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Discretization of a dynamic thermoviscoelastic

Timoshenko beam

by Christine Bernardi1 and Maria Inês M. Copetti2

Abstract: We consider a nonlinear model for a thermoelastic beam that can enter in
contact with obstacles. We first prove the well-posedness of this problem. Next, we propose
a discretization by Euler and Crank-Nicolson schemes in time and finite elements in space
and perform the a priori analysis of the discrete problem. Some numerical experiments
confirm the interest of this approach.

Résumé: Nous considérons un modèle non linéaire pour une poutre thermoélastique qui
peut entrer en contact avec des obstacles. Nous prouvons que ce problème est bien posé.
Puis nous écrivons une discrétisation par schémas d’Euler et de Crank-Nicolson en temps
et éléments finis en espace et effectuons l’analyse a priori du problème discret. Quelques
expériences numériques confirment l’intérêt de cette approche.
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1. Introduction.

In this paper we consider the evolution problem

utt = uxx − φx + ζ(uxxt − φxt) +

(
β + ρ

∫ 1

0

u2
xdx

)
uxx, x ∈ I, t > 0,

φtt = φxx + ux − φ+ ζ(φxxt + uxt − φt)− aθx, x ∈ I, t > 0,

θt = θxx − aφxt, x ∈ I, t > 0,

(1.1)

where u(x, t), φ(x, t) and θ(x, t) denote the vertical displacement, the angular rotation
of cross section and the temperature along the transversal direction of a homogeneous,
thermoviscoelastic thick beam whose reference configuration is the interval I =]0, 1[.

Here, the stress field is given by σ = ux−φ+ ζ(uxt−φt) +
(
β + ρ

∫ 1

0
u2
xdx

)
ux, ζ > 0

is a viscosity coefficient, β accounts for an axial force at rest, ρ > 0 is a constant related
to the material and a nonlinearity of Kirchhoff type taking into account changes in tension
due to variations in the displacement is incorporated in the Timoshenko beam model.

We have the initial conditions

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ I,
φ(x, 0) = φ0(x), φt(x, 0) = φ1(x), x ∈ I,
θ(x, 0) = θ0(x), x ∈ I,

(1.2)

and the boundary conditions

u(0, t) = φ(0, t) = 0, t > 0,

φx(1, t) + ζφxt(1, t) = 0, t > 0,

θ(0, t) = θA, θ(1, t) = 0, t > 0,

σ(1, t) = −1

ε

(
[u(1, t)− g2]+ − [g1 − u(1, t)]+

)
, t > 0.

(1.3)

The condition in the first line of (1.3) is assumed at x = 0 on the two unknowns u
and φ and it means that the beam is clamped at this point. At x = 1 the beam is free to
come into frictionless contact with two pointed reactive obstacles located at the vertical
positions g1 and g2 (see Figure 1), g1 ≤ 0 ≤ g2. The boundary condition in the fourth line
of (1.3) with ε > 0 describes the contact and is called normal compliance condition. The
symbol [f ]+ = max{f, 0} denotes the positive part of a function f. In the limit ε→ 0 the
obstacles become rigid and a Signorini condition is obtained. Moreover, the temperature
of the beam is prescribed at both ends.

We remark that the temperature acts on the motion of φ directly and indirectly on the
displacement u through the coupling of the equations. We refer to the works of Lagnese,
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Leugering and Schmidt [10], Sapir and Reiss [16] and Anh and Stewart [1] for details on
the modelling.

2g

g1

Figure 1. The contact problem.

Problem (1.1) − (1.2) − (1.3) with ζ = β = ρ = 0 and Dirichlet and/or Newmann
boundary conditions was considered by Rivera and Racke [15] who investigated the decay
rate of the energy associated with the system. If longitudinal deformations and temper-
ature variations along the axial direction are taken into account then the thermoelastic
Bresse system addressed by Liu and Rao [11] is obtained. A dynamic, nonlinear, elastic,
Timoshenko beam problem was studied by Sapir and Reiss [16]. In particular, stationary
solutions were described and their stability investigated. In [13] an existence result was
given and a numerical method studied for a nonlinear Timoshenko system modelling the
dynamic vibrations of an elastic beam. Recently, Anh and Stewart [1] and Copetti and
Fernández [8] examined contact problems for an viscoelastic linear Timoshenko beam. In
particular, fully discrete approximations were proposed and analysed and the results of
numerical simulations presented.

Stationary problems for nonlinear, elastic, Euler–Bernoulli beams were considered
previously in [14], [12]. An algorithm based on the Galerkin method was proposed by
Peradze [14] to solve an equation for a simply supported beam. In [12], Ma included a
nonlinear boundary condition, established existence of solutions and presented a numerical
algorithm using the finite difference method. Recently, the quasi-static thermoviscoelastic
nonlinear contact problem for an Euler–Bernoulli beam was numerically studied by Copetti
and Fernández [7]; in the latter case, a finite element discretization was proposed and
analyzed and some numerical experiments were performed. In [3], the nonlinear static
Timoshenko model was considered and a full analysis of a finite element discretization was
performed.

Thermoviscoelastic linear and nonlinear contact problems involving rods and Euler-
Bernoulli beams have been considerd by many authors, see for example [2], [5], [6], [7], and
the references therein. However, to our knowledge, the present paper is the first work to
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consider a dynamic, nonlinear, thermoviscoelastic, Timoshenko beam model with contact
boundary conditions.

In this work, we first write a variational formulation of this problem. Despite the
complexity of the system, we can exhibit a quantity that we arbitrarily call “energy” and
we prove that it decreases in time. Thus, by applying the Cauchy-Lipschitz theorem to a
finite-dimensional approximation of the problem and passing to the limit, we prove that it
admits a solution. We also investigate the uniqueness of this solution. Next, we propose
a finite element discretization of this problem. We then perform its a priori analysis. All
this justifies the choice of the discretization that we have made. Finally, we present and
analyze an iterative algorithm for solving the nonlinear discrete problem. Some numerical
experiments confirm the interest of our approach.

The outline of this article is as follows.
• In Section 2, we prove the well-posedness of the problem.
• Section 3 is devoted to the description and a priori analysis of the discrete problem.
• An iterative algorithm for solving the discrete problem is studied in Section 4.
• In Section 5, we present a few numerical experiments.

Acknowledgement: The work of M.I.M. Copetti was partially supported by the Brazil-
ian institution CAPES under grant 8659-11-7. She also wishes to thank the Laboratoire
Jacques-Louis Lions of Université Pierre et Marie Curie for the hospitality during the
beginning of this work.
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2. The continuous problem and its well-posedness.

We first write a variational formulation of system (1.1) − (1.2) − (1.3). Next, we
define and study its so-called energy. Then, we prove successively the uniqueness and the
existence of a solution to it.

For brevity, we now work with θA = 0 (note that, in any case, the function θ−θA(1−x)
solves the new problem with only a small modification on the second equation)

2.1. The variational formulation.

From now on, we consider the whole scale of Sobolev spaces Hs(I). When s is a
positive integer, these spaces are equipped with the semi-norm | · |Hs(I) and norm ‖·‖Hs(I).
We denote by (·, ·) the scalar product of L2(I) and, in view of the boundary conditions
(1.3), we introduce the spaces

H1
∗ (I) =

{
v ∈ H1(I); v(0) = 0

}
, H1

0 (I) =
{
v ∈ H1(I); v(0) = v(1) = 0

}
. (2.1)

We now consider the variational problem:

Find (u, φ, θ) in C 0(0, T ;H1
∗ (I)) × C 0(0, T ;H1

∗ (I)) × C 0(0, T ;H1
0 (I)) which satisfies

(1.2) and such that, for a.e. t in [0, T ],

∀w ∈ H1
∗ (I), (utt, w) + (ux − φ,wx)

+ ζ(uxt − φt, wx) + (N(u)ux, wx) + g(u)(1)w(1) = 0,

∀χ ∈ H1
∗ (I), (φtt, χ) + (φx, χx) + (φ− ux, χ)

+ ζ(φt − uxt, χ) + ζ(φxt, χx) − a(θ, χx) = 0,

∀η ∈ H1
0 (I), (θt, η) + (θx, ηx) + a(φxt, η) = 0,

(2.2)

where the nonlinear quantities N(u) and g(u)(1) are defined by

N(u) = β + ρ ‖ux‖2L2(I), (2.3)

and (we recall that g1 ≤ 0 ≤ g2)

g(u)(1) =


1
ε (u(1)− g2) if u(1) ≥ g2,
0 if g1 ≤ u(1) ≤ g2,
1
ε (u(1)− g1) if u(1) ≤ g1.

Due to the density of the space of infinitely differentiable functions with a compact
support in ]0, 1] (respectively in ]0, 1[) in H1

∗ (I) (respectively in H1
0 (I)) proving the follow-

ing equivalence result is easy. However it requires a little more regularity of the solution.
For this, we introduce the space

X =
(
H2(0, T ;L2(I)) ∩H1(0, T ;H1(I))

)2

×
(
H1(0, T ;L2(I)) ∩ L2(0, T ;H1(I))

)
. (2.4)
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Proposition 2.1. Problems (1.1)− (1.2)− (1.3) and (1.2)− (2.2) are equivalent in the fol-
lowing sense: Any triple (u, φ, θ) in X is a solution of (1.1)−(1.2)−(1.3) in the distribution
sense if and only if it is a solution of (1.2)− (2.2).

2.2. Study of an energy.

For brevity, we denote by ‖ · ‖ the norm of L2(I). We call energy the quantity E
defined at each time t by

E(t) =
1

2

(
‖ut‖2 + ‖ux − φ‖2 + ‖φt‖2 + ‖φx‖2 + ‖θ‖2

)
+

1

4ρ
N(u)2 +G(u)(1), (2.5)

where the new term G(u)(1) is defined by

G(u)(1) =


1
2ε (u(1)− g2)2 if u(1) ≥ g2,
0 if g1 ≤ u(1) ≤ g2,
1
2ε (u(1)− g1)2 if u(1) ≤ g1.

The reason for introducing the quantity E is given in the next proposition.

Proposition 2.2. The energy E satisfies for a.e. t in [0, T ]

d

dt
E(t) ≤ 0. (2.6)

Proof: When taking in (2.2) w equal to ut, χ equal to φt, and summing the two equations,
we derive

1

2

d

dt

(
‖ut‖2 + ‖ux − φ‖2 + ‖φt‖2 + ‖φx‖2

)
+ (N(u)ux, uxt) + g(u)(1)ut(1)

= −ζ‖uxt − φt‖2 − ζ‖φxt‖2 + a(θ, φxt).

On the other hand, taking in (2.2) η equal to θ gives

1

2

d

dt
‖θ‖2 = −‖θx‖2 − a(θ, φxt).

To handle the nonlinear terms, we observe that

d

dt

( 1

4ρ
N(u)2

)
=

1

2ρ
N(u)

d

dt
N(u) = N(u)(ux, uxt),

and that, for instance when u(1) ≥ g2,

d

dt
G(u)(1) =

1

ε
(u(1)− g2)ut(1).
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Thus, by summing the two equations, we obtain

d

dt
E(t) = −ζ‖uxt − φt‖2 − ζ‖φxt‖2 − ‖θx‖2,

and, since ζ is positive, this yields the desired result.

From now on, we assume that the initial data satisfy

u0 ∈ H1
∗ (I), u1 ∈ L2(I), φ0 ∈ H1

∗ (I), φ1 ∈ L2(I), θ0 ∈ L2(I). (2.7)

Then, an important consequence of Proposition 2.2 is that

E(t) ≤ E(0), (2.8)

which gives a stability property of the solution (u, φ, θ).

In view of the last inequality in the previous proof, we have a further estimate, which
turns out to be useful in what follows.

Corollary 2.3. The following estimate holds for a.e. t in [0, T ]

ζ

∫ t

0

(‖uxt − φt‖2 + ‖φxt‖2)(s) ds ≤ E(0). (2.9)

2.3. Uniqueness of the solution.

To handle the nonlinear terms, we need a preliminary result.

