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Abstract

Using uniform global Carleman estimates for discrete elliptic and semi-discrete hyperbolic
equations, we study Lipschitz and logarithmic stability for the inverse problem of recovering a
potential in a semi-discrete wave equation, discretized by finite differences in a 2-d uniform mesh,
from boundary or internal measurements. The discrete stability results, when compared with
their continuous counterparts, include new terms depending on the discretization parameter h.
From these stability results, we design a numerical method to compute convergent approximations
of the continuous potential.
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1 Introduction

The goal of this article is to study the convergence of an inverse problem for the wave equation,
which consists in recovering a potential through the knowledge of the flux on a part of the
boundary. This article follows the previous work [3] on that precise topic in the 1-d case.

1.1 The continuous inverse problem

Setting. We will first present the main features of the continuous inverse problem we will
consider in this article. Let © be a smooth bounded domain of R?, and for T' > 0, consider the
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wave equation:
Ony — Ay +qy = f, in (0,7T) x Q,
y = fo, on (0,T) x 99, (1.1)
y(0,) =4°, 9wy(0,-) =y', nQ
Here, y = y(t, z) is the amplitude of the waves, (y°,y") is the initial datum, ¢ = q(z) is a potential,
f is a distributed source term and fy is a boundary source term.
In the following, we explicitly write down the dependence of the function y solution of (1) in
terms of ¢ by denoting it y[q] and similarly for the other quantities depending on g.
We assume that the initial datum (y07y1) and the source terms f and fs are known. We also
assume the additional knowledge of the flux

M) = wylg) on  (0,T) x To, (1.2)

where I'g is a non-empty open subset of the boundary 92 and v is the unit outward normal
vector on 0{2. Note that for this map to be well-defined, we need to give a precise functional
setting: for instance, we may assume (y°,y') € H'(Q) x L*(Q), f € L'((0,7); L*(Q)), f» €
H((0,T) x 8Q) and yoyaﬂ = fa(t = 0) so that .# is well-defined for all ¢ € L*>°(£2) and takes
value in L2((0,T) x 99), see e.g. [28].

The question consists then in recovering the potential ¢ from .#[g]. As usual when considering
inverse problems, this question can be decomposed into the following ones:

e Uniqueness: Does the measurement ./ [g] uniquely determine the potential ¢?

e Stability: Given two measurements ./ [¢°] and .# [¢°] which are close, are the corresponding
potentials ¢® and ¢” close?

e Reconstruction: Given a measurement .#[q], can we design an algorithm to recover the
potential ¢?

Concerning the precise inverse problem we are interested in, the uniqueness result is due to [12]
and we shall focus on the stability properties of the inverse problem (LI)). The question of
stability has attracted a lot of attention and is usually based on Carleman estimates. There are
mainly two types of results: Lipschitz stability results, see [26] [32] [33] 23] [2] 24] [, [36], provided
the observation is done on a sufficiently large part of the boundary and the time is large enough,
or logarithmic stability results |5l [7] when the observation set does not satisfy any geometric
requirement. We also mention the works [6] [13] for logarithmic stability of inverse problems for
other related equations.

Below we present more precisely these two type of results, since our main goal will be to
discuss discrete counterparts in these two cases.

Lipschitz stability results under the Gamma-conditions. Getting Lipschitz stability re-
sults for the continuous inverse problem usually requires the following assumptions, originally due
to [I9]. We say that the triplet (Q,T',T) satisfy the Gamma-conditions (see [30]) if

e (Q,T) satisfies the geometric condition:

Jzo e RV\Q, {z €09, st. (x—z0)-v(z) >0} CT, (1.3)
e T satisfies the lower bound:
T > sup |z — xo. (1.4)
TEQ

In [2], following the works [22] 21], the next stability result was proved:
Theorem 1.1 (|2]). Let m > 0 and consider a potential ¢* € L*(Q) with

”anLOO(Q) <m, (1.5)
and assume for some K > 0 the regularity condition

ylg*l € HYO,T5 L) with  [[ylq") s ouris e ey < K. (L6)



where y[q®] denotes the solution of (L) with potential q*. Let us further assume that (,To,T)
satisfies the Gamma-conditions (L3)—(L4) and the following positivity condition

Jag > 0, irelg|y0(x)| > ao. (1.7)

Then there exists a constant C > 0 depending on m, K and oo such that for all ¢° € L>(Q)
satisfying quHLoo(m < m, we have M [q*] — #[q°] € H*(0,T; L*(T'0)) and

1 a b’ H a b a b
= lg* - < |#ta) - a1 <cle-d , - 1.8
gl = ug < 2t =2t o <€ =L (18)
Besides, if w is a neighborhood of Ty, i.e. for some § > 0,
ws = {x € Q, d(z,To) < §} Cw,
we also have dvy[q®] — dvylg®] € H'((0,T) x w) and
1 a b‘ ‘ a b a b
2 lge - < |owwta) - oewia"| <cle-d, - 1.9
G ‘ @ =0 o SOV =0l SO g, (1.9)

Remark 1.2. Note that in Theorem [I1l, we do not give assumptions on the smoothness of the
data y°, y', f, fo directly. They rather appear through the bound K in ([L8) in an intricate way.
Also note that estimate (L9) is not written in [Z], but the proof of ([LA) follows line to line the

one of ([LH).

Logarithmic stability results under weak geometric condition. Let us now explain what
can be done when the geometric part (I3]) of the Gamma conditions is not satisfied. In this
case, to our knowledge, the best result available is due to [5]. Below we state a slightly improved
version of it:

Theorem 1.3 (5], revisited). Assume that there exist an open subset I'y C 0Q of the boundary
0 and an open subset O of Q such that:

e I'o CT'1 and (2, T'1) satisfies the condition ([L3));

e O contains a neighborhood of T'1 in Q, i.e. for some § > 0,
Os :={z € Q, withd(z,T1)<d} CO. (1.10)
Let ¢* be a potential lying in the class A(Q,m) defined for Q € L*°(O) and m > 0 by
M@ m) ={q € LT(Q), s.t. glo=Q and |lqllpe(q) < m}. (1.11)

Let 4° € H'(Q) satisfying the positivity condition (LT) and assume that y[q®] satisfies the regu-
larity condition
ylg"] € H'(0,T; L>(Q)) N W>'(0,T; L*(2)). (1.12)

Let « > 0 and M > 0. Then there exists C > 0 such that for T > 0 large enough, for all
¢ € A(Q, m) satisfying

¢ — ¢ € HX(Q) and ‘

a b
- <M 1.13
" —q HHgm) < M, (1.13)

we have A [q%] — #[q°] € H (0, T; L*(To)) and

C 14+«
log [ 2+ ' L
] & < - #1a"] — A1) 1 (0,7, 1.2 (1)) )} .

Besides, the constant C depends on m in (LII), M in (LI3), ao in LT, a priori bounds on
HyOHHl(Q) +19la“ N 10,7 1.5 @)y nw21 0,712 (02)) and the geometric setting (I'o, I'1, O).

<C
L2Q) ~

a b
q—QI
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To be more precise, [5] states the previous result with oo = 1 and under slightly stronger geo-
metric and regularity conditions. Since Theorem [[3] states a slightly better result than the one
in [5], we will prove it in Section Bl Similarly as in [5], we will work on the difference y[q®] — y[¢"]
and use the Fourier-Bros-lagoniltzer transform which links solutions of the wave equation with
solutions of an elliptic PDE, but instead of considering the usual Gaussian transform as in [5]
(see also |34} [35]), we will consider the one used in [29] (see also [7} [3I]). We will thus be led to
prove a quantified unique continuation result for an elliptic PDE, which we derive using a classical
Carleman estimate ([20]). Nevertheless, we will do it in a somewhat different way as the one in
[35] BI] by constructing one global weight which allows to prove Theorem [[.3] without the use of
iterated three spheres inequalities. The proof of Theorem [[.3] will then be completed by the use
of the stability estimates (I9)).

Objectives. Our goal is to derive counterparts of Theorem [[.I] and Theorem [[3] for the finite-
difference space approximations of the wave equation discretized on a uniform mesh. In order
to give precise statements, we need to introduce several notations listed in the next section. For
simplicity of notations, we make the choice of focusing on the unit square in the 2-d case

Q=(0,1)% (1.15)

though our methodology applies similarly in the case of the d-dimensional domains of rectangular
form Q = I%_,[a;, b;] (still discretized on a uniform mesh). Note that, even if we stated Theo-
rems [[L1] and [[3] for smooth bounded domains, both Theorems also hold in the case = (0, 1)2.

1.2 Some notations in the discrete framework

Here, we introduce the notations corresponding to the case of a finite-difference discretization
of the wave equation on a uniform mesh. Let N € N be the number of interior points in each
direction, and h = 1/(N + 1) the mesh size. All the notations introduced in the discrete setting
will be indexed by the parameter h > 0 to avoid confusion with the continuous case.

Discrete domains. We introduce the following (see also an illustration in Figure [):

Qn ={h,2h,...,Nh}?, Qn ={0,h,2h,...,Nh,1}?,

o = ({0 u{1}) x {h,...,Nh}) U ({h,...,Nh} x ({0} U{1})),
U, ={0} x{h,....,Nh},  T;,={h,...,Nh} x {0},

I, ={1} x{h,...,Nh}, T}, ={h,...,Nh} x {1},

T, =T,,UT;,, f=TF,ur),, o0, =T, UTY,

Qi =NWUT, Q=0 UT,,,  Q =Q,,NQ,,

(1.16)

Note that this naturally introduces two representations of the discrete set Q,: we will use alterna-
tively x5 € Qp, or (4,4) € [0, N + 1]* (where [a,b] = [a,b] N N) to denote the point x5 = (ih, jh),
the advantage of the first writing being its consistency with the continuous model.

Discrete integrals. By analogy with the continuous case, if we denote by fi, = (f(z1))z, e,
respectively fn = (f(xh))xhesr , fn= (f(xh))xhesr , a discrete function, we will use the
S8 1 AL

following notations:

/Qh fh:/ﬂh fo =S fo /Q =SS g, /Q =SS . (L17)

Q=1 i=0 j=1 i=1 j=0

One should notice that if these symbols are applied to continuous functions or products of discrete
and continuous functions, they have to be understood as the corresponding Riemann sums.

When considering integrals on the boundary 025, we use the natural scale for the boundary
and we define, for f;, a discrete function on 9,

/mh fa=h > f(zn). (1.18)

z, €0Qy,
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Figure 1: Main discrete notations in Q = (0,1) x (0, 1).

Subsets. In several places, we will consider open subsets O, w C €2 and we then note O, = ONQy,,
O,:)k =0n Q,:)k, 0, = 0NQy, and similarly for the sets wp, w}zk, wr, (notice that these sets
are always non-empty for h small enough). Integrals on these discrete approximations of open
subsets of Q are given for f discrete functions on Oy, as follows:

/oh fh:/gh Intor, /o* fh:/ﬂ, fnlo- (1.19)

and similarly for the integrals on wy, Wy, -
When considering open subsets I' of the boundary 02, we will similarly set I', = I' N 0y, and
the integrals on these discrete approximations of subsets of the boundary will be given by

/ fn= falr,.
Ip BQh

Discrete LP-spaces. We also define in a natural way a discrete version of the LP(£2)-norms
as follows: for p € [1,00), we introduce Lj (Qn) (respectively L} (€, ;)) the space of discrete
functions fn = (fi ;)i jeq,ny» (respectively i € [0, N], j € [1, N]) endowed with the norms

P — P P — P
1= [ 150 (e Wy o = [ _18r), (1.20)

and, for p = 00, [| full e () = SUPsjeqr,ny [fisls (vesp [[full oo o ) = SUPico,Npijeq, Ny fii]):

We define the spaces L} (2}, ,), L}, (On) and L} (wn) for open subsets O,w C Q in a similar way.
We also define discrete norms on parts of the boundary: if I is an open subset of 92, the space
LY (Th), (p € [1,00)) is the set of discrete functions fi, defined on I';, endowed with the norm

15l ey = [ 180l
h 2 Ty

Discrete operators. We approximate the Laplace operator by the 5-points finite-difference
approximation: V(i,5) € [1, N]?,

1
(Anvn)i; = 2 (Vit1,5 + Vi1 +vim1,5 + Vi — v ) (1.21)



Besides the discrete Laplace operator Ay, let us also introduce the following discrete operators:

Vitl,j + 2055 +Vi—15 | Vij+1 + 2055 + Vi1

(mh1vn)ij = 1 i (Mnavn)i; = 1 ;
- Vi+1,j + Vij _ Vi,j + Vi
(mz’lvh)ivj = (mhylvh)iﬂvj = % ; (mﬁ,zvh)i,j = (mh,lvh)i+1,j = ) T LIS 5 bdtl ;
Vit1,j — Vi-1,j Vi1 — Vij—1 Oh,
(On1vn)i; = % 0 (Onavn)ij = % i V= ( 8;1,; ) ;
- Vig1,j — Vi,j _ Vi i — Vs
(O 1vn)ii = (Fpavn)it1s = % s On2vn)ig = (O 2vn)iger = _WHh i
(Ap1vp)i; = Vit1j — 2ij + Vi1 (Apavn)iy = Vig+1 — 2045 + Viyj—1
s 1, — 3 R i,j =
h? 12

We finally introduce the following semi-discrete wave operator:

Op =0t — Ap = 0t — Ap1 — Ap 2.

Spaces of more regularity. We will use the space H} () of discrete functions fi, defined on
Q;, endowed with the norm

2 o 2 + 2
1l ey = 1Fnle ) + Z 197 & Full 2z oz o

We also denote H&h(Qh) the set of functions fj, defined on Q5 and vanishing on 9, endowed
with the above norm.

Note down that Hj(Qn,) and Hy , (€2) denote spaces of functions defined on Q. We decided
to slightly abuse the notations by denoting them that way, since the topology of these spaces is
strongly enough to define the trace operators.

We finally introduce H ,3 (Qr) the set of discrete functions f5 defined on Q, endowed with the
norm

2 o 2 2 2 + o+ 2
1fnllaz @,y = 1fallas @, + 1AR1frllL2 @) + 1AR2f0lL2 ) + Hah,lah,2thL2(Q;)'

Besides, with an abuse of notations, we will often denote L*(0,T; Hj-(1)) N H*(0,T; L3 (,))
by Hj.((0,T) x ©,) and the space H?(0,T; L3 (Q,)) N HY(0,T; H: (1)) N L*(0,T; HE(Qw)) by
H((0,T) x ).

Extension and restriction operators. Finally, we shall explain how to compare discrete func-
tions with continuous ones. In order to do so, we introduce extension and restriction operators.
The first one extends discrete functions by continuous piecewise affine functions and is denoted
by en. To be more precise, if f;, is a discrete function (fi ;); jefo,n+1], the extension ep(fn) is
defined on [0, 1)? for (x1,z2) € [ih, (i + 1)R] x [jh, (j + 1)h] by

eh(fh)(lrl,IEQ) _ (1_ X1 ;Zh) <1_ 172;]}1) fiyj—|— (:Z?l ;Zh) (1_ X2 ;_]h) fi+17j

—ih — jh —ih —jh
+ (1 . - : ) (mz hj >fi,j+1 + (xl 5 - ) (xz hj >fz‘+1,j+1« (1.22)

This extension presents the advantage of being naturally in H' (). The second extension operator
is the piecewise constant extension e (f5), defined for discrete functions fy, = (fi.g)ijeqng bY

n(fn) = fig on [(i = 1/2)h, (i + 1/2)h[x[(j = 1/2)h, (j + 1/2)], i,j € [1,N], (123)
en(fn) =0 elsewhere. .

e

This one is natural when dealing with functions lying in L?(Q) as He% (fh)HL2(Q) = HthLi(Qh)'

Also note that easy (but tedious) computations show that ey, (f5) converge to f in L*(Q) if and



only if e) (fu) converge to f in L?*(Q). We finally introduce restriction operators rj,, ¥, and rj,

where rp is defined for continuous function f € C(2) by

rh(f):fh given by fl;J:f(Zh7.7h)7 Vi, j € [[17N]]7
fj, for functions f € L?(Q) by

1 ..
fii=13 // f(z1,22) dz1dz, Vi, j € [1,N],
o1 —ih|<h/2
w2 —Gh|<h/2

1 o
fi,j = m // f(:C17132) d:C1d:Cz7 YV, = (’Lh7jh) € 8Qh

le1—ih|<h/2
|z —jh|<h/2
(z1,22)€ER

tn(f) = fn given by

and 11,00 for functions fs € L*(99) by

th00(fa)(zn) = % / fa(z)do for z) € OQy,.

lz—=zp|<h/2,
€N

1.3 The semi-discrete inverse problem and main results

We discretize the usual 2-d wave equation on £ = (0, 1)2 using the finite difference method on a
uniform mesh of mesh size h > 0. Using the above notations, this leads to the following equation:

Oy — Anyn + quyn = frn in (0,T) x Qp,
Yn = fo.n on (0,7) x O, (1.24)
yn(0) = yn, Own(0) =yi in Q.

Here, yn(t,zn) is an approximation of the solution y of (1) in (¢, zn), A approximates the
Laplace operator and we assume that (y§,y+) are the initial sampled data (y°,3') at z;, and
fo.n € L?(0,T; L3 (0Q%)) and fr, € L'(0,T; L7 (Q4)) are discrete approximations of the boundary
and source terms fs and f.

Our main goal is to establish the convergence of the discrete inverse problems for (.24]) toward
the continuous one for ([II]) in the sense developed in [3]. Let us rapidly present what kind of
results should be expected.

The natural idea to compute an approximation of the potential ¢ in (II]) from the boundary
measurement . [q] in () is to try to find a discrete potential g, such that the measurement

AMilgn] = Overn(ynlgn]) on  (0,T) x To (1.25)

where yn[gn] is the solution of (L24]), and e, is the piecewise affine extension defined in (L22)),
approximates ./ [q] defined in (I.2]). We are thus asking the following:

if one finds a sequence ¢, of discrete potentials such that .#[qn] converges towards
A [q] as h — 0 (in a suitable topology), can we guarantee that the sequence g5 con-
verges (in a suitable topology) towards g ?

As it is classical in numerical analysis - this is the so-called Lax theorem for the convergence of
numerical schemes - such result can be achieved using the consistency and the stability of the
problem. In our context, even if the consistency requires some work, the stability issue is much
more intricate since even in the continuous case it is based on Carleman estimates. Here, stability
refers to the possibility of getting bounds of the form

|ehiat — ab)||, < ¢ |- las] - antah] - (1.26)

where e}, is the piecewise constant extension defined in (L23]), and the norms ||-||, and ||-|| 4 have
to be made precise, for some positive constant C' independent of h.



As we already pointed out in [3] in the 1-d case, a stability estimate of the form ([.26]) is far from
obvious and actually, instead of getting an estimate like (I.26]), we proposed a slightly modified
observation operator ]h for which we prove uniform stability estimates and then convergence of
the inverse problem.

Hence the main difficulty in obtaining convergence results is to derive suitable stability es-
timates for the discrete inverse problem under consideration. We will thus state convergence
results for the discrete inverse problems in the forthcoming Theorem [[.6] while the main part of
the article focuses on the proof of stability estimates for the discrete inverse problem set on (24
stated hereafter in Theorems [I.4] and

1.3.1 Discrete stability results

Discrete Lipschitz stability. Since we assumed Q = (0, 1), the condition (I3)) will be satisfied
by a set I'o C 99 if and only if 'y contains two consecutive edges, and in this case the time T'
in (I4) can be taken to be any T > V2. Thus, with no loss of generality, when the Gamma-
conditions (IL3)—(T4]) are satisfied, we are reduced to consider the case

Q=(0,1)% To>Ty=({1}x(0,1)U((0,1) x {1}), T > V2. (1.27)

When the measurement is done on a part of the boundary I'g satisfying the above conditions, we
will prove the following counterpart of Theorem [L.Ik

Theorem 1.4 (Lipschitz stability under Gamma-conditions). Assume that (Q,T0,T) satisfy the
configuration (L2T). Let m > 0, K > 0, ao > 0, and q; € Li7(Q) with ||l po g,y < M.
h

Assume also that yj, and the solution yx[q] of ([L24) with potential g satisfy

iélf|?/2| >a and ||yh[‘ZZ]||H1(0,T;L,°°(Qh)) < K. (1.28)
h h

Then there exists a constant C = C(T,m, K,ao) > 0 independent of h such that for all ¢}, €
Li? () with Hqﬁ” < m, the following uniform stability estimate holds:

L2 (Qn)

< C|mnla) - miah) (1.29)

H(0,T;L2(T0))

+Ch Yy Halj,kattyh[qg] - 3;f,k3ttyh[q2]‘

k=1,2

a b
qn — Qh‘ 5
L3 ()

L2(0,T5L7 (2, ;)

where yn|q}] is the solution of ([L24) with potential ¢}.
Similarly, if w is a neighborhood of 'y, i.e. there exists 6 > such that

ws = ((1,1-0) x (0,1)) U ((0,1) x (1 =46,1)) C w, (1.30)
there exists a constant C = C (T, m, K, ap,8) > 0 independent of h such that for all ¢ € L5 (Q)
with quLHLOO(Qh) < m, the following uniform stability estimate holds:
Pl (278
a b a b
- <co -0 H
‘ ah Qh‘ Lo S vynldn] — Orynlan] O (o)

+C 3 || ounlar] - 05 Bnlal]|

k=1,2

L2(0,T;L3 (wy 1,))

+Ch Y "a,ik@ttyh[q;‘i] - 8ltk8ttyh[qg]‘ (1.31)

k=1,2

L2(0,T;LF (2, 1))

When comparing Theorem [[L4] with Theorem [[T] one immediately sees that estimate (I29)
is a reinforced version of (L8) due to the additional term

Ch > |07 uwnlat] - 07 Drenlah] (1.82)

k=1,2

L2(0,T;L3 (2, 1))



This was already observed in [3] for the corresponding 1-d inverse problems, and is remanent from
the fact that observability estimates for the discrete wave equations do not hold uniformly if they
are not suitably penalized, see |25, 40} [I5]. Note in particular that as h — 0 and under suitable
convergence assumptions, this term vanishes and allows to recover the left hand side inequality
of ([L8) by passing to the limit in (L29). Theorem [[4] is proved in Section 24l Following the
proof of its continuous counterpart Theorem [[LI] the main issue is to derive a discrete Carleman
estimate for the wave operator (Theorem 2.1]), as it was already done in [3] in the 1-d setting.
Though the proof of this discrete Carleman estimate is very close to the one in 1-d, the dimension
2 introduces new cross-terms involving discrete operators in space that require careful computa-
tions. Note however that our proof also applies in higher dimension when the domain is a cuboid
discretized on uniform meshes as this would involve similar terms. Actually, this has already been
done in the context of elliptic equations, see [9].

Discrete logarithmic stability. Since we limit ourselves to the case Q = (0, 1)2, we may
assume that I'g is a (non-empty) subset of one edge and that the counterpart of I'; appearing in
Theorem [[3] satisfying the Gamma conditions (3] is formed by two consecutive edges. Due to
the invariance by rotation, with no loss of generality, we may thus assume:

Q = (0, 1)2, ToC {1} x(0,1), T1=T4= ({1} x(0,1))U((0,1) x {1}). (1.33)

Theorem 1.5 (Logarithmic stability under weak geometric conditions). Assume that (€, T0,T1)
satisfy the geometric configuration (IL33) and the existence of an open set O C Q) such that

e O contains a neighborhood of I'1 in Q, in the sense that it contains some ws for some § > 0
(recall (L3Q) for its definition).

o the potential qn is known on 9Qp and in O, where it takes the value Qn € Li°(Op).
Let gyt be a potential lying in the class An(Qn, m) defined for Qn € Ly (Or) and m > 0 by

An(Qn,m) = {qn € Ly (Q), s.t. gnlo, = Qnr and ”qh”Lh""’(Qh) <m}. (1.34)

Let g > 0, M > 0 and o > 0. Assume also that yj, € H} () and the solution yn[ql] of (T24)
with potential q;; satisfy the conditions

inflyn| > a0 and  yulg"] € H'(0,T; L5 () N WH(0,T;5 Ly (). (1.35)
h

Then there exist C > 0 and ho > 0 such that for T > 0 large enough, for all h € (0, ho), for all
¢4 € An(Qn,m) satisfying

ar —an € Hyn(Q)  and ‘

an — qZH <M, (1.36)
H§ 3, (Qp)

we have

< CopV/i*) 4 ¢
LZ(Q)

a b
Qh_Qh‘

1+
log | 2+ <
|| 1q2] — ///h[qm”Hl(o,T;LZ(Fo))

+Ch Z Ha;tk&styh[qﬁ] - 5;1@5&%[!12]‘
k=1,2

U €I 1)
L2(0,T5L2 (25, )

h,k

Besides, the constant C depends on the constants m, M in [L36]), ao in (L35, an a priori bound
0 ] )

on Hyh”H},,(Qh) + Hyh[qZ]IIHl(O,T;L;o(Qh))ﬁw2,1(0,T;L§(Qh)), and on the geomelric configuration.

When compared with the corresponding continuous result of Theorem [[L3] the stability esti-
mate (L37) contains two extra terms: the penalization term (I32) and the new term Ch'/(1+),
The proof of (L37), given in Section] follows the same path as in the continuous case and com-
bines the stability results obtained in the case in which the Gamma conditions are satisfied with



stability results obtained for solutions of the wave equation through a Fourier-Bros-lagoniltzer
transform and a Carleman estimate for elliptic operators due to [} [9].

Hence, the penalization term (I3Z) is remanent from Theorem [[4l But the term Ch'/(1+2)
comes from the fact that the parameters within the discrete Carleman estimates cannot be made
arbitrarily large and should be at most at the order of 1/h. This fact has already been observed
in several articles in the elliptic case, see [8 [0l [14]. We also refer to [27] for a previous work
related to the convergence of the quasi-reversibility method.

1.3.2 Discrete convergence results

The stability results of the previous Theorems [[4] and suggest to introduce the observation
operators .y, = An{YyY, yi, fn, fo.n} defined for h > 0 by

My L) —  L20,T;L*(To)) x L*((0,T) x Q)

an = (Oven(ynlan]), hVzen(uynlan))), (1.38)

where yn[qn] is the solution of ([24)) with potential ¢;, and data v3, v}, fr, fo.h-
Corresponding to the case h = 0, we introduce its continuous analogous .%o = .#o{y°,y", f, fo }:

My LP(Q) — L*0,T;L*(To)) x L*((0,T) x Q)

q —  (8.ylg], 0), (1.39)

where y[g] is the solution of (II]). Recall that according to [28], this map My is well defined on
L (Q) for data

(W y', [, fo) € H'(Q) x L*(Q) x L((0,T); L*(2)) x H'((0,T) x 9Q)

. 1.40
with %[, = fa(t = 0), (1.40)

that we shall always assume in the following.
Remark that with these notations, the quantities

| #lait) = o

H((0,T);L2 (To,p))

h Ha* Breynlal] — 07 Oerynlad ‘
+ k;2 b kOt yn [an] — Oy 1. O0wynlan] L2(0,1)x 05 )

and - -
Anlai) — Anlah)|
H nlgi] nlan] H1(0,T;L2(T0)) X L2 ((0,T) xQ)

are equivalent, uniformly with respect to the parameter h > 0. Hence the stability results in

Theorems [[.4] and easily recast into stability results for .#,.

Our convergence result is then the following:

Theorem 1.6 (Convergence of the inverse problem). Let ¢ € H' N L>(Q) and assume that we
know qo = qlaq. Let the data (v°,y", f, fo) follow conditions (LAN) and the positivity condition
infe |y°| > o > 0. Furthermore, assume that the trajectory ylq] solution of (L)) satisfies

yla € H*(0,T; H' () N H' (0, T; H*(9)). (1.41)
We can construct discrete sequences (Y, yi, fn, fo.n), such that if we assume either
o (0,10, T) satisfy the configuration (L27), and in this case we define X, = L3° (Q);
or

e (Q,T0,T'+) satisfy the configuration (L33), T > 0 is large enough, q is known on O,
neighborhood of Ty, and takes the value qlo = Q, and in this case we define

Xn = {qn € Ly () s.t. qrlo, =Tr(Q),
and qn, extended on O by quloa, = rhe0(gs), belongs to Hi(Qh)},

that we endow with the L () N HE(Q4)-norm;
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then
- there exists a sequence (gn)n>0 € Xn of potentials such that

lim su < 00, and  lim H] — Mo H =0, 1.42
n o llan A ||Anlan] = AN, s 0y 2 0y (142

- for all sequence (qn)n>0 € Xn of potentials satisfying (L42), we have
. 0
lim [eh(g1) = [ 12, = 0-

Let us briefly comment the assumptions of Theorem [[L6] which might seem much stronger
compared to the ones for the stability results in Theorems [[.4] and This is due to the consis-
tency of the inverse problem, detailed in Lemma 3] which requires to find discrete potentials such
that the corresponding solutions of the discrete wave equation (L24) belongs to H' (0, T; L™= (Q)).
But this class is not very natural for the wave equation, and we will thus rather look for the class
H'(0,T; H*(Q)), which embeds into H*(0,T; L°°(£2)) according to Sobolev’s embeddings. This
is actually the only place in the article which truly depends on the dimension.

It may also seem surprising to assume the knowledge of ¢ on the boundary even in the configu-
ration (LZT), for which Theorem [l applies with only an Ly°(€2),)-norm on the potential. This is
actually due to the fact that the knowledge of gjaq, is hidden in the regularity assumptions on y[q|.
Indeed, if y[q] is smooth and satisfies (ILT)), we may write 8x:y(0, ) = Ay®(2) —q(z)y°(z) + £(0, z)
for all z € Q and in particular z € 92, whereas 0wy (0,x) = i fo(0, x) for z € 9. In particular,
since y° does not vanish on the boundary, these two identities imply that qaq can be immediately
deduced from the knowledge of °, f and fs for sufficiently smooth solutions, see Remark

Details on the derivation of Theorem [[Lf] are given in Section [ with a particular emphasis on
the related consistency issues. In particular, Lemma (3] explains how to derive the discrete data
yh, v, fn and fa 5, from the data y°, 3, £, f» and go.

1.4 Outline

Section [2] will be devoted to the establishment of a uniform semi-discrete hyperbolic Carleman
estimates in two-dimensions, including the boundary observation case in Theorem 2.1l and the
distributed observation case in Theorem We will then derive from these tools the discrete
stability result of Theorem [[L4l In Section [B] we will present a revisited version of Theorem [L3]
based on a global elliptic Carleman estimate and follow the same strategy to establish the discrete
stability result of Theorem [[L5] based on a global elliptic Carleman estimate due to [9]. Finally,
Section [] will gather the proof of Theorem [[.6] some details about the Lax type argument, and
a detailed discussion about consistency issues.

2 Application of hyperbolic Carleman estimates

In this section, we discuss uniform Carleman estimates for the 2-d space semi-discrete wave
operator discretized using the finite difference method and applications to stability issues for
discrete wave equations. These discrete results are closely related to the study of the 1-d space
semi-discrete wave equation one can read in [3]. Actually, our methodology (here and in [3]) goes
back to the articles 8] 9] where uniform Carleman estimates were derived for elliptic operators.

2.1 Discrete Carleman estimates for the wave equation in a square

The proofs of the results stated here will be presented in Sections and 231
Recall that we assume the geometric configuration

Q= (0, 1)2, oDy = ({1} x(0,1)) U ((0,1) x {1}). (2.1)

11



Carleman weight functions. Let a > 0, 2, = (—a,—a) ¢ Q = [0,1]?, and 8 € (0,1). In
[~T,T] x [0,1]?, we define the weight functions ¢ = 9 (t,z) and ¢ = o(t, ) as

b(t,z) = | — za|* — Bt + co, plt,z) = V1), (2.2)
where co > 0 is such that ¢ > 1 on [T, T] x [0,1]* and p > 1 is a parameter.

Uniform discrete Carleman estimates: the boundary case. One of the main results of
this article is the following:

Theorem 2.1. Assume the configuration (ZI)) for Q and T'y. Let a > 0, 8 € (0,1) in (2Z2)

and T > 0. There exist 7o > 1, 4 > 1, € > 0, ho > 0 and a constant C = C(1o, 1, T\ €, B) >0
independent of h > 0 such that for all h € (0,ho) and T € (10,€/h), for all wy, satisfying

Onwy, € L*(=T,T; Ly (),
wo,j(t) = wN+1,j(t) = w,-,o(t) = w,-,NH(t) =0 fOTt S (—T7 T)7 1,] € [[07N + 1ﬂ7 (2.3)

Wi, j (iT) = Btwi,j(iT) =0 fOT’ i,j S [[0, N + 1]],
we have
T
T/ / ¥ Qpwn [P dt + 7 Y / / 27O (0w dt + 7° / / 27 lwy | dt
—T JQp k=1,2 . Qp
SC/ / " Dpwn|® dt + Ot Z/ / 270 |5 wn|” dt (2.4)
—T I k=1,2
+CTh? > / / T O LOovwn|? dt,
k=1,2

where @, is defined as the approzimation of ¢ given by on(t) = rpe(t) fort € [0,T7.
Besides, if wn(0,2r) = 0 for all z, € Qn, we also have

T
7'1/2/ 22109, (0, 2 ) 2 SC/ / > | Opwp|? di
Qp Qp

+or Z/ / 2 en o wn | dt + C7h? Z/ /7 ETon O D P dt. (2.5)

k=1,2 k=1,2

The proof of Theorem [2.1] will be given later in Section It is very similar to the one of
[3l Theorem 2.1] but more intricate. The continuous counterpart of Theorem 21 is given in [4]
Theorem 2.1], and very close versions of it can be found in [22] 21]. However, two main differences
with respect to the corresponding continuous Carleman estimates appear:

e The parameter 7 is limited from above by the condition 7h < e: this restriction on the
range of the Carleman parameter always appear in discrete Carleman estimates, see [8] 9} 3] [14].
This is related to the fact that the conjugation of discrete operators with the exponential weight
behaves as in the continuous case only for 7h small enough, since for instance

e"?0n(e” %) =~ —70z only for Th small enough.

e There is an extra term in the right hand-side of (24]), namely

/ /7 05 L Ovwn | dt, (2.6)

that cannot be absorbed by the left hand-side terms of (Z4]). This is not a surprise as this term
already appeared in the Carleman estimates obtained for the waves in the 1-d case, see [3] Theo-
rem 2.2], and also in the multiplier identity [25]. As it has been widely studied in the context of
the control of discrete wave equations (see e.g. the survey articles |40} [15]), this term is needed

k=1,2
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since the discretization process creates spurious frequencies that do not travel at the velocity one
prescribed by the continuous dynamics (see also [37]). Also note that this additional term only
concerns the high-frequency part of the solutions, since the operators h(?;rl, h(?;rz are of order 1
for frequencies of order 1/h, whereas it can be absorb by the right hand-side of 24)) for scale
O(1/h'7#) for all € > 0 by choosing 7 sufficiently large.

Uniform discrete Carleman estimates: the distributed case. The usual assumption
in the distributed case for getting Carleman estimates in the continuous setting (see [2I]) is
that the observation set w is a neighborhood of a part of the boundary satisfying the Gamma
condition (I3). Since in our geometric setting Q@ = (0,1)%, with no loss of generality we may
assume that there exists 6 > 0 such that (I30) holds. Under these conditions, we show:

Theorem 2.2. Assume the configuration [L30) for w. We then set
h=QnNw, wy, =9, N, ke{l,2}.

Leta >0, 8 €(0,1) in 22) and T > 0. There exist 70 > 1, p>1, € >0, ho > 0 and a constant
C = C(ro,p,T,¢e,8) > 0 independent of h > 0 such that for all h € (0,ho) and T € (10,£/h), for

all wy, satisfying (23)),

T
7'/ / X |Bpwn |* dt + T Z / / 27“0"|8Jr wy|® dt + 7° / / eXTn lwp, |* dt
—TJa, I o

k=1,2
gc/ / 270 [Dpaon|? dt + Ch? Z/ / 0 O Dy | dt 2.7)
=T/ k=1,2 h
CT/ / €27R Dy 2 dt+C’TZ/ / 2“"”'|8}tkwh|2dt+073/ / €27h [ |2 dit,
=T Jwy, k=1,2 T Jen

where pp(t) = thp(t) for t € [0,T]. Besides, if wp(0,2n) = 0 for all xn € Qp, the term

7'1/2/ e>™2r 00,0, (0, 21 )|? is also bounded by the right hand side of (1)
Qp

Of course, Theorem shares the same features as Theorem [ZIl Actually, Theorem is a
corollary of Theorem [Z]] and we postpone its proof to Section 23]

2.2 Proof of the discrete Carleman estimate - boundary case

Proof of Theorem[21l. The proof of estimate (24) is long and follows the same lines as [3] The-
orem 2.1]. In particular, the main idea is to work on the so-called conjugate operator

Loy =€ O (e” TP uy). (2.8)
The precise computation of %, already involves tedious computations summed up below:
Proposition 2.3. The conjugate operator £, can be written in the following way:
Lhvn = Orevn — 21 Outh Opvn, + 721" 0° (0)” v — TP (01)? vi — Tp(Dret)) v, (2.9)
- Z (1+ Aox)Ankvn + 27 Z A1,10h,kVn — Z (r°u* Aok — 7" As g — T A k),

k=1,2 k=1,2 k=1,2

where the coefficients Agx, are given, for (t,xn) € (=T,T) x Qy and e* = (1,0), e* = (0,1), by

1 1 A ef‘rgp(t,:vh+o'hck)
vt zn) = 5/,1 L (2.10)
1 5 5 A ef‘rgp(t zp,+ohek)
Az’k(t}]}h) = / (1 — |O’|) [QO (aka) } (t71}h + O'he )W dO'7 (2].].)
-1
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1 9 A efﬂp(t,zhﬁ»o’hck)
As i (t,zn) :/ (1= o)) (@ 9)?] (b n + ohe") ' 4o, (2.12)

1 e*ﬂp(tvzh)
1 A ef-rtp(t,ach+ahek)
A4’k(t7$h) :[1(1— |O'|) [@8kak1/)] (t7£17h+0'h€ )W dO'7 (213)
Aos = (22 ’A A 2.14
O,kfg( H A2k — T A3k —TH 4,k)- ( . )

In particular, these functions Ay, defined on [0,T] x Qp, can be extended on [0,T] x Q in a natural
way by the formulas ZI0)—2I3) and satisfy the following property: setting

fO,k - 07 fl,k - waka7 f2,k = @2(89%1/))27 f3,k - @(axk¢)27 f47k = @3%:%1/)7
for some constants C,, depending on p but independent of T and h, we have
1 Ack = fekllo oy < Cuth,  VEE{0,..., 4}, Vk € {1,2}. (2.15)

The proof of Proposition [Z3] can be easily deduced from the detailed one in |3, Propositions
2.7, 2.8, and Lemma 2.9, 2.10] and the details are left to the reader. Note in particular that (215])
implies for all (4, k) € [0,4] x {1,2},

+
lAek — rhf"’c”L""((O,T);L;?(Qh)) + Z 100 s Ak = rhaszHLoo((o,T);Li(Q; o)
k'=1,2 v

+ HAhAZ,k - rhAfZ’k”LOO((O,T);LZO(Q;I,)) S CHTh‘
Afterwards, one step of the usual way to prove a Carleman estimate is to split the operator .%},

into two operators Z%,1 and %} 2, that, roughly speaking, corresponds to a decomposition into a
self-adjoint part and a skew-adjoint one. To be more precise, using the notations

Ax = Ag1 + Az, Az = Asz1 + A3z, Ay = Asq + Aspo,

we set
Ghave = uvn— Y (L4 Aox)Anwvn + 7217 (¢ (9e1))* — Az) v, (2.16)
k=12

Lrovn = (a1 — 1D)7p(pduth — As) v, — 7',“2 (‘P|8t7/}|2 - A3) Un

271 | @OpOun — Z A1 kO kvn | 5(2.17)
k=12
B . _B+1

Frvr, = onTp (POt — Ag)vp,  with a1 = 5tz (2.18)

so that we have %, 1v+ % 2v = Lhv+Zpv. Here, Z), will be considered as a lower order pertur-
bation of no interest and the letter # states for “reminder”. More precisely, all our computations
will be based on the following straightforward estimate:

T T T
/ / |.,(fh,1’uh|2 dt+/ / |.ffh,2vh|2 dt—|—2/ .ffh,lvh .,(fhyg’uh dt
-7 JQy —T JQp T JQyp

T T
< 2/ / | Lron|® dt + 2/ / |Zno|? dt.  (2.19)
T JQ -TJQy

In particular, we claim the following proposition, proved in Appendix [B}
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Proposition 2.4. For any T > 0, there exist u > 1, 70 > 1, €0 > 0 and a constant Cy > 0
such that for all T € (70,e0/h), for all vy satisfying vo; =
v;,; (£T) = Ovs ;(£T) = 0,Vi,5 € [0, N + 1],

T T
/ / X dt+72/ / |a,jkuh|2dt+73/ / |vh|2dt—|—/ / |- L 1on|? dt
k=12 —T JQp —T JQp
<Co/ / |$hvh| dt + Cot Z/ / |8h kvh‘ dt

k=1,2

+ Corh? Z/ / |05 1 Ovon|? dt (2.20)

k=1,2

UN+1,5 = Vi0 = Ui,N+1 = 0 and

where the operators £}, and %1 are defined by (2.8) and (ZI6]).

The proof of Proposition [2:4] is the core of the derivation of the discrete Carleman estimate
and consists in estimating from below the cross-product fTT fﬂh Zhavn Zhovn dt in (219). This
is done in two steps: Computation of the cross-product and computations of the leading order
terms coefficients in front of vy, Owvp, a}tkv;r The proof of Proposition Z4lis given in Appendix[Bl

Actually, this closely follows the proof of |3, Lemma 2.11] corresponding to the 1-d case. The
main novelties with respect to [3| Lemma 2.11] are the following ones:

e Some computations in the cross-product of % 1v, and . 2v, are new since the term
(o = 1) Tp(pdtd — >, Aak)vn in L 2 in (2I7) vanishes in dimension 1. Actually, the coefficient
a1 is chosen in some range that depends on the dimension d of the space variable and is required
to belong to (28/(8 + d),2/(8 + d)). Hence, since d = 1 in [3], we chose a1 = 1 to simplify the
computations.

e There are also new cross-products involving integration by parts of discrete derivatives in
different directions. In particular, besides the 1-d integration by parts formula in [3, Lemma 2.6]
that we recall in Appendix[A] we will need the following specific 2-d formula:

Lemma 2.5 (discrete integration by part formula). Let vy, gn be discrete functions depending
on the variable xp € [0,1]* such that vi, = 0 on the boundary of the square. Then we have the
following identity:

1
/ gh Dn,10n On2vn = 5/ |0 1o [*On.2(mif 1gn) — B 1vn My (On,2vn) B 1 g
Qn }:,1 Q;,l
h? + oot 129+ (o F
. |ah,lah,2vh| ah,2(mh,lgh)' (2.21)

h

Though the formula (22I]) cannot be found as it is in [3], it can be easily deduced from the
integration by parts formula in Appendix[A] and the proof is left to the reader.

Furthermore, if we assume vp,(0) = 0 in Qp, we can compute the following cross-product (it is
a straightforward modification of the computations in [3, p.586]):

0 1
/ 8tvh$h’1vh dt = —/ |8t1)h - = Z / / mhk 8tA() k)|8 kvh| dt
—-T JQy 2 Qp
k: 1,2
el / oo (4 ) - 42) at.
Qp

2 2

/ /7 8h kAo k (9h KUh My, k(agvh dt —

k=1,2
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Therefore, based on Proposition [Z3] we easily get

/ |8t’l)h / / |fh 11)h| dt + C\/_/ / |8t’l)h| dt
Qy Qy Qp

+C7‘hZ/ / |05 jon|? dt+cﬂh§:/ / |8 vn|” dt—|—CT/ / o | dt.
Qp

k=1,2 k=1,2

As 7h < 1, applying Proposition 24] then immediately yields

T1/2/ |8tvh <C/ / |jhvh| dt +Ct Z/ / |8h k’t)h‘ dt
Qp Qp,

k=1,2

+ Crh? Z/ /7 |05 0o L. (2.22)

k=1,2

Finally, for wy, satisfying (23]), we set vy, := e"¥»wy. Remarking that by construction Z,v, =
e"?rO,wy, we can apply directly Proposition 224l We notice that for 7h < 1,

wn|*e*™" < Culon?,

|Oewn| €™ < Cu(|0eonl* + [onl*), 105 pwnle™ < Cu(10) jonl” + Cut?Imyf on ),

|8,tk8tvh|2 < Cﬂ|a}tk8twh|2e27% + CHT2(|8}tkwh|2 + |m;k8tw|2)e2w”' + CMT4|m;kw|2e2W”'.
and |9, ,vn|® < C,|0;, ,wn|>€*™" on the boundary T}, as wy, vanishes on 9Qp,. We thus deduce
Carleman estimate (2.4)) for 7 large enough and 7h small enough directly from (Z20]). Besides,

when wp,(0) = 0 on Qp, then v4(0) = 0 and 9:v,(0) = Orwp (0)6“’”"(0) on Qp, hence we conclude

@3) from [222)). |

2.3 Proof of the discrete Carleman estimate - distributed case

Proof of Theorem[2Z2. Tt can be deduced from Theorem 21l Indeed, under assumption (L30)), it
suffices to define a cut-off function y € C*(€; [0, 1]) taking value 1 on 2\ ws,» and vanishing on
the boundary I't = ({1} x (0,1)) U ((0,1) x {1}) and to apply the Carleman estimate (2.4) to
xrwp, with x5 = r5(x): the boundary terms in (24 vanish by construction but we have

On(xrwr) = XaOnwn — 2VaXa Vhwn — ApXn(2mpaws — wh).

Using that x = 1 on Q \ ws/2, one easily checks that for h small enough, Onxn and Apxy are
supported on w. We thus readily obtain

T
7'/ / 2T X |Ovwn|? dt + 7 Z/ / 2Wh|8h k Oxnwn) | dt
-rJa, -

k=1,2

+73/ / ezﬂphx;zl|wh|2dt
—rJa,

T T
< C/ / SZTWhX%L|thh|2dt+C/ / 7 (IVhwnl® + [mawn |* + [wn|?) dt
=T JQp - Wh,

T
+Crh22/ / T O O (xnwn)|* dt. (2.23)
Q

k=127 T/
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One then easily checks that, for 7h small enough,

/ [ (Vhunl? + o wn) P+ s ) deerh® 3 / / Rl
wp,

k=1,2

<CZ/ / ZT”h|8,ikwh|2dt+O/ /ezw"|wh|2dt
=T Jwy

k=1,2
T
+07h2/ / emh|atwh|2dt+cm22/ / 205 L 0wy | dt,
T k=127 —T /S

We thus conclude ([27)) only by adding the terms

T
T/ / e>7em | Bpwy |2 dt—|—7‘Z/ / 05 jwn | dt+7/ / TP lwy|? dt
=T Jwp - Wh

k=1,2 “h,k

on both sides of ([Z23) and by taking 7 large enough. O

2.4 Proof of the uniform Lipschitz stability result

As said in the introduction, Theorem [[14] is a consequence of the Carleman estimates in Theo-
rems2land [Z2] Its statement is very similar to the one of [3] Theorem 3.1] in the 1-d case. With
respect to the stability estimates obtained in the continuous case in [2] (see also [22] []), there
is the additional term (I32)) which is remanent from the additional term (Z6]) corresponding to
some non-standard penalization of the discrete inverse problems.

Proof of Theorem[I4) Let us begin with the identity

/ / k‘@hk?/h[‘]h] 8Myh[qh]‘ dt_‘

that allows to end the proof of Theorem [[4] as soon as we obtain the stability estimate ([.29)
with ||.#n[qh] — ‘///h[qZ]HHl(o,T;L%FO)) replaced by

/ / ‘8;1 kUnlan] — O, kyh[qh]

Since the proof follows the one of |3, Theorem 3.1], we only sketch the main steps required.

e Step 1. Energy estimates. We first write classical energy estimates in the context of the
semi-discrete wave equation in €y, like the one written in [3l Lemma 3.3], and apply them to
zn = Oulynlgl] — yn[ql]) that satisfies

Ovenunldh)|
2, ven(ynlar)) — dven (ynan]) HIOTiL2 (o))

1/2

k=1,2

Oezn — Anzn + qrzn = (g, — 4i)Owynlgr],  in (0,T) x Qn,
zn =0, on (0,T) x 0Qn,

(21(0), 8:24(0)) = (0, (a1 — a1)vh), in Q.

We thus get a constant C' = C(T,m) > 0 independent of h and such that for all ¢t € (0,7,

a b
1822 o) + 1028 B) L2 ) + 120Dl 22 ) < OK gt = gk (2:24)

L2(Qp)’
where K = Hatyh[qm||L2((O,T);L;l‘°(ﬂh))‘
e Step 2. Choice of the Carleman weight. Since we assumed T > v/2, we can find ¢ > 0 and
B € (0,1) such that
(1+a)V2 < BT. (2.25)
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Therefore, we can choose 1 > 0 such that the Carleman weight function ¢ defined in (2] satisfies

\t\e(T—lle,fT»zenwt’x) = ilelgw)’ =) (2.26)
We then choose a and 8 as above in the Carleman weight (Z2]), and choose p, 70, € > 0 such that
Theorem [2.1] holds.

e Step 3. Extension and truncation. We extend the equation in zp on (—T7,T), setting
zn(t) = —zp(—t) for all t € (—=T,0). We also extend d;yn[gf] as an odd function on (=T,7T). We
define the cut-off function x € C*°(R; [0, 1]) such that x(£7) = 9y x(+T") = 0 and x(¢) = 1 for all
te[-T+mnT-—mn]. Then wp = xz, fulfills the assumptions of Theorem [Z] and satisfies the
following equation:

duewn — Apwny + qwn = Ouxzn + 20:x0czn + (a5, — ) Owynlar],  in (=T, T) x Q,

wp, =0, on (=T,T) x Qn,
(wn(0), Bwr(0)) = (0, (a5 — an)yn), in Qp,
Wh (:l:T) = 07 Gtwh(:tT) = 07 in Qh.

e Step 4. Using the Carleman estimate. We can apply Carleman estimates (Z3) and (24) to
wy, and, using the expression of 9wy, (0) and Assumption (L28]), we get, for all 7 € (70,¢/h),

T T
VT e™on g _ b1 + 73/ / e™fm lwy |? dt < C’/ / > |0y wy |2 di
T JQy =T JQy

Qp,
T

+Cr Z / / e27h a;kwh\z dt + Crh? Z /
-rJrf k=1,2"Y-T

k=1,2

T

/ T O Ovwn Pt (2.27)
h,k

The end of the proof finally consists in estimating the term containing Opwp:

T T
/ / > | Opwp | dt < C/ / T | ghwn | dt
—-TJQy T JQp

T
e [ el + jfyae v [ g - dawlall dr
[tle(T—n.T) J o, -1 Ja,
The first term can be absorbed by the left hand-side of (Z27) as g}, is of bounded L (€, )-norm.
In the second term, we bound the weight function by its supremum on [T"— 7, 7] and then use
the energy bound (Z24]) on z,. This can then be absorbed by the left hand-side of (227]) due
to the comparison (Z26]) of the weight at time 0 and on (7' — n,T). Finally, since the weight
function is maximal at ¢ = 0, the last term can be bounded by C fﬂh e27#n(0) lg? — g5|* due to the
assumption (L28) and thus it can also be absorbed by the left hand-side of ([Z27). Therefore,
taking 7 large enough completes the proof of Theorem [[.4]in the case of a boundary observation
(C29). The case of a distributed observation can be deduced similarly from Theorem stating
a Carleman estimate for a distributed observation. a

3 Application of elliptic Carleman estimates

3.1 Logarithmic stability estimate in the continuous case

The goal of this section is to show Theorem [[3l Actually, it is a direct consequence of the
following result, similar to the ones in [29] [31]:

Theorem 3.1. Let T'g be a non-empty open subset of 9N and let w be a smooth connected open
subset of Q such that dwNOQ is an open neighborhood of Tg. Let m > 0 and g € L™ () satisfying
llgll oo < m. Let 2 >0 and Ro > 0, and assume that { = ((t,x) solves the wave equation

Oun¢ — A+ q¢ = f, n (=T,T) x Q, (3.1)
¢=0 on (=T,T) x 09, :
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for some f € L*(=T,T; L*(Q)) satisfying
f=0 in(-T,7)x{z € Q, dz,w) < Ro}, (3.2)

and satisfies ¢ € H*((=T,T) x Q) with ||C||H2((—T,T)><Q) < 9.
Let o > 0. There exists To > 0 such that for any T > To, there exists a constant C = C(T)

such that 1
-
log {2+ 7 : (3-3)
HaVQ-”L?((—T,T)XFo)

Indeed, let us first show how Theorem [3.I] implies Theorem [I.3}

<l a2 ((— /8,778y x0) < CZ

Proof of Theorem[I3. The idea is to apply Theorem Bl to ¢ = d:(y[q®] — y[¢®]), which satisfies
the wave equation

87575< - AC + qb< = (qb - qa)aty[qaL (t7 IL’) € (07 T) X Qv
=0 (t,z) € (0,T) x OQ, (3.4)
C(07 117) = 07 atC(07 :13) = (qb - qa)(x)yo(x)v x € Q.

Extending ¢ as an odd function on (—7',T"), using the classical energy estimates on 9:(, the fact
that 9;¢ is continuous at ¢ = 0 by construction, and recalling assumption (LI3) on ¢* — ¢°, we
easily get:

1Sl 2~ 7.1y <2

<Cn (H(q" — qb)yo‘

+ H(q" —~ qb)yl‘

a b a
- d)0ald’|
+ H(q q")0uylq"] wm(o,T;mm))

< Cmm (HyOHHl(Q) + Hy1HL2(Q) + Haﬁy[qa]”lel(O,T;L?(Q))) +CmM HyOHLOO(Q)

< Cm(m+ M) 918 Mz 02502 @ 0,112 @) + Crnt |8 1) = 2 (3.5)

Hg(9) L2(Q)

Since potentials ¢* and ¢® coincide on Os by (LI0)-(LII), the source term f = (¢° — ¢°)dy[q®],
extended to an odd function on (—T',0), satisfies B2) for Ry = §/2 and w = Os/2. Applying
Theorem [B.1], we obtain:

oula"] - dunla'l
ty[q ] ty[q] HY((—T/8,T/8)xw)

@ 14+
<P |log |2+ .
|: J < H&,@ty[q“] — 8V8ty[qb]||Lz((,T,T)XFO) >:|

Because w = Oy, satisfies the condition (II0) and is thus a neighborhood of a boundary sat-
isfying the Gamma-condition ([3)), the use of estimate (I9) of Theorem [[T] then completes the
proof of Theorem [I.3 O

Let us now focus on the proof of Theorem B.Il As we said in the introduction, this result
follows from a suitable use of a Fourier-Bros-lagoniltzer (FBI) transform to reduce the hyperbolic
problem to an elliptic problem and on an elliptic Carleman estimate.

As in |29] [31], we use a FBI transform with a polynomial kernel: this is the ingredient which
allows us to improve the exponent in (B3] to any o > 0 instead of only o =1 as in [5].

Also, our proof shortcuts the one in [3I] by using a global Carleman estimate for the elliptic
equation, allowing to get rid of the iterated three spheres inequalities in [31] (see also [5]). Though
this does not yield any particular improvement on the result in the continuous setting, we will
follow the same strategy in the semi-discrete case and that way, we will manage to avoid the
iterated use of three spheres inequalities in the discrete setting, which would induce tedious
discussions.
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Proof of Theorem [31]. The proof is rather long and consists of several steps. Along this proof,
the constants written in large caps may depend on the parameter n € N and 7" > 0 and are
independent of the other parameters. But constants with small caps, that will be numbered co,
c1, (...) have the additional property that they do not depend on the time parameter T either.

e Step 1. The Fourier Bros lagoniltzer kernel. In this step, we introduce the FBI transform
kernel following [29] p.473|. Let us set n € N* such that 1/(2n — 1) < a and v = 1—1/(2n) (that
guