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HIGHLIGHTS

» Original measurements of liquid dispersion in a counter-current packed bed equipped with a modern high efficiency packing.
» Using a high resolution gamma ray system in a column of large size diameter.

» The development of closure laws that further enable CFD modeling which takes dispersion into account.

» Comparison between experiments and CFD calculations.
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1. Introduction

ABSTRACT

In order to optimize the design of gas-liquid packed columns used in distillation or in absorption
processes, it is of high importance to be able to predict liquid dispersion. Indeed, dispersion phenomena
will impact the choice and design of liquid distributing devices and the height of the packed beds.
For this, one mainly relies on industrial feedback and on some experimental results obtained at
laboratory scale which cannot be directly extrapolated since their geometric characteristics are at least
one order of magnitude less than industrial columns in terms of columns diameter and height. To fill
this gap CFD simulation tools should be more used since they can apply to any scale. However the latter
option requires adequate modeling in particular for dispersion forces which are little studied due to the
lack of data for validation. The present paper aims at developing, from original dispersion experimental
measurements, closure laws that can be implemented in CFD codes. Liquid spreading from a source
point has been investigated for Mellapak 250.X packing via gamma-ray tomography measurements.
Closure laws are discussed from a simple 1D model which enables to go further within the Eulerian
two-fluid framework with original user-defined functions and associated models that take into account
liquid dispersion in the packed bed. The latter is modeled as a porous medium with appropriate closure
laws. The comparison between experiments and CFD results shows that the present approach is
adequate and should be further developed in order to be more precise and adapted to more packings.

studies are dedicated to new solvents identification, with the
primary goal of reducing Opex, but less work deals with Capex

CO, capture and storage (CCS) is known to be a possible
technology for carbon mitigation. IEA (2009) considers that it
could handle up to 19% of CO, emissions. Post-combustion
capture using chemical solvents is one promising solution, espe-
cially when applied to coal-fired power plants, the largest
industrial CO, emitters. However, the deployment of this tech-
nology requires process optimization with associated cost reduc-
tion, both in terms of operational expenditures (Opex) and capital
expenditures (Capex). As underlined by Raynal et al. (2011), many
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reduction. The latter objective can be achieved by developing new
high performance packings (Alix and Raynal, 2008; Alix et al.,
2011; Menon and Duss, 2011) and/or by achieving the most
adequate design of packed columns. Such an optimum design is
linked to the choice of packing, the number of packed beds and
their height, the interaction between gas and liquid distributors
with the gas/liquid flow within the packed bed. All these technical
choices are strongly linked to liquid dispersion and gas/liquid
interaction in the packed bed but it is today mostly given by
industrial experience and little comes from more scientific expla-
nations and deterministic calculations. To take all these phenom-
ena into account for application to very large scale absorbers (CO,
absorber are expected to be in the range of 8-14 m in diameter



one order of magnitude above what can be done at laboratory
scale), large scale two-fluid CFD simulations seem an appropriate
tool. Some studies have started to focus on such aspects (Raynal
and Royon-Lebeaud, 2007; Lappalainen et al., 2009a), but they
either do not take into account liquid dispersion or are restricted
to catalytic beds which geometry significantly differs from mod-
ern packings. Present article deals with liquid dispersion in
modern high efficiency metallic packings.

Recent experiments performed to characterize the dispersion
of liquid in a counter-current gas-liquid packed column filled
with structured packings are briefly reported and discussed in
part 2. We then present the hydrodynamic model used to
simulate the flow in the column (part 3). It is an Eulerian two-
fluid model in which we include a specific model for liquid
dispersion. The global model is discussed to analyze the physics
associated to the various closure laws. We also discuss the
consistency of the model as well as the connection between
experiments and modeling. In part 4 experimental results and
numerical simulations are compared.

2. Experiments

In order to study the liquid dispersion, liquid distribution
measurements have been performed with a high resolution tomo-
graphic system in a 400 mm diameter column of 1.5 m in height.
The gas/liquid packed column is filled with Mellapak 250.X struc-
tured packing (geometric area per unit volume ag=250 m?/m>,
porosity £¢=0.98 and angle of the flow channels with horizontal
direction 0=60°). It is operated in the counter-current flow mode.
Liquid is injected at top of the column in the central part of the
column and counter-current gas flow is applied using a diffuser at
the bottom of the column. A precise description of the experimental
set-up is given in Fourati et al. (2012). Adapted liquid flow
distributors have been used in order to generate the non-uniform
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liquid flow distribution at the top of the packed bed and tomo-
graphic liquid hold-up (also named liquid saturation 0,) maps have
been measured at different axial positions along the bed height. A
sketch of the experimental set-up with the four axial positions,
denoted z; (i=1 to 4) at which tomography measurements have
been performed, is given in Fourati et al. (2012). The distances from
the liquid inlet are z;=32cm, z;=48cm, z3=74cm and
z4=110.5 cm. Liquid hold-up measurements were carried out over
a large range of experimental conditions: the liquid load being
varied from 16 m/m?/h to 56 m3/m?/h and the gas kinetic factor
from 20% to 80% of its flooding value. As discussed in Fourati et al.
(2012) tomography allows to measure liquid hold-up with an
absolute error of 3%. Pressure drop measurements, reported and
discussed in Fourati et al. (2012), are provided, when necessary, in
the present discussion.

We also tested two couples of fluids: air-water or air-mono-
ethanolamine with 30% mass fraction in water.

In the present study we discuss air-water experiments and focus
on low liquid load (g.=16 m*/m?/h) and gas kinetic factors Fs equal
to 20% and 60% of the flooding condition F- as determined from
experiments (Fs=20%Fc=0.74 Pa®® and Fs=60%F-=2.21 Pa®>).

Fig. 1 shows liquid retention maps obtained at the different
axial positions along the bed for a liquid flow rate of g =16 m?/
m?/h and a gas F-factor Fs=p¥?U¢s equal to 0.74 Pa®5 in case A
and to 2.21 Pa® in case B. One observes that the liquid dispersion
seems quite fast in the structured packing and that a homoge-
neous flow is almost achieved at position z4 (1.1 m below liquid
injection) whatever the gas flow rate. Positions z; and z are
located in the first packing element. This is the reason why,
at these positions, liquid distribution remains aligned with the
solid metal sheets of the packing for both cases. For down-
stream positions (z3 and z,), the liquid distribution is already
isotropic. The liquid volume fraction still varies a lot at small
scale, as liquid flows in films located along the solid matrix but
the spreading of the liquid shows no significant heterogeneities at
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Fig. 1. Liquid hold-up maps obtained by tomography for two runs with air and water in Mellapak 250.X, g, =16 m*/m?/h, a/case (A) Fs=0.74 Pa®°, b/case (B) Fs=2.21 Pa®>,

(Positions from left to right: z;, z,, z3 and z,).



large scale. We can thus consider a homogenized approach for
modeling at large scale.

Liquid spread factors have also been determined from these
maps in order to characterize liquid dispersion. The spread factor, D;,
is a length scale factor related to dispersion in a transport model for
the liquid. It is introduced in a simple advection—diffusion transport
equation for the liquid flow rate q; averaged at a meso-scale
as discussed by Edwards et al. (1999) for structured packings.
In cylindrical coordinates, this equation is written as follows:

o _p 10 (. 2q
oz _Drrar (r or M

The local liquid flow rate q, is not measured directly.
The liquid hold up being measured by tomography, we obtain
q. by using an experimental correlation obtained in homogeneous
flows that gives 0; = kq;°# (Eq. (6) in Fourati et al. (2012)). Then,
the comparison between the experimental results and a theore-
tical solution of q;(zr), considering the spreading of liquid from a
point source within an infinite packed-bed, gives access to the
spread factor (Fourati et al., 2012). We found that, changing the
liquid and gas flow rates, the dispersion behavior remains
identical whatever the flow conditions in the structured packing.
For each run, we found a unique spread factor D,=3.7 mm.
We discuss in part 4 how such a dispersion coefficient D,,
evaluated from Eq. (1), can be further used as a closure law in
an Euler/Euler approach based on primary physical balances
enabling accurate 3D simulations of complete columns.

3. Numerical model

We develop an Euler-Euler model solving local mass and
momentum balances in gas and liquid phases to predict the
hydrodynamics in packed columns. The transport equations deal
with average quantities that are volume-averaged over a repre-
sentative elementary volume V with a length scale far smaller
than the column size but large enough to give rise to well
behaved averaged values.

The volume averaging procedure was well established by
Whitaker and his collaborators in the framework of porous media
(see as a starting point: Whitaker, 1973; Whitaker, 1986; and as a
general reference: Whitaker, 1999). This averaging was also
discussed by Liu (1999) and Liu and Masliyah (in Vafai, 2005) in
order to prepare proposals for closure laws adapted to inertial
two-phase flows in packings with high porosities. Several authors
also discussed precisely the averaging for trickle-bed geometries
taking into account or not partial wetting of the bed (Attou et al.,
1999; Iliuta and Larachi, 2005). Averaging for periodic packings
and monoliths was also discussed by Mewes et al. (1999).

In the present study, we consider isothermal and incompres-
sible flows, where both phases are Newtonian, with no mass
transfer at the gas-liquid interface and no chemical reaction.

3.1. Primary equations

3.1.1. Geometric relations

The averaging procedure introduces the local volume fractions
of each phases «, and their saturations 60,. They are defined as
o=Vi/V and 0,=V}/(Vg+ VL) where Vj is the volume occupied by
phase k(=G or L) and V includes the volume of solid. Both
quantities are related by o, =¢&0, through the porosity defined as
e=(Ve+W)IV.

Due to the absence of overlapping of the phases, the geometric
relation writes

Oc+60L=1 )

3.1.2. Mass balances
In each phase the mass balance is written:

0 = —
5(aekp,<)+ V.(eOp U =0 k=L G A3)

where U)k s the intrinsic volume-average velocity of phase k
defined as U, =1/V, [, U 1dV.

3.1.3. Momentum balances

In each phase the momentum balance is written, assuming
that capillary effects are negligible for Mellapack packing due to
large dimensions of the elementary channels:

ol — — — — — -
&(Sek,ﬂk Up+ V.(Sﬁkpk UUp)=—-60,VP+V (eTy)

— — —
+89/<Pk§) +eRp+0,S porous,k + F disp.k k=L, G 4

We thus define a unique average pressure, denoted P, for both
phases. The first term in the right hand side (r.h.s.) of Eq. (4) is the
pressure force, the second term introduces the average stress
tensor Tj. It is a viscous term that is often negligible because it
involves spatial derivatives of the average velocity which are
always far smaller than the spatial derivatives of the velocity at
the scale of the elementary channel of the packing. The shear
stresses and pressure forces acting in the representative elemen-
tary volume either at the interfaces orat the vl.)alls lead to the
average momentum transfer terms &R j, and 0 S porous k» F€SPeC-
tively. Their modeling 5 described in the following paragraph.
The last term, denoted F gk, is @ dispersive term that has been
added to model forces leading to mechanical dispersion. Its origin
and modeling is discussed further.

The interfacial momentum balance is then written neglecting
capillary forces as:

— — —
Rig+Ryp=0 (5)

The porosity that appears in mass and momentum balances is
not a transported quantity. Its spatial distribution can be pre-
scribed as resulting from the building of the packing. In the
present work we choose a uniform porosity, ¢=0.98.

3.2. Closure laws

3.2.1. Momentum transfers at the walls of the packing and at the
gas-liquid interfaces

Recent proposals have been successfully tested to model the
momentum transfers at the walls and at the gas-liquid interfaces
in trickle-beds or structured packings (Holub et al., 1993; Attou
et al., 1999; Iliuta et al., 2004; Lappalainen et al., 2009a).

3.2.2. Momentum transfer at the Lv)alls

The proposed modelings for S porousk are issued from a gen-
eralized Ergun correlation primarily proposed for single-phase
flows in packed beds (Ergun, 1952; Macdonald et al., 1979):

—

= — 1 - = —
S porous,k = — (,uleo u k+ ipk H Uk Hck Uk) .
Reduced to its isotropic form this term writes:

— 1 [ —
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Ax 2

—
S porous,k =

The resistance tensors Dy and C, or their isotropic correspond-
ing permeability A, and coefficient C, are modeled on a phenom-
enological basis to describe the effect, at a macroscale, of the
complex geometry imposed by the solid matrix and of the flow
regime at the microscale. The first term in Eq. (6) is dominant for
viscous regimes, and the second one appears due to inertial
effects. In single-phase flow (SP) and for the viscous regime,



Kozeny-Carman scaling law extends Darcy law by giving the
permeability A, for complex or random porous geometries as a
function of the averaged characteristic of the geometry. This law
writes Asp=1[2¢%|Cc where | is an appropriate length scale usually
taken equal to the inverse of the volumetric surface area a;~! and
Ccx is a constant generally equal to 5. This proposal gives
reasonable permeabilities for random packings of spheres, peri-
odic arrays of spheres or fractal porous media, but is not sufficient
for multiscale geometries (Valdes-Parada et al., 2009).