Lemma 2.4. Any soution u of problem (1.2)− (2.2) satisfies

‖ux‖2 ≤ cE(0). (2.10)

Proof: Let u be a solution of problem (1.2) − (2.2). Using (2.7), we first deduce from
(2.8) that

‖ux − φ‖2 + ‖φx‖2 ≤ 2E(0).

Using the Poincaré–Friedrichs and Young-inequalities thus yields

2E(0) ≥ ‖ux‖2 + (1 + c)‖φ‖2 − 2(ux, φ) ≥ (1− 1

1 + c
) ‖ux‖2,

whence the desired result.
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The same argument, applied with u replaced by ut and combined with Corollary 2.3
yields the next result.

Corollary 2.5. Any soution u of problem (1.2)− (2.2) satisfies

ζ

∫ t

0

‖uxt‖2(s) ds ≤ cE(0). (2.11)

We are thus in a position to state and prove the uniqueness result.

Theorem 2.6. Problem (1.2)− (2.2) admits at most a solution (u, φ, θ) in X.

Proof: Let (u1, φ1, θ1) and (u2, φ2, θ2) be two solutions of problem (1.2) − (2.2). Setting
v = u1 − u2, ψ = φ1 − φ2 and τ = θ1 − θ2, we observe that this new triple satisfies

v(x, 0) = vt(x, 0) = ψ(x, 0) = ψt(x, 0) = τ(x, 0) = 0, x ∈ I, (2.12)

and, for a.e. t in [0, T ],

∀w ∈ H1
∗ (I), (vtt, w) + (vx − ψ,wx) + ζ(vxt − ψt, wx)

+ (N(u1)u1x −N(u2)u2x, wx) + (g(u1)(1)− g(u2(1))w(1) = 0,

∀χ ∈ H1
∗ (I), (ψtt, χ) + (ψx, χx) + (ψ − vx, χ)

+ ζ(ψt − vxt, χ) + ζ(ψxt, χx) − a(τ, χx) = 0,

∀η ∈ H1
0 (I), (τt, η) + (τx, ηx) + a(ψxt, η) = 0,

(2.13)

Using exactly the same arguments as for Proposition 2.2, i.e., taking w = vt, χ = ψt and
η = τ , we derive

1

2

d

dt

(
‖vt‖2 + ‖vx − ψ‖2 + ‖ψt‖2 + ‖ψx‖2 + ‖τ‖2

)
+ ζ‖vxt − ψt‖2 + ζ‖ψxt‖2 + ‖τx‖2

≤ −(N(u1)u1x −N(u2)u2x, vxt)− (g(u1)(1)− g(u2)(1))vt(1).

To evaluate the right-hand side, we first use the definition of N

−(N(u1)u1x −N(u2)u2x, vxt) ≤ −β(vx, vxt) + ρ |(‖u1x‖2u1x − ‖u2x‖2u2x, vxt)|.

Due to the Lipschitz continuity of the mapping: v 7→ ‖vx‖2vx (we recall from (2.10)
that the norms of u1(t) and u2(t) in H1(I) are bounded) we derive by a Cauchy–Schwarz
inequality

−(N(u1)u1x −N(u2)u2x, vxt) ≤ (|β|+ c ρ) ‖vx‖‖vxt‖.

On the other hand, the Lipschitz continuity of g, together with the continuity of the trace
yields the same estimate for the second term:

−(g(u1)(1)− g(u2)(1))vt(1) ≤ c

ε
‖vx‖‖vxt‖.
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All this implies

1

2

d

dt

(
‖vt‖2 + ‖vx − ψ‖2 + ‖ψt‖2 + ‖ψx‖2 + ‖τ‖2

)
+ ζ‖vxt − ψt‖2 + ζ‖ψxt‖2 + ‖τx‖2 ≤ c max{|β|, ρ, 1

ε
} ‖vx‖‖vxt‖,

whence, since the initial conditions are zero,

‖vt‖2 + ‖vx − ψ‖2 + ‖ψt‖2 + ‖ψx‖2 + ‖τ‖2

+

∫ t

0

(ζ‖vxt − ψt‖2 + ζ‖ψxt‖2 + ‖τx‖2)(s) ds ≤ c max{|β|, ρ, 1

ε
}
∫ t

0

‖vx‖(s)‖vxt‖(s) ds.

Using the same arguments as for Lemma 2.4 and Corollary 2.5 in the left-hand side and a
Young’s inequaltiy in the right-hand side then yield

c ‖vx‖2 + c′ζ

∫ t

0

‖vxt‖2(s) ds ≤ c′ζ
∫ t

0

‖vxt‖2(s) ds+ c′′
max{|β|, ρ, 1

ε}
2

ζ

∫ t

0

‖vx‖2(s) ds.

It thus follows from the Gronwall’s lemma, see [17, Lemme 21.9] for instance, that v is
zero. The fact that ψ and τ are zero is then derived from the previous inequalities. This
concludes the proof.

2.4. Existence of a solution.

To prove that problem (2.2) admits a solution, we need an intermediary step. For a
given function u∗ in C 0(0, T ;H1

∗ (I)), we consider the simpler variational problem

Find (u, φ, θ) in C 0(0, T ;H1
∗ (I)) × C 0(0, T ;H1

∗ (I)) × C 0(0, T ;H1
0 (I)) which satisfies

(1.2) and such that, for a.e. t in [0, T ],

∀w ∈ H1
∗ (I), (utt, w) + (ux − φ,wx)

+ ζ(uxt − φt, wx) + (N(u∗)ux, wx) + g(u)(1)w(1) = 0,

∀χ ∈ H1
∗ (I), (φtt, χ) + (φx, χx) + (φ− ux, χ)

+ ζ(φt − uxt, χ) + ζ(φxt, χx) − a(θ, χx) = 0,

∀η ∈ H1
0 (I), (θt, η) + (θx, ηx) + a(φxt, η) = 0.

(2.14)

The only nonlinearity of this problem comes from the boundary condition in x = 1.

