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The possibility of accounting for slippage at the
fibres boundaries or at the interface has been explic-
itly addressed in several models that try to analyse the
fibre composite material using homogenization tech-
niques. Usually specific micro-mechanical models are
employed, that require very fine meshes and averaging
procedures. In the case of thin fibres, some approxi-
mations are possible. Very often the fibre is consid-
ered rigid and only the slippage is accounted for. Stress
concentration arises at the tip of the fibre, so that a
deformable interlayer is required in order to regularise
the numerical solution (Liao and Reifsnider 2000; Chu-
doba et al. 2009). However, fibre deformation cannot
be disregarded for long and medium fibres, like in the
case of rebars in reinforced concrete.

An alternative common approximation is to simplify
the slip-bond law, disregarding the elastic-like part and
considering only the permanent slip as a discontinuity
in the displacement field. Radtke et al. (2011) have con-
sidered tunnel-like discontinuities at the fibre bound-
ary, that can degenerate into singular jumps in the case
the thickness of the fibre tends to zero. They adopted
the methodology introduced by the strong discontinu-
ity approach (SDA) (Simo et al. 1993; Oliver 1996;
Oliver et al. 1999; Linder and Armero 2007) account-
ing for the boundary traction. Oliver adopted a similar
approach for steel fibres reinforced concrete, although
the slip was included in the steel constitutive equation,
modifying the plastic softening modulus (Oliver et al.
2008).

In the paper, fracture is modeled adopting the cohe-
sive model, originally developed by Dugdale (1960),
for ductile fracture, and Barenblatt (1962), for brit-
tle fracture. An adequate traction-separation law is
assumed in the process zone, following one of the many
proposals existing in the literature for concrete.

In a finite element (FE) context, tracking of inter-
faces is a demanding task, since a necessary require-
ment for the well-posedness of the discretised problem
is the C0 continuity of the interpolation. Indeed, the
simplest way for introducing interfaces is to use zero
thickness elements between standard elements (Ortiz
et al. 1987). The crack path is thus constrained to
develop on prescribed positions, and this causes very
large errors on the evaluation of the fracture energy dis-
sipated, requiring either continuous remeshing or a very
fine mesh in the zone where crack is likely to develop.
In addition, potential interfaces are inserted among all
the elements where the crack can propagate, increas-

ing the number of degrees of freedom, and, since it is
necessary to introduce a fictitious elastic deformation
of the interface, this artificially increases the compli-
ance of the structure. Strategies have been proposed
for inserting interfaces only where needed, but then it
is necessary to use some recovery procedure for pro-
jecting the stresses on the nodes (Caballero et al. 2007;
Ciancio et al. 2007).

Alternative to interelement interfaces are the strate-
gies that employ intraelement interfaces, either increas-
ing the nodal degrees of freedom or introducing
appropriate enhancements in the displacement or defor-
mation fields. XFEM, based on extra nodal degrees of
freedom, has been largely employed in the simulation
of propagating fractures (see, for instance, Moës et al.
1999; Belytschko et al. 2001). In the paper the element
with embedded discontinuities (EED) formulation is
adopted, (Simo and Oliver 1994; Jirásek and Zimmer-
mann 2001; Mosler 2005; Oliver et al. 2006; Alfaiate et
al. 2003), whose main advantage is that the additional
degrees of freedom can be condensed at the element
level. However, treating the additional degrees of free-
dom related to the enhancement as global, it is possible
to guarantee the continuity of the discontinuity, as in
Dias-da Costa et al. (2009, 2010). It is noted that XFEM
presents a discontinuous gradient on either side of the
interface, contrarily to EED, at least in the case of its
classical implementation with constat jump.

Somewhat intermediate between the two previ-
ously described methods are the formulations based
on discontinuous Galerkin (DG) approximations. This
method uses discontinuous piecewise polynomial inter-
polations and allows for the use of unstructured meshes,
while the continuity conditions are variationally
imposed on the boundaries of the elements. DG meth-
ods are, thus, ideal in the case that a cohesive interface
has to be modeled, and have been used both for static
fracture (Prechtel et al. 2011) and for dynamic fracture
(Huang and Costanzo 2004). DG have also been used
for simulating fracture processes in structural models,
like shells and beams. In the latter case, it was consid-
ered an homogeneous brittle beam, and a cohesive law
was suggested to apply directly to the stress resultants
in terms of the dual openings (Becker and Noels 2011).
DG methods, so far, have not been applied to the case
of reinforced concrete beams.

In Ibrahimbegovic et al. (2010) an approach based
on EED and XFEM is used for modeling the final
crack-spacing and opening in reinforced-concrete (RC)



structures, accounting for non linear concrete, steel
and bond-slip constitutive models. In De Luycker
et al. (2011) the XFEM formulation is incorporated
into isogeometric analysis to obtain solutions with
higher order convergence rates for problems in linear
fracture mechanics. In comparison with XFEM with
conventional FEs of equal degree, the NURBS-based
isogeometric analysis gave equal asymptotic conver-
gence rates and equal accuracy with fewer degrees of
freedom (DOF). Isogeometric interpolation is becom-
ing a widely employed paradigm for FE analysis (see
for instance Auricchio et al. 2007; Kiendl et al. 2009;
Benson et al. 2011; Borden et al. 2011). Verhoosel et al.
(2011) used isogeometric FEs for discretising the cohe-
sive zone formulation for failure in materials. They pro-
posed a method based on discontinuous splines created
by means of the knot-insertion technique. They found
that T-splines are able to reproduce the crack path.
The method has also been employed for the analysis
of prestressed box-girder bridges in Choi et al. (2002)
using the finite strip method (FSM), where isoparamet-
ric non-periodic B3-spline are introduced to simulate
the displacement Kronecker delta property at the mid-
span support of multispan bridge.