Ergun proposal for single-phase flows introduces inertial effects
appearing as the second term in Eq. (6) also named Forchpeimer
correction. For non negligible velocities, the dependence of S jorous k
upon the square value of the velocity was theoretically demon-
strated by Whitaker (1996) even if this was already well-known
from experimental evidence. It is important to notice that this
inertial effect is additional to the viscous one, and that it does not
replace it. In fact, inertial effects are not associated to a laminar-
turbulent transition in the flow at the pore scale as they appear in
infinite straight pipes. This is clear as they appear for Reynolds
numbers in the pores smaller than 100. They must be understood as
supplementary form drag linked to additional spatial accelerations
at the pore scale appearing with flow recirculations for example (as
discussed by Prieur du Plessis, 1994). Following Ergun first proposal
the coefficient Gy is usually taken as proportional to ag/6¢>

In Q)vo—phase flows, usually, to model each transfer term at the
walls S porous k» Permeabilities have been adapted. The permeabil-
ities are linked to a hydraulic diameter at the microscale of the
involved phase. They are thus related to the porosity ¢, the
effective area a, and the phase saturations 0, (Holub et al,
1993; Iliuta et al., 2004). Another difficulty due to two-phase
flow is to take into account the wetting of the solid surface in the
models. A fractional wetted area f, is introduced to weight the
momentum transfer terms. When f.=1, at locations where gas
and liquid phases co-exist, the liquid is assumed to wet totally the
walls and there is no shear stress at the walls for the gas. Of
course, in single-phase regions occupied by gas alone, the
momentum transfer at the wall of the porous medium is retained
for the gas phase. In order to simulate partial wetting (f. < 1), we
have applied the general formulation of the model by Lappalainen
et al. (2009a): the momentum transfer at the walls and at the
interfaces are, respectively weighted by f,, (1—f.) and f, for the
liquid, for the gas and for the gas-liquid interface (see Egs. (7)-(9)
hereafter).

Iliuta et al. (2004) or Iliuta and Larachi (2005) have proposed
closures specific for structured packing:

= E, _af Ea
S porous,L = fe ( ! ;928 M+ 2 g ,0]_ ” U L |> UL=—-Ks U L 7
L

— E a? E — — —
S porous,c = —(1=f¢) (ﬁ X ?gﬂc+ éagpcﬁc | UG||> Ug=—KasUc

®)

Both closure laws have similar mathematical forms with
different hydraulic diameter: 6a§1 for the gas phase and 6,/ag
for the liquid one, which is indeed representative of the liquid
film thickness. In the present work we have retained the model of
[liuta and Larachi (2005) with their values of E; and E, (for
Mellapak 250.X:E;=160 and E;=0.16). Strickly speaking, inside
the parenthesis in Eq. (7) the wetting efficiency f, is a]lproximated
equal to 1. We j_u)st keep the multiplying factor f, in S porous,. and
resp. (1—fe) in S porous,G-

3.2.3. Momentum transfer at the gas-liquid interfaces
The general closure law adopted for the momentum transfer at
the gas-liquid interfaces is similar to those at the walls. From

[liuta and Larachi (2005) we have:

- E
RIG=_fe<%X

(uc UL+g <1—f—>UL>

a0g , E a,0¢°
2(1-00/f 2" 6 e(1-0/f,)

- 0 1 —
50c|Uc—UL+ é(l—ﬁ)ULH)
9-1

When the order of magmtude of fractional wetted area f, is 1,
and UG UL>>9L/9(;(1 l/fe)U as it is the case in the present
experimental conditions (see discussion in Section 4), Eq. (9-1)
may be simplified and gas-liquid interaction written as follows

2 E;q, g — — — — —
Ric= —fe 36 820 He +—_PG”UG_UL” x (Ug=Up)=-Kig(Uc-U1)

9-2

3.2.4. Discussion

To our knowledge there are no theoretical derivations of
permeability expressions in two-phase flows except for a set of
parallel non-connected identical tubes in pure viscous laminar
regime (Bacri et al., 1990). The present model (Egs. (7)-(9-2)) is
based on the idea that Ergun general correlation can be used to
reproduce the momentum transfers at the walls or at the inter-
faces, provided pertinent velocity and permeability are chosen for
each transfer term. T_)he value_s) of the factcg)s E, and E, are also
taken unchanged in S porous,t, S porous,c and R ;. We would like to
show, with a simple example, that such proposal is of course of
great interest in the absence of theoretical derivation, but that it
has to be taken with care.

Holub et al. (1993) and then Iliuta et al. (2000) developed semi-
analytical models where the porous medium is divided in slits in
which the two-phase film flow is modeled before applylng slit to bed
relations to obtain macroscopic models of Ky porous,k and I 1. Holub
et al. (1993) developed a slit model for liquid films totally wetting the
solid, while Iliuta et al. (2000) developed a double-slit method to take
into account partial wetting. We retain their idea to analyze an ideal
porous medium consisting in a set of parallel non-connected identical
slits, but we follow, similarly to Bacri et al. (1990) an analytical
approach based on Navier-Stokes resolution for steady, developed,
laminar incompressible flow at the scale of the slit. This reduces the
generality of the expected model, as inertial effects are not taken into
account, but it allows discussing the origin of the closed terms. Our
objectives are to discuss the meaning of the closure laws, the
pertinence of the velocity and length scales adopted in these laws
and the generality of the permeabilities adopted at least for the
viscous resistances in two-phase flows.

Let us consider first the analytical solution of the flow between
two fluids (subscripts 1 and 2) confined in a plane channel
of width h flowing along direction x (co-currently or with a
countercurrent configuration as shown in Fig. 2). Due to gravity
or to inertia in the vertical case, phases are assumed to be
separated so that the flow is associated to a wetting efficiency
equal to 1/2. The averaged values of the velocities and of the
widths of both phases are denoted Uy, U,, hy and h,. The signs of
U,and U, define co-current or counter-current flows. We can
solve the Navier-Stokes equations in each phase which are
coupled by the boundary condition at the fluid interface. The
velocity components in (x, y) plane are denoted (uy, V). Assuming
a parallel flow, the continuity equations write:

Uk (V) =

Momentum balances reduce to: pdug/dy=K, where the con-
stant value

0 (k=12 (D1)

Ky = dPy/dx—p,gsin(0) (k=1,2) (D2)



wall

Fig. 2. Scheme of the two-phase flow in a slit.

with the following boundary conditions (BC):

(BC1) uy =0aty=0

(BCZ) uy =U at y=h1

(BC3) u; =0 at y=h=h;+h,
(BC4) u; = U at y=h1

where h; and U; the position and velocity of the interface are
unknown.