This problem can be written in a slightly different form. We introduce the new
unknowns v = ut, ψ = φt, and defining the vector field U = (u, v, φ, ψ, θ)T , we observe
that it reads

Ut = A(U), (2.15)
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where the matrix operator A(U) is defined by the twenty-five forms aij(·, ·), 1 ≤ i, j ≤ 5,
of the product

(
A(U),W

)
, with W = (z, w, ω, χ, η)T . All these forms are zero or linear,

but the form
a21(u,w) = −(ux, wx)− (N(u∗)ux, wx)− g(u)(1)w(1),

which contains all nonlinear terms. It can be noted that it is locally Lipschitz-continuous,
i.e. Lipschitz-continuous on any bounded subset of H1

∗ (I). We now state and prove the
first existence result.

Proposition 2.7. Assume that the data (u0, u1, φ0, φ1, θ0) satisfy (2.7). Then, for any
function u∗ in C 0(0, T ;H1

∗ (I)), problem (1.2) − (2.14) admits at least a solution (u, φ, θ)
in X.

Proof: It is performed in several steps.
1) Using the same arguments as for (2.8) and Lemma 2.4, we first derive that any solution
(u, φ, θ) of problem (1.2)− (2.14) is such that u is bounded in the space C 0(0, T ;H1

∗ (I)) by
a constant C0. So, without any restriction, we can replace the operator A(U) by another

operator Ã(U) which coincides with A(U) on all U with first component in the ball with
radius C0 and is globally Lipschitz-continuous.
2) Since H1

∗ (I) and H1
0 (I) are separable, there exist two increasing sequences (Vn)n and

(Wn)n of finite-dimensional spaces of H1
∗ (I) and H1

0 (I), respectively, such that ∪nVn is
dense in H1

∗ (I) and ∪nWn is dense in H1
0 (I). We set: Zn = V4

n ×Wn and introduce
an appropriate approximation Un0 of the vector of initial data (u0, u1, φ0, φ1, θ0)T in Zn.
Thus, when applying the Cauchy–Lipschitz theorem, see [17, Th. 21.1] for instance, there
exists a unique Un in C 0(0, T ;Zn) which satisfies Un(0) = Un0 and

∀Wn ∈ Zn, (Unt,Wn) = (Ã(Un),Wn).

3) We now choose Un0 such that (this requires the density of H1
∗ (I) in L2(I))

lim
n→+∞

‖u0x − un0x‖ = 0, lim
n→+∞

‖u1 − un1‖ = 0,

lim
n→+∞

‖φ0x − φn0x‖ = 0, lim
n→+∞

‖φ1 − φn1‖ = 0, lim
n→+∞

‖θ0 − θn0 ‖ = 0.

With obvious notation, this implies that En(0) ≤ cE(0) and thus, by exactly the same
arguments as for Proposition 2.2, see (2.8), that, for all t, En(t) is bounded independently
of n.
4) The previous argument yields that there exists a subsequence, still denoted by (Un)n for
simplicity, which converges to a vector field U weakly in H1(I)×L2(I)×H1(I)×L2(I)×
L2(I) and such that (un(1))n converges to u(1).
By using the fact that the sequences (Vn)n and (Wn)n are increasing, we write the previous
problem in the following form: For all m ≤ n,

∀Wm ∈ Z∗m, (Unt,Wm) = (Ã∗(Un),Wm).

where Z∗n is now equal to V4
n× (Wn ∩H2(I)) and Ã∗(Un) is constructed by integrating by

parts the term (θx, ηx) in the last equation. So passing to the limit first on n and second

9



on m yields that (u, φ, θ) is a solution of problem (1.2)− (2.14). It is readily checked that
this triple belongs to X.

Let B be the ball of C 0(0, T ;H1
∗ (I)) with radius C0 and let F denote the operator

which asociates with any u∗ in B the part u of the solution of problem (1.2) − (2.14)
exhibited in Proposition 2.7. We are in a position to prove the main result of this section
by applying a fixed-point theorem.

Theorem 2.8. There exists a positive real number ρ0 only depending on 1
ε , ζ and T , such

that, for all ρ ≤ ρ0, problem (1.2)− (2.2) admits at least a solution (u, φ, θ) in X.

Proof: It is readily checked from the definition of F that the existence of a solution for
problem (1.2) − (2.2) is equivalent to find a fixed-point of F , i.e. a function u in B such
that F(u) = u. So, we first recall from the previous proof that F is continuous from B into
itself. Next, let u∗1 and u∗2 be two functions in B. Denoting by (u1, φ1, θ1) and (u2, φ2, θ2)
the solutions of problem (1.2)−(2.14) associated with them by Proposition 2.7, we observe
that, when setting v = u1 − u2 and so on,

1

2

d

dt

(
‖vt‖2 + ‖vx − ψ‖2 + ‖ψt‖2 + ‖ψx‖2 + ‖τ‖2

)
+ ζ‖vxt − ψt‖2 + ζ‖ψxt‖2 + ‖τx‖2

≤ −(N(u∗1)u1x −N(u∗2)u2x, vxt)− (g(u1)(1)− g(u2)(1))vt(1).

Thus, exactly the same arguments as for Theorem 2.6 yield

c ‖vx‖2 ≤ c′
max{|β|, ρ, 1

ε}
2

ζ

∫ t

0

‖vx‖2(s) ds+ c′′
ρ2

ζ

∫ t

0

‖u∗1x − u∗2x‖2(s) ds.

Applying once more the Gronwall lemma, see [17, Lemme 21.9], thus implies∫ t

0

‖vx‖2(s) ds ≤ c′′ ρ
2

ζ

∫ t

0

(

∫ s

0

‖u∗1x − u∗2x‖2(ξ) dξ)ec
′ max{|β|,ρ, 1

ε
}2

ζ (t−s) ds,

whence

c ‖vx‖2 ≤
ρ2

ζ
T
(
c′
T max{|β|, ρ, 1

ε}
2

2ζ
ec

′ max{|β|,ρ, 1
ε
}2

ζ T + c′′
)

max
0≤s≤t

‖u∗1x − u∗2x‖2(s).

