waves. For the one dimensional case, this follows from explicit integration (see [START_REF] Nakamura | Quantum kink in the continuous one-dimensional Heisenberg ferromagnet with easy plane: a picture of the antiferromagnetic magnon[END_REF], [START_REF] De Laire | Travelling waves for the Landau-Lifshitz equation: nonexistence of small energy solutions and asymptotic behaviour at infinity[END_REF]): for 0 ≤ c < 1, the only travelling wave m(t, x) = m c (x -ct) to (LL) is given by

m c (x) = c cosh(x √ 1 -c 2 ) , tanh(x 1 -c 2 ), ± √ 1 -c 2 cosh(x √ 1 -c 2 ) ,
up to the natural symmetries of the problem: rotation around the x 3 axis and translation. From this explicit formula we have, for instance, with ε = √ 1 -c2 , and U c given by the stereographic projection

U c = m c,1 + im c,2 1 + m c,3 , the relation (recall z = εx) |U c | 2 (x) -1 = 1 -m c,3 (x) 1 + m c,3 (x) -1 = ∓2 √ 1 -c 2 cosh(x √ 1 -c 2 ) 1 + √ 1 -c 2 cosh(x √ 1 -c 2 ) = ∓2 ε cosh(εx) 1 + ε cosh(εx) = ∓2 ε cosh(z) 1 + ε cosh(z)
. This shows clearly that

εA ε (z) = |U c | 2 (x) -1 = ±2ε cosh(z) + O(ε 2 ), where ±2 cosh(z)
is the (mKdV) solitary wave (of speed -1/2). In the two-dimensional situation, the numerical simulations and formal computations in [START_REF] Papanicolaou | Semitopological solitons in planar ferromagnets[END_REF], similar to those above, suggest the convergence to the (mKP-I) ground state in the transonic limit.

Concerning the associated wave regime, where we remove the space translation and work on the shorter time scale t ≈ ε -2 , let us quote two papers. The first one is due to J. Shatah and C. Zeng [START_REF] Shatah | Schrödinger Maps and Anti-Ferromagnetic Chains[END_REF], where the strong convergence to the wave map equation

∂ 2 t m = ∆ z m + |∇ z m| 2 m, (55) 
with m ∈ S 1 ⊂ S 2 the equator, is shown. Actually, a more general result is proven, which corresponds for (LL) to the particular case of the target manifold S 2 and B k = 0 for all 1 ≤ k ≤ d. Of course, once we have lifted the S 1 -valued map m = e iϕ , the wave map equation ( 55) reduces to the free wave equation

∂ 2 t ϕ = ∆ z ϕ.
The result of [START_REF] Shatah | Schrödinger Maps and Anti-Ferromagnetic Chains[END_REF] is proved for the time scale t = ε -1 t ≈ ε -1 , i.e. t of order one. Comparing with the result in [START_REF] Béthuel | On the linear wave regime of the Gross-Pitaevskii equation[END_REF], where the convergence is proved for t ≪ ε -2 , that is t ≪ ε -1 , this is a smaller time scale, and this is in particular due to the fact that when [START_REF] Shatah | Schrödinger Maps and Anti-Ferromagnetic Chains[END_REF] prevents in general from having existence of smooth solutions for large times 2 . On the other hand, A. Capella, C. Melcher and F. Otto in [START_REF] Capella | Wave-type dynamics in ferromagnetic thin films and the motion of Néel walls[END_REF] provide a weak convergence result to a wave map type equation (see [START_REF] Capella | Wave-type dynamics in ferromagnetic thin films and the motion of Néel walls[END_REF] for a precise statement) for a model similar to (LL) (but also including dissipation and the stray-field coming from Maxwell equations). Their result also holds on the time scale t = ε -1 t ≈ ε -1 , for weak convergences and locally in space. Finally, the results in [START_REF] Shatah | Schrödinger Maps and Anti-Ferromagnetic Chains[END_REF] and [START_REF] Capella | Wave-type dynamics in ferromagnetic thin films and the motion of Néel walls[END_REF] do not provide error bounds. Our last result is about the free wave regime associated with (LL). In order to state it, we have to work in the variables (t, z) = (εt, εx), and write the solution Ψ of (47) under the form given by

B k = B k (m) is non zero, the term B k (m)m in equation (SM) in
Ψ(t, x) = 1 + εA ε (t, z) exp(iφ ε (t, z)), t = εt, z = εx, so that, denoting U ε ≡ ∇ z φ ε , (47) becomes                    ∂ t A ε + 2∇ z • U ε = 2ε 2 A ε 2 + εA ε U ε • ∇ z A ε -2εA ε ∇ z • U ε ∂ t U ε + 1 2 ∇ z A ε = -ε 2 ∇ z A ε 2 + εA ε |U ε | 2 + ε 3 ∇ z |∇ z A ε | 2 2(1 + εA ε )(2 + εA ε ) +ε∇ z A 2 ε 2(2 + εA ε ) + ε∇ z ∆ z √ 1 + εA ε √ 1 + εA ε . (56) 
Theorem 10 Let Λ > 0 and s ∈ N be such that s > 5 + d 2 . We consider an initial datum for (56) of the type

(A in ε , ∇ z φ in ε ) ∈ H s+1 (R d ) × H s (R d , R d ), with A in ε H s (R d ) + ε A in ε H s+1 (R d ) + ∇ z φ in ε H s (R d ) ≤ Λ.
Then, there exists a positive constant

K 0 = K 0 (s, d) such that if K 0 εΛ ≤ 1, then (56) has a unique solution (A ε , U ε ) ∈ C([0, 1/(K 0 εΛ)], H s+1 (R d ) × H s (R d , R d )) with initial datum (A in ε , ∇ z φ in ε )
, and it verifies

sup 0≤t≤1/(K0εΛ) A ε (t) H s (R d ) + ε A ε (t) H s+1 (R d ) + ∇ z φ ε (t) H s (R d ) ≤ K 0 Λ (57)
and, for 0

≤ t ≤ 1/(K 0 εΛ), x ∈ R d , 1 2 ≤ ρ(t, x) = 1 + εA ε (t, x) ≤ 2.
Furthermore, if (a ε , u ε ) denotes the solution to the free wave equation

     ∂ t a ε + 2∇ z • u ε = 0 ∂ t u ε + 1 2 ∇ z a ε = 0 (58)
with intial datum (A in ε , ∇ z φ in ε ), then, for 0 ≤ t ≤ 1/(K 0 εΛ), there holds

(A ε , U ε )(t) -(a ε , u ε )(t) H s-2 (R d )×H s-2 (R d ) ≤ K 0 εt(Λ + Λ 2 ).
We emphasize that [START_REF] Shatah | Schrödinger Maps and Anti-Ferromagnetic Chains[END_REF] prove uniform Sobolev bounds in this regime for t of order one, whereas here, we obtain these uniform bounds for the much larger time scale t ≤ 1/(K 0 εΛ). Moreover, we prove a comparison result with strong convergences. The main ingredient in the proof of Theorems 9 and 10 is to use an extended formulation and an augmented system as for the analysis in [START_REF] Benzoni-Gavage | On the well-posedness of the Euler-Korteweg model in several space dimensions[END_REF] of the Cauchy problem for the Euler-Korteweg system. This approach was also used in [START_REF] Béthuel | On the linear wave regime of the Gross-Pitaevskii equation[END_REF] for the free wave regime. An alternative to the well-posedness result in Theorem 8 would be to rely on this extended formulation as in [START_REF] Benzoni-Gavage | On the well-posedness of the Euler-Korteweg model in several space dimensions[END_REF]. In comparison with the results for (NLS) that we prove using the trick of E. Grenier ([31]), for the latter approach, the formulation ( 49) is more appropriate. We mention that one could use the extended formulation for the analysis of (NLS), for instance for the (gKdV)/(gKP-I) limit (Theorem 6), but we have privileged the approach of E. Grenier in view of the simplicity of the structure of hyperbolic symmetrizable system perturbed by a skew-adjoint, constant coefficient, perturbation. The differences in the statements for both approaches only rely on the loss of derivatives for the uniform Sobolev bounds. On the other hand, it is plausible that one may improve the uniform Sobolev bounds (57) to larger time scales, using the dispersive properties of the equation, as it is done in [START_REF] Béthuel | On the linear wave regime of the Gross-Pitaevskii equation[END_REF]. We have not tackled this question here. Finally, let us mention that since we are in a situation analogous to the case Γ = 0 for (NLS), the result associated to what we prove in Proposition 4 would be here simply a comparison of A ε and U ε to the solution of the trivial "Burgers" equation ∂ θ a = 0.

Properties of the Boussinesq system and comparison result

We shall use the fact that for s > d/2, H s (R d ) is an algebra, and that

f g H s (R d ) ≤ C 1 f H s (R d ) g H s (R d ) .
Moreover, we have the tame estimates (see, e.g., [START_REF] Taylor | Partial Differential Equations[END_REF])

∂ α z (f g) -f ∂ α z g L 2 (R d ) ≤ C k f H k g L ∞ (R d ) + ∇ z f L ∞ (R d ) g H k-1 (R d ) |α| ≤ k. ( 59 
)
2.1 Proof of Proposition 1: local well-posedness of the Boussinesq system (B ε )

The proof of Proposition 1 is very close to the proof of Theorem 4 in [START_REF] Chiron | The KdV/KP-I limit of the Nonlinear Schrödinger Equation[END_REF], and thus will be only sketched.

We set Y = (Y 0 , Y 1 , Y ⊥ ) t ≡ (A ε , U 1 ε , εU ⊥ ε ) t ∈ R × R × R d-1 = R 1+d , ∇ ε = (∂ z1 , ε∇ z ⊥ )
, and write the system (B ε ) under the abstract form:

1 c s ∂ τ Y + 1 ε 2 H(ε 2 Y, ∇ ε )Y = L(∇ ε )Y, ( 60 
)
where L(∇ ε ) is the constant coefficients third order differential operator

L(∇ ε ) ≡ 1 c 2 s   0 0 0 0 ∂ 3 z1 0 0 0 ∂ 3 z1   , and H(ε 2 Y, ∇ ε ) is a first order hyperbolic operator H(ε 2 Y, ∇ ε ) = d j=1 H k (ε 2 Y)∇ ε j ,
with symbol

H(ε 2 Y, ξ) = d j=1 H j (ε 2 Y)ξ j =   (-ξ 1 + 2ε 2 Y 1 ξ 1 + 2ε 2 Y ⊥ • ξ ⊥ ) (1 + ε 2 Y 0 )ξ 1 (1 + ε 2 Y 0 )ξ t ⊥ (1 + (Γ -5)ε 2 Y 0 )ξ 1 -ξ 1 + 2ε 2 Y 1 ξ 1 + 2ε 2 Y ⊥ • ξ ⊥ 0 (1 + (Γ -5)ε 2 Y 0 )ξ ⊥ 0 (-ξ 1 + 2ε 2 Y 1 ξ 1 + 2ε 2 Y ⊥ • ξ ⊥ )I d-1   .
We may symmetrize this system by using, as we have said,

Σ(ε 2 Y) = Diag 1 + (Γ -5)ε 2 Y 0 1 + ε 2 Y 0 , 1, ..., 1 .
Indeed, we have

Σ(ε 2 Y)L(∇ ε ) = L(∇ ε ) = 1 c 2 s   0 0 0 0 ∂ 3 z1 0 0 0 ∂ 3 z1  
which is a skew symmetric operator, and the matrix

Σ(ε 2 Y)H(ε 2 Y, ξ) =   * (1 + (Γ -5)ε 2 Y 0 )ξ 1 (1 + (Γ -5)ε 2 Y 0 )ξ t (1 + (Γ -5)ε 2 Y 0 )ξ 1 * 0 (1 + (Γ -5)ε 2 Y 0 )ξ ⊥ 0 * I d-1  
(where the coefficients * are non relevant) is symmetric for every ξ ∈ R d and, by an integration by parts,

∀W ∈ H 1 (R d ), Σ(ε 2 Y)H(ε 2 Y, ∇ ε )W, W L 2 ≤ Kε 2 ∇Y L ∞ W 2 L 2 .
Therefore, the local in time existence and uniqueness for smooth solutions Y ∈ L ∞ ([0, T ε ), H s ), with s > 3 + d/2 for this type of system is classical. In order to prove that T ε ≥ τ * , where τ * > 0 is independent of 0 < ε < 1, we follow readily [START_REF] Chiron | The KdV/KP-I limit of the Nonlinear Schrödinger Equation[END_REF] (these are classical arguments, see e.g. [START_REF] Schochet | Asymptotics for symmetric hyperbolic systems with a large parameter[END_REF]), which gives the estimate

Y(τ ) 2 H s ≤ C Y in 2 H s + τ 0 ε 2 ∂ τ Y(τ ) L ∞ + Y(τ ) W 1,∞ Y(τ ) 2 H s dτ .
We use the equation and the Sobolev embedding to estimate the bracket:

ε 2 ∂ τ Y(τ ) L ∞ + Y(τ ) W 1,∞ ≤ C Y(τ ) W 3,∞ ≤ C Y(τ ) H s ,
provided s > 3+d/2 (due to the third order derivative, we loose one more derivative than in [START_REF] Chiron | The KdV/KP-I limit of the Nonlinear Schrödinger Equation[END_REF]). Therefore,

Y(τ ) 2 H s ≤ C Y in 2 H s + τ 0 Y(τ ) 3 H s dτ .
and the result then follows easily. We shall repeatedly use this structure of hyperbolic system with a constant coefficient dispersive term with a symmetrizer which leaves invariant this dispersive term to prove either existence/uniqueness of solution either comparison results. The fact that U ε remains a gradient if it is a gradient initially comes immediately from the structure of the equation. The proof is complete.

Proof of Theorem 4

The first point is to compare ( 12) and (B ε ), and the main difference between these two systems is that we have changed ∂ z1 A ε for ∂ z1 U 1 ε . By estimating the time derivative of (A ε , U 1 ε , εU ⊥ ε ), we shall derive the following estimate.