The velocity profiles u,(y) can then be obtained and expressed
using Kj U, h and h,. By integrating these velocity profiles in the y
direction, one can relate the average velocity of each flow to the
interface velocity and pressure gradient:

E_Kkhk2
2 12,

Uy = k=1,2) (D3)

The shear stresses at the walls and on each side of the interface
can also be expressed as:

du, U K
M), T T e ) T

—%(Guﬁzu,) (D4)
1

du-
T = by d;) : ﬁ—;(zul—wﬂ (D5)
dU1) (U’ K1h1> Hq
= [ — = —_ = —(4U;-6U D6
n=Hgy . mt 2 h1( 1—6U7) (D6)
du
— dyz) R G D7)

The last boundary condition that must be verified is the
continuity of the shear stress at the interface ((BC5)t;;+72=0).
This leads to:

3 H1/h]U] +ﬂ2/h2U2)
U=z D8
=2 (e 9
The prediction of the position of the interface h; for the fully
developed flow could be achieved by equating the pressure

gradients in each fluid. For our present purpose we just rewrite
the shear stresses using the known value of U; (given by Eq. (D8)):

(U1-Uy)

Tp=6——7—"— D9
R Y TR TS ®
My (Ui-Uy)
=-3—U;-3——-—"—"— D10
twi T | P TR YT ®10)
Hy (U;-Uy)
=-3"=Up+3+—r—-"— D11
w2 hy 2t hi/uy +ha /1, ®1

At the slit scale the momentum equations averaged across the

width of each phase then write:

dpP .
0:—9,6&+0kspkg51n(9)+F,k+ka k=1,2) (D12)
with Ops=hi/h the saturation at the slit scale, and Fy=1y/h,
Fyi=twi/h.

We now apply an elementary homogenization method to
obtain the macroscopic equations valid for the porous medium
from the local solution in a slit. We consider that the porous
geometry consists in an array of parallel slits. The variables
describing the slit geometry are related by slit-to-bed relations
to the macroscopic properties of the porous medium. These
relations express that the saturation of each phase and the
volume fraction of the solid, as well as the intrinsic velocity or
pressure gradient are the same at the macroscopic scale and in
the representative slit. We can thus write in a macroscopic
volume-average sense:

0= —86,6% +e0kspigsin(@)+eFy+eF . (k=1,2) (D13)

For a homogeneous flow, an identification of (D13) with Eq. (4)
leads to the following relations where we used the analytical
solution to express the shear stress terms:

6¢ (U1 Uz)
ERyix + 0k S, = +&F+eFu= — —
Tkx k2porous,kx Ik wk 2( ) 61/N1+92/ﬂ2
My U - Uz)
-3¢ Df————=—
h%0, hz( 2 01/ 11+ 02/ 11

It must be recalled that the first term on the r.h.s. is equal to
interfacial shear stress term &Ry and that the second and third
terms are equal to the shear at the wall term 0;Sporous kx-

We must notice that, if the velocity that appears in the
interfacial shear stress Fy is the relative velocity between both
phases (see also Eq. (D9)), the general expression for F,, the
shear stress of phase k at the wall, is not simply related to
the average velocity of phase k (see also Egs. (D10) and (D11)):
the relative velocity also appears in F, This is a deviation as
compared to common macro-scale closure laws proposed in the
literature that we discuss hereafter.

Eq. (D9) also shows that interfacial shear stress is symmetri-
cally written according to the physical properties of both phases
in the general case. Closure laws proposed for gas-liquid flows in
the literature do not retain such symmetry (Holub et al., 1993,
Iliuta et al., 2004). In the present study, the viscous part of the
closure law we adopted (Eq. (9-2)) reduces to:

Ui+ (D14)

(12 — — — —
Riov= fe( 829 ﬂc>(UG—UL)=—KIGV(UG—UL) (D15)

Linear dependency of the closure law with the relative velocity is
in agreement with the analytical solution Ry, given in Eq. (D14), but
the permeability associated to interfacial momentum transfer is
written only with the physical properties of the gas. This simplifica-
tion is, however, in agreement with the analytical solution just
because condition h;/p; «hy/u, is easily verified for thin liquid
films sheared by gas flow (indexes 1 and 2 being associated with
liquid and gas). We may therefore retain that the analytical solution
shows that it may be necessary to introduce the physical properties of
both phases in the closure laws for applications where such condition
would not be verified (in liquid—liquid systems for example).

The viscous parts of the porous resistances associated to
momentum transfer at the walls as given in the closure laws
Egs. (7) and (8) write:

2
?pol‘OUS,LV = _fe (516 gfe

— —
W | Ur=-KisvUL (D16)
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SporousGV— —(1 fe <_1X_,UG>UG:_KGSVUG

(D17)

Comparing (D16) and (D17) with (D14) make noticeable
differences appear. The analytical solution gives momentum
transfer terms Sporouskx that involve both the velocity of phase k
and the relative velocity, while closure laws (D16) and (D17)
involve only the velocity of phase k. Also, physical properties of
both phases appear in the relations giving Sporous kv Which is not
the case for the closure laws. Models adopted in the literature for
gas-liquid flows are correct, but as shown by this discussion, they
are still a particular case. In fact, assuming hi/u; < <ha/p,
(or equivalently in gas-liquid flows 6, /i < < 0¢/uc), it is possible
to write from (D14):

Sporaus,Lx =-3¢ hljgz UL_38 hz 0]_9(_‘, (UL UG)
and
s ~-3: My (D18)
porous,Lx h2 02 L
Similarly for the gas phase, the assumption leads to:
Sporous,Gx =-3¢ hélgc Uc +38hlzl—g(2;(UL_UG)
which reduces to:
Sporous,cx ~ —3¢& hétgz Uc (D19.3)
G
for negligible relative velocity, or to:
sporous,Gx —6¢ hl;gz UG (D]Q.b)

when Ug > U, which is the case in carbon capture problems.

Egs. (D18), (D19.a) and (D19.b) confirm that the usual closure
laws adopted for momentum transfer at the wall for gas-liquid
flows, assuming linear dependency upon the velocity of phase k,
are valid in packings, which was expected from operational
knowledge reported in the literature. But the analysis allows to
precise that one should be careful to extend such closure laws to
cases where the given assumptions would not be verified.

Finally, we can compare the viscous resistances for gas-liquid
flows in structured packing either obtained from the analytical
solution (Egs. (D14), (D18) and (D19.b)) or from closure laws
(Egs. (D15), (D16) and (D17)) using, for a porous geometry
consisting in an array of parallel slits, the relation ag =2¢/h, a
fractional wetted area f, equal to %2 and E;=160.

We may therefore compare:

chv=6ﬂ, Kisv ~ 3¢ é‘Lz and Kesy ~ 6626

h*6 h*6? h262

with the relations:
E,  a ~g0q_Hc
Kigv=fe <% x ﬁﬂc) ~ 89@.