All the methods mentioned avoid the need of
remeshing. In brittle homogeneous structures under a
uniform strain field, it is not possible to localise the
position of the fracture. This can be a serious prob-
lem in slender structures mainly subjected to bend-
ing, where the distance of successive cracks is strongly
influenced by the interaction between the matrix and
the reinforcement (Oliver et al. 2008). Moreover, in
very thin plates subjected to bending, like in the case
of laminated glasses, the interaction with the interlayer
is essential for correctly predicting the crack pattern. In
these cases, it appears essential to employ a non-homo-
geneous model.

In the paper we study the behaviour of reinforced
concrete elements, including crack formation and con-
crete/steel slip. An elastic–plastic constitutive relation
is used for the steel while the CEB-FIP proposal is
adopted for the interface. Specifically, a one-dimen-
sional element consisting in a beam with a single uni-
form reinforcement is considered.

The methodology proposed in the paper differs from
the previous ones in two main points. First, different
kinematic fields are considered for the matrix and the
fibres. In this way, additional degrees of freedom are
introduced, although they can be condensated using

macro-elements. Crack opening in the matrix is intro-
duced by means of a SDA. From the variational formu-
lation of the enhanced problem all the relevant equa-
tions, including the interface equilibrium between the
traction and the continuum stress, are derived. Two
enhancements of the kinematics, based on polynomial
or exponential shape functions respectively, are com-
pared with the usual SDA enhancement. The matrix
displacement field is assumed as the sum of a regular
continuous field, related to the nodal degrees of free-
dom, plus a discontinuous field related to the displace-
ment jump across the crack.

As an alternative approach, high-order interpola-
tion based on B-splines is used. Both the concrete
and the steel displacement fields are interpolated with
B-splines. These functions appear to be adequate to
interpolate displacement fields rapidly varying, and
result quite stable in the numerical implementation.

The outline of the paper is the following. In Sect. 2
the ruling equations of the problem and the constitu-
tive assumption are described. Section 3 contains the
variational formulation and the FE implementation.
In Sect. 4 polynomial and exponential shape function
approximations are considered while in Sect. 5 the case
of B-splines is examined. Finally, in Sect. 6.1 numer-
ical applications and comparisons are illustrated. The
advantages of the latter formulation on the previous are
discussed. Some conclusions close the paper.

2 Bar slip in reinforced concrete under
uniaxial regime

It is examined the case of a concrete beam in which a
single reinforcement bar occupies the centroidal posi-
tion. The unit is subjected to an uniaxial stretch. Let
L be the length of the beam. The adopted model con-
siders two separate phases (concrete–steel) joined by a
deformable interphase of zero thickness. Each phase,
as well as the interphase, is characterised by their own
constitutive behaviour. The degrees of freedom of the
system are the displacements of steel and concrete,
us(x) and uc(x), respectively. The corresponding infin-
itesimal axial deformations are given by

εs = ∂us

∂x
, εc = ∂uc

∂x
(1)

and the slip is given by Γ = γ t = us − uc, γ being
the shear strain at the material interface and t the thick-
ness of the beam. The conjugate dual variables are σs ,



Fig. 1 Forces acting on a typical element

σc, τ . Therefore the virtual work identity can be written
in the form:

L∫

0

Asσs ε̃sdx +
L∫

0

Acσcε̃cdx +
L∫

0

Csτ(ũs − ũc)dx

= [Fsũs + Fcũc]L
0 (2)

where As and Ac are respectively the cross-sectional
areas of the steel bar and of the concrete, while Cs =
πDs is the rebar perimeter, Ds being the diameter.

Figure 1 shows the stresses acting on the elements.
The model has been widely used both for reinforced
concrete structures and for delamination problems
since it was proposed by Newmark et al. (1951) for
steel–concrete composite structures. In the case all the
phases behave linearly with elastic moduli Es , Ec, G0,
it is very easy to obtain a closed form solution of the
equilibrium equations derived form the identity (2):

As Esu′′
s − Cs G0(us − uc) = 0

Ac Ecu′′
c + Cs G0(us − uc) = 0.

(3)

The solution of the homogeneous equations are
given by the vectors:

us = {
Q1eαx , Q1e−αx , x, 1

}
uc = {

Q2eαx , Q2e−αx , x, 1
}

Q1 = 1 + H
α2

2

Q2 = 1 − H
α2

2
(4)

H = Cs G0

(
1

Es As
− 1

Ec Ac

)
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Fig. 2 Pull out test: a model. b Tangential slip stress

α =
√

Cs G0

(
1

Es As
+ 1

Ec Ac

)

A typical solution for the distribution of the tan-
gential slip stresses τ at various levels of loading in
a pull out test is shown in Fig. 2. The concrete core
is constrained at the left end and free at the right one,
while the rebar is free at both ends and an increasing
displacement is applied on the right side. Large stress
gradients occur at the right end of the bar, while the cen-
tral zone undergoes a much more regular stress field.
Therefore, in FE approximations of the problem, it is
necessary that the mesh be quite refined in the region of
large gradients. Moreover, when a crack occurs in the
concrete, the stress fields exhibit analogous large gra-
dients near the section of discontinuity, so that a fine
mesh should be adopted since the start of the analysis,
or a substantial mesh refinement is required in order to
reduce the error.