Thus, we have proven that for an appropriate choice of ρ0

max
0≤t≤T

‖u1x − u2x‖2(t) ≤ κ max
0≤t≤T

‖u∗1x − u∗2x‖2(t),

where the constant κ is < 1. This means that F is a contraction of the ball B. By applying
Banach fixed point theorem, we deduce the existence of a u in B such that F(u) = u,
whence the desired result.

Remark 2.9. It follows from the previous proof that the limitation on ρ is more precisely
a limitation on ρ2 T . So, on a very small time interval ]0, T [, the existence of a solution
holds with high values of ρ.
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3. The discrete problem and its a priori analysis.

We first describe the discrete problem which is constructed from the Euler and Crank–
Nicolson schemes in time and standard finite elements in space. Next, we prove the stability
of its solution by bounding a discrete energy. We conclude with a priori error estimates
on its solution.

3.1. Description of the discrete problem.

In view of the time discretization, for a given final time T > 0 and a given positive
integer N , we define the time step δt = T/N and the nodes tn = nδt, n = 0, 1, . . . , N . For
any sequence (yn)0≤n≤N , we use the notation

yn−1/2 =
yn + yn−1

2
. (3.1)

For the space discretization, we introduce a regular family (Th)h of triangulations of
I by closed intervals in the sense that, for each h,
• The closure I = [0, 1] of I is the union of all elements of Th;
• The intersection of two different elements of Th is either empty or an endpoint of both
of them;
• If two intervals K and K ′ of Th are adjacent, i.e. share an endpoint, their lengths hK
and hK′ satisfy

hK ≤ τ hK′ ,

for a constant τ independent of h.
As usual, h stands for the maximum of the lengths hK , K ∈ Th. In what follows, c, c′, . . .
stand for generic constants that may vary from line to line but are always independent of
the parameter h.

For a positive integer k and each K in Th, we introduce the space Pk(K) of restrictions
to K of polynomials with one variable and degree ≤ k. Then, we define the discrete space

Sh =
{
µh ∈ H1(I); ∀K ∈ Th, µh|K ∈ P1(K)

}
, (3.2)

and its subspaces

S∗h = Sh ∩H1
∗ (I), S0

h = Sh ∩H1
0 (I). (3.3)

We also introduce the projection operators P ∗h : H1
∗ (I) → S∗h and P 0

h : H1
0 (I) → S0

h,
defined respectively by

∀χh ∈ S∗h, ((P ∗hη − η)x, χhx) = 0 and ∀χh ∈ S0
h, ((P 0

hη − η)x, χhx) = 0.

11



The operator P ∗h (see [9, Lemma 2.1] or [4, Section IX.2]) preserves the values at all
endpoints of the elements in Th, satisfies for all η in H1

∗ (I)

‖P ∗hη − η‖ ≤ c h‖ηx‖ (3.4)

and also, for more regular functions η,

‖P ∗h η − η‖+ h‖(P ∗hη − η)x‖ ≤ c h2‖ηxx‖. (3.5)

Similar properties hold for the operator P 0
h .

In order to define approximations of the initial data, assuming that they are smooth
enough, we set

u0
h = P ∗hu0, û0

h = P ∗hu1, φ0
h = P ∗hφ0, φ̂0

h = P ∗hφ1 and θ0
h = P 0

hθ0. (3.6)

When using a combination of backward Euler and Crank-Nicolson schemes, the finite
element approximation to the variational problem (1.2) − (2.2) is written as follows: For
n = 1, . . . , N ,

Find (ûnh, φ̂
n
h, θ

n
h) in S∗h × S∗h × S0

h satisfying

∀wh ∈ S∗h,
1

δt
(ûnh − ûn−1

h , wh) + (u
n−1/2
hx − φn−1/2

h , whx) + ζ(ûnhx − φ̂nh, whx)

+

(
N(unh) +N(un−1

h )

2
u
n−1/2
hx , whx

)
+ g(unh)(1)wh(1) = 0,

∀χh ∈ S∗h,
1

δt
(φ̂nh − φ̂n−1

h , χh) + (φ
n−1/2
hx , χhx) + (φ

n−1/2
h − un−1/2

hx , χh)

+ ζ(φ̂nh − ûnhx, χh) + ζ(φ̂nhx, χhx)− a(θn−1/2, χhx) = 0,

∀ηh ∈ S0
h,

1

δt
(θnh − θn−1

h , ηh) + (θ
n−1/2
hx , ηhx) + a(φ̂nhx, ηh) = 0.

(3.7)

The discrete displacement unh and rotation angle φnh are then given by

unh = un−1
h + δtûnh, φnh = φn−1

h + δtφ̂nh, (3.8)

while θnh is the discrete temperature.

Owing to (3.1), by inserting (3.8) into (3.7), it can be checked that the only unknowns

of problem (3.7) are (ûnh, φ̂
n
h, θ

n
h). The well-posedness of this discrete problem is not at all

obvious and requires further arguments.

3.2. Study of a discrete energy.

12



Let En be the discrete energy function defined by

En =
1

2

(
‖ûnh‖2 + ‖unhx − φnh‖2 + ‖φ̂nh‖2 + ‖φnhx‖2 + ‖θnh‖2

)
+

1

4ρ
N(unh)2+G(unh)(1), (3.9)

where the function G is introduced in Section 2.2. This energy satisfies the discrete ana-
logue of (2.6).

Proposition 3.1. The solution (ûnh, φ̂
n
h, θ

n
h) to the discrete problem (3.6)− (3.7) satisfies

the energy decay property
En − En−1

δt
≤ 0. (3.10)

Proof: For simplicity, we suppress all the indices h in this proof. We take w equal to
ûn, χ equal to φ̂n and η equal to θn−1/2 in (3.7), multiply everything by δt and sum up
the three equations. Thanks to the formulas

(ûn − ûn−1, ûn) =
1

2

(
‖ûn − ûn−1‖2 + ‖ûn‖2 − ‖ûn−1‖2

)
,

(φ̂n − φ̂n−1, φ̂n) =
1

2

(
‖φ̂n − φ̂n−1‖2 + ‖φ̂n‖2 − ‖φ̂n−1‖2

)
,

(θn − θn−1, θn−1/2) =
1

2

(
‖θn‖2 − ‖θn−1‖2

)
δt(un−1/2

x , ûnx) =
1

2

(
‖unx‖2 − ‖un−1

x ‖2
)
,

δt(φn−1/2
x , φ̂nx) =

1

2

(
‖φnx‖2 − ‖φn−1

x ‖2
)
,

δt(un−1/2
x − φn−1/2, ûnx − φ̂n) =

1

2

(
‖unx − φn‖2 − ‖un−1

x − φn−1‖2
)
,

we thus derive

1

2

(
‖ûn‖2 − ‖ûn−1‖2 + ‖unx − φn‖2 − ‖un−1

x − φn−1‖2 + ‖φ̂n‖2 − ‖φ̂n−1‖2
)

+
1

2

(
‖φnx‖2 − ‖φn−1

x ‖2 + ‖θn‖2 − ‖θn−1‖2
)

+ δtζ(‖ûnx − φ̂n‖2 + ‖φ̂nx‖2)

+
β

2

(
‖unx‖2 − ‖un−1

x ‖2
)

+
ρ

4

(
‖unx‖4 − ‖un−1

x ‖4
)

+ δt‖θn−1/2
x ‖2

+
1

ε

(
[un(1)− g2]+ − [g1 − un(1)]+

)
(un(1)− un−1(1))

= −1

2

(
‖ûn − ûn−1‖2 + ‖φ̂n − φ̂n−1‖2

)
≤ 0.

For handling the term on the boundary, we observe from [8, Proof of Thm 3] that(
[un(1)− g2]+ − [g1 − un(1)]+

)
(un(1)− un−1(1))

≥ 1

2
[un(1)− g2]2+ −

1

2
[un−1(1)− g2]2+ +

1

2
[g1 − un(1)]2+ −

1

2
[g1 − un−1(1)]2+.
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This yields

1

2

(
‖ûn‖2 − ‖ûn−1‖2 + ‖unx − φn‖2 − ‖un−1

x − φn−1‖2 + ‖φ̂n‖2 − ‖φ̂n−1‖2
)

+
1

2

(
‖φnx‖2 − ‖φn−1

x ‖2 + ‖θn‖2 − ‖θn−1‖2
)

+
β

2

(
‖unx‖2 − ‖un−1

x ‖2
)

+
ρ

4

(
‖unx‖4 − ‖un−1

x ‖4
)

+
1

2ε

(
[un(1)− g2]2+ − [un−1(1)− g2]2+

)
+

1

2ε

(
[g1 − un(1)]2+ − [g1 − un−1(1)]2+

)
≤ −δtζ‖ûnx − φ̂n‖2 − δtζ‖φ̂nx‖2 − δt‖θn+1/2

x ‖2,

whence the desired result.

As a consequence we have the stability result:

Corollary 3.2. Assume that the initial data satisfy

u0 ∈ H1
∗ (I), u1 ∈ H1

∗ (I), φ0 ∈ H1
∗ (I), φ1 ∈ H1

∗ (I), θ0 ∈ H1
0 (I). (3.11)

Then, any solution (ûnh, φ̂
n
h, θ

n
h) to the discrete problem (3.6)−(3.7) satisfies, for a constant

c > 0, independent of h and δt,

‖ûnh‖2 + ‖unhx − φnh‖2 + ‖φ̂nh‖2 + ‖φnhx‖2 + ‖θnh‖2 + ‖unhx‖2

+
(

[un(1)− g2]2+ + [g1 − un(1)]2+

)
≤ c,

(3.12)

where unh and φnh are defined in (3.8).

Proof: We derive by applying iteratively Proposition 3.1 that

En ≤ E0,

and all the terms in E0 are bounded owing to (3.4) thanks to the assumptions on the initial
data. On the other hand, all the terms in the left-hand side of (3.12) which do not appear
explicitly in the definition (3.9) of En can be bounded by exactly the same arguments as
for Lemma 2.4.

Remark 3.3. In the case where N(u) is equal to a constant N and g(u)(1) is equal to
a constant g, problem (3.7) is linear, hence results into a square linear system. It follows

from the previous proof that, when all data are zero, each solution (ûnh, φ̂
n
h, θ

n
h) is zero. So,

in this case, problem (3.7) admits a unique solution. But the arguments for proving the
existence and uniqueness in the nonlinear case are much more complex, similar to those
for Proposition 2.7 and Theorem 2.8, and we prefer to skip them.
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3.3. A priori error estimates.

We now state and prove the main result of this paper.

Theorem 3.4. Assume that the solution (u, φ, θ) to the continuous problem (1.2)− (2.2)
belongs to the space

X∗ =
(
H4(0, T ;L2(I)) ∩H3(0, T ;H1(I)) ∩H1(0, T ;H2(I))

)2

×
(
H3(0, T ;L2(I)) ∩H2(0, T ;H1(I))

)
.

(3.13)

Then, there exists a constant c independent of h and δt such that

‖ûnh − ut(tn)‖2 + ‖unhx − φnh − (ux(tn)− φ(tn))‖2 + ‖φ̂nh − φt(tn)‖2

+ ‖φnhx − φx(tn)‖2 + ‖θnh − θ(tn)‖2 ≤ c
(
h2 + (δt)2

)
.

(3.14)

The proof of this theorem is very technical, see the proof of the much simpler result
stated in Proposition 3.1, and we prefer to give only a sketch of it.

Sketch of proof: We only bring to light the main steps of such an estimate. Let us set:

en = unh − P ∗hu(tn), yn = ûnh − P ∗hut(tn), qn = φnh − P ∗hφ(tn),

pn = φ̂nh − P ∗hφt(tn) rn = θnh − P 0
hθ(tn).

(3.15)

1) We write the first equation in problem (3.7) with unh replaced by en, ûnh replaced by yn

and so on. Next, we take wh equal to yn. We combine the result with the first equation
in (2.2) at time tn−1/2 , again with w = yn. All this gives

1

2δt

(
‖yn − yn−1‖2 + ‖yn‖2 − ‖yn−1‖2

)
+ (en−1/2

x − qn−1/2, ynx )

+ ζ(ynx − pn, ynx ) +

(
β + ρ

‖unhx‖2 + ‖un−1
hx ‖2

2

)
(u
n−1/2
hx , ynx )

+
1

ε

(
[unh(1)− g2]+ − [g1 − unh(1)]+

)
yn(1)

− 1

ε

(
[u(1, tn−1/2)− g2]+ − [g1 − u(1, tn−1/2)(1)]+

)
yn(1)

=

(
utt(tn−1/2)− P ∗hut(tn)− P ∗hut(tn−1)

δt
, yn
)

+

(
ux(tn−1/2)− (P ∗hu(tn))x + (P ∗hu(tn−1))x

2
, ynx

)
−
(
φ(tn−1/2)− P ∗hφ(tn) + P ∗hφ(tn−1)

2
, ynx

)
+
(
β + ρ‖ux(tn−1/2)‖2

)
(ux(tn−1/2), ynx )

+ ζ(uxt(tn−1/2)− φt(tn−1/2)− (P ∗hut(tn))x + P ∗hφt(tn), ynx ).
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2) The same arguments applied to the second equations in (3.7) and (2.2) together with
the definition of the operator P ∗h yield

1

2δt

(
‖pn − pn−1‖2 + ‖pn‖2 − ‖pn−1‖2

)
+ (qn−1/2

x , pnx)

− (en−1/2
x − qn−1/2, pn)− ζ(ynx − pn, pn) + ζ‖pnx‖2 − a(rn−1/2, pnx)

=

(
φtt(tn−1/2)− P ∗hφt(tn)− P ∗hφt(tn−1)

δt
, pn
)

+

(
φx(tn−1/2))− φx(tn) + φx(tn−1)

2
, pnx

)
−
(
ux(tn−1/2)− (P ∗hu(tn))x + (P ∗hu(tn−1))x

2
, pn
)

+

(
φ(tn−1/2)− P ∗hφ(tn) + P ∗hφ(tn−1)

2
, pn
)

− ζ(uxt(tn−1/2)− φt(tn−1/2)− (P ∗hut(tn))x + P ∗hφt(tn)), pn)

+ ζ(φxt(tn−1/2)− φxt(tn), pnx)

− a
(
θ(tn−1/2)− P 0

hθ(tn) + P 0
hθ(tn−1)

2
, pnx

)
.

3) Again the same arguments applied to the third equations in (3.7) and (2.2) lead to the
simpler inequality

1

2δt
(‖rn‖2 − ‖rn−1‖2) + ‖rn−1/2

x ‖2 + a(pnx , r
n−1/2)

=

(
θt(tn)− P 0

hθ(tn)− P 0
hθ(tn−1)

δt
, rn−1/2

)
+

(
θx(tn−1/2)− θx(tn) + θx(tn−1)

2
, rn−1/2
x

)
− a(φt − P ∗hφt(tn), rn−1/2

x ).

4) We sum up the last three inequalities. To handle the boundary term, keeping in mind
that u(1, tn) = (P ∗hu(·, tn))(1), we have(

[u(1, tn)− g2]+ − [g1 − u(1, tn)]+ − [unh(1)− g2]+ + [g1 − unh(1)]+

)
yn(1)

≤ c|u(1, tn)− unh(1)| |yn(1)|

≤ c
(
‖enx − qn‖2 + ‖qn‖2 + ‖pn‖2

)
+
ζ

4
‖ynx − pn‖2.

5) We now set

Zn = ‖yn‖2 + ‖pn‖2 + ‖rn‖2 + ‖qnx‖2 + ‖enx − qn‖2.
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Collecting all these estimates, we observe that

(1− 2cδt)Zn ≤ Zn−1 + 2δtRn, (3.16)

where the residual Rn is the sum of the two approximation errors

‖(ut(tn)− P ∗hut(tn))x‖
2
, ‖φt(tn)− P ∗hφt(tn)‖2 ,

and 15 more complex terms.
6) All these terms combine time error which is estimated by using Taylor’s expansion in
time of the exact solution u and space error which can be bounded from (3.5). This yields

δt

n−1∑
k=0

Rk ≤ c
(
h2 + (δt)2

)
,

where the constant c only depends on appropriate norms of the solution u, see the definition
of the space X∗.
7) To conclude, we apply the discrete Gronwall lemma to the inequality (3.16), see [17,
Lemme 22.7]:

Zn ≤ Z0 e
cnδt + δt

n−1∑
k=0

Rk e
c′(n−k−1)δt.

It is readily checked that Z0 = 0. Since nδt ≤ T , this gives the right bound for each Zn
and applying a triangle inequality and (3.5) gives the desired result.

Estimate (3.14) is fully optimal and the regularity of the solution which is required for
it seems reasonable. In any case, combining this bound with the stability property stated
in Corollary 3.2 implies the convergence of the discretization.
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4. An iterative algorithm.

As standard, to solve th nonlinear problem (3.7), we use an iterative algorithm that

we now describe. Assuming that (ûn−1, φ̂n−1, θn−1) is known, we first set:

un,0h = un−1
h , ûn,0h = ûn−1

h , φn,0h = φn−1
h , φ̂n,0h = φ̂n−1

h and θn,0h = θn−1
h . (4.1)

Next, we solve iteratively the problem:

Find (ûn,`h , φ̂n,`h , θn,`h ) in S∗h × S∗h × S0
h satisfying

∀wh ∈ S∗h,
1

δt
(ûn,`h − û

n−1
h , wh) + (u

n−1/2,`
hx − φn−1/2,`

h , whx) + ζ(ûn,`hx − φ̂
n,`
h , whx)

+

(
N(un,`−1

h ) +N(un−1
h )

2
u
n−1/2,`
hx , whx

)
+ g(un,`−1

h )(1)wh(1) = 0,

∀χh ∈ S∗h,
1

δt
(φ̂n,`h − φ̂

n−1
h , χh) + (φ

n−1/2,`
hx , χhx) + (φ

n−1/2,`
h − un−1/2,`−1

hx , χh)

+ ζ(φ̂n,`h − û
n,`−1
hx , χh) + ζ(φ̂n,`hx , χhx)− a(θn−1/2,`, χhx) = 0,

∀ηh ∈ S0
h,

1

δt
(θn,`h − θ

n−1
h , ηh) + (θ

n−1/2,`
hx , ηhx) + a(φ̂n,`−1

hx , ηh) = 0,

(4.2)
where the following notation, valid for any sequence (yn,`),

yn−1/2,` =
yn,` + yn−1

2
, yn,` = yn−1 + δtŷn,` (4.3)

Despite its complex form, problem (4.2) is easy to solve. We now prove its well-posedness.

Proposition 4.1. For any data (u0, u1, φ0, φ1, θ0) satisfying (3.11), for n = 1, . . . , N and
any positive integer `, problem (4.2) has a unique solution when δt is small enough.

Proof: We proceed by induction on n and `. Indeed, the initial conditions are given by
(3.6) and (4.1). At each step (n, `), problem (4.2) results into a square finite-dimensional

linear system. So, assume that all data (ûn−1
h , φ̂n−1

h , θn−1
h ) and (ûn,`−1

h , φ̂n,`−1
h , θn,`−1

h ) and
also (un−1

h , φn−1
h ) are zero and note from (4.3) that yn,` = δtŷn,`. It can thus be re-written

∀wh ∈ S∗h,
1

δt2
(un,`h , wh) +

1

2
(un,`hx − φ

n,`
h , whx) +

ζ

δt
(un,`hx − φ

n,`
h , whx),

+

(
β

2
un,`hx , whx

)
= 0,

∀χh ∈ S∗h,
1

δt2
(φn,`h , χh) +

1

2
(φn,`hx , χhx) +

1

2
(φn,`h , χh)

+
ζ

δt
(φn,`h , χh) +

ζ

δt
(φn,`hx , χhx)− 1

2
a(θn,`, χhx) = 0,

∀ηh ∈ S0
h,

1

δt
(θn,`h , ηh) +

1

2
(θn,`hx , ηhx) = 0.

(4.4)
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By taking ηh equal to θn,`h in the last line, we immediately derive that θn,`h is zero. On the

other hand, taking χh equal to φn,` in the second equation thus yields that φn,`h is zero.

Finally, taking wh equal to un,`h in the first equation implies that un,`h is zero (even when
β is negative, |β|δt is smaller than 1

δt or ζ). As a consequence, problem (4.2) has at most
a solution, hence has a unique solution.

It follows from the previous proof that problem (4.2) results into three uncoupled

equations: Solve first the equation on θn,`h , next the equation on φ̂n,`h and finally the

equation on ûn,`h . This brings to light the interest of the algorithm.

The consistency of problem (4.2) with problem (3.7) is readily checked (suppress all
the ` in (4.2)). On the other hand, its convergence can be proved by the same technical
arguments as for Theorem 3.4. So, we prefer to skip it. In any case, we solve the well-posed
problem (4.2) either a finite number of times, say L times, or until the smaller L such that

the difference between (un,Lh , φn,Lh , θn,Lh ) and (un,L−1
h , φn,L−1

h , θn,L−1
h ) in an appropriate

norm becomes smaller than a given tolerance η∗. We finally set:

ûnh = ûn,Lh , φ̂nh = φ̂n,Lh , θnh = θn,Lh . (4.5)

The numerical experiments in the next section confirm the efficiency of this approach.
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5. Numerical experiments.

In our simulations we take

g1 = −0.01, g2 = 0.1, ζ = 0.1, a = 0.017, ρ = 1, ε = 0.001. (5.1)

The discretization parameters are fixed equal to

h = 10−2, δt = 0.0001, (5.2)

and the triangulation Th is uniform. A tolerance η∗ = 10−7 is used to stop the iterative
procedure.
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Figure 2. The energy as a function of t, for β = −0.5, 0 and 5.
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We work with the initial values

u0(x) = 0.01x(x− 2), u1(x) = 20x(x− 1)2, φ0(x) = 0, φ1(x) = 0. (5.3)

We now investigate the influence of the initial temperature, for three different values of β.

In the first experiment, we choose

θ0(x) = sin(πx), (5.4)

and we work with the three values β = −0.5, 0 and 5. The evolution of the system is
towards the state u = θ = φ = 0 and the energy decays to the limit β2/4, (see Figure 2).
Figures 3 and 4 show the displacement and the angular rotation at the end x = 1. In Figure
3, we observe that, at the beginning, the beam gets in contact with both obstacles, with
the frequency of oscillations increasing with the size of β. The amplitude of oscillations
present in the profiles of φ are larger when β = −0.5 (Figure 4).
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Figure 3. The displacement at x = 1 as a function of t, for β = −0.5, 0 and 5.
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Figure 4. The angular rotation at x = 1 as a function of t, for β = −0.5, 0 and 5.

Next, we change the initial temperature to

θ0(x) = 20 cos(5πx/2). (5.5)

In this case, when β = −0.5 and β = 0, at the steady-state, the beam is in contact with
the upper obstacle. The results are presented in Figures 5 and 6.
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Figure 5. The displacement at x = 1 as a function of t, for β = −0.5, 0 and 5.
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Figure 6. The angular rotation at x = 1 as a function of t, for β = −0.5, 0 and 5.
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In the last experiment,we still work with the initial value of θ given in (5.4). At least
for smoth solutions, this means that

θA = 0,

and in this case u = φ = θ = 0 is a solution to the stationary problem. We run an
experiment with β = −0.8 and obtain a stationary solution which is not zero. On the
other hand, the uniqueness of the solution of the stationary problem is proven in [3, Thm
2.8] only with the condition β > − 1

2 , and the numerical experiment gives evidence that,
for β < − 1

2 , there are multiple steady-state solutions.
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Figure 7. The energy and the solution (uh, φh) at x = 1 as a function of t for β = −0.8.
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