E, aif, €
KLSV =fe (% 926 /J.L> 445 —'u]' and

E £
Kesy =(1=f) (% x fﬂc) 8.9 :29

For porosity and gas volume fraction around 1, the orders of
magnitude of | both expressions of the various resistances are in
agreement even if differences still remain. It must be nevertheless
noticed that the scaling law of Kgsy are different concerning
0c contribution. For Mellapak 250.X this is not so important
because 0 is around unity, but revising the scaling laws could be

interesting for other packing conditions. As a conclusion on the
discussion about momentum transfer modeling we can say that
theoretical models in elementary configurations, as proposed
here, can help discussing the validity of efficient semi-empirical
models as proposed in Eq. (7) to (9-2) which have been widely
tested and prove to be predictive.

3.2.5. Dispersion term

In two-phase flows through porous media, dispersion terms
appear due to volume averaging in the equations of momentum.
Two distinct elementary mechanisms lead to momentum disper-
sion. The first one is the difference of pressures across the fluid
interface due to capillarity: it leads to the macroscopic effect
called capillary dispersion. The second one is the complex advec-
tion of momentum by the fluid at the pore scale. Local velocities
of the phases are in general different from the volume-averaged
velocities, and for inertial flows, when these deviations are
correlated at the macroscopic scale, this leads to mechanical
dispersion. In fact, the volume averaging of the non linear terms
in the local momentum equation introduces in the macroscopic
equation the divergence of the velocity deviation correlation
tensor (Whitaker, 1973) which can be understood as an analogous
to the Reynolds stress tensor in turbulence (Grosser et al., 1988).

3.2.6. Capillary dispersion models

To take into account capillary dispersion, the first way could be
to keep two pressures (one for each phase) in the macroscopic
equations (Whitaker, 1986). But most often two-fluid Eulerian
models use a unique pressure identified as the pressure in the gas
phase and introduce a closure law for the capillary pressure
P.=Pg—P;. In such approagl Eq. (4) foL) the liquid phase should
include a dispersion term F g, = éPc V 0, such as proposed by
Attou and Ferschneider (2000), Boyer et al. (2005) or Jiang et al.
(2002). The capillary pressure, which is related to interface
curvature through Laplace law, is then given as a function of the
liquid volume fraction at the macro-scale (Attou and
Ferschneider, 2000; Boyer et al., 2005). For general porous media
or for trickle-beds the closure law for P.(0.) is either obtained
from experimental tests leading to a correlation introducing the
Leverett function, or obtained from geometrical considerations
about the gas-liquid interface curvature at the pore scale (Attou
and Ferschneider, 2000; Jiang et al.,, 2002; Lappalainen et al.,
2009b). Lappalainen et al. (2009b) used a different model for
capillary dispersi_o)n. They wrote in the momentum equation of
the liquid phase: F gisp 1 = €0y V Pc which is not equivalent to the
aforementioned term. Careful discussion of the modeling of this
capillary dispersion term would be required to see the validity of
such proposal.

In our study of structured packings, we do not take into
account the capillary dispersion. This approximation is justified
because the size of the packing elements is quite large so that we
can argue that capillary pressure vanishes. Even if the curvature
of the interface varies a lot at the pore scale we can give
arguments that lead to neglect capillary pressure in our study.
It is interesting to notice from Whitaker (1986) (Eq. 3.14) that
volume-averaged pressures of each phases P, and Pg; are not
simply related to the volume-averaged value H of the interface
curvature. The complete momentum interfacial relation includes
normal viscous forces. The relation between the orders of magni-
tude then writes:

Pg—PL=20H+0<max <u"| "|)>
k Ik

where [, is the size of phase k at the pore scale. In our flow
conditions the second term on the r.h.s. is due to the liquid phase.



Estimating I as the liquid film width e, and e as 0, /ag, we find that
this second term is around 0.5 Pa which is negligible as compared
to Laplace term: taking the averaged value of H equal to the
inverse of the hydraulic diameter (4¢/ag), we find in fact that
20H is about 6 Pa. The order of magnitude of the ratio of the
capillary g)lspersmn term to the pressure &)adlent term is
thUS O(HFdlSpLCH/HSQLVPLH) O(PCHVQLH/QLH_YPLH) 20'H/Dc/
| VPLHexp with D the column diameter and || VP, the pres-
sure drop which order of magnitude is 100 Pa/m (Table 2). This
ratio being about 0.15 the capillary pressure can be neglected.

3.2.7. Mechanical dispersion

Most theoretical analysis of flows in porous media are applied
to single-phase flows in saturated viscous regimes with linear
momentum equation at the pore scale so that there is no
momentum dispersion. In such case, dispersion only appears in
volume-averaged equations for the scalar transport due to the
presence of advection and to specific surface integrals at the
boundaries of the phase (Quintard and Whitaker, 1993). This may
be the reason why existing models about dispersion in porous
media have been mainly developed for scalar transport (Brenner,
1980; Carbonell and Whitaker, 1983; Eidsath et al., 1983; Liu and
Masliyah in Vafai (2005)).

In two-phase flows through packings, inertia, interphase
interactions and solid-phase interactions must be retained in
volume averaged equations. In order to build such a system of
volume averaged equations also able to reproduce dispersion, Liu
(1999) proposed a volume-averaged approach including tortuos-
ity effect and specific volume averaging rules. This approach
introduces unclosed dispersion terms in mass and momentum
equations. Liu and Long (2000) discussed a simplified version of
the model for which they proposed semi-empirical closure laws.
The assumptions of isotropic porous medium and of total wetting
were introduced, but the generality of their proposal is unclear. It
consists in adding in the momentum equation of the liquid phase

— — —_— =
a dispersive force F gisp;1= V.(ep KL.V(0LUL/71)) originating
from the interaction of the liquid and the solid matrix, and in each
momentum equation another dispersive force originating from
interactions of both phases which writes for the gas

— — = = — — —
phase F gispic = V .(epcKice. V(U g/tc—0LUL/1101) and — F gispic
for the liquid. In these models 7 are the tortuosities of the phases,

K. and K¢, the dispersion tensors modeled from the analysis of
passive scalar dispersion results.

One can find in the chemical engineering literature several
other semi-empirica_l) proposals to model the mechanical disper-
sion forcing terms F gisp governing liquid spreading. But these
models are scarcely described and have most often no definitive
theoretical basis except that their form is adequate to introduce
dispersion. Moreover, to our knowledge, the only closure to have
been tested with a comparison between numerical simulations
and experimental results is the one of Lappalainen et al. (2009b,
2011). Mewes et al. (1999) introduced a general form able to
generate an anisotropic dispersion term in the momentum
equation of the liqgid_phase._l)t would write in our system of
notations: F gisp 1 = ¢.(S x (¢0, U 1)) where ¢ is a resistance tensor
associated to shear stress at the walls that takes the simplified
form & = —Ks/el4 for our isotropic model, and S is a spreading
tensor for which no closure law is proposed by the authors.

The discrepancy between the general models for mechanical
dispersion proposed by Liu and Long (2000), Mewes et al. (1999)
and Lappalainen et al. (2009a, 2011) shows that fundamental
work is required to deduce dispersion terms from volume aver-
aging of local balances. In the present work, we have retained the
model tested by Lappalainen et al. (2009b, 2011). It consists in

adding in the momentum equations of both phases the following
terms:

— — — —
F gisp,L = OLK1s U p1—eKig(Upg—Up,1) (10)

— — — —
F gisp.c = 0cKcs U pc+eKic(Upg—Upyr) an

— — - — — —
where UD,G = (—SH U/G” /ocg)VocGand UD,]_ = (—SH U; H/O(L)VO(]_ are

drift velocities and ﬁ’c = U)c, /oG, S is a spread factor whose
dimension is length. Lappalainen et al. (2009a) identified the
present spread factor with the one obtained from liquid flow rate
distributions interpreted with a convection-diffusion equation of
qL as written in part 2 of the present paper. We discuss briefly
hereafter the physics underlying the validity of such assumption.
The proposal of Lappalainen et al. (2009a) also assumes isotropic
dispersion, and dispersion driving terms for both liquid and gas.
In our flow regime, with high porosity and very thin liquid films,
an order of magnitude study shows that the most important term

. Lo . . .= — .
ensuring liquid dispersion is F gjsp; =01KisUpy which was
indeed verified with numerical tests.

3.2.8. Discussion

It is important to notice that a spreading coefficient, S, appears
in this model. It is possible to relate this spreading coefficient
with the spreading factor, D,, measured from the experiments
assuming a convection-diffusion transport equation for the mass
flow rate of the liquid as we did in part 2. This can be done if we
assume that the dominant terms in the horizontal momentum
balance for the liquid phase (Eq. 4) are related to shear stress at
the walls and to dispersive term:

— —
(9k S porous,L F disp,L)~?h =0 (12)

where €, is the horizontal unit vector. In cylindrical coordinates,
with ?h = ?r, the momentum balance then writes:—K;s6 U,

— . —
—KLssH U]_||89L/8r =0 that is HLULr = —SH ULHGHL/ar

This is equivalent to neglect accelerations, pressure gradients
and gas-liquid interactions in the horizontal direction. This
equilibrium leads to identify the horizontal average and drift
liquid velocities in the mass balance of the liquid. For steady state
flow, the mass balance writes:

OGLU]_Z 10 (90]_
g (rsIT ) =0

From the mass balance in the liquid phase, assuming moreover
that U~ |U.| is nearly uniform, one can thus obtain the
modeled convection-diffusion transport equation for the liquid
flow rate q =0, Uy:

a@LU]_z aGLULZ
oz S reor ( or ) (3)

Under the assumption of the previous peculiar momentum
equilibrium and of uniform distribution of the liquid velocity, it is
therefore possible to identify the spread factor determined from
our global analysis of the experimental distribution of liquid flow
rate (D,) with the spread factor of the model (S) used by
Lappalainen et al. (2009a). This identification is basically the
one made by Lappalainen et al. (2009a). However, although it
can be used as a first approximation, one could expect simlll)ation
results will not be totally satisfactory since derivatives of | U .|| in
the radial direction are important in the case of a point-source
liquid injection. Determination and discussion of best ratio S/D;
will be provided later in this paper in the light of simulation
results.




3.2.9. Fractional wetting area

For structured packings, the effective specific area of the solid may
be lower than the geometric one which indicates partial wetting.
Several studies found in literature focused on the ratio between
effective surface area (equivalent here to wetted area) and the
geometric one using mainly chemical methods. Effective packing
specific area and then wetting factor is found to vary with liquid and
gas flow rates as well as liquid surface tension. According to Olujic
et al. (1999), both increased liquid load and low surface tension
encourage a more important wetting of the packing surface. Weimer
and Schaber (1996) (in Olujic et al., 1999) measured effective surface
areas for metal Mellapak 250.Y in the range of 85-95% of the nominal
surface area for liquid loads ranging from 15 m?/m?/h to 30 m3/m?/h.
This result of an interfacial area close to a; has been recently
confirmed by the experiments performed by Tsai et al. (2011) on
both Mellapak 250.X and Y.

Since we are dealing with Mellapak 250.X (az=250 m?/m?®) in
this work, the fractional wetted area f, is given by the correlation
of Brunazzi and Paglianti (1997) developed for Mellapack pack-
ings. It is written as:

_sin(®) _ 15 PLxE o5
fe— a XHL X(?)X,ULXULS

where 0 refers to the corrugation angle of the packing (channel
flow angle from horizontal equal to 60° in the case of Mellapak
250.X) and Ui to the superficial velocity of the liquid defined as
follows: Ups = SQL H UL”

4. Discussion: Comparison between numerical simulations
and experimental results

We have performed 2D axi-symmetric numerical simulations
using the numerical code Fluent (version 13) with a pressure based
unsteady state solver which appeared to be necessary to avoid
numerical divergence. We developed original user defined functions
for the porous resistances, for the interfacial transfer term and for the
dispersive term. The interfacial transfer was implemented through a
modification of the drag in a define exchange properties function.
Resistances and dispersive terms were implemented as source terms
using define properties functions. The total flow rates are ;=16 m°/
m?/h for the liquid, and Fs=31.5%F-=1.16 Pa®> or Fs=60%F=
2.21Pa% for the gas. The geometry is adapted to simulate the
column where experiments were performed that is described in
details in Fourati et al. (2012). The domain for the calculations has a
radius equal to 0.2 m, and a height equal to 0.76 m to simulate the
part of the real column between liquid injection and the first three
layers of structured packing. As shown in Fig. 3, we inject the liquid at
the top of the column through a central part of radius Ri,jp=12 mm.
At the inlet, the liquid volume fraction is necessarily set equal to 1,
and its velocity set to 1.19 m/s to ensure a flow rate equal to the
experimental one. Physical gas inlet is at the bottom of the column;
however, in order to facilitate counter-current calculations, it
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appeared that the best way was to fix at the residual part of the
top of the column a boundary condition of gas inlet (with a negative
velocity along the normal direction of the domain). The velocities of
gas are set equal to 1.052 m/s and 2 m/s, respectively for both
simulated cases. The bottom of the column is then defined as a
pressure outlet where gas and liquid can, respectively freely go out of
the domain, the gas being also able to re-enter the domain. The
domain is also limited by the axis and by a symmetry boundary. The
domain of calculation is divided into three parts, the packed bed of
height 0.66 m with porous resistances and an upper and a lower part
of total height 0.1 m with no porous resistance. They correspond to
the regions empty of packing in the experimental setup present
upstream and downstream the packed bed, respectively. The mesh
grid has a size of 15,224 nodes with refined grid near the wall and in
the central region of the liquid jet. In the radial direction, cell mean
size is 0.5 mm in the liquid injection zone and 3 mm elsewhere with
bell shaped sequence. In the axial direction, cell size is set to 5 mm.
Second order upwind discretization schemes were used and the time
step was about 10~% s in order to ensure numerical convergence.

The simulated cases are described in Table 1. We have performed
a simulation (case a) without any dispersion term and four g)thers
denoted cases b to e considering the dispersion term F gk
proposed by Lappalainen et al. (2009b, 2011). In three cases we
considered a spread factor S equal to D,=3.7 mm as measured in the
experiments. In the case denoted e, we considered a spread factor S
equal to 2D,=7.4 mm.

In cases a, b and d, the fractional wetted area was taken equal to
1 as a first approximation. It is thus assumed that, at the local scale,
when both phases are present, the packing surface is totally covered
by a continuous liquid film. One should notice at this point that the
references considered in Section 3 analyzing partial wetting deal with
homogeneous flows which is not the case for the present experiments
and simulations. In fact, calculation of the superficial liquid velocity
based on the injection surface leads to relatively important liquid
loads so that we could consider, based on the upper bibliographic
results, that total wetting is obtained in the limited region where
liquid flows. However, in order to test sensitivity of results to partial
wetting, we performed a simulation (case c) considering variable
wetting factor based on correlation proposed by Brunazzi and
Paglianti (1997).

Table 1
Simulated cases.
Cases  Wetting Spread qu(m?/m?/h)  Fs (Pa%®)
factor f factor
a 1 No dispersion force 16 1.16
b 1 S=D, 16 1.16
c Brunazzi and S=D, 16 1.16
Paglianti (1997)
d 1 S=D, 16 2.21
e 1 S=2 D, 16 1.16

pressure outlet:
gauge pressure =0

Fig. 3. Mesh and boundary conditions. (The porous zone is in between both blue dashed lines). (For interpretation of the references to color in this figure legend, the reader

is referred to the web version of this article.)
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Fig. 4 shows the liquid volume fraction contour maps. From to ensure radial spreading of the liquid. Indeed, case a (without
the comparison of the cases without or with a dispersion model, dispersion model) provides a very narrow spatial distribution of
one observes that it is essential to use such a model for dispersion liquid with an important overconcentration of liquid at its border



that could be the memory of the liquid impact on the porous
zone. On the contrary, when a model for dispersion is used (case b
and e), both the liquid saturation (Fig. 4) and the liquid velocity
(Fig. 5) spread in the radial direction. The liquid decelerates in the
porous medium due to shear stresses at the walls and to
interfacial shear stress applied by the countercurrent gas flow.
The pressure distribution is not very sensitive to the distribution
of liquid. Fig. 6 shows a dominant axial evolution of the pressure
as if the liquid inlet conditions were homogeneous. This has
already been observed in the experiments were pressure drop
was similar for homogeneous injection or central injection of
liquid. It may be explained by the fact that liquid films remain
very thin in our flow conditions. The overall predicted pressure
gradients are summarized in Table 2. In all cases, values of
pressure drop are globally in good agreement with the ones
measured in the experimental set-up. This was expected since
the model of porous resistance that we took proved to be
representative for Mellapak 250.X (Iliuta et al., 2004).

In the non porous zone in the lower part of the simulated
column, boundary conditions influence liquid velocity as well as
static pressure distributions. Their impact on gas velocity will be
discussed further.

On Fig. 7a we have reported the radial liquid saturation
profiles obtained from gamma-ray tomography at three axial
positions of measurement z,, z, and z3 (Fourati et al., 2012), and
the numerical results at the same positions for S=D, and S=2D,.
The experimental values were measured at a different gas flow
rate (Fs=0.74 Pa®°) but the comparison is meaningful since the
liquid saturation is not sensitive to the gas flow rate in the
explored range as observed in the experiments.

From Fig. 7, we can observe that liquid saturation profiles
predicted by numerical simulation do spread in the radial direc-
tion. The profile calculated at the highest position z; shows a
maximum displaced from the axis due to the memory of the
entrance in the porous zone. In the case we consider a spread
factor equal to this obtained from the simplified dispersion model
applied to experiments (S=D,), simulations predict globally good
order of magnitude for liquid saturations as shown in Fig. 7.
However, liquid spreading is still under-estimated comparing to
experiences for both cases, b and d. Liquid saturation profiles are
actually less spread in the radial direction, particularly at position
z3, the farther from liquid entrance. As a matter of fact, D, gives a
priori good approximation of spread factor S needed for Euler—
Euler model as discussed previously. However, it can be shown
theoretically that a ratio S/D,=2 is more relevant with the proviso
that a more realistic mass balance than this given in Eq. (13) is
considered. This consists in writing the following Eq. (14) instead
of Eq. (13) considering non negligible axial velocity derivatives in
the radial direction:
sl (r\uu| %‘}) =510 (r%) st2 (reL%> =sa-B)  (14)

D S = A

Since liquid saturation and liquid velocity magnitude have the
same behaviour as regards radial spreading (Figs. 4 and 5), one
could expect derivatives denoted C and B in Eq. (14) to have same
order of magnitude. This further implies A~ 2B. This has been

Table 2
Overall pressure drop: simulations vs. experiments.

Cases Simulated overall pressure Experimental overall Relative
drop (Pa/m) pressure drop (Pa/m) error (%)

b 46.5 45 3

d 87.5 107 18

e 414 45 8

checked based on simulated liquid saturation profiles and corre-

sponding evaluation of each term (Fourati, 2012). We have

numerically the mass balance that leads to dq;/0z~

S(A/2)=S/2(1/r)(8/or)(r(8q, /or)) while D, was evaluated experi-
=A

mentally from the equation 8q; /0z=D;(1/r)(8/or) (r%) =D,A.

—————
=A

In order to model liquid spreading using mechanical dispersion force
introduced in Section 3.1, one should thus consider a spread factor
that is two times greater than this obtained experimentally with a
simplified model. This treatment is proved to be consistent since a
posteriori application of the simplified advection-diffusion model to
characterize the dispersion from simulated liquid saturation profiles
in case e (Table 1) allowed to calculate a numerical spread factor D;
equal to 3.33mm that is close to the one determined from
experiments (3.7 mm). Based on this argument, a numerical sensi-
tivity analysis as regards S has been carried out. It came out, as
expected, that S=2D, gives most satisfactory results as shown in
Fig. 7a for ;=16 m3/m?/h and Fs=1.16 Pa®".

Even if we do not report a figure for illustration, we also
observed that the liquid distribution predicted by numerical
simulations for low and moderate gas flow rates (cases b and d)
did not vary significantly in agreement with observations made
from experiments.

In order to test if the fractional wetted area participates for a
part to the radial distribution of liquid, we included the model
giving f, in case c. Fig. 7b shows that the wetting model does not
govern the radial spreading of the liquid as there is no drastic
changes between the spatial distribution of liquid predicted in
cases b and c. Such behavior was expected since resolution of the
non linear algebraic system given by Eqgs. (2)-(5) in homogenous
conditions and using fractional wetted area-weighted closure
laws defined in this work allows calculating fractional wetted
areas close to 1 for the range of considered liquid and gas loadings
(Fourati, 2012). As far as gas flow rate is concerned, no significant
change in liquid saturation profiles is noticed between cases b
and d that correspond, respectively to Fs=1.16Pa%> and
Fs=2.21Pa%°. This was expected since tomography measure-
ments revealed no effect of gas flow rate on liquid spreading in
Mellapak 250.X packing (Fourati et al., 2012).

Fig. 8a and b provide radial profiles of the velocities in the gas
and the liquid phases at different longitudinal positions. In the
liquid phase (Fig. 8b), the axial velocity is far larger than this in
the radial direction. The liquid jet main direction is the axial one
with momentum diffusion in the radial one. This momentum
diffusion is linked to dispersion source term in the momentum
balance described in Section 3. That does not occur in case a,
where no dispersion term is added.

Moreover, gas is also flowing in axial direction mainly (Fig. 8a).
In the present simulations, the radial profiles of gas velocity are
quite complex. Gas velocity contours in the vicinity of the lower
boundary of the column show important accelerations that may
be related to the boundary condition at this location and to the
inlet of the porous zone (Fig. 9). Boundary conditions associated
to counter-current gas-liquid flows are complex to handle but
these proposed in this work still give representative results: the
saturation and the velocity of the liquid phase as well as the
pressure show reasonable distributions even if the gas velocity
prediction could be improved.

e Possible model improvements

The discrepancy between the radial profiles of 0. predicted
by numerics and the more diffusive profiles obtained in the
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experiments may come from several combined effects, in addition
to boundary conditions.

We have checked that the numerical results are not sensitive
to the mesh grid in the present numerical conditions. A mesh
convergence test has been carried out and has revealed no
variation of the flow field when mesh size is increased from
15,200 to 24,800 in terms of cells number.

The knowledge of an exact value of the spreading factor S (and
thus D,) may also be crucial for numerical prediction. Concerning
this point the experimental method providing the value of D,
should be precisely discussed and tested. In fact, using the
experimental correlation 0, =kq, %4 (Eq. (6) in Fourati et al.
(2012)) in order to transform measurements of 0, into estimations
of g could introduce artificial distorsion of our estimation of the

real spatial distribution of gq;. Approximations or uncertainties in
the determination of D, could thus appear. We have checked that
numerical results verify, with a satisfactory precision and at any
local position, the following relation: 0p = kq;°4. The influence of
this transformation is therefore not expected to be a major one.

Moreover, the form of mechanical dispersion force introduced
in the work of Lappalainen et al. (2009a) and implemented in
simulations does not perfectly match with advection-diffusion
model used for calculation of D, since it assumes zero liquid
velocity gradient in the radial direction. A more conservative form
of this dispersion force may be a good alternative to model liquid
greadi_gg. This gives a g)ispgsion force that is proportional to
V(o | Uy|) instead of | U .| Vay. Such alternative has not been
explored yet.



Fig. 9. Contours of gas velocity magnitude (m/s): qu=16 m3/m?/h, Fs=31.5%Fc (case b in Table 1).

5. Conclusion and perspectives

An Eulerian two-fluid model to predict gas-liquid flows in
packed columns has been developed. This model gives a local
description of the two-phase flow using volume-averaged quanti-
ties. The models of the momentum exchanges at the walls and at the
interface between the liquid and the gas are based on the proposal
of Iliuta and Larachi (2005). The modeling of liquid dispersion was
an important goal of the present study. The model of Lappalainen
et al. (2009a) has been adapted and tested for counter-current flow
in a structured packing. The comparison of the numerical predic-
tions with recent experimental results obtained in counter-current
flow is promising. The difference between experiments and
numerics could originate from the selected model of mechanical
dispersion. In the absence of firm theoretical basis it is difficult to
evaluate the most representative model from Liu and Long (2000) or
from Lappalainen et al. (2009a).

Nomenclature

Latin letters

packing external surface area per unit volume of packed
bed, m?/m?

viscous permeability for phase k

coefficient of the inertial isotropic resistance

inertial resistance tensor for phase k

liquid spread factor, m

viscous resistance tensor for phase k

liquid film thickness, m

of

~ Sls oo >

Eq,E> Ergun coefficients

fe fractional wetted area

Fs gas capacity factor, Pa®>

Fc gas capacity factor at flooding conditions, Pa®>

?disp_k dispersive term in the momentum equation of phase k
g gravity acceleration, m/s?

H interface curvature, m~!

hy, width of phase k in a slit,_) m

Kic coefficient in the law of _R) G

Kis coefficient in the law of S pgrousk

K1 K. dispersion tensors

I, size of phase k at the pore scale, m

P Pressure, Pa

q liquid load, m3/m?/h

r, radial component in a cylindrical coordinate system

R average momentum transfer term at the interface for
N phase k

S porous,k average momentum transfer at the wall for phase k

S spread factor (m)

S spreading tensor

Ucs gas superficial velocity, m/s

Uis liquid superficial velocity, m/s

ﬁk intrinsic volume-average velocity of phase k, m/s
TI)D,k drift velocity of phase k

z axial component in a cylindrical coordinate system

Greek letters

ol volume fraction of phase k

AP|Az  pressure drop, Pa/m

€ packing void fraction, porosity, dimensionless

0 angle with the horizontal direction or azimuthal com-
ponent in a cylindrical coordinate system

O saturation of phase k

i dynamic viscosity of phase k, Pa/s

Pk density of phase k, kg/m>

g surface tension, N/m

Tk tortuosity of phase k

T averaged viscous stress tensor in phase k

Subscript

C capillary

G gas phase

L liquid phase

s solid

w wall
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