Motivated by these considerations, in the paper
the use of a different interpolation basis is proposed;
particularly the performance of an exponential inter-
polation and of an interpolation based on B-splines
will be examined. The latter appears to be a general
tool that can be effectively extended to solid 2D and



3D elements exhibiting discontinuities on the displace-
ment fields. The proposed interpolations will be com-
pared with the standard FE approximation.

2.1 Constitutive assumptions

The constitutive behaviour of the materials is ruled by
their elastic and inelastic potentials, denoted by ϕ, d,
respectively. In the following, the equations will be
defined, as usual, by means of the conjugated poten-
tials ϕc, dc.

The steel is supposed to behave elastoplastically
with hardening. The elastic range is ruled by the com-
plementary potential ϕc

s = 1
2 E−1

s σs ·σs , while the com-
plementary plastic potential is the indicator function of
the set:

dc
s = indKs Ks =

{
(σs, χs) :

√
σ 2

s − fy − χs ≤0

}

(5)

Either positive or zero hardening is considered. In the
former case a linear isotropic hardening potential is
assumed, ψc

s = 1
2 H−1

s χ2
s , Hs being the steel harden-

ing modulus.
In order to simplify the exposition, in what follows

concrete will be assumed to behave linearly according
to the elastic potential φc

c = 1
2 E−1

c σc · σc. The hypoth-
esis is anyhow not particularly restrictive as concrete is
essentially in tension, until fracture opening occurs.

For the steel–concrete interface model the tangential
stress τ due to slip is ruled by the CEB-FIP Model Code
90 (1993) in which a slight modification is introduced
in the initial stiffness, in order to avoid a stick region
that does not seem to be realistic. The assumed law is
illustrated in Fig. 3, from which the meaning of param-
eters τmax and Γ1 can be inferred. The expression for
the first branch is:

τ(Γ ) = τmax
Log(1 + 4τmaxΓ )

Log(1 + 4τmaxΓ1)
(6)

The process is assumed to be fully dissipative, that
is upon unload the slip remains constant.

Details about the behaviour of the interface and its
dissipative mechanism are not essential for the pres-
ent work. Therefore, in the following text the interface
constitutive model will be denoted in a generic way as
τ = τ(Γ ).

Γ

τ

Γ1 Γ2 Γ3

τmax

τfriction

Fig. 3 CEB-FIP bond stress–slip relationship

2.2 Cohesive model of fracture

A fully dissipative cohesive model is used for concrete
fracture, defined by the activation function:

gn(tn, χn) = tn − f 0
t − χn ≤ 0 (7)

In Eq. (7) tn is the traction at the concrete interface,
f 0
t is the tensile resistance of concrete and χn rules the

softening behaviour according to the potential Φn :

χn = −∂Φn

αn p

Ht
n = ∂2Φn

χ2
n

≤ 0

αn p = α0
n p

+ λn
∂gn

∂χn

(8)

where αn p is the irreversible softening conjugated vari-
able of χn and Hn the softening modulus. The potential
Φn is such that
∞∫

0

χndαn p = G f (9)

G f being the fracture energy of concrete.
The traction-opening displacement relation is given

incrementally as:

ẇ = ∂dn

∂tn
= λn

∂gn

∂tn
= −α̇n p (10)

3 Discontinuous model

We assume that a discontinuity has developed at a point
xc of the reinforced concrete element, and let w be the



actual value of the displacement jump. In general the
intrinsic coordinate of the crack is known, and a non
linear problem has to be solved in order to get its statical
counterpart.

In this situation the displacement field in the con-
crete, and consequently the slip, are discontinuous.

The incremental problem is ruled by the mixed func-
tional

Π = 〈σs, ∂x us〉 − 〈σs, ε
0
sp

〉 − ϕc
s (σs, χs)

−dc
s (σs, χs)− 〈α0

sp
, χs〉 + 〈σc, ∂x uc〉

−φc
c (σc)+ 〈us − uc, τ 〉 − 〈Γ (τ), τ 〉

−〈qs, us〉 − 〈qc, uc〉 + [Δuc(xc), tn]
−Φc

n(tn, χn)− [w0
p, tn] − dc

n(tn, χn)

−[α0
n p
, χn]

(11)

In formula (11) angular brackets indicate integration
over the domain, while square brackets indicate inte-
gration over the cross-sectional area only. The subscript
“n” denotes the potentials and the variables describing
the interface behaviour of Sect. 2.2. α and χ are dual
thermodynamical variables and qs and qc are the exter-
nal loads.

The variation of (11) with respect to all the indepen-
dent variables gives the relevant field equations of the
slip problem:

δus ⇒ As∂xσs + Csτ − qs = 0 in (0, L) (12a)

δûc ⇒ Ac∂xσc − Csτ − qc = 0 in (0, L) (12b)

δūc ⇒ Acσc = Actn at x = xc (12c)

δσs ⇒ ∂x us − ∂σsφ
c
s − ε0

sp
− ∂σs dc

s = 0 (12d)

δχs ⇒ −∂χsφ
c
s − α0

sp
− ∂χs dc

s = 0 (12e)

δσc ⇒ ∂x uc − ∂σcφ
c
c (12f)

δτ ⇒ (us − uc)− Γ (τ) = 0 (12g)

δtn ⇒ w − w0
p − ∂tn dc

n = 0 (12h)

δχn ⇒ −H−1
n χn − α0

n p
− ∂χn dc

n = 0 (12i)

The set of equations (12) completely determines the
solution of the problem.

Let us consider a FE discretization of the model in
nelem elements of length Le, whose elemental degree
of freedom are the axial nodal displacements of the
steel bar and of the concrete envelope, collected in the
vector de.

According to the Element Embedded Discontinu-
ity method proposed by Simo et al. (1993), Simo and

Oliver (1994), the displacement field in the concrete is
assumed in the form:

uc = ûc + ūc

ûc =
∑

i

Nci d
e
i ūc=N̄cw=

⎛
⎝Hxc −

∑
i∈Ω+

Nci

⎞
⎠w

(13)

while for the displacement field of the rebar is used the
standard approximation:

us =
∑

i

Nsi d
e
i (14)

In Eqs. (13), (14) Nci and Nsi are suitable shape func-
tions and Hxc is the Heaviside function at the point
xc. N̄c depends on the interpolation functions relative
to nodes in the region of the element Ω+ beyond the
discontinuity.

Therefore, in compact form, the following discreti-
zation define the FE model:
us = Ns de εs = Bs de Bs = d

dx Ns

uc = Ncde + N̄cw εc = Bcde + B̄cw Bc = d
dx Nc

Γ = Bgde + B̄gw Bg = Ns − Nc

B̄g = −N̄c

(15)

where Ns,Nc are the matrices of steel and concrete
shape function, Bs,Bc contains their derivatives and
N̄c is defined by Eq. (13). The shape functions for steel
and concrete can be coincident or not, depending on
the type of the adopted interpolation.

Let d be the global displacement vector and A the
assembly operator. By introducing in (12) the usual
Lagrangian regularization for the complementary dis-
sipation potentials (Eve et al. 1990; Rockafellar 1970)
and the approximation (15) the discrete field equations
take the forms:

δd ⇒ nelem
A

e=1

Le∫

0

(
AsBT

s σs + AcBT
c σc + CsBT

g τ
)

dx

−fext = 0
(16a)

δw ⇒ nelem
A

e=1

Le∫

0

(
AcB̄

T
c σc + CsB̄

T
g τ

)
dx + Actn = 0

(16b)

δσs ⇒ Bsde − E−1
s σs − ε0

sp
− λs = 0 (16c)

δχs ⇒ −Ht−1χs − α0
sp

+ λs = 0 (16d)

δλs ⇒ −σs + fy + χs = 0 (16e)



δτ ⇒ Bgde + B̄gw − G−1
0 τ − Γ 0

p − λg = 0 (16f)

δχg ⇒ − ∂φc
g

∂χg
− α0

gp
+ λg = 0 (16g)

δλg ⇒ −τ + τmax + χg = 0 (16h)

δσc ⇒ Bcde + B̄cw − E−1
c σc = 0 (16i)

δtn ⇒ w − w0
p − λn = 0 (16j)

δχn ⇒ −H−1tn − α0
n p

+ λn = 0 (16k)

δλn ⇒ −tn + f 0
t + χn = 0 (16l)

The variables of the problem can be grouped in
global (the displacements d and the jumps w) and local
(all the others), that are evaluated at the integration
points of the element. The jump w, in the usual strong
discontinuity framework, is condensed at local level;
therefore it is evaluated together with the history con-
stitutive variables in the local iteration. However, in
a general approach, the points at which the disconti-
nuities are evaluated could be taken on the elements
boundary (in order to guarantee continuity of the dis-
placement field); in this case the jumps are treated as
global variables. This strategy has been used in Ayala
et al. (2010), Dias-da Costa et al. (2009). It presents
general computational advantages, some of which will
appear from the following developments, and it will be
adopted in this paper.

3.1 Solution strategy

At each step it is required to find a solution of the non
linear equilibrium equations

nelem
A

e=1

∑
i∈G P

[(
AsBT

s (ξi )σsi + AcBT
c (ξi )σci + CsBT

g (ξi )τi

)
wG P

i

]

− fext = rd (17)
nelem

A
e=1

∑
i∈G P

[(
AcB̄T

c (ξi )σci + B̄T
g (ξi )Csτi

)
wG P

i

]
+ Actn = rw

(18)

where G P is the set of the integration points located
at some natural abscissa ξi , and wG P

i are the corre-
sponding weights. The residual method requires that
the residuals be driven to zero by means of the iterative
solution of the first order expansion[

Kdd Kdw

Kwd Kww

] [
d
w

]
=

[ −rd

−rw

]
(19)

where

Kdd =nelem
A

e=1

∑
i∈G P

[(
AsBT

s (ξi )E
t
s(ξi )Bs(ξi )+ AcBT

c (ξi )

×Et
c(ξi )Bc(ξi )+ CsBT

g (ξi )G
t (ξi )Bg(ξi )

)
wG P

i

]
(20)

Kdw =nelem
A

e=1

∑
i∈G P

[(
AcBT

c (ξi )E
t
c(ξi )B̄c(ξi )

+CsBT
g (ξi )G

t (ξi )B̄g(ξi )
)
wG P

i

]
(21)

Kww =nelem
A

e=1

∑
i∈G P

[(
AcB̄

T
c (ξi )E

t
c(ξi )B̄c(ξi )

+Cs B̄
T
g (ξi )G

t (ξi )B̄g(ξi )
)
wG P

i

]
+ K t

n Ac (22)

The value of the interface traction tn needed for the
residual calculation and the algorithmic tangent mod-
uli are obtained from the solution of the non linear
constitutive equations at the i-th Gauss point, that, in
the strategy adopted, are totally uncoupled, since the
only coupling equation, i.e., the equilibrium on the dis-
continuity surface, has been added to the global itera-
tion. Therefore, at each Gauss point, the stress in the
constituents and in the steel–concrete interface and the
algorithmic tangent moduli stem from the following
systems of equations:

⎡
⎣ E−1

s 0 1
0 H−1 −1
1 −1 0

⎤
⎦

⎡
⎣ σsi

χsi

λsi

⎤
⎦ =

⎡
⎢⎣

Bs(ξi )de − ε0
spi−α0

spi

fy

⎤
⎥⎦ (23)

E−1
c σci = Bc(ξi )de + B̄c(ξi )w (24)

⎡
⎢⎣

G−1
0 0 1

0
∂2φc

g
∂χg

2
−1

1 −1 0

⎤
⎥⎦

⎡
⎣ τi

χgi

λgi

⎤
⎦ =

⎡
⎣

Bg(ξi )d + B̄g(ξi )w − Γ 0
pi−α0

gpi

τmax

⎤
⎦

(25)

⎡
⎣ 0 0 1

0 Ht
n
−1 −1

1 −1 0

⎤
⎦

⎡
⎣ tn
χn

λn

⎤
⎦ =

⎡
⎣w − w0

p
−α0

pn

f 0
t

⎤
⎦ (26)

Specifically, the last system yields the tangent soft-
ening modulus K t

n .



4 Polynomial and exponential shape functions

The procedure outlined in the previous section applies
to different choices of the interpolation functions. First
we consider a beam element with four degrees of free-
dom (de = {d1s , d1c , d2s , d2c }). Equation (15) define
the discrete displacement field. Two cases are exam-
ined. In the first one the usual polynomial shape func-
tions are adopted (specifically linear in each element);
in the second one shape functions derived from the basis
(4) of the system of differential equations (3) is used
(exponential shape functions).

The expressions of these shape functions as well as
the related plots are reported in “Appendix A”. These
shape functions are problem oriented, in the sense that
they depend on the geometrical and mechanical param-
eters of the element to which they apply, collected in
the parameters α and H reported in the appendix.

Note that in the case of the exponential interpola-
tion both the steel and the concrete displacement fields
depend in general on all of the four nodal displace-
ments, according to the solution of the equilibrium
equations (4). The shape functions for the steel and
the concrete are different, still respecting a partition of
unity; in this way to each degree of freedom it is also
associated the relevant slip.

The enhanced shape function N̄c, as indicated in
expression (14), is obtained summing the two shape
functions relative to one of the ends of the bar. The
function so obtained is linear, thus it is the same as the
enhanced shape function used with the linear interpola-
tion. We therefore expect that some of the advantages of
using exponential shape functions will be lost near the
sections of discontinuity. This aspect will be discussed
in the section dedicated to the numerical results.

We notice that the exponential shape functions are an
exact solution of the linear shear lag equations; there-
fore, they give a variational solution when a non linear
analysis is performed. A comparison of the solutions
obtained using the two forms of interpolation is dis-
cussed in Sect. 6.1.

The stress concentration arising near the crack is
better described using high order (exponential) shape
functions, without having to introduce many tiny ele-
ments, most of them being subjected to almost constant
stress state. However, significant errors on the equilib-
rium are evident at the boundary of the element.

5 An alternative enriched finite element for slip
and crack

In this section we introduce an enriched FE able to
account both for slip and crack opening in the con-
crete, that uses high order interpolation, and that can
be easily adapted to the occurrence of discontinuities.
As interpolation functions we propose to use B-splines.
B-splines are families of piecewise functions defined
in [0, 1] that constitute a partition of unity. The degree
p of the B-spline is the polynomial degree. B-splines
are defined on a knot vector, that is a sequence of
m + 1 non decreasing values in the interval [0, 1],
ξk ∈ [0, 1], k = 0, . . . ,m. A B-spline curve is an inter-
polation obtained by

P(ξ) =
n∑

i=0

bp,i Pi (27)

where Pi are a set of n +1 control points and bp,i is the
i-th B-spline of order p. If n + 1 is the number of con-
trol points the knot vector contains p + (n + 1) + 1

Fig. 4 Bernstein Polynomials of order 5 (a) and their derivatives (b)



knots. The interval between two subsequent knots
[ξk, ξk+1] is known as ‘segment’ (in the CAD liter-
ature it is often called ‘element’, but we discard the
latter definition in order to avoid confusion), and con-
tains at most p + 1 non zero splines. Each spline bp,k

is non zero in the interval [ξk, ξk+p+1]. Two subse-
quent basis splines meet with continuity C p−1 at the
k-th knot. When multiple knots are introduced, the
spline presents a discontinuity of the order of the mul-
tiplicity of the knot. Consequently, for open splines
the first and the last knots, of abscissa 0, 1, must have
a multiplicity equal to p + 1. Considering an open
spline with no internal knots, we have only one seg-
ment, and exactly p + 1 control points associated to
independent basis splines, called Bezier splines, that
reduce to the Bernstein polynomials, which, as it is
well known, are a basis of a linear space dense on C0.
B-splines are a generalisation of Bernstein polynomi-
als, that share similar properties, and in addition have
a local character.

Either Bezier or B-splines functions are not shape
functions, but they allow to interpolate both the ini-
tial geometry and the displacement fields; in the case
examined here, we have:

us =
n∑

i=0

Ni dsi εs =
n∑

i=0

Bi dsi

uc = ûc + ūc=
n∑

i=0

Ni dci +N̄w εc=
n∑

i=0

Bi dci +B̄w

Γ =
n∑

i=0

(
bp,i

) (
dsi − dci

)

Ni = bp,i Bi = dbp,i

dx
= p

(
bp−1,i−1 − bp−1,i

)

(28)

In (28) the DOF’s di are not nodal displacement, but
refer to the variation of the coordinates of the control
points, that interpolate the difference from the current
and the reference configurations. Figure 4 shows the
interpolation functions and their derivatives in the case
of Bernstein basis of order 5. The pictures highlights
how the interpolation meets the goal of reproducing
high gradients near the points of discontinuity.

When B-splines are used there are 2(n + 1) degrees
of freedom, plus the discontinuities. The integrations
for the residuals and the tangent matrices involve p +1
functions in each segment. If Bernstein polynomials
are used, the segment coincides with the beam element.

Fig. 5 Enhancement displacement function with unit jump for
5th order Bernstein Basis interpolation. Location of the discon-
tinuity at {1/6, 2/6, 3/6, 4/6, 5/6}

In the latter case the enhanced shape function can be
obtained as in the standard SDA, subtracting form the
Heaviside function the sum of all the interpolation func-
tions relative to nodes in region of the elementΩ+ that
follows the location of the discontinuity.

N̄c =
⎛
⎝Hxc −

∑
i∈Ω+

bp,i

⎞
⎠ (29)

In this way one single additional degree of free-
dom is associated to each discontinuity. Figure 5 rep-
resents the function N̄ for several locations of the dis-
continuity along the bar. The method can be applied
to the equations described in Sect. 2 without any
major change, except the number of degrees of free-
dom per element and the scaling of the abscissa.
The interpolation functions are of degree p, so that
special integration rules have to be used. Since the
functions have very high gradients near the ends of
the element, Gauss–Lobatto quadrature is used, with
p + 1 integration points. This is necessary in order
to guarantee a satisfactory evaluation of the matri-
ces.

A quite different scheme is based on the use of
B-splines, as suggested in Borden et al. (2011). In this
case a discontinuity can be directly introduced in the
interpolation by inserting an additional knot at the para-
metric abscissa corresponding to the point where the
fracture has been detected, with multiplicity p + 1.
The number of control points then increases, as well
as the number of segments that constitute the spline
approximation. For instance, if an open B-spline with-
out internal knots of order 5 had been used originally,
with 6 control points, the insertion of an extra knot



Fig. 6 B-splines of order 5 (a) and their derivatives (b) after a knot insertion of multiplicity 6 at ξ = 1/3
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Fig. 7 Interpolation with B splines of degree 1: a without internal knots (knot vector = {1, 1, 0, 0}), b after the insertion of an internal
knot at ξ = 1/3 (knot vector = {1, 1, 1/3, 1/3, 0, 0})

of multiplicity 6 leads to 12 control points, and the
net effect is to split the original element into two,
each one with a p-th order interpolation, as shown in
Fig. 6, where are plotted also the derivatives of the
functions. The method is thus quite different from the
classical SDA, even though the additional degrees of
freedom are still internal and can be treated as local.
The main difference appears comparing the derivative
of the function N̄ (Fig. 4) and the derivatives of the
B-splines with additional knots (Fig. 6). The former is
continuous and continuously differentiable, while the
latter presents a discontinuity, so the stresses and strains
can be different on both sides of the discontinuity sur-
face. Although in the application presented in this work
this property is unnecessary, it may be very useful in
2D and 3D applications, in order to avoid shear stress
locking. In addition, multiple cracks in a single ele-
ment can easily be handled by the method of knots
insertion.

In order to get a better insight into the method, Fig. 7
shows an interpolation for a straight element based on
the B-splines of order 1, that coincide with the usual
linear shape functions, and the situation after the inser-
tion of a knot of multiplicity 2 at the point of abscissa
ξ = 1/3. The procedure is equivalent to subdividing
the element into two, adding two new nodes, and the
interface acts as a non linear spring between the two
internal nodes.

In the case under examination, an initial interpola-
tion of the whole uncracked beam is performed with
uniformly spaced B-splines of order p without inter-
nal knots (Bezier curves), thus with p + 1 control
points, both for the steel and the concrete displace-
ments, and the first of the equilibrium equations (17)
are solved. The use of uniform splines without inter-
nal knots has been found to yield a sufficient preci-
sion, minimising the computational cost. At each step
the maximum stress in the concrete is evaluated with



a search algorithm. When it attains the limit tensile
resistance, an internal knot with multiplicity p + 1
is added to the knot vector for the concrete displace-
ment interpolation, and new uniformly spaced con-
trol points are introduced in each of the segments
generated on the beam. The coordinates of the new
control points are evaluated interpolating the original
Bezier interpolation, in order to be used as initial solu-
tion, i.e., calling dO L D

i i = 0, . . . p the coordinates
of the control points prior to the knot insertion, and
dN EW

i i = 0, . . . 2p + 1 the newly generated coor-
dinates of the control points, for each segment of the
beam it is solved the system:

⎡
⎢⎢⎢⎢⎣

bp,0(0) . . . bp,p(0)
bp,0(1/p) . . . bp,p(1/p)
.
.
.

bp,0(1) . . . bp,p(1)

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

d N EW
0

d N EW
1
.
.
.

d N EW
p

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

∑p
i=0 bp,i (0)d O L D

i∑p
i=0 bp,i (1/p)d O L D

i
.
.
.∑p

i=0 bp,i (1)d O L D
i

⎤
⎥⎥⎥⎥⎦

(30)

The historical variables at the newly generated Gauss–
Lobatto points are interpolated from those in the clos-
est original locations of the Gauss points (except at the
ends of the element, where the historical variables are
directly transmitted to the new interpolation; notice that
usually the most severe values of the historical variables
occurs at the end points, so the error is minimised).