Lemma 1 There exists some constant K, depending only on Λ, such that for 0 ≤ τ ≤ τ 0 , we have

                 (d = 1) ∂ z (A ε -U ε ) H s-2 ≤ K ∂ z (A in ε -U in ε ) H s-2 + ε 2 (d ≥ 2) ∂ z1 (A ε -U 1 ε ) H s-2 ≤ K ∂ z1 (A in ε -U 1,in ε ) H s-2 + ε (d ≥ 2) ∂ 2 z1 (A ε -U 1 ε ) H s-3 ≤ K ∂ 2 z1 (A in ε -U 1,in ε ) H s-3 + ε 2 .
Proof. We recall that in [START_REF] Chiron | The KdV/KP-I limit of the Nonlinear Schrödinger Equation[END_REF], the solution Ψ ε was constructed using the trick of E. Grenier [START_REF] Grenier | Semiclassical limit of the nonlinear Schrödinger equation in small time[END_REF]. We first solve the system where a ε is complex-valued, u 1 ε and u ⊥ ε real-valued and where •, • denotes the real scalar product in C:

                                 1 c s ∂ τ a ε - 1 ε 2 ∂ z1 a ε + 1 ε 2 ∂ z1 u 1 ε + 2u 1 ε ∂ z1 a ε + a ε ∂ z1 u 1 ε + 2ε 2 u ⊥ ε • ∇ z ⊥ a ε + (1 + ε 2 a ε )∇ z ⊥ • u ⊥ ε = i εc s ∂ 2 z1 a ε + ε 2 ∆ z ⊥ a ε 1 c s ∂ τ u 1 ε - 1 ε 2 ∂ z1 u 1 ε + 2u 1 ε ∂ z1 u 1 ε + 2ε 2 u ⊥ ε • ∇ z ⊥ u 1 ε + 2f ′ (|1 + ε 2 a ε | 2 ) ε 2 c 2 s 1 + ε 2 a ε , ∂ z1 a ε = 0 1 c s ∂ τ u ⊥ ε - 1 ε 2 ∂ z1 u ⊥ ε + 2u 1 ε ∂ z1 u ⊥ ε + 2ε 2 u ⊥ ε • ∇ z ⊥ u ⊥ ε + 2f ′ (|1 + ε 2 a ε | 2 ) ε 2 c 2 s 1 + ε 2 a ε , ∇ z ⊥ a ε = 0, (61) 
with the initial conditions (a ε , u ε

) |τ =0 = (A in ε , U in ε ) ∈ R × R d ⊂ C × R d .
Then, following [START_REF] Alazard | Supercritical geometric optics for nonlinear Schrödinger equations[END_REF], we define the phase function Θ ε by the formula

Θ ε (τ, z) ≡ φ in ε (z) - τ 0 |u 1 ε | 2 + ε 2 |u ⊥ ε | 2 + f (|1 + ε 2 a ε | 2 ) (τ , z) dτ ,
and then check that u ε = ∇ z Θ ε and that the function

Ψ ε (t, x) ≡ (1 + ε 2 a ε (τ, z)) exp(iεΘ ε (τ, z)), τ = ε 3 t, z 1 = ε(x 1 -c s t), z ⊥ = ε 2 x ⊥
is indeed a solution of (NLS). This has been acheived (see the proof of Theorem 4 in [START_REF] Chiron | The KdV/KP-I limit of the Nonlinear Schrödinger Equation[END_REF]) for s > 2 + d/2 on some time interval [0, τ 0 ], where τ 0 > 0 is independent of 0 < ε < 1, and with the uniform bounds:

(a ε , u 1 ε , εu ⊥ ε ) H s ≤ K. ( 62 
)
Notice that the use of this strategy is possible if we work with the variables (A, ∇φ), but not with the variables (ρ = |A| 2 , ∇φ), since the main interest of (61) is that the dispersive term in the right-hand side of the first equation has constant coefficient, and this is no longer the case with the density ρ = |A| 2 . The bound (62) leads to (9) after the change of variables from (a ε , u ε ) to (A ε , U ε ), namely

A ε ≡ |1 + ε 2 a ε | -1 ε 2 , U ε ≡ u ε - iε c s ∇a ε 1 + ε 2 a ε - ∇A ε 1 + ε 2 A ε , (63) 
which looses one derivative in U ε (notice also that

U ε is indeed real-valued since |1 + ε 2 a ε | = 1 + ε 2 A ε ). We then let ( ȧε , U 1 ε , ε U ⊥ ε ) ≡ ∂ τ (a ε , u 1 ε , εu ⊥ ε ) and apply ∂ τ to (61) to obtain                                  1 c s ∂ τ ȧε - 1 ε 2 ∂ z1 ȧε + 1 ε 2 ∂ z1 u1 ε + 2u 1 ε ∂ z1 ȧε + a ε ∂ z1 u1 ε + 2ε 2 u ⊥ ε • ∇ z ⊥ ȧε + (1 + ε 2 a ε )∇ z ⊥ • u⊥ ε = i εc s ∂ 2 z1 ȧ1 ε + ε 2 ∆ z ⊥ ȧε + C ε 1 c s ∂ τ u1 ε - 1 ε 2 ∂ z1 u1 ε + 2u 1 ε ∂ z1 u1 ε + 2ε 2 u ⊥ ε • ∇ z ⊥ u1 ε + 2f ′ (|1 + ε 2 a ε | 2 ) ε 2 c 2 s 1 + ε 2 a ε , ∂ z1 ȧε = C 1 ε 1 c s ∂ τ u⊥ ε - 1 ε 2 ∂ z1 u⊥ ε + 2u 1 ε ∂ z1 u⊥ ε + 2ε 2 u ⊥ ε • ∇ z ⊥ u⊥ ε + 2f ′ (|1 + ε 2 a ε | 2 ) ε 2 c 2 s 1 + ε 2 a ε , ∇ z ⊥ ȧε = C ⊥ ε . (64) 
Here, the commutators C ε , C 1 ε and C ⊥ ε are defined by

C ε ≡ -2 u1 ε ∂ z1 a ε -ȧε ∂ z1 u 1 ε -2ε 2 u⊥ ε • ∇ z ⊥ a ε -ε 2 ȧε ∇ z ⊥ • u ⊥ ε , C 1 ε ≡ -2 u1 ε ∂ z1 u 1 ε -2ε 2 u⊥ ε • ∇ z ⊥ u 1 ε -∂ τ 2f ′ (|1 + ε 2 a ε | 2 ) ε 2 c 2 s (1 + ε 2 a ε ) , ∂ z1 a ε , C ⊥ ε ≡ -2 u1 ε ∂ z1 u ⊥ ε -2ε 2 u⊥ ε • ∇ z ⊥ u ⊥ ε -∂ τ 2f ′ (|1 + ε 2 a ε | 2 ) ε 2 c 2 s (1 + ε 2 a ε ) ∇ z ⊥ a ε .
As for the Boussinesq system, denoting Υ = (Υ 0 , Υ 1 , Υ ⊥ ) t ≡ ( ȧε , u1 ε , ε u⊥ ε ) t allows to write (64) under the form of an hyperbolic system with smooth coefficients

X = (X 0 , X 1 ε , εX ⊥ ε ) t ≡ (a ε , u 1 ε , εu ⊥ ε ) t ∈ L ∞ ([0, τ * ], H s ) 1 c s ∂ τ Υ + 1 ε 2 H(ε 2 X , ∇ ε )Υ = 1 ε L(∇ ε )Υ + S ε (Υ), (65) 
with

L(∇ ε ) ≡ i c s   ∂ 2 z1 + ε 2 ∆ z ⊥ 0 0 0 0 0 0 0 0   and H(ε 2 X , ∇ ε ) = d j=1 H j (ε 2 X )∇ ε j ,
where

H(ε 2 X , ξ) = d j=1 H j (ε 2 X )ξ j =    (-ξ 1 + 2ε 2 X 1 ξ 1 + 2ε 2 X ⊥ • ξ ⊥ ) (1 + ε 2 X 0 )ξ 1 (1 + ε 2 X 0 )ξ t ⊥ 2 c 2 s f ′ (|1 + ε 2 X 0 | 2 )ξ 1 -ξ 1 + 2ε 2 X 1 ξ 1 + 2ε 2 X ⊥ • ξ ⊥ 0 2 c 2 s f ′ (|1 + ε 2 X 0 | 2 )ξ ⊥ 0 (-ξ 1 + 2ε 2 X 1 ξ 1 + 2ε 2 X ⊥ • ξ ⊥ )I d-1    .
Moreover, the source term S ε given by the commutators C ε , C 1 ε and C ⊥ ε enjoys the estimate, for 0 ≤ τ ≤ τ * ,

S ε (Υ) H s-2 ≤ K Υ H s-2 (66) 
using (62) and that H σ is an algebra with σ = s -2 > d/2. Since s -2 > d/2, the local well-posedness of the linear system (65) in H s-2 is standard, and we indeed have ( ȧε 61)). Hence, it remains to show that the maximal solution is defined on a time interval [0, τ * ε ] such that τ * ε ≥ τ 0 for ε small. The symmetrizer

, U 1 ε , ε U ⊥ ε ) |τ =0 ∈ H s-2 (from (
S ε (ε 2 X 0 ) ≡ Diag 1 C , c 2 s 2f ′ (|1 + ε 2 X 0 | 2 ) , ..., c 2 s 2f ′ (|1 + ε 2 X 0 | 2 )
is well adapted (see [START_REF] Chiron | The KdV/KP-I limit of the Nonlinear Schrödinger Equation[END_REF]), since it keeps the dispersive term with constant coefficients, and is such that the matrix S ε H(ε 2 X , ξ) is symmetric for every ξ ∈ R d . By applying ∂ α z with α ∈ N d such that |α| ≤ s -2, we infer as in [START_REF] Chiron | The KdV/KP-I limit of the Nonlinear Schrödinger Equation[END_REF], using the tame estimate (59), that for 0 ≤ τ < min(τ * ε , τ * ),

d dτ (S ε (ε 2 X 0 )∂ α z Υ, ∂ α z Υ) L 2 ≤ C ε 2 ∂ τ X 0 L ∞ + X W 1,∞ Υ 2 H s-2 + C S ε (Υ) H s-2 Υ H s-2 .
Using (66), the Sobolev imbedding and the uniform bounds (62), we deduce

d dτ (S ε (ε 2 X 0 )∂ α z Υ, ∂ α z Υ) L 2 ≤ K Υ(τ ) 2 H s-2 ,
where K depends only on Λ, hence by the Gronwall lemma, it comes τ * ε > τ * and sup

0≤τ ≤τ * Υ(τ ) H s-2 ≤ K Υ in H s-2 . ( 67 
)
We recall that we wish to bound

∂ z1 (A ε -U 1 ε ) or ∂ 2 z1 (A ε -U 1 ε )
. By (63) and the uniform bounds (62), we have

A ε = |1 + ε 2 a ε | -1 ε 2 = Re(a ε ) + O H s (ε 2 ),
and then

∂ z1 (A ε -U 1 ε ) = ∂ z1 Re(a ε ) -u 1 ε + iε c s ∂ z1 a ε 1 + ε 2 a ε - ∂ z1 A ε 1 + ε 2 A ε + O H s-1 (ε 2 ) = ∂ z1 Re(a ε ) -u 1 ε + iε c s ∂ z1 a ε -∂ z1 A ε + O H s-1 (ε 2 ) = ∂ z1 Re(a ε ) -u 1 ε - ε c s ∂ z1 Im(a ε ) + O H s-1 (ε 2 ) = Re ∂ z1 (a ε -u 1 ε ) + iε c s [∂ 2 z1 + ε 2 ∆ z ⊥ ]a ε + O H s-1 (ε 2 ) (68) = Re ε 2 c s ∂ τ a ε + ε 2 ∇ z ⊥ • u ⊥ ε + O H s-1 (ε 2 ). ( 69 
)
For (69), we use the uniform bounds [START_REF] Berloff | Motions in a Bose condensate: X. New results on stability of axisymmetric solitary waves of the Gross-Pitaevskii equation[END_REF], and in particular the uniform bound on εu ⊥ ε . This is also the reason why we have singled out

(if d ≥ 2), the term ∇ z ⊥ • u ⊥ ε . Let us assume first d = 1, so that the term ∇ z ⊥ • u ⊥ ε disappears.
Then, since at the initial time, a ε = A ε is real-valued, we infer in particular from (68) that

∂ z (A ε -U ε ) |τ =0 = ε 2 c s ∂ τ a ε |τ =0 + O H s-1 (ε 2 ).
Furthermore, we deduce easily from (61) that

ε 2 c s ∂ τ u ε |τ =0 = ∂ z (U ε -A ε ) |τ =0 + O H s-1 (ε 2 ) = ∂ z (U in ε -A in ε ) + O H s-1 (ε 2 ), so that ε 2 Υ in H s-2 ≤ Kε 2 + K ∂ z (U in ε -A in ε ) H s-2 .
Then, taking the H s-2 norm in (69) and using (67), we deduce that for 0 ≤ τ ≤ τ * and some constant K depending only on Λ,

∂ z (A ε -U ε ) H s-2 ≤ K ε 2 ∂ τ a ε H s-2 + ε 2 ≤ K ε 2 Υ in H s-2 + ε 2 ≤ K ∂ z (U in ε -A in ε ) H s-2 + ε 2 .
This finishes the proof of the one dimensional case. When d ≥ 2, the point is that we do not control u ⊥ ε but only εu ⊥ ε . Nevertheless, if d ≥ 2, the same argument shows the second statement in Lemma 1. For the third statement, we may use that u ε is a gradient, hence

∂ z1 u ⊥ ε = ∇ z ⊥ u 1 ε .
Therefore, it is natural to apply ∂ z1 to (68) and infer

∂ 2 z1 (A ε -U ε ) |τ =0 = ∂ z1 ε 2 c s ∂ τ a ε |τ =0 + ε 2 ∂ z1 ∇ z ⊥ • u ⊥ ε + O H s-2 (ε 2 ) = ∂ z1 ε 2 c s ∂ τ a ε |τ =0 + ε 2 ∆ z ⊥ u 1 ε + O H s-2 (ε 2 ) = ∂ z1 ε 2 c s ∂ τ a ε |τ =0 + O H s-2 (ε 2 ).
Hence, we deduce in a similar way

∂ 2 z1 (A ε -U ε ) H s-3 ≤ K ∂ 2 z1 (A in ε -U in ε ) H s-3 + Kε 2 ,
and this finishes the proof of Lemma 1.

We now turn to the proof of Theorem 4. We recall that (A ε , U 1 ε , U ⊥ ε ) solves [START_REF] Béthuel | Existence and properties of travelling waves for the Gross-Pitaevskii equation[END_REF], that is

                                             1 c s ∂ τ A ε - 1 ε 2 ∂ z1 A ε + 2U 1 ε ∂ z1 A ε + 2ε 2 U ⊥ ε • ∇ z ⊥ A ε + 1 ε 2 (1 + ε 2 A ε )(∂ z1 U 1 ε + ε 2 ∇ z ⊥ • U ⊥ ε ) = 0 1 c s ∂ τ U 1 ε - 1 ε 2 ∂ z1 U 1 ε + 2(U 1 ε ∂ z1 + ε 2 U ⊥ ε • ∇ z ⊥ )U 1 ε + 1 c 2 s ε 4 ∂ z1 f (1 + ε 2 A ε ) 2 - 1 c 2 s ∂ z1 ∂ 2 z1 A ε + ε 2 ∆ z ⊥ A ε 1 + ε 2 A ε = 0 1 c s ∂ τ U ⊥ ε - 1 ε 2 ∂ z1 U ⊥ ε + 2(U 1 ε ∂ z1 + ε 2 U ⊥ ε • ∇ z ⊥ )U ⊥ ε + 1 c 2 s ε 4 ∇ z ⊥ f (1 + ε 2 A ε ) 2 - 1 c 2 s ∇ z ⊥ ∂ 2 z1 A ε + ε 2 ∆ z ⊥ A ε 1 + ε 2 A ε = 0.
Using the Taylor expansion (4) and Lemma 1, we shall deduce that (A ε , U 1 ε , U ⊥ ε ) t solves the Boussinesq system B ε up to an error O(ε 2 ). More precisely, we have, with the notations of subsection 2.1 and Y ≡

(A ε , U 1 ε , εU ⊥ ε ) t , 1 c s ∂ τ Y + 1 ε 2 H(ε 2 Y, ∇ ε )Y = L(∇ ε )Y + 1 c 2 s Err ε ,
where, using once again that

∂ z1 U ⊥ ε = ∇ z ⊥ U 1 ε , Err ε ≡        0 - 1 c 2 s ε 4 ∂ z1 f 3 (ε 2 A ε ) - 1 c 2 s ε 4 ∇ z ⊥ f 3 (ε 2 A ε )        +        0 ∂ 3 z1 (A ε -U 1 ε ) -∂ z1 ε 2 A ε 1 + ε 2 A ε ∂ 2 z1 A ε + ε 2 ∂ z1 ∆ z ⊥ A ε 1 + ε 2 A ε ∂ 2 z1 ∇ z ⊥ (A ε -U 1 ε ) -∇ z ⊥ ε 2 A ε 1 + ε 2 A ε ∂ 2 z1 A ε + ε 2 ∇ z ⊥ ∆ z ⊥ A ε 1 + ε 2 A ε       
.

From the uniform bounds ( 9) and Lemma 1 to control the terms

∂ 3 z1 (A ε -U 1 ε ) and ∂ 2 z1 ∇ z ⊥ (A ε -U 1 ε )
, we infer that Err ε verifies, for some constant K depending only on Λ,

sup 0≤τ ≤τ0 Err ε H s-3 ≤ K A in ε -U 1,in ε H s + ε 2 .
The error estimate follows then easily since the unperturbed system is symmetrizable in variables (A ε , U 1 ε , εU ⊥ ε ) as in the proof of Proposition 1.

Proof of Propositions 2 and 3

Proof of Proposition 2. Notice first that arguing as in Lemma 1, namely estimating the time derivative of (A ε , U ε ) yields the estimate

∂ z (A ε -U ε ) H s-3 (R) ≤ K ∂ z (A in ε -U in ε ) H s-3 (R) + ε 2 . ( 70 
)
The exponent is now s -3 instead of s -2 since the dispersive term is here of third order. In order to prove [START_REF] Capella | Wave-type dynamics in ferromagnetic thin films and the motion of Néel walls[END_REF], it remains then to show the L 2 estimate, and we shall argue as in [START_REF] Béthuel | On the Korteweg-de Vries long-wave transonic approximation of the Gross-Pitaevskii equation I[END_REF] (proof of Proposition 4 there).

From the two equations of (B ε ), we obtain

1 c s ∂ τ (A ε -U ε ) - 2 ε 2 ∂ z (A ε -U ε ) + 2U ε ∂ z A ε + A ε ∂ z U ε -2U ε ∂ z U ε -(Γ -5)A ε ∂ z A ε + 1 c 2 s ∂ 3 z U ε = 0.
We then define W ε ≡ A ε -U ε and write the equation for W ε under the form

2 c s ∂ τ W ε - 2 ε 2 ∂ z W ε + (2U ε -A ε )∂ z W ε = (Γ -6)A ε ∂ z A ε - 1 c 2 s ∂ 3 z U ε . (71) 
It then follows from integration by parts that

2 c s d dτ R W 2 ε dz = R ∂ z (2U ε -A ε )W 2 ε dz -(Γ -6) R A 2 ε ∂ z W ε dz + 2 c 2 s R ∂ z W ε ∂ 2 z U ε dz.
We now integrate in time and use the uniform bound (62) to infer

2 c s R W 2 ε dz ≤ 2 c s A in ε -U in ε 2 L 2 + K τ 0 R W 2 ε (τ ) dz dτ + τ 0 R ∂ z W ε 2 c 2 s ∂ 2 z U ε -(Γ -6)A 2 ε dz dτ .
We now express 2 ε 2 ∂ z W ε from (71) and obtain

2 c s R W 2 ε (τ ) dz ≤ 2 c s A in ε -U in ε 2 L 2 + K τ 0 R W 2 ε (τ ) dz dτ + ε 2 c s τ 0 R ∂ τ W ε 2 c 2 s ∂ 2 z U ε -(Γ -6)A 2 ε dz dτ (72) + ε 2 2 τ 0 R (2U ε -A ε )∂ z W ε -(Γ -6)A ε ∂ z A ε + 1 c 2 s ∂ 3 z U ε 2 c 2 s ∂ 2 z U ε -(Γ -6)A 2 ε dz dτ .
For the second line in (72), we integrate by parts in time:

ε 2 c s τ 0 R ∂ τ W ε 2 c 2 s ∂ 2 z U ε -(Γ -6)A 2 ε dz dτ = - ε 2 c s τ 0 R W ε ∂ τ 2 c 2 s ∂ 2 z U ε -(Γ -6)A 2 ε dz dτ + ε 2 c s R W ε (τ ) 2 c 2 s ∂ 2 z U ε (τ ) -(Γ -6)A 2 ε (τ ) dz - ε 2 c s R W ε (0) 2 c 2 s ∂ 2 z U ε (0) -(Γ -6)A 2 ε (0) dz.
The last and before last terms are easily estimated by Kε 2 A in ε -U in ε L 2 and Kε 2 W ε L 2 respectively. Moreover, from (B ε ), we have

ε 2 c s ∂ τ ∂ 2 z U ε (τ ) = -∂ 3 z W ε + O L 2 (ε 2 ) since s ≥ 5, thus, for 0 ≤ τ ≤ τ 0 , - ε 2 c s τ 0 R W ε ∂ τ 2 c 2 s ∂ 2 z U ε dz dτ ≤ 2 c 2 s τ 0 R W ε ∂ 3 z W ε dz+Kε 2 τ 0 W ε L 2 dτ ≤ 0+Kε 4 + τ 0 W ε 2 L 2 dτ .
Similarly, using the inequality 2ab ≤ a 2 + b 2 ,

ε 2 c s (Γ -6) R W ε ∂ τ [A 2 ε ] dz ≤ 2(Γ -6) R A ε W ε ∂ z W ε dz + Kε 2 W ε L 2 ≤ K W ε 2 L 2 + Kε 4
by integration by parts for the last integral. For the third line in (72), the uniform bound (62) gives, for 0 ≤ τ ≤ τ 0 ,

ε 2 2 τ 0 R (2U ε -A ε )∂ z W ε 1 c 2 s ∂ 2 z U ε -(Γ -6)A 2 ε dz dτ ≤ Kε 2 τ 0 W ε L 2 dτ ≤ Kε 4 + τ 0 W ε 2 L 2 dτ .
In addition,

R -(Γ -6)A ε ∂ z A ε + 1 c 2 s ∂ 3 z U ε 2 c 2 s ∂ 2 z U ε -(Γ -6)A 2 ε dz = R ∂ z 1 c 2 s ∂ 2 z U ε - Γ -6 2 A 2 ε 2 dz = 0.
Consequently, (72) implies

W ε (τ ) 2 L 2 ≤ A in ε -U in ε 2 L 2 + K τ 0 W ε (τ ) 2 L 2 dτ + Kε 4 ,
and (15) then follows from the Gronwall lemma.

Defining

Z ε ≡ A ε + U ε 2 and summing the two equations of (B ε ), we obtain 2 c s ∂ τ Z ε + ΓZ ε ∂ z Z ε - 1 c 2 s ∂ 3 z Z ε = -(Γ -8)W ε ∂ z Z ε -(Γ -6)Z ε ∂ z W ε -(Γ -6)W ε ∂ z W ε - 1 c 2 s ∂ 3 z W ε . ( 73 
)
As a consequence, by a crude estimate of the right-hand side of (73) and using (70), we have

2 c s ∂ τ Z ε + ΓZ ε ∂ z Z ε - 1 c 2 s ∂ 3 z Z ε H s-5 ≤ K A in ε -U in ε H s-2 + ε 2 . ( 74 
)
By very standard estimates involving (59) (since

∂ z Z ε ∈ L ∞ ([0, τ 0 ], L ∞ )), we deduce that for 0 ≤ τ ≤ τ 0 , sup [0,τ0] Z ε -ζε H s-5 ≤ K A in ε -U in ε H s-2 + ε 2 , ( 75 
)
where ζε is the solution of the initial value problem

2 c s ∂ τ ζε + Γ ζε ∂ z ζε - 1 c 2 s ∂ 3 z ζε = 0, ( ζε ) |τ =0 = (Z ε ) |τ =0 = A in ε + U in ε 2 .
Since ζ ε is the solution of the initial value problem

2 c s ∂ τ ζ ε + Γζ ε ∂ z ζ ε - 1 c 2 s ∂ 3 z ζ ε = 0, (ζ ε ) |τ =0 = A in ε , it follows that sup [0,τ0] ζ ε -ζε H s-5 ≤ C(τ 0 ) A in ε -U in ε H s-2 ,
hence sup

[0,τ0] A ε -ζ ε H s-5 + sup [0,τ0] U ε -ζ ε H s-5 ≤ K A in ε -U in ε H s-2 + ε 2 , ( 76 
)
as wished.

Proof of Proposition 3 (d ≥ 2).

A first approach for proving Proposition 3 is to use the arguments in [START_REF] Lannes | Weakly transverse Boussinesq systems and the Kadomtsev-Petviashvili approximation[END_REF], for some initial data satisfying some preparedness assumptions (Assumption 1 p. 2866 in [START_REF] Lannes | Weakly transverse Boussinesq systems and the Kadomtsev-Petviashvili approximation[END_REF]). We shall give another argument following the lines of the proof of Theorem 3, but we give some details since the preparation hypothesis A ε ≃ U 1 ε is slightly different and since we used in [START_REF] Chiron | The KdV/KP-I limit of the Nonlinear Schrödinger Equation[END_REF] the conservation of the energy and momentum for (NLS).

As a first step, note that the estimates ( 17) can be shown as in the proof of Lemma 1. Furthermore, using ( 14), we infer from (B ε )

1 c s ∂ τ (A ε -U 1 ε ) - 2 ε 2 ∂ z1 (A ε -U 1 ε ) + (2U 1 ε -A ε )∂ z1 (A ε -U 1 ε ) + (Γ -6)A ε ∂ z1 A ε (77) +∇ z ⊥ • U ⊥ ε + 1 c 2 s ∂ 3 z1 U 1 ε = O L 2 (ε),
so that, integrating by parts,

1 2c s d dτ R d (A ε -U 1 ε ) 2 dz - R d U ⊥ ε • ∇ z ⊥ (A ε -U 1 ε ) dz ≤ ( ∂ z1 [2U 1 ε -A ε ] L ∞ + 1) A ε -U 1 ε 2 L 2 + R d Γ -6 2 A 2 ε + 1 c 2 s ∂ 2 z1 U 1 ε ∂ z1 (A ε -U 1 ε ) dz + Kε 2 .
As for the proof of Proposition 2, we report 2 77) and integrate in time to get, by ( 14),

ε 2 ∂ z1 (A ε -U 1 ε ) from (
2 c s (A ε -U 1 ε )(τ ) 2 L 2 -4 τ 0 R d U ⊥ ε • ∇ z ⊥ (A ε -U 1 ε ) dz dτ ≤ K A in ε -U in,1 ε 2 L 2 + Kε 2 + K τ 0 (A ε -U 1 ε )(τ ) 2 L 2 dτ - ε 2 c s τ 0 R d (A ε -U 1 ε )∂ τ 2 c 2 s ∂ 2 z1 U 1 ε -(Γ -6)A 2 ε dz dτ .
Combining (B ε ) with (62), we have here again

ε 2 c s ∂ τ ∂ 2 z1 U 1 ε = -∂ 3 z1 (A ε -U 1 ε ) + O L 2 (ε)
since εU ⊥ ε is uniformly bounded in H s . Furthermore, for the term involving ∂ τ [A 2 ε ], comparing with the case d = 1, we have the extra term

2(Γ -6) ε 2 c s τ 0 R d A ε (A ε -U 1 ε )[∇ z ⊥ • U ⊥ ε + O L 2 (ε)] dτ ≤ Kε A ε -U 1 ε L 2 ≤ K A ε -U 1 ε 2 L 2 + Kε 2 ,
since εU ⊥ ε is uniformly bounded in H s . The loss ε instead of ε 2 seems unavoidable since we do not have cancellations with other terms (even those in the right-hand side of ( 77)). This leads to

(A ε -U 1 ε )(τ ) 2 L 2 -2c s τ 0 R d U ⊥ ε •∇ z ⊥ (A ε -U 1 ε ) dz dτ ≤ K A in ε -U in,1 ε 2 L 2 +Kε 2 +K τ 0 (A ε -U 1 ε )(τ ) 2 L 2 dτ . (78) On the other hand, since ∂ z1 U ⊥ ε = ∇ z ⊥ U 1 ε , we deduce from (B ε ) 1 2c s d dτ R d ε 2 |U ⊥ ε | 2 dz + R d U ⊥ ε • ∇ z ⊥ (A ε -U 1 ε ) dz ≤ ε 2 ∂ z1 U 1 ε + ε 2 ∇ z ⊥ U ⊥ ε L ∞ U ⊥ ε 2 L 2 + Kε 2 ≤ Kε 2 U ⊥ ε 2 L 2 + Kε 2 , (79) 
thus

εU ⊥ ε (τ ) 2 L 2 + 2c s τ 0 R d U ⊥ ε • ∇ z ⊥ (A ε -U 1 ε ) dz dτ ≤ εU in,⊥ ε 2 L 2 + K τ 0 εU ⊥ ε 2 L 2 dτ + Kε 2 . (80) 
Consequently, in view of the cancellation of the integrals in the left-hand sides of ( 78) and ( 80),

(A ε -U 1 ε )(τ ) 2 L 2 + εU ⊥ ε (τ ) 2 L 2 ≤ (A in ε -U in,1 ε ) 2 L 2 + εU in,⊥ ε 2 L 2 +K τ 0 (A ε -U 1 ε )(τ ) 2 L 2 + εU ⊥ ε 2 L 2 dτ +Kε 2
hence, by the Gronwall lemma, sup

0≤τ ≤τ0 A ε -U 1 ε L 2 + ε U ⊥ ε L 2 ≤ K A in ε -U in,1 ε L 2 + ε U in,⊥ ε L 2 + ε ,
as wished for [START_REF] Chiron | Rarefaction pulses for the Nonlinear Schrödinger Equation in the transonic limit[END_REF]. Finally, using ( 14) and ( 17), we deduce from (B ε ) that

1 c s ∂ τ A ε - 1 ε 2 ∂ z1 A ε + 1 ε 2 ∂ z1 U 1 ε + 3A ε ∂ z1 A ε + ∇ z ⊥ • U ⊥ ε = O L 2 (ε + ∂ z1 (A in ε -U in,1 ε ) H s-2 ) and 1 c s ∂ τ U 1 ε - 1 ε 2 ∂ z1 U 1 ε + 1 ε 2 ∂ z1 A ε + (Γ -3)U 1 ε ∂ z1 U 1 ε - 1 c 2 s ∂ 3 z1 U 1 ε = O L 2 (ε + ∂ z1 (A in ε -U in,1 ε ) H s-2 ), hence 1 2c s d dτ R d A 2 ε + [U 1 ε ] 2 dz - R d U ⊥ ε • ∇ z ⊥ A ε dz ≤ K(ε 2 + ∂ z1 (A in ε -U in,1 ε ) 2 H s-2 ).
Inserting ( 18) into (79) and since

∇ z ⊥ U 1 ε = ∂ z1 U ⊥ ε , we infer 1 2c s d dτ R d ε 2 |U ⊥ ε | 2 dz + R d U ⊥ ε • ∇ z ⊥ A ε dz ≤ R d U ⊥ ε • (∂ z1 U ⊥ ε ) dz + Kε 2 U ⊥ ε 2 L 2 + Kε 2 ≤ 0 + K A in ε -U in,1 ε 2 L 2 + Kε 2 U in,⊥ ε 2 L 2 + Kε 2 ,
and then

1 2c s d dτ R d A 2 ε + [U 1 ε ] 2 + ε 2 |U ⊥ ε | 2 dz ≤ K A in ε -U in,1 ε 2 L 2 + Kε 2 U in,⊥ ε 2 L 2 + Kε 2 .
Combining this with [START_REF] Chiron | Rarefaction pulses for the Nonlinear Schrödinger Equation in the transonic limit[END_REF], this allows to show the almost conservation law, for 0

≤ τ ≤ τ * , R d 2A 2 ε + ε 2 |U ⊥ ε | 2 dz = R d 2[A in ε ] 2 + ε 2 |U in,⊥ ε | 2 dz + O( A in ε -U in,1 ε 2 L 2 (R d ) + ε 2 U in,⊥ ε 2 L 2 (R d ) + ε 2 ), (81) 
and a similar statement can be made with

R d 2[U 1 ε ] 2 + ε 2 |U ⊥ ε | 2 dz.
At this stage, we note that we have all the ingredients needed for the proof of Theorem 6 in [START_REF] Chiron | The KdV/KP-I limit of the Nonlinear Schrödinger Equation[END_REF]. Indeed, in [START_REF] Chiron | The KdV/KP-I limit of the Nonlinear Schrödinger Equation[END_REF], we used the conservation of the energy and the momentum to show that

A ε -U 1 ε → 0 and εU in,⊥ ε → 0 in L 2 ,
but here, the estimate (18) ensures these convergences. Furthermore, the uniform L 2 bound on U ⊥ ε comes directly from [START_REF] Chiron | Rarefaction pulses for the Nonlinear Schrödinger Equation in the transonic limit[END_REF] and the assumptions in Proposition 3 and provide (see [START_REF] Chiron | The KdV/KP-I limit of the Nonlinear Schrödinger Equation[END_REF]) compactness in time. Then, the almost conservation law (81) guarantees that there is no loss of L 2 norm in the compactness argument. This finishes the proof.

Proof of Proposition 4

The proof of Proposition 4 turns out to be quite similar to the justification of the (KdV) limit. Indeed, we use once again the trick of E. Grenier and first solve the one dimensional system, with a ε complex-valued,

         1 c s ∂ θ a ε - 1 ε ∂ z a ε + 2u ε ∂ z a ε + 1 ε (1 + εa ε )∂ z a ε = i c s ∂ 2 z a ε 1 c s ∂ θ u ε - 1 ε ∂ z u ε + 2u ε ∂ z u ε + 1 c 2 s ε 2 ∂ z f (|1 + εa ε | 2 ) = 0. (82) 
Following [START_REF] Chiron | The KdV/KP-I limit of the Nonlinear Schrödinger Equation[END_REF] (proof of Theorem 4 there) or the proof of Proposition 1, we see that there exists θ * > 0 and ε 0 > 0 such that, if 0 < ε ≤ ε 0 , there exists a unique solution (a

ε , u ε ) ∈ L ∞ ([0, θ * ], H s (R)) to (82).
Moreover, for some absolute constant K 0 , there holds the uniform bound

sup 0≤θ≤θ * a ε (θ) H s (R) + u ε (θ) H s (R) ≤ K 0 Λ and 1 2 ≤ |1 + εa ε | ≤ 2.
As in the proof of Lemma 1, we may show that

∂ z [a ε (θ) -u ε (θ)] H s-2 (R) ≤ K ∂ z [a in ε -u in ε ] H s-2 (R) + ε .
Via the formula (63), this yields [START_REF] Papanicolaou | Semitopological solitons in planar ferromagnets[END_REF] and

∂ z [A ε (θ) -U ε (θ)] H s-2 (R) ≤ K ∂ z [A in ε -U in ε ] H s-2 (R) + ε .
Combining the two equations in (42), we deduce

1 c s ∂ θ (A ε -U ε )- 2 ε ∂ z (A ε -U ε )+(2U ε -A ε )∂ z (A ε -U ε )-(Γ-5)A ε ∂ z A ε = - ε c s ∂ z ∂ 2 z A ε 1 + εA ε + 1 c 2 s ε 2 ∂ z f 3 (εA ε ) , where f 3 (α) = O α→0 (α 3
) is given by the Taylor expansion (4) of f . In particular, since s ≥ 3, we infer

1 c s ∂ θ (A ε -U ε ) - 2 ε ∂ z (A ε -U ε ) + (2U ε -A ε )∂ z (A ε -U ε ) -(Γ -5)A ε ∂ z A ε = O L 2 (ε),
uniformly for 0 ≤ θ ≤ θ * . The L 2 estimate for A ε -U ε can then be derived by following the lines of the proof of Proposition 2, using the fact that

A ε ∂ z A ε = ∂ z (A 2 ε /2). Once the estimate sup 0≤θ≤θ * A ε (θ) -U ε (θ) H s-1 (R) ≤ K A in ε -U in ε H s-1 (R) + ε is shown, we have 1 c s ∂ θ (A ε + U ε ) + 2U ε ∂ z (A ε + U ε ) + A ε ∂ z U ε + (Γ -5)A ε ∂ z A ε = O H s-3 (ε), or 1 c s ∂ θ (A ε + U ε ) + Γ(A ε + U ε )∂ z (A ε + U ε ) = O H s-3 (ε).
The result follows then from a classical comparison argument involving (59) similar to the proof of Proposition 2 (see section 2.3).

4 Justification of the (gKdV)/(gKP-I) limit as a large time asymptotics for the free wave regime

This section is devoted to the proofs of Theorems 6 and 7. We wish to solve the (NLS) equation by using the trick of E. Grenier, that is to solve the system (61) written in our scaling with θ = εǫt and where a ε is complex-valued and u ε real-valued:

                     1 c s ∂ θ a ε - 1 ǫ ∂ z1 a ε + 2u 1 ε ∂ z1 a ε + 2ǫ m+1 u ⊥ ε • ∇ z ⊥ a ε + 1 ǫ (1 + ǫa ε )(∂ z1 u 1 ε + ǫ m+1 ∇ z ⊥ • u ⊥ ε ) = iε ǫc s ∂ 2 z1 a ε + ǫ m+1 ∆ z ⊥ a ε 1 c s ∂ θ u ε - 1 ǫ ∂ z1 u ε + 2u 1 ε ∂ z1 u ε + 2ε 2 u ⊥ ε • ∇ z ⊥ u ε + 2f ′ (|1 + ǫa ε | 2 ) ǫc 2 s 1 + ǫa ε , ∇ z a ε = 0. ( 83 
)
The initial data (a in ε , u in ε ) will be chosen appropriately later on, so that the natural relation

∇Ψ in Ψ in = ǫ∇ z a in 1 + ǫa in + ic s ǫ ε u in ε ( 84 
)
holds true (since we have Ψ = (1 + ǫa ε )e iǫϕε/ε ). The proof is divided in two steps. In the first one, we construct an approximate solution, and then prove an error estimate.

Construction of an approximate solution

In view of the coefficient ε/ǫ in front of the dispersive term in (83) and since we expect a ε real-valued at leading order, it is natural to look for the approximate solution with an expansion of the form:

     a app ε = a + iεb = a 0 + ǫa 1 + ǫ 2 a 2 + ... + ǫ m a m + ... + iε b 0 + ǫb 1 + ǫ 2 b 2 + ... + ǫ m b m + ... u app ε = u 0 + ǫu 1 + ǫ 2 u 2 + ... + ǫ m u m + ...,
where the functions u k , a k and b k depend on the variables (z, τ ) and are real-valued. We may try to construct this approximate solution by cancellation of the powers of ǫ in (83) until we have solved the equations up to a O(ǫ m+1 ) error. However, we have to pay attention to some point for the imaginary part b. Indeed, if we assume b = b(τ ) only and since ∂ θ = ε 2 /ǫ∂ τ = ǫ m ∂ τ , the imaginary part of the first equation in (83) then reduces to

0 = εǫ m 1 c s ∂ τ b - ε ǫ ∂ z1 b + 2εu app,1 ε ∂ z1 b + εb∂ z1 u app,1 ε - ε ǫc s ∂ 2 z1 a + O(ǫ m+1 ) = - ε ǫ ∂ z1 b + 1 c s ∂ 2 z1 a -2ǫu app,1 ε ∂ z1 b -ǫb∂ z1 u app,1 ε + O(ǫ m+1 ). ( 85 
)
From the fact that ε/ǫ = ǫ m-1 2

≫ ǫ m+1 (for every m ≥ 0), it is thus necessary to choose

b 0 = - 1 c s ∂ z1 a 0 . (86) 
However, to solve at next orders, we need to solve an ode in z 1 and not a time dependent problem. For instance, for b 1 , this becomes

c s ∂ z1 b 1 + ∂ 2 z1 a 1 = -2u 1 0 ∂ 2 z1 a 0 -∂ z1 a 0 ∂ z1 u 1 0 = -2∂ z1 [a 0 ∂ z1 a 0 ] + [∂ z1 a 0 ] 2 ,
since we shall have u 1 0 = a 0 . Clearly, this problem can not be solved with b 1 in some H s space exactly, since the source term does not have zero integral in z 1 . To remedy this problem, we shall roughly speaking let b 1 , b 2 , ... depend on θ.

Let us define the consistency errors

-R a ≡ 1 c s ∂a app ε ∂θ - 1 ǫ ∂ z1 a app ε + 2u app,1 ε ∂ z1 a app ε + 2ǫ m+1 u app,⊥ ε • ∇ z ⊥ a app ε + 1 ǫ (1 + ǫa app ε ) ∂ z1 u app,1 ε + ǫ m+1 ∇ z ⊥ • u app,⊥ ε - iε c s ǫ ∂ 2 z1 a app ε + ǫ m+1 ∆ z ⊥ a app ε , (87) 
and

-R u ≡ 1 c s ∂ θ u app ε - 1 ǫ ∂ z1 u app ε + 2u app,1 ε ∂ z1 u app ε + 2ε 2 u app,⊥ ε • ∇ z ⊥ u app ε + 2f ′ (|1 + ǫa app ε | 2 ) ǫc 2 s 1 + ǫa app ε , ∇ z a app ε . (88) 
The next lemma provides the construction of an approximate solution (a app ε , u app ε ) for the one dimensional case (Theorem 6). The changes required for Theorem 7 will be given next.

Lemma 2 Assume d = 1. Under the assumptions of Theorem 6, there exist initial data (a in ε , u in ε ) satisfying (84) and an approximate solution (a app ε , u app ε ) such that we have

R a H s + R u H s ≤ Cǫ m+1
as well as

a in ε -a app ε (θ = 0) H s + u in ε -u app ε (θ = 0) H s ≤ Cǫ m+1 . (89) 
Proof. The proof is divided in 4 steps.

Step 1: definition of the approximate solution. We set

a 0 = u 0 ≡ ζ(τ ) ∈ C([0, τ * ], H s+5 ), a 1 = ... = a m-1 ≡ 0 (if m = 1
, the second condition is void), so that a = a 0 + O(ǫ m ). We have seen in section 1.3 that in order to cancel out the terms of order ǫ -1 , ǫ 0 , ... , ǫ m-1 , then (30) must hold true, that is

u = a - 3 2 ǫa 2 + 2ǫ 2 a 3 - 5 2 ǫ 3 a 4 + ... + (-1) m m + 2 2 ǫ m a m+1 + O(ǫ m+1 ).
Therefore, we also set

∀ 1 ≤ k ≤ m -1 u k ≡ (-1) k k + 2 2 ζ k+1 (τ ) ∈ C([0, τ * ], H s+5 ), fix a m (τ, z) ≡ A in m (z) ∈ H s+5 u m (τ, z) ≡ A in m (z) + (-1) m m + 2 2 ζ m+1 (τ, z) ∈ H s+5
and choose u m+1 ≡ 0 and

a m+1 ≡ - 1 2c 2 s ∂ 2 z1 ζ- 1 2 m k=0 u k (τ )u m-k (τ ) - 1 2 q m+2 +(-1) m m + 3 2 ζ m+2 (τ )-2ζ(τ )a m (τ ) ∈ L ∞ ([0, τ * ], H s+2 ),
which is some (arbitrary) solution to what will be an analogue of [START_REF] Chiron | Geometric optics and boundary layers for nonlinear Schrödinger equations[END_REF]. Concerning the imaginary part b, we recall (see ( 85)) that we wish to solve

0 = ε c s ∂ θ b - ε ǫ ∂ z b + 2εu app ε ∂ z b + εb∂ z u app ε - ε ǫc s ∂ 2 z a + O(ǫ m+1 )
up to O(ǫ m+1 ), and since ε ǫ = ǫ m-1

2 , this requires to solve

ǫ c s ∂ θ b -∂ z b + 1 c s ∂ 2 z a -2ǫu app ε ∂ z b -ǫb∂ z u app ε = 0 up to O(ǫ m+3 
2 ). For that purpose, we first define (cf. ( 86)

) b ≡ - 1 c s ∂ z a(τ ) ∈ C([0, τ * ], H s+1 ),
and we omit the dependency on ε to simplify the notations. Next, we set u ≡ u app ε (here again, it depends on ε) and define the function bε = bε (θ) as the solution of the high speed transport equation

1 c s ∂ θ bε - 1 ǫ ∂ z bε + 2u∂ z bε + bε ∂ z u = G c s ≡ -2u∂ z b -b∂ z u, bε (θ = 0) = 0, (90) 
and finally set b ≡ b + bε . We shall prove that bε is rather small.

Step 2: Sobolev estimates for bε . The basic idea is to consider the simplified one dimensional problem, where the source term is independent of θ (the source term in (90) depends on τ = ε m θ):

∂ θ β - 1 ǫ ∂ z β = g(z), β(θ = 0) = 0,
with solution given by the method of characteristics:

β(θ, z) = θ 0 g z + θ - θ ǫ d θ.
From this formula, it comes β(θ, z) = ǫ z-θ/ǫ z g, which shows that β is small in L ∞ if g ∈ L 1 and that ∂ z β is small in L ∞ simply assuming g ∈ L ∞ . We shall follow the same type of compuations for (90). For the extra term b∂ z u, we shall use that ∂ z u has a bounded antiderivative (even though ∂ z u ∈ L 1 z1 (R)). We use the method of characteristics and introduce the solution Z (we omit the dependency on ǫ) to the problem

∂ θ Z(θ, y) = - c s ǫ + 2c s u(ǫ m θ, Z(θ, y)), Z(θ = 0, y) = y.
Since u is uniformly Lipschitz continuous in z for θ ∈ [0, ǫ -1 ], the flow Z is well-defined for θ ∈ [0, ǫ -1 ] and verifies, for some constant C ≥ 1 independent of ǫ ≤ 1 and θ ∈ [0, ǫ -1 ],

Z(θ, y) -y + θ ǫ ≤ C. (91) 
We now consider ǫ small enough so that 2ǫ||u|| L ∞ ([0,τ * ]×R) ≤ 1/2. Applying the method of characteristics, we see that bε satisfies, for every y ∈ R and θ ∈ [0, |ln ǫ|],

d dθ bε (θ, Z(θ, y)) + c s bε (θ, Z(θ, y))∂ z u(ǫ m θ, Z(θ, y)) = G(ǫ m θ, Z(θ, y)). (92) 
As a consequence, by Duhamel's formula, bε (θ, Z(θ, y))

= θ 0 exp c s θ θ ∂ z1 u(ǫ m θ ′ , Z(θ ′ , y)) dθ ′ G(ǫ m θ, Z( θ, y)) d θ. ( 93 
)
Let us now estimate the integral in the exponential in (93) by writting and using the change of variables y = Z(θ ′ , y), or θ ′ = θ ′ y (y) .

θ θ ∂ z u(ǫ m θ ′ , Z(θ ′ , y)) dθ ′ = θ θ ∂ z u in (Z(θ ′ , y)) + ǫ m θ ′ 0 ∂ τ ∂ z u(θ, Z(θ ′ , y)) dθ dθ ′ = Z( θ,y) Z(θ,y) ∂ z u in (y) + ǫ m θ ′ y (y) 0 ∂ τ ∂ z u(θ,
We now fix z ∈ R and let y = Z(θ, •) -1 (z) in the above formula to deduce

| bε (θ, z)| ≤ Cǫ Z(θ,•) -1 (z) z |G in |(y) dy + Cǫ Z(θ,•) -1 (z) z ǫ m |ln ǫ| 0 |∂ τ G|(θ, y) dθ dy ≤ Cǫ|G in | ⋆ 1 [-θ/ǫ-C,0] (z) + Cǫ ǫ m |ln ǫ| 0 |∂ τ G|(θ, •) ⋆ 1 [-θ/ǫ-C,0] (z) dθ.
Here, we have used (91) for the last inequality, which gives that z = Z(θ, y) = y -θ ǫ + O(1) uniformly in (y, θ). Classical convolution estimates then yield, if 0 ≤ θ ≤ |ln ǫ|,

ǫ |G in | ⋆ 1 [-θ/ǫ-C,0] L 2 ≤ ǫ G in L 1 1 [-θ/ǫ-C,0] L 2 ≤ Cǫ θ ǫ + C ≤ C ǫ|ln ǫ| and ǫ |G in | ⋆ 1 [-θ/ǫ-C,0] L ∞ ≤ ǫ G in L 1 1 [-θ/ǫ-C,0] L ∞ ≤ Cǫ.
Note that when R G = 0, that is when G is not the z-derivative of some localized function, it does seem possible to improve very much the L 2 bound (see however [START_REF] Lannes | Secular growth estimates for hyperbolic systems[END_REF] for refined estimates for secular growth). Arguing similarly for the other term (which is actually smaller in view of the θ-integration), we arrive at Let us now estimate the derivatives of bε . As explained at the beginning of this Step, they enjoy a better behaviour. Applying ∂ z to (90) yields For I, similarly, we get sup

1 c s ∂ θ ∂ z bε - 1 ǫ ∂ z ∂ z bε + 2u∂ z ∂ z bε + 3∂ z bε ∂ z u = ∂ z G c s -2 bε ∂ 2 z u, ∂ z bε (θ = 0) = 0,
0≤θ≤|ln ǫ| I - θ 0 ∂ z1 G in (Z( θ, Z(θ, •) -1 (z 1 )), z ⊥ ) d θ L 2 ≤ Cǫ.
Making the change of variable y = Z( θ, Z(θ, •) -1 (z 1 )), we obtain

θ 0 ∂ z G in (Z( θ, Z(θ, •) -1 (z))) d θ = z Z(θ,•) -1 (z) ∂ z G in (y) ǫdy 1 -2ǫu(θ ′ Z(θ,•) -1 (z) (y), y) = z Z(θ,•) -1 (z) ∂ z G in (y, z ⊥ )ǫdy + O L ∞ ([0,|ln ǫ|],L 2 ) (ǫ 2 |ln ǫ|/ǫ),
using one more time the convolution estimate. The first integral is explicitely computed (now, we have a z-derivative): ǫ{G in (z) -G in (Z(θ, •) -1 (z))}. Gathering these estimates, we conclude sup

0≤θ≤|ln ǫ| ∂ z bε (θ) L 2 ≤ Cǫ.
In a similar way, we derive sup

0≤θ≤|ln ǫ| ∂ z bε (θ) H s ≤ Cǫ.
To summarize, we have proved that b verifies, for 0

≤ θ ≤ |ln ǫ|, b H s+1 ≤ C, ∂ z b -∂ z b(τ = ǫ m θ) H s ≤ Cε and ε c s ∂ θ b - ε ǫ ∂ z b + 2εu app ε ∂ z b + εb∂ z u app ε - ε ǫc s ∂ 2 z a = 0.
Step 3: Choice of the initial data for (83) and error estimate. We recall that when we use the trick of E. Grenier, the initial data for (83) and (41) must verify (cf. (63))

A in ε ≡ |1 + ǫa in ε | -1 ǫ , U in ε ≡ u in ε - iε c s ∂ z a in ε 1 + ǫa in ε - ∂ z A in ε 1 + ǫA in ε . (95) 
First, we have

|1 + ǫa app ε | 2 = |1 + ǫa + iεǫb| 2 = (1 + ǫa) 2 + ǫ 2 ε 2 b 2 = (1 + ǫa) 2 + O H s (ǫ m+3 [1 + ǫ|ln ǫ|]
) (uniformly for 0 ≤ θ ≤ |ln ǫ|) by the estimates in Step 1. We may then define, for 0 ≤ θ ≤ |ln ǫ|, a real valued quantity a ε = O(ǫ m+2 ) such that, defining

a in ε ≡ A in ε + iεb(θ = 0) + a ε = A in ε -i ε c s ∂ z1 ζ in + a ε ,
the first equality in (95) is verified. We then define u in ε through the second equality in (95). We now give estimates for the error between (a in ε , u in ε ) and (a app,in ε , u app,in ε ). By construction, we have

a in ε -a app,in ε = [A in ε + iεb(θ = 0) + a ε ] -[a(θ = 0) + iεb(θ = 0)] = A in ε -ζ in + ǫ m A in m + ǫ m+1 a m+1 (θ = 0) + O H s (ǫ m+2 ) = O H s (ǫ m+1 ).
Consequently,

iε c s ∂ z a in ε 1 + ǫa in ε - ∂ z A in ε 1 + ǫA in ε = iε c s ǫ ∂ z log C 1 + ǫa in ε 1 + ǫA in ε = O H s (εǫ m+2 ) = O H s (ǫ m+3 ), thus U in ε -u in ε = O H s (ǫ m+3
), and this implies u in ε -u app ε (θ = 0) = O H s (ǫ m+2 ). As a consequence, we have constructed initial data (a in ε , u in ε ) verifying (95) as well as (89).

Step 4: error estimate for the residuals. From the estimates of Step 1, we have b = b 0 + O H s+1 ( √ ǫθ). This is then just for b that the expansion in ǫ is not completely rigorous in the sense that we do not claim that bε is of order ǫ in H s+1 . The term b appears in the nonlinearity f (|1 + ǫa app ε | 2 ), but since we have already seen in Step 3 that |1 + ǫa ε | 2 = (1 + ǫa) 2 + O H s (ǫ m+3 ), the expansion in ǫ is actually true. For the imaginary part of R a , we have

-Im(R a ) = ε 1 c s ∂b ∂θ - 1 ǫ ∂ z b + 2u app ε ∂ z b + b∂ z u app ε - 1 c s ǫ ∂ 2 z a = O H s (ǫ m+1 ) + ε 1 c s ∂b ∂θ - 1 ǫ ∂ z b + 2u app ε ∂ z b + b∂ z u app ε - 1 c s ǫ ∂ 2 z a ,
and by construction of b (see Step 1), we precisely get -Im(R a ) = O H s (ǫ m+1 ). We turn finally to the real part of R a , and since b only appears in the last term with ε/ǫ in front of, we obtain

-Re(R a ) = 1 c s ∂a ∂θ - 1 ǫ ∂ z a + 2u app ε ∂ z a + 1 ǫ (1 + ǫa)∂ z u app ε + ǫ m c s ∂ 2 z b + ǫ m c s ∂ 2 z bε + O H s (ǫ m+1 ).
From the estimate of Step 1, we have ∂ 2 z1 bε = O H s (ǫ), and by construction, c s b = -∂ z a = -∂ z a 0 + O H s (ǫ). Since the expansion in ǫ is now correct, we know that Re(R a ) and R u are of order O(ǫ m-1 ) by construction of the terms a k , u k , 0 ≤ k ≤ m. Let us now inspect the terms of order ǫ m in -Re(R a ) and -R u respectively:

           1 c s ∂ζ ∂τ -∂ z a m+1 + 2u m ∂ z ζ + 2ζ∂ z a m + ∂ z u m+1 + a m ∂ z ζ + ζ∂ z u m - 1 c 2 s ∂ 3 z ζ 1 c s ∂ τ ζ -∂ z u m+1 + ∂ z m k=0 u k u m-k + ∂ z a m+1 + ∂ z q m+2 ζ m+2 -5ζa m ,
as can be seen from the computations in section 1.4 (we keep the same notations). These two quantities vanish if and only if their sum and difference vanish, that is

               2 c s ∂ζ ∂τ + 2u m ∂ z ζ + 2ζ∂ z a m + a m ∂ z ζ + ζ∂ z u m + ∂ z m k=0 u k u m-k + ∂ z q m+2 ζ m+2 -5ζa m - 1 c 2 s ∂ 3 z ζ 2∂ z (u m+1 -a m+1 ) = 2u m ∂ z ζ + 2ζ∂ z a m + a m ∂ z ζ + ζ∂ z u m + ∂ z m k=0 u k u m-k + ∂ z q m+2 ζ m+2 -5ζa m + 1 c 2 s ∂ 3 z ζ.
Once we have reported the expressions of the u k 's, the first equation is precisely the (gKdV) equation. Since by construction u m = a m + (-1) m (m + 2)ζ m+1 /2, we see that the right-hand side of the second equation becomes

∂ z m k=0 u k u m-k + ∂ z q m+2 + (-1) m m + 3 2 ζ m+2 -2ζa m + 1 c 2 s ∂ 3 z ζ,
which is indeed a z derivative. By our (arbitrary) choice for u m+1 and a m+1 , we get the conclusion. Note that the fact that we can integrate in z the last equation is actually not linked to the precise choice for (a m , u m ). The proof of Lemma 2 is complete.

Lemma 3 Assume d ≥ 1.
Under the assumptions of Theorem 7, there exist initial data (a in ε , u in ε ) satisfying (84) and an approximate solution (a app ε , u app ε ) such that we have

R a H s + (R 1 u , εR ⊥ u ) H s ≤ Cǫ m+1 as well as a in ε -a app ε (θ = 0) H s + u in,1 ε -u app,1 ε (θ = 0) H s ≤ Cǫ m+1 . ( 96 
)
Proof. We shall only point out the few differences with the proof of Lemma 2.

Step 1: definition of the approximate solution. We set

u 0 ≡ ∇ z ∂ -1 z1 ζ(τ ) ∈ C([0, τ * ], H s+4 ), u 1 = ... = u m+1 ≡ 0,
(if m = 1, the second condition is void), so that u 1 = ζ(τ ) + O(ǫ m ). For the amplitude, the relation [START_REF] Kivshar | Dark optical solitons: physics and applications[END_REF] imposes to choose

∀ 0 ≤ k ≤ m a k ≡ 1 • 3 • ... • (2k + 1) (k + 1)! ζ k+1 (τ ) ∈ C([0, τ * ], H s+5 ∩ ∂ z1 H s+5 ),
and for a m+1 , we fix (arbitrarily)

a m+1 ≡ - 1 2c 2 s ∂ 2 z1 ζ(τ ) - 1 2 q m+2 + (-1) m m + 3 2 ζ m+2 (τ ) -2ζa m - 1 2 ∆ z ⊥ ∂ -2 z1 ζ(τ ) ∈ L ∞ ([0, τ * ], H s+2 )
(by the result in [START_REF] Ukaï | Local solutions to the Kadomtsev-Petviashvili equation[END_REF] or Lemma 3 in [START_REF] Lannes | Weakly transverse Boussinesq systems and the Kadomtsev-Petviashvili approximation[END_REF]). Note that the sum m k=0 u k u m-k now vanishes for our choice of the u k 's. Concerning the imaginary part, as for Lemma 2, we choose

b ≡ b + bε , where b ≡ - 1 c s ∂ z1 a(τ ) ∈ C([0, τ * ], H s+1 )
and the function bε = bε (θ) is the solution of the high speed transport equation

1 c s ∂ θ bε - 1 ǫ ∂ z1 bε + 2u app,1 ε ∂ z1 bε + bε ∂ z1 u app,1 ε = G c s ≡ -2u app,1 ε ∂ z1 b -b∂ z1 u app,1 ε , bε (θ = 0) = 0. ( 97 
)
Step 2: Sobolev estimates for bε . Observing that the high speed transport equation (97) only involves the z 1 coordinate, we deduce as in the proof of Lemma 2 that bε verifies first 

∂ α z ⊥ bε (θ) L ∞ ≤ Cǫ.
As before, the z 1 -derivative is shown here again to have a better behaviour:

sup 0≤θ≤|ln ǫ| ∂ z1 bε (θ) H s ≤ Cǫ. Therefore, b verifies, for 0 ≤ θ ≤ |ln ǫ|, b H s ≤ C, ∂ z1 b -∂ z1 b(τ = ǫ m θ) H s ≤ Cε and ε c s ∂ θ b - ε ǫ ∂ z1 b + 2εu app,1 ε ∂ z1 b + εb∂ z1 u app,1 ε - ε ǫc s ∂ 2 z1 a = 0.
Step 3: Choice of the initial data for (83) and error estimate. and Step 4: error estimate for the residuals. They are very similar to Step 3 and Step 4 in the proof of Lemma 2, taking into account the transverse variable, thus we omit the proof.

Error estimate

We look for an exact solution of the modified Madelung system (83) under the form (a ε , u ε ) = (a app ε , u app ε ) + (A ε , U ε ).

Since the system (83) is symmetrizable and the dispersive term has constant coefficient and is skew-adjoint, the error estimate, for |α| ≤ s,

d dθ (S ε (ǫ(a app ε + A ε ))∂ α z Υ, ∂ α z Υ) L 2 ≤ C ǫ ∂ θ (a app ε + A ε ) L ∞ + a app ε + A ε W 1,∞ + 1 Υ 2 H s + Cǫ 2(m+1) , with Υ = (A ε , U 1 ε , εU ⊥ ε ), follows immediately. Recall that at time θ = 0, Υ is O(ǫ m+1
), even though we have included the terms of order ǫ m+1 in the approximate solution. We denote by θ ε ∈ (0, |ln ǫ|) the maximal time for which ǫ∂ θ Υ L ∞ + A ε W 1,∞ ≤ 1. Then, we infer from the Gronwall inequality that for 0

≤ θ ≤ θ ε , Υ(θ) 2 H s ≤ Υ(θ = 0) 2 H s + ǫ 2(m+1) e 2Cθ ≤ Cǫ 2(m+1) e 2Cθ ,
where C is a constant depending only on s, d, Λ and the function ζ. This guarantees that θ ε ≤ µ| ln ǫ| for some small constant 0 < µ < 1/C depending only on s, d, Λ and the function ζ and provided ε is sufficiently small. We finally use the formula (63) to infer that for θ ε ≤ µ| ln ǫ|,

A ε -Re(a app ε ) H s + U 1 ε -u app,1 ε H s-1 ≤ Cǫ m+1 e θ 2µ .
This completes the proofs of Theorems 6 and 7.

5 Justification of the wave and the (mKdV)/(mKP-I) limit for the Landau-Lifshitz equation 5.1 Proof of the free wave limit for the Landau-Lifshitz equation

In order to prove the Sobolev bounds (57) on the suitable time interval, we shall not proceed as in [START_REF] Sulem | On the continuous limit for a system of classical spins[END_REF] and [START_REF] Shatah | Schrödinger Maps and Anti-Ferromagnetic Chains[END_REF]. Indeed, they apply ∂ t to the equation, and obtain a wave equation of the form

∂ 2 t m + ∆ 2 m = ... .
Using the scales t = εt and z = εx, this becomes

∂ 2 t m + ε 2 ∆ 2 m = ... ,
for which the natural high order functional is

α ∈ N d 0 , |α| ≤ s R d |∂ t ∂ α z m| 2 + ε 2 |∆∂ α z m| 2 dz.
This functional controls ∂ t m in H s . Taking the cross product of the equation with m, we infer that

m × ∂ t m = -ε∆m -ε|∇m| 2 m + m 3 ε e 3 -ε m 3 ε 2 m,
hence the functional controls m 3 ε in H s , but only ε∆m in H s and not ∆m, which should be on the same level.

From [START_REF] Shatah | Schrödinger Maps and Anti-Ferromagnetic Chains[END_REF], we deduce that the gradient vector field

V ≡ ∇ρ 2ρ = 1 2 ∇ ln(ρ) satisfies ∂ t V + 2∇ 1 -ρ 1 + ρ U • V + ∆U = 0, since ∇(∇ • U ) = ∇(∆ϕ) = ∆U . Moreover, ∆V = 1 2 ∆∇ ln(ρ) = ∇∆ ln( √ ρ) = ∇ ∇ • ∇ √ ρ √ ρ = ∇ ∆ √ ρ √ ρ - |∇ √ ρ| 2 ρ = ∇ ∆ √ ρ √ ρ - |∇ρ| 2 4ρ 2 , thus ∇ ∆ √ ρ √ ρ = ∆V + ∇(|V | 2 ),
and we may rewrite the equation for U under the form

∂ t U + ∇ 1 -ρ 1 + ρ |U | 2 + ∇ ρ -1 ρ + 1 -∆V = ∇(|V | 2 ) -∇ 2ρ|V | 2 1 + ρ = ∇ 1 -ρ 1 + ρ |V | 2 .
Consequently, the complex-valued gradient vector field

Z ≡ U -iV verifies ∂ t Z -i∆Z + ∇ 1 -ρ 1 + ρ (Z • Z) + ∇ ρ -1 ρ + 1 = 0, where we have set, for Z, Z ∈ C d , Z • Z = d j=1 Z j Zj ∈ C. Therefore, we have obtained the augmented system                  ∂ t ρ + 2 1 -ρ 1 + ρ U • ∇ρ + 2ρ∇ • U = 0 ∇ρ = 2ρV ∂ t Z -i∆Z + ∇ 1 -ρ 1 + ρ (Z • Z) + ∇ ρ -1 ρ + 1 = 0. ( 98 
)
On the other hand, from the stereographic projection, we have

m = 2Re(Ψ) 1 + |Ψ| 2 , 2Im(Ψ) 1 + |Ψ| 2 , 1 -|Ψ| 2 1 + |Ψ| 2 ,
so that the energy has the expression

E(m) = R d 4 ∇ Ψ 1 + |Ψ| 2 2 + 4 ∇ 1 1 + |Ψ| 2 2 + 1 -|Ψ| 2 1 + |Ψ| 2 2 dx = R d 4ρ (1 + ρ) 2 |∇ϕ| 2 + 4 ρ(1 + ρ) 2 |∇ρ| 2 + 1 -ρ 1 + ρ 2 dx = R d 4ρ (1 + ρ) 2 |Z| 2 + 1 -ρ 1 + ρ 2 dx.
We now use the scaled variables θ = ε 2 t and z = εx, which transform (98) and the energy into

                 ∂ θ ρ + 2 1 -ρ 1 + ρ U ε • ∇ z ρ + 2ρ∇ z • U ε = 0 ∇ z ρ = 2ρV ε ∂ θ Z ε -i∆Z ε + ∇ z 1 -ρ 1 + ρ (Z ε • Z ε ) + 1 ε 2 ∇ z ρ -1 ρ + 1 = 0. (99) 
and

E(m) = ε 2-d R d 4ρ (1 + ρ) 2 |Z ε | 2 + 1 ε 2 1 -ρ 1 + ρ 2 dz = ε 2-d E ε (Ψ), with V ε ≡ V ε , U ε ≡ U ε , Z ε ≡ Z ε , ρ = 1 + εa.
Note that V ε is of order ε. By Theorem 8, we have local in time well-posedness for the system (99), say for 0 ≤ θ ≤ θ ε . We define θε ∈ (0, θ ε ] to be the maximal time for which, for any 0 ≤ θ ≤ θε ,

1 2 ≤ |Ψ(θ, •)| ≤ 2. ( 100 
)
Note that the conservation of energy already provides, for 0 ≤ θ ≤ θε ,

1 K 0 Z ε (θ) 2 L 2 + ρ(θ) -1 ε 2 L 2 ≤ R d 4ρ (1 + ρ) 2 |Z ε | 2 + 1 ε 2 1 -ρ 1 + ρ 2 dz = R d 4ρ in (1 + ρ in ) 2 |Z in ε | 2 + 1 ε 2 1 -ρ in 1 + ρ in 2 dz ≤ K 0 Z in ε 2 L 2 + ρ in -1 ε 2 L 2
where the constant K 0 is absolute. As we shall see, the expression of the energy in variables (ρ, Z ε ) suggests a good candidate for a high order functional, since the weights play the role of a suitable symmetrizer. 

d dθ R d 4ρ (1 + ρ) 2 |∂ α z Z ε | 2 + 4 ε 2 (1 + ρ) 4 [∂ α z ρ] 2 dz ≤ C(s, d) ρ -1 ε 2 H s + Z ε 2 H s 1 + ε ρ -1 ε 2 H s + ε Z ε 2 H s .
Remark 5 The nonlinear effect is rather weak in view of the factor ε in front of. This is related to the fact that the system (49) has a remarkable symmetry property. Indeed, in the regime we are considering, where ρ = 1 + εa this system is somehow close to

         ∂ θ a ε + 2 ε (1 + εa ε )∇ • u ε = O(ε 2 ) ∂ θ u ε + 1 ε ∇ a ε 2 + εa ε = ∂ θ u ε + 1 2ε (1 + εa ε )∇a ε + O(ε) = O(ε 2 ),
which can be symmetrized by using the constant coefficient symmetrizer 1 0 0 4 .

Proof. Let α ∈ N d 0 be such that 0 < |α| ≤ s. As a first step, we compute

d dθ R d 4ρ (1 + ρ) 2 |∂ α z Z ε | 2 dz = R d 8ρ (1 + ρ) 2 ∂ α z Z ε , ∂ θ ∂ α z Z ε dz + R d 4(1 -ρ) (1 + ρ) 3 |∂ α z Z ε | 2 ∂ θ ρ dz. (101) 
Applying ∂ α z to the third equation in (99) and reporting yields

R d 8ρ (1 + ρ) 2 ∂ α z Z ε , ∂ θ ∂ α z Z ε dz = R d 8ρ (1 + ρ) 2 ∂ α z Z ε , i∆∂ α z Z ε dz (102) - R d 8ρ (1 + ρ) 2 ∂ α z Z ε , ∂ α z ∇ z 1 -ρ 1 + ρ (Z ε • Z ε ) dz - 1 ε 2 R d 8ρ (1 + ρ) 2 ∂ α z Z ε , ∂ α z ∇ z ρ -1 ρ + 1 dz.
We integrate by parts the first integral, using that ∂ j ∂ α z Z ε , i∂ j ∂ α z Z ε = 0 pointwise for any 1 ≤ j ≤ d:

R d 8ρ (1 + ρ) 2 ∂ α z Z ε , i∆∂ α z Z ε dz = - R d 8(1 -ρ) (1 + ρ) 3 (∇ z ρ) • ∂ α z Z ε , i∇ z ∂ α z Z ε dz = -16 R d ρ(1 -ρ) (1 + ρ) 3 ∂ α z Z ε , iV ε • ∇ z ∂ α z Z ε dz. (103) 
Using (59) and Cauchy-Schwarz, we also have

- R d 8ρ (1 + ρ) 2 ∂ α z Z ε , ∂ α z ∇ z 1 -ρ 1 + ρ (Z ε • Z ε ) dz ≤ - R d 8ρ(1 -ρ) (1 + ρ) 3 ∂ α z Z ε , ∂ α z ∇ z (Z ε • Z ε ) dz + C(s, d) 1 -ρ 1 + ρ H s+1 Z ε • Z ε L ∞ + 1 -ρ 1 + ρ L ∞ Z ε • Z ε H s ≤ - R d 8ρ(1 -ρ) (1 + ρ) 3 ∂ α z Z ε , ∂ α z ∇ z (Z ε • Z ε ) dz + C(s, d) 1 + ε E ε (Ψ) + Z ε H s Z ε 2 H s . (104) 
Here, we have used that H s is an algebra and that ∇ z ρ = 2ρV ε . Using once again (59), we deduce

- R d 8ρ(1 -ρ) (1 + ρ) 3 ∂ α z Z ε , ∂ α z ∇ z (Z ε • Z ε ) dz ≤ - R d 16ρ(1 -ρ) (1 + ρ) 3 ∂ α z Z ε , Z ε • ∂ α z ∇ z Z ε dz + C(s, d) Z ε 3 H s .
Furthermore, by integration by parts, we infer

- R d 16ρ(1 -ρ) (1 + ρ) 3 ∂ α z Z ε , Z ε • ∂ α z ∇ z Z ε dz = - R d 16ρ(1 -ρ) (1 + ρ) 3 ∂ α z Z ε , Re(Z ε ) • ∇ z ∂ α z Z ε dz - R d 16ρ(1 -ρ) (1 + ρ) 3 ∂ α z Z ε , iIm(Z ε ) • ∇ z ∂ α z Z ε dz = 8 R d |∂ α z Z ε | 2 ∇ z • ρ(1 -ρ) (1 + ρ) 3 U ε dz + R d 16ρ(1 -ρ) (1 + ρ) 3 ∂ α z Z ε , iV ε • ∇ z ∂ α z Z ε dz.
Notice that the last integral is exactly the opposite of the right-hand side of (103) (this is due to the weight 4ρ/(1 + ρ) 2 for the ∂ α z Z ε part) and that the before last integral is, by Sobolev imbedding (s

> 1 + d/2), ≤ C(s, d) Z ε 2 H s ∇ z • U ε L ∞ ρ -1 L ∞ + U ε L ∞ ∇ z ρ L ∞ ≤ C(s, d)ε Z ε 3 H s .
Therefore, reporting these estimates into (103) and (102) provides

R d 8ρ (1 + ρ) 2 ∂ α z Z ε , ∂ θ ∂ α z Z ε dz ≤ C(s, d)(1 + ε Z ε H s ) Z ε 2 H s - 1 ε 2 R d 8ρ (1 + ρ) 2 ∂ α z Z ε , ∂ α z ∇ z ρ -1 ρ + 1 dz. (105) 
Inserting (105) into (101) gives

d dθ R d 4ρ (1 + ρ) 2 |∂ α z Z ε | 2 dz ≤ C(s, d)(1 + ε Z ε H s ) Z ε 2 H s + R d 4|∂ α z Z ε | 2 1 -ρ (1 + ρ) 3 ∂ θ ρ + 2∇ z • ρ(1 -ρ) (1 + ρ) 3 U ε dz - 1 ε 2 R d 8ρ (1 + ρ) 2 ∂ α z Z ε , ∂ α z ∇ z ρ -1 ρ + 1 dz ≤ C(s, d)(1 + ε Z ε H s ) Z ε 2 H s - R d |∂ α z Z ε | 2 16ρ (1 + ρ) 4 U ε • ∇ z ρ dz - 1 ε 2 R d 8ρ (1 + ρ) 2 ∂ α z Z ε , ∂ α z ∇ z ρ -1 ρ + 1 dz,
where we have used the first equation in (99) for the last inequality. By Sobolev imbedding, we have

|U ε • ∇ z ρ| ≤ Cρ||Z ε || L ∞ ||∇ z ρ|| L ∞ ≤ Cε||Z ε || H s ||(ρ -1)/ε|| H s ≤ Cε(||Z ε || 2 H s + ||(ρ -1)/ε|| 2 H s ), hence d dθ R d 4ρ (1 + ρ) 2 |∂ α z Z ε | 2 dz ≤ C(s, d)(1 + ε Z ε 2 H s + ε||(ρ -1)/ε|| 2 H s ) Z ε 2 H s - 1 ε 2 R d 8ρ (1 + ρ) 2 ∂ α z Z ε , ∂ α z ∇ z ρ -1 ρ + 1 dz. (106) 
It remains to study the last integral in (106):

- 1 ε 2 R d 8ρ (1 + ρ) 2 ∂ α z Z ε , ∂ α z ∇ z ρ -1 ρ + 1 dz = 1 ε 2 R d 16ρ (1 + ρ) 2 ∂ α z U ε , ∂ α z ∇ z ρ (1 + ρ) 2 dz.
Thanks to a new use of (59), there holds

∂ α z ∇ z ρ (1 + ρ) 2 - ∇ z ∂ α z ρ (1 + ρ) 2 L 2 = ∂ α z 1 (1 + ρ) 2 - 1 4 ∇ z ρ - 1 (1 + ρ) 2 - 1 4 ∇ z ∂ α z ρ L 2 ≤ C(s, d) 1 (1 + ρ) 2 - 1 4 H s ∇ z ρ L ∞ + ∇ z 1 (1 + ρ) 2 - 1 4 L ∞ ∇ z ρ H s-1 ≤ C(s, d)ε 2 ρ -1 ε 2 H s ,
where we have used the Sobolev embedding for the last inequality, since s > 1 + d/2. Thus, by Cauchy-Schwarz,

- 1 ε 2 R d 8ρ (1 + ρ) 2 ∂ α z Z ε , ∂ α z ∇ z ρ -1 ρ + 1 dz ≤ - 1 ε 2 R d 16ρ (1 + ρ) 4 ∂ α z U ε , ∂ α z ∇ z ρ dz + C(s, d) ρ -1 ε 2 H s ≤ 1 ε 2 R d 16ρ (1 + ρ) 4 ∂ α z (∇ z • U ε ), ∂ α z ρ dz + C(s, d) ρ -1 ε 2 H s ,
after integrating by parts. Inserting this into (106) yields

d dθ R d 4ρ (1 + ρ) 2 |∂ α z Z ε | 2 dz ≤ C(s, d) 1 + ε Z ε 2 H s + ε ρ -1 ε 2 H s Z ε 2 H s + C(s, d) ρ -1 ε 2 H s + 1 ε 2 R d 16ρ (1 + ρ) 4 ∂ α z (∇ z • U ε ), ∂ α z ρ dz. (107) 
Now, observe that, by (99),

∂ θ 4 ε 2 (1 + ρ) 4 [∂ α z ρ] 2 + 16 ε 2 (1 + ρ) 4 ∂ α z ρ, ∂ α z 1 -ρ 1 + ρ U ε • ∇ z ρ + ρ∇ z • U ε + 16 ε 2 (1 + ρ) 5 1 -ρ 1 + ρ U ε • ∇ z ρ + ρ∇ z • U ε [∂ α z ρ] 2 = 0.
Integrating and using (59), we obtain

d dθ R d 4 ε 2 (1 + ρ) 4 [∂ α z ρ] 2 dz + R d 16 ε 2 (1 + ρ) 4 ∂ α z ρ, 1 -ρ 1 + ρ U ε • ∇ z ∂ α z ρ dz + R d 16ρ ε 2 (1 + ρ) 4 ∂ α z ρ, ∇ z • ∂ α z U ε dz ≤ C(s, d) ρ -1 ε 2 H s + U ε 2 H s .
We integrate by parts:

R d 16 ε 2 (1 + ρ) 4 ∂ α z ρ, 1 -ρ 1 + ρ U ε • ∇ z ∂ α z ρ dz = R d 8(1 -ρ) ε 2 (1 + ρ) 5 U ε • ∇ z ([∂ α z ρ] 2 ) dz = - 8 ε 2 R d [∂ α z ρ] 2 ∇ z • (1 -ρ) (1 + ρ) 5 U ε dz.
Therefore,

d dθ R d 4 ε 2 (1 + ρ) 4 [∂ α z ρ] 2 dz ≤ - R d 16ρ ε 2 (1 + ρ) 4 ∂ α z ρ, ∇ z • ∂ α z U ε dz + C(s, d) ρ -1 ε 2 H s + Z ε 2 H s . (108) 
Combining ( 107) and (108), we see that the bad (singular) terms cancel out (due to the choice of the weights) and infer

d dθ R d 4ρ (1 + ρ) 2 |∂ α z Z ε | 2 + 4 ε 2 (1 + ρ) 4 [∂ α z ρ] 2 dz ≤ C(s, d) ρ -1 ε 2 H s + Z ε 2 H s 1 + ε ρ -1 ε 2 H s + ε Z ε 2 H s .
The proof of Proposition 5 is complete.

Proof of Theorem 10. The uniform bounds (57) for 0 ≤ θ ≤ θ * , where θ * > 0 does not depend on ε, come directly from Proposition 5 and arguing as in [START_REF] Béthuel | On the linear wave regime of the Gross-Pitaevskii equation[END_REF] Section 4. For the comparison result with the free wave equation, we need to estimate the right-hand side of (56) in H s-2 . Let us observe that for the (GP) equation, [START_REF] Zhidkov | Korteweg-de-Vries and Nonlinear Schrödinger Equations: Qualitative Theory[END_REF] becomes

       ∂ t A ε + 2∇ z • U ε = -2∇ z • (A ε U ε ) ∂ t U ε + 1 2 ∇ z A ε = -ε∇ z |U ε | 2 + ∆ z √ 1 + εA ε √ 1 + εA ε .
The H s-2 estimate in [START_REF] Béthuel | On the linear wave regime of the Gross-Pitaevskii equation[END_REF] Section 4 then follows noticing that ||∇ z • G|| H s-2 ≤ K||G|| H s-1 and ||∇ z g|| H s-2 ≤ K||g|| H s-1 for any s ∈ R, as can be seen using Fourier transform (K depends only on s and d). For the equation for U ε in (56), we may use this fact since the right-hand side is a gradient and get

∂ t U ε + 1 2 ∇ z A ε H s-2 ≤ K(s, d) - ε 2 A ε |U ε | 2 2 + εA ε + ε 3 |∇ z A ε | 2 2(1 + εA ε )(2 + εA ε ) + εA 2 ε 2(2 + εA ε ) + ε∆ z √ 1 + εA ε √ 1 + εA ε H s-1
.

Since s > 1 + d/2, H s-1 is an algebra and the uniform bounds (57) imply

∂ t U ε + 1 2 ∇ z A ε H s-2 ≤ K(s, d) ε 2 Λ 3 + ε 2 Λ 2 + εΛ ≤ K(s, d)ε(Λ + Λ 2 ),
since K 0 (s, d)εΛ ≤ 1. For the equation for A ε in (56), we no longer have a source term in divergence form.

We then modify the argument by invoking the fact that H s-2 ∩ L ∞ is an algebra (see, for instance, [START_REF] Taylor | Partial Differential Equations[END_REF]) as soon as s -2 ≥ 0. Here, s > 1 + d/2 ≥ 3/2 and s is an integer, thus s ≥ 2. As a consequence,

A ε ∇ z • U ε H s-2 ≤ K A ε H s-2 ∩L ∞ ∇ z • U ε H s-2 ∩L ∞ ≤ KΛ 2
using (57) and the Sobolev imbedding

∇ z • U ε ∈ H s-1 ֒→ L ∞ (since s -1 > d/2
). Similarly, one has

A ε 2 + εA ε U ε • ∇ z A ε H s-2 ≤ KΛ 3 ,
which yields, using once again that K 0 (s, d)εΛ ≤ 1,

∂ t A ε + 2∇ z • U ε H s-2 ≤ K(s, d)εΛ 2 .
Once one has these estimates, the comparison result with the free wave equation ( 58) can be shown exactly as in [START_REF] Béthuel | On the linear wave regime of the Gross-Pitaevskii equation[END_REF] Section 4, thus we skip the details.

5.2 Proof of the (mKdV)/(mKP-I) limit for the Landau-Lifshitz equation

As for the proof of Theorems 6 and 7, the proof is divided into two steps.

Step 1: Construction of an approximate solution. This time, the expansion in ε is done on the system (51) (instead of what we did with the Madelung system (83) for the (NLS) equation). To construct an approximate solution (A app ε , U app ε ) = (A 0 , U 0 ) + ε(A 1 , U 1 ) + ε 2 (A 2 , U 2 ), the formal computation is very similar to the one in section 4.1, since the quasilinear terms in [START_REF] Taylor | Partial Differential Equations[END_REF] do not perturb the leading order terms, thus we skip it. However, since it is important that the vector field Z is a gradient, we shall impose that U app ε is a gradient. We thus choose A 0 (τ ) ≡ ζ(τ ), 2U 0 (τ ) ≡ ∇ z ∂ -1 z1 ζ(τ ), U 1 = U 2 = 0, A 1 (τ ) ≡ A 2 0 (τ )/2 = ζ 2 (τ )/2, so that A 1 (τ ) -2U 1 1 (τ ) = A 2 0 (τ )/2 = ζ 2 (τ )/2, and finally

A 2 (τ ) ≡ 1 4 ζ 3 + 1 2 ∂ 2 z1 ζ(τ ) + ∆ z ⊥ ∂ -2 z1 ζ ∈ L ∞ ([0, τ * ], H s+3 ).
The approximate solution then verifies, uniformly for 0 ≤ θ ≤ τ * /ε,

                             ∂ θ A app ε - 1 ε ∂ z1 A app ε - 2εA app ε 2 + εA app ε U app,1 ε ∂ z1 A app ε + ε 2 U app,⊥ ε • ∇ z ⊥ A app ε + 2 ε (1 + εA app ε ) ∂ z1 U app,1 ε + ε 2 ∇ z ⊥ • U app,⊥ ε = O H s+1 (ε 2 ) ∂ θ U app ε - 1 ε ∂ z1 U app ε -∇ z εA app ε 2 + εA app ε [U app,1 ε ] 2 + ε 2 |U app,⊥ ε | 2 + 1 ε ∇ z A app ε 2 + εA app ε -∇ z ∂ 2 z1 √ 1 + εA app ε + ε 2 ∆ z ⊥ √ 1 + εA app ε √ 1 + εA app ε + ε 2 ∇ z (∂ z1 A app ε ) 2 + ε 2 |∇ z ⊥ A app ε | 2 (1 + εA app ε )(2 + εA app ε ) = O H s (ε 2 ).
Moreover, we have

A in ε -A ε (θ = 0) H s+3 + U in ε -U app ε (θ = 0) H s+3 ≤ Cε 2 .
As a consequence, denoting ρ app ε ≡ 1 + εA app ε ,

Z app ε ≡ (U app,1 ε , εU app,⊥ ε ) - i 2ρ app ε (∂ z1 ρ app ε , ε∇ z ⊥ ρ app ε ),
we infer

                 ∂ θ ρ app ε - 1 ε ∂ z1 ρ app ε + 2 1 -ρ app ε 1 + ρ app ε Re(Z app ε ) • ∇ ε ρ app ε + 2ρ app ε ∇ ε • Re(Z app ε ) = O H s+1 (ε 5 ) ∇ ε ρ app ε = 2ρ app ε Im(Z app ε ) ∂ θ Z app ε - 1 ε ∂ z1 Z app ε -i∆ ε Z app ε + ∇ ε 1 -ρ app ε 1 + ρ app ε (Z app ε • Z app ε ) + 1 ε 2 ∇ ε ρ app ε -1 ρ app ε + 1 = O H s (ε 2 ), (109) 
where ∇ ε ≡ t (∂ z1 , ε∇ z ⊥ ) and ∆ ε ≡ [∇ ε ] 2 = ∂ 2 z1 + ε 2 ∆ z ⊥ . In addition, ε -1 ρ in ε -ρ app ε (θ = 0)

H s+3 + Z in ε - Z app ε (θ = 0) H s+3 ≤ Cε 2 .
Step 2: Nonlinear stability. Let (A ε = (ρ ε -1)/ε, U ε ) solve (54) (for which we know local well-posedness). We set ρε ≡ ρ ε ρ app

ε Zε ≡ (U 1 ε , εU ⊥ ε ) - i 2ρ ε (∂ z1 ρ ε , ε∇ z ⊥ ρ ε ) -Z app ε ,
so that there holds

                                           ∂ θ ρε - 1 ε ∂ z1 ρε + 2 1 -ρ ε 1 + ρ ε Re(Z ε ) • ∇ ε ρε + 2 ρε ρ app ε 1 -ρ app ε 1 + ρ app ε Re(Z app ε ) • ∇ ε ρ app ε -2 ρε ρ app ε 1 -ρ app ε 1 + ρ app ε Re(Z app ε ) • ∇ ε ρ app ε + 2ρ ε ∇ ε • Re( Zε ) = O H s+1 (ε 5 ) ∇ ε ρ ε ρ ε = ∇ ε ρ app ε ρ app ε + ∇ ε ρε ρε = 2Im(Z app ε ) + 2Im( Zε ) ∂ θ Zε - 1 ε ∂ z1 Zε -i∆ ε Zε + ∇ ε 1 -ρ ε 1 + ρ ε (2 Zε • Z app ε + Zε • Zε ) + ∇ ε 1 -ρ ε 1 + ρ ε - ρ app ε -1 ρ app ε + 1 Z app ε • Z app ε + 1 ε 2 ∇ ε ρ ε -1 ρ ε + 1 - ρ app ε -1 ρ app ε + 1 = O H s (ε 2 ). ( 110 
)
For the initial data, we have by construction ε -1 ρε (θ = 0) H s+3 + Zε (θ = 0) H s+3 ≤ Cε 2 .

We define here again 0 < θε ≤ |ln ε| to be the maximal time for which 

d dθ R d 4ρ ε (1 + ρ ε ) 2 |∂ α z Zε | 2 + 4ρ app ε ε 2 (1 + ρ ε ) 4 [∂ α z (ρ ε -1)] 2 dz ≤ C ε 4 + ρε -1 ε 2 H s + Zε 2 H s . (111) 
Proof. We shall assume α = 0, the case α = 0 could be treated similarly, or using the conservation of the energy combined with the conservation of R d ζ 2 dz. The computations are very close to those for Proposition 5, thus we shall only emphasize on the differences. Let us observe that the before last term in the equation for Zε is easily estimated in H s , in view of the equality 2Im( Zε ) = ∇ ε ρε ρε :

∇ ε 1 -ρ ε 1 + ρ ε - ρ app ε -1 ρ app ε + 1 Z app ε • Z app ε H s = ∇ ε 2ρ app ε (1 -ρε ) (1 + ρ ε )(ρ app ε + 1) Z app ε • Z app ε H s ≤ C ρε -1 H s + Zε H s .
Similarly to (102) and ( 103), one has 

R d 8ρ ε (1 + ρ ε ) 2 ∂ α z Zε , ∂ θ ∂ α z Zε dz ≤ R d 8ρ ε (1 -ρ ε ) (1 + ρ ε ) 3 ∂ z1 ρ ε |∂ α z Zε | 2 dz -16 R d ρ ε (1 -ρ ε ) (1 + ρ ε ) 3 ∂ α z Zε , i(Im(Z app ε ) + Im( Zε )) • ∇ ε ∂ α z Zε dz - R d 8ρ (1 + ρ) 2 ∂ α z Zε , ∂ α z ∇ ε 1 -ρ ε 1 + ρ ε (2 Zε • Z app ε + Zε • Zε ) dz - 1 ε 2 R d 8ρ (1 + ρ) 2 ∂ α z Zε , ∂ α z ∇ ε ρ ε -1 ρ ε + 1 - ρ app ε -1 ρ app ε + 1 dz +Cε 2 Zε H s + C ρε -1 ε 2 H s + Zε
- R d 8ρ ε (1 + ρ ε ) 2 ∂ α z Zε , ∂ α z ∇ ε 1 -ρ ε 1 + ρ ε (2 Zε • Z app ε + Zε • Zε ) dz ≤ - R d 16ρ ε (1 -ρ ε ) (1 + ρ ε ) 3 ∂ α z Zε , Z app ε • ∂ α z ∇ ε Zε + Zε • ∂ α z ∇ ε Zε dz + C ρε -1 2 H s + Zε 2 H s ≤ - R d 16ρ ε (1 -ρ ε ) (1 + ρ ε ) 3 ∂ α z Zε , Re(Z app ε + Zε ) • ∂ α z ∇ ε Zε dz + R d 16ρ ε (1 -ρ ε ) (1 + ρ ε ) 3 ∂ α z Zε , iIm(Z app ε + Zε ) • ∂ α z ∇ ε Zε dz + C ρε -1 2 
H s + Zε 2 H s ≤ R d 16ρ ε (1 -ρ ε ) (1 + ρ ε ) 3 ∂ α z Zε ,
R d 8ρ ε (1 + ρ ε ) 2 ∂ α z Zε , ∂ θ ∂ α z Zε dz ≤ - 1 ε 2 R d 8ρ ε (1 + ρ ε ) 2 ∂ α z Zε , ∂ α z ∇ ε ρ ε -1 ρ ε + 1 - ρ app ε -1 ρ app ε + 1 dz + C ε 4 + ρε -1 ε 2 H s + Zε 2 H s . (112) 
Since, in view of the transport equation on ρ ε ,

∂ θ 8ρ ε (1 + ρ ε ) 2 = 8 (1 + ρ ε ) 3 × 1 -ρ ε ε × ε∂ θ ρ ε
is uniformly bounded by some absolute constant K 0 for 0 ≤ θ ≤ θε , we deduce from (112)

d dθ R d 4ρ ε (1 + ρ ε ) 2 ∂ α z Zε , ∂ α z Zε dz ≤ - 1 ε 2 R d 8ρ ε (1 + ρ ε ) 2 ∂ α z Re( Zε ), ∂ α z ∇ ε 2ρ app ε (ρ ε -1) (ρ ε + 1)(ρ app ε + 1) dz + C ε 4 + ρε -1 ε 2 H s + Zε 2 H s .
Here, we see that the term in bracket in the integral is slightly different from what we had in (106). Thanks to a new use of (59), we then get, as for (107), keeping aside the terms where we put ∂ α z ∇ ε on each one of the factors in Consequently, by using another integration by parts,

ρ app ε ρ app ε +1 × (ρ ε -1) × 1 (ρε+1) , d dθ R d 4ρ ε (1 + ρ ε ) 2 ∂ α z Zε , ∂ α z Zε dz ≤ - 1 ε 2 R d 16ρ ε ρ app ε (1 + ρ ε ) 3 (ρ app ε + 1) ∂ α z Re( Zε ), ∂ α z ∇ ε ρε dz + 1 ε 2 R d 16ρ ε ρ app ε (ρ ε -1) (1 + ρ ε ) 2 (ρ app ε + 1) ∂ α z Re( Zε ), ∂ α z ∇ ε ρ ε (1 + ρ ε ) 2 dz - 1 ε 2 R d 16ρ ε (ρ ε -1) (1 + ρ ε ) 3 ∂ α z Re(
d dθ R d 4ρ ε (1 + ρ ε ) 2 ∂ α z Zε , ∂ α z Zε dz ≤ C ε 4 + ρε -1 ε 2 H s + Zε 2 H s + 16 ε 2 R d ρ ε ρ app ε (1 + ρ ε ) 4 ∂ α z ∇ ε • Re( Zε ), ∂ α z ρε dz. (113) 
Now, observe that, by (109),

∂ θ 4ρ app ε ε 2 (1 + ρ ε ) 4 [∂ α z ρε ] 2 + 16ρ app ε ∂ θ ρ ε ε 2 (1 + ρ ε ) 5 [∂ α z ρε ] 2 - 4∂ θ ρ app ε ε 2 (1 + ρ ε ) 4 [∂ α z ρε ] 2 + 16ρ app ε ε 2 (1 + ρ ε ) 4 ∂ α z ρε , ∂ α z - 1 2ε ∂ z1 ρε + 1 -ρ ε 1 + ρ ε Re(Z ε ) • ∇ ε ρε + ρε ∇ ε • Re( Zε ) (114) 
+ ρε ρ app ε 1 -ρ ε 1 + ρ ε Re(Z ε ) - 1 -ρ app ε 1 + ρ app ε Re(Z app ε ) • ∇ ε ρ app ε + O H s+1 (ε 5 ) = 0.
For 0 ≤ θ ≤ θε , we have 

∂ θ ρ ε L ∞ = - 1 ε ∂ z1 ρ ε + 1 -ρ ε 1 + ρ ε U ε • ∇ ε ρ ε + ρ ε ∇ ε • U ε L ∞ ≤ C,
R d 16ρ app ε (1 -ρ ε ) ε 2 (1 + ρ ε ) 5 ∂ α z ρε , Re(Z ε ) • ∇ ε ∂ α z ρε dz = - 8 ε 2 R d [∂ α z ρε ] 2 ∇ ε • ρ app ε (1 -ρ ε ) (1 + ρ ε ) 5 Re(Z ε ) dz ≥ -Cε ρε -1 ε 2 H s .
Therefore, by another integration by parts,

d dθ R d 4ρ app ε ε 2 (1 + ρ ε ) 4 [∂ α z ρε ] 2 dz ≤ R d 16ρ app ε ρε ε 2 (1 + ρ ε ) 4 ∂ α z ∇ ε ρε , ∂ α z Re( Zε ) dz + C ε 4 + ρε -1 ε 2 H s + Zε 2 H s . (115) 
Combining ( 113) and (115) provides, in view of the cancellation of the bad singular terms,

d dθ R d 4ρ ε (1 + ρ ε ) 2 |∂ α z Zε | 2 + 4ρ app ε ε 2 (1 + ρ ε ) 4 [∂ α z ρε ] 2 dz ≤ C ε 4 + ρε -1 ε 2 H s + Zε 2 H s ,
which is the desired inequality.

Since at θ = 0, ρε = 1 + O H s (ε 3 ) and Zε = O H s (ε 2 ), (111) and the Gronwall inequality implies, for 0 ≤ θ ≤ θε , ρε (θ) -1 ε

2 H s + Zε (θ) 2 
H s ≤ Cε 4 e Cθ . This proves that if µ < 1/(2C) and ε ≤ ε 0 (µ, C) is sufficiently small, then θε > µ|ln ε|. The end of the proof of Theorem 9 then follows the lines of section 4.2 thus we omit it. To compare A ε and A app ε , we write

A ε = ρ ε -1 ε = ρ app ε ρε -1 ε = ρ app ε -1 ε + ρ app ε ρε -1 ε = ζ(εθ) + ε 2 ζ 2 (εθ) + O H s (ε 2 e θ/µ ),
as wished.

y) dθ ǫdy 1 -

 1 2ǫu(θ ′ y (y), y) = Z( θ,y) Z(θ,y) ǫ∂ z u in (y) dy + Z( θ,y) Z(θ,y) ǫ m θ ′ y (y) 0 ǫ∂ τ ∂ z u(θ, y) dθ dy + Z( θ,y) Z(θ,y) ∂ z u in (y) + ǫ m θ ′ y (y) 0 ∂ τ ∂ z u(θ, y) dθ 2ǫ 2 u(θ ′ y (y), y)dy 1 -2ǫu(θ ′ y (y), y).|G in |(y) ǫdy 1 -2ǫu app,1 ε (θ ′ y (z), y) + C y Z(θ,y) ǫ m |ln ǫ| 0 |∂ τ G|(θ, y) dθ ǫdy 1 -2ǫu app,1 ε (θ ′ y (y), y)

  sup 0≤θ≤|ln ǫ| bε (θ) L 2 ≤ C ǫ| ln ǫ| and sup 0≤θ≤|ln ǫ| bε (θ) L ∞ ≤ Cǫ.

II L 2 ≤

 2 which has a structure similar to (90). Arguing as for (93), we deduce ∂ z bε (θ, z) = By (94), we see that the exponential is equal to 1 + O(ǫ) uniformly for 0 ≤ θ ≤ θ ≤ |ln ǫ| and z. To estimate II, we bound bε by O(ǫ) in L ∞ and use once again the change of variable y = Z( θ, Z(θ, •) -1 (z)), which gains a factor ǫ, and the convolution estimate to infer sup 0≤θ≤|ln ǫ| Cǫ 2 |ln ǫ|/ǫ ≤ Cǫ.

sup 0≤θ≤|ln ǫ| bε (θ) L 2 ≤ 1 0

 21 C ǫ|ln ǫ| and sup 0≤θ≤|ln ǫ| bε (θ) L ∞ ≤ Cǫ, hence for any α ∈ N d-with |α| ≤ s + 1 sup 0≤θ≤|ln ǫ| ∂ α z ⊥ bε (θ) L 2 ≤ C ǫ| ln ǫ| and sup 0≤θ≤|ln ǫ|

Proposition 5

 5 Let s > 1 + d/2. There exists C = C(s, d), depending only on s and d, such that, for any α ∈ N d 0 with 0 < |α| ≤ s, there holds

Proposition 6

 6 ) -1 H s ≤ ε, so that ρ ε (θ) -1 H s = ρ app ε (θ)ρ ε (θ) -1 H s ≤ K ρ app ε (θ) H s ρε (θ) -1 H s + K ρε (θ) H s ρ app ε (θ) -1 H s ≤ Cε for 0 ≤ θ ≤ θε .Paralleling the proof of Proposition 5, we shall now prove the following result, where the weight for the potential part has an extra ρ app ε compared to the weight in Proposition 5. If s > 1 + d/2, there exists C, depending only on Λ, s and d, such that, for any α ∈ N d 0 with |α| ≤ s and any 0 ≤ θ ≤ θε , there holds

2 H 2 H 2 H

 222 s , using an integration by parts for the transport term. The first term is ≤ Cε Zε s , and the before last is ≤ Cε 4 + C Zε s . Concerning the third term, arguing as for (104) yields

  be independent of τ . Since U 0 (resp. U 1 ) solves (KdV) (resp. linearized (KdV)), it is (formally) true that R U 0 dz (resp. R U 1 dz) is conserved. For U 2 , assuming the conservation of R U 2 dz, we deduce from (19) that

  • ∇ ε |∂ α z Zε | 2 and an integration by parts to bound the first integral. Since here again the terms involving Im(Z app ε + Zε ) cancel out, we deduce

	where we use that 2 ∂ α z Zε , Re(Z app ε	+ Zε ) • ∂ α z ∇ ε	Zε = Re(Z app ε	+ Zε )
				2 H s + Zε	2 H s ,
			50	

iIm(Z app ε + Zε ) • ∂ α z ∇ ε Zε dz + C ρε -1

  The last integral is easily estimated byC|| ρε-1 ε || 2 H s + || Zε || 2 H s , since ρ app ε -1 = O H s+1 (ε) and ||ρ ε -1|| L ∞ ≤ C||ρ ε -1|| H s by Sobolev imbedding. In the second integral, we replace ∇ ε ρ ε = ρ app ε ∇ ε ρε -ρε ∇ ε ρ app ε = ρ app ε ∇ ε ρε -ρε O H s(ε) and infer from (59) that it is

				Zε ), ∂ α z ∇ ε	ρ app ε ρ app ε + 1	dz + C ε 4 +	ρε -1 ε	2 H s	+ Zε	2 H s .
	≤	1 ε 2	R d	16ρ ε [ρ app ε ] 2 (ρ ε -1) (1 + ρ ε ) 4 (ρ app ε + 1)	∂ α z Re( Zε ), ∂ α z ∇ ε ρε dz + C ε 4 +	ρε -1 ε	2 H s + Zε

2

H s .

  and there also holds||∂ θ ρ app ε || L ∞ = O(ε) uniformly for θ ≤ τ * /ε. Furthermore, by Cauchy-Schwarz, 1 ε 2 ∂ α z ρε , ∂ α z (O H s+1 (ε 5 )) L 1 ≤ Cε 4 ρε -1Integrating (114) in z ∈ R d , integrating by parts for the singular transport term and using (59), we then obtaind dθ R d 4ρ app ε ε 2 (1 + ρ ε ) 4 [∂ α z ρε ] 2 dz + -ρ ε ) ε 2 (1 + ρ ε ) 5 ∂ α z ρε , Re(Z ε ) • ∇ ε ∂ α z ρε dz + (1 + ρ ε ) 4 ∂ α z ρε , ∇ ε • ∂ α z Re( Zε ) dzThe first integral has absolute value≤ C||(ρ ε -1)/ε|| 2 H s since ||∂ z1 ρ app ε || L ∞ + ||∂ z1 ρ ε || L ∞ ≤ Cε for 0 ≤ θ ≤ θε .For the second integral, we integrate by parts:

								ε	H s ≤ C	ρε -1 ε	2 H s + Cε 8
	and									
	1 ε 2 ∂ α z ρε , ∂ α z	ρε ρ app ε	1 -ρ ε 1 + ρ ε	Re(Z ε ) -	1 -ρ app ε 1 + ρ app ε	Re(Z app ε ) • ∇ ε ρ app ε	L 1 ≤ Cε	ρε -1 ε	2 H s + Cε Re( Zε )	2 H s .
										R d	4 ε 2 ∂ z1	ρ app ε (1 + ρ ε ) 4 [∂ α z ρε ] 2 dz
	+	R d	16ρ app ε (1 R d ε 2 ≤ C ε 4 + 16ρ app ε ρε	ρε -1 ε	2 H s	+ Re( Zε )	2 H s .

If d ≥

2, we actually have ∇z⊥ ∂ -1 z 1 A in ∈ L 2 (R d ) and ∇z ⊥ A in ∈ H s (R d), which is sufficient to guarantee the continuity in time for ζ.

It seems that there is a small mistake in the statement of the Theorem (convergence) in[START_REF] Shatah | Schrödinger Maps and Anti-Ferromagnetic Chains[END_REF], p.

Indeed, from the formulas on p. 310, it is not always true that "G ′′ (p * )ζ = 0" at the initial time, therefore at t = 0, we do not have "∂tp * (0) = ιB k ∂ k u(0)" (which would mean for[START_REF] Zakharov | Multi-scale expansion in the theory of systems integrable by the inverse scattering transform[END_REF] ∂tm = 0 at t = 0) but ∂tp * (0) = ιB k ∂ k u(0) + ι lim ǫ→0 [ǫ -1 G(uǫ(0))].Furthermore, it is not clear that the convergences in[START_REF] Shatah | Schrödinger Maps and Anti-Ferromagnetic Chains[END_REF] are strong in H ℓ (R d ) since they follow from a compactness argument.
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