The steel displacements remain continuous, how-
ever, in order to keep a similar degree of approxima-
tion for both displacement fields, also the steel dis-
placement interpolation is enhanced, introducing in the
point where the crack has developed an internal knot of
multiplicity smaller than p+1. Adding an internal knot
with multiplicity p−1 guarantees continuity of the dis-
placement and of the deformation field C1 continuity),
whether a knot with multiplicity p yields a C0 continu-
ity for the steel displacement field, and the deformation
continuity is recovered variationally. The former case
is illustrated in Fig. 8, and introduces p − 1 additional
control points. The latter case corresponds to split the
beam into two elements enforcing the kinematic conti-
nuity on the steel degrees of freedom corresponding to
the end points of the two elements.

Once the internal knot has been inserted, the relative
displacement w is set equal to dc,p+1 − dc,p, and the
equilibrium equations are obtained from the variational
principle (11), that for the DOF’s dsi , dci corresponding
to a control point Pi , i 	= {p, p + 1} become
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Fig. 8 Enhanced interpolation for the steel displacement
with C1 continuous B-splines of order 5 after a knot
insertion of multiplicity 4 at ξ = 1/3, knot vector
{0, 0, 0, 0, 0, 0, 1/3, 1/3, 1/3, 1/3, 1, 1, 1, 1, 1, 1}

∑
k∈G P

[(
As Bi (ξk)σs,k + Cs Ni (ξk)τk

)
wG P

k

]

− fext
si =0∑

k∈G P

[(
Ac Bi (ξk)σc,k − Cs Ni (ξk)τk

)
wG P

k

]

− fext
ci =0

(31)

while for the DOF’s dc,p, dc,p+1 the equilibrium equa-
tions are

∑
k∈G P

[(
Ac Bp(ξk )σc,k − Cs Np(ξk )τk

)
wG P

k

]
− Actn = 0

∑
k∈G P

[(
Ac Bp+1(ξk )σc,k − Cs Np+1(ξk )τk

)
wG P

k

]
+ Actn = 0

(32)

The latter are the equilibrium equations at the inter-
face, that involve the concrete stress and also the
tangential stresses due to slip. The tangent stiffness
operator is obtained from the solution of the local
problem, that is analogous to the one described in
Sect. 3.1. The integrals are performed numerically,
using a Gauss–Lobatto quadrature. It can be shown that
the order of quadrature must be at least equal to the
degree of the splines plus one.

6 Numerical results

The model presented in Sect. 2 and the performance
of the interpolations introduced in Sects. 4, 5 are dis-
cussed with the aim of the pull out example shown in



Fig. 9 Geometry of the pull out test simulated in Sect. 6.1. L =
750 mm; steel bar diameter DS = 12 mm; concrete rod diameter
Dc = 90 mm

Fig. 9. The ratio μ = As
Ac

denotes the geometrical per-
centage of steel. A class C25 concrete has been used,
setting fck = 22.95 MPa for the compression strength,
and Ec = 29,000 MPa for the elastic modulus. Its limit
tensile resistance has been set equal to 2.42 MPa, frac-
ture energy has been estimated according to usual rules
as G f = 0.0662 N/mm. Linearly hardening steel has
been assumed, with yield stress σsy = 420 MPa, and
plastic modulus Esp = 10,000 MPa. For the tangen-
tial stress–slip relationship the CEB-FIP rule has been
used, with the parameters related to unconfined con-
crete, that is:

τmax = 2.50
√

fck = 11.98 MPa
Γ1 = 1.0 mm
Γ2 = 3.0 mm
Γ3 = 5.0 mm

The test is geometrically symmetric, so the first
crack arises at the beam midpoint. First are exam-
ined the results obtained with the polynomial and the
exponential interpolation, then those obtained with the
B-spline interpolation.

6.1 Polynomial and exponential approximations

The simulation has been carried out until the first
crack has developed. Figure 10 summarises the results
obtained using the low order linear interpolation divid-
ing the beam with a number of elements ranging from 3
to 15. In the pre-crack branch of the end force-displace-
ment plot is apparent the non linearity due to the non
linear constitutive relation used for the slip. The per-
formance of the linear interpolation is quite poor, and
convergence is very slow. Using few elements results
in large errors, as expected.

The performance of the exponential interpolation
is summarised in Fig. 11. The advantage of using a
problem oriented interpolation is clearly shown by the
very fast convergence of the simulation. Even the crack
opening and the post-peak branch of the load curve are

almost exactly estimated even with very few elements
(Fig. 12). Comparing the stress along the steel bar pre-
dicted by the models at a sequence of steps of the simu-
lation, the errors associated with the linear interpolation
appear still greater (Fig. 13). The stress obtained with
the exponential interpolation shows a C1 continuity at
the interface, due to the type of enhancement adopted.
This seems an unnecessary limitation, especially for the
stress in the concrete bar, that can be removed using the
B-spline interpolation. Finally it is observed that equi-
librium at the boundary of the elements is not exactly
enforced, as usual in FE approximations.

6.2 B-splines approximations

The same test has been analysed with the B-spline
interpolation. A linear approximation for the bond-
slip constitutive relation has been employed in this
case. Uniform splines of degree 5 have been used. The
stresses diagrams of Fig. 14 show that the model is able
to accurately predict the stress distribution, included the
discontinuity on the slope of the steel stress. In Figs. 15,
16 is highlighted the influence on the crack formation
of the percentage of the reinforcement area and of the
fracture energy. The greater the fracture energy, the
smoother is the post peak behaviour.

Figure 17 present the comparison of the results
obtained with the present model and some experimen-
tal results of a pull out test (Keuser and Mehlhorn
1987). The data are the same used by Prasad and
Krishnamoorthy (2002), that is L = 500 mm, Ds =
16 mm, Dc = 150 mm. Steel is linearly hardening with
σsy = 353 MPa, Esp = 2,050 MPa, the elastic mod-
ulus of concrete is Ec = 35,000 MPa, its compres-
sion and tensile strength have been set equal to fck =
46.5 MPa, fct = 2.7 MPa and G f = 0.086 N/mm. In
the plot is reported the stress in half of the steel bar at
three stages of the test. The experimental results show
that when the crack opens (40 KN) the stress in the
steel bar is not symmetric. This result is correctly sim-
ulated if a cohesive law is used for the crack opening,
where the value of the softening parameter is obtained
from the fracture energy of concrete, while using lower
values of the fracture energy (in the limit, zero), a sym-
metric stress distribution is obtained. When the steel
bar plasticise (70 KN) the symmetry in the stress dis-
tribution is recovered.



Fig. 10 Pull-out test. End
force versus bar
displacement. Linear
interpolation
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Fig. 11 Pull-out test. End
force versus bar
displacement. Exponential
interpolation
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Fig. 12 Pull-out test. Crack
opening versus bar
displacement. Exponential
interpolation
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Fig. 13 Stress along the
steel bar. Comparison
between 15 linear elements
(a) and 11 exponential
elements (b)

Fig. 14 Stresses along the
steel bar and slip stresses.
B-splines interpolation
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Fig. 15 Pull-out test on
beams with different
percentage of steel.
B-splines interpolation

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

0.5

1

1.5

2

2.5

3 x 10
4

bar elongation (mm)

en
d 

fo
rc

e 
(N

)

As/Ac=1.81% As/Ac=1.25%As/Ac=2.48%

Fig. 16 Pull-out test on
beams with different
fracture energy. B-splines
interpolation
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7 Conclusions

It has been illustrated a FE implementation of the shear
lag model for the analysis of a concrete bar accounting
for steel–concrete slippage and for crack formation in
the concrete. A complete variational formulation of the
problem has been presented, of the Hesslinger Reissner
type, that includes the duality pairings and the energy
potential of the cracking interface.

It has been shown that low order elements as those
commonly used in FE codes lead to large errors, due to
the fact that the gradient of the stresses is very high
near the extremities of the fibre and where a crack
occurs. Since, generally, the position of the crack is

not known a priori, it is necessary to use a very fine
mesh, that for most of the model is, however, redundant.
Therefore it has been proposed to use elements based
on high order interpolations. Two alternative methods
have been analysed. The first makes use of exponen-
tial shape functions, derived from the exact solution of
the linearised shear lag equations. The shape functions
carry the memory of the problem since they change
according to the mechanical and geometrical proper-
ties of the element. These functions have been proved
to be very effective. Although in the paper only the axial
problem has been examined, it is very easy to extend
the method to the bending behaviour of the beam. A
drawback for this kind of interpolation is the treatment



Fig. 17 Simulation of the pull out test reported in Prasad and
Krishnamoorthy (2002)

Fig. 18 Steel bar exponential shape functions Ns

Fig. 19 Concrete exponential shape functions Nc

Fig. 20 Slip exponential shape functions Bg = Ns − Nc

Fig. 21 Derivative of the steel rebar exponential shape functions
Bs

Fig. 22 Derivative of the concrete exponential shape functions
Bc

of the discontinuity due to the crack formation. It has
been shown that using the standard SDA enhancement
it is obtained a stress field with the same degree of con-
tinuity as the shape functions across the interface, and
this does not always lead to meaningful results.



Therefore an alternative interpolation, based on B-
spline bases, has been proposed. These interpolation
functions have the same ability as the exponential shape
functions for reproducing large stress gradients near
the discontinuities. In addition, since splines are not
associated to nodal degrees of freedom, but they give
a general interpolation, it is very natural to introduce
discontinuity in the element, without the need of reme-
shing and keeping after the crack has opened the same
degree of interpolation for the displacement fields. It
has been shown how it is possible to introduce a dis-
continuity using the technique of knot insertion, and
similarly it is possible to account for multiple cracks
within the same element (this point has not been illus-
trated in the work). The model presented appears to be
accurate in detecting the correct displacement fields,
and the computational scheme has proven to be very
effective.

The paper has illustrated the general methodology
in some detail, so the treatment has been restricted to
a beam element. The results suggest that the method
can be extended also for developing 2D and 3D ele-
ments that account for fibre slipping and crack of the
matrix.

Appendix: Exponential shape functions

The exponential shape functions are obtained from the
solution (4) of the linearised shear lag problem equa-
tion (3), after enforcing the appropriate boundary con-
ditions for each shape functions. The expressions of the
shape functions for the steel rebar are:

Ns1 = −
(

H
α2 +1

)
exα

2(e2Lα−1)
+

(
H
α2 +1

)
e2Lα−xα

2(e2Lα−1)

+ x
(
H−α2

)
2Lα2 + α2−H

2α2

Ns2 =
(
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The expressions of the shape functions for the con-
crete core are:

Nc1 = 1
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(33)

In Eqs. (33), (33) symbols L , α, H denote

α =
√

G0πφs

(
1

Es As
+ 1

Ec Ac

)
(34)

H = G0πφs

(
1

Es As
− 1

Ec Ac

)
(35)

Figures 18, 19 show a plot of these functions for
some choice of the mechanical and geometrical param-
eters. Note that, due to the presence of the slip, steel
as well concrete displacements depend on all of the the
nodal degrees of freedom.

Particularly, from the plots of the deformation shape
functions Bs, Bc in Figs. 20, 21, 22 it is apparent that
the exponential shape functions have the property of
concentrating the deformations at the ends of the ele-
ment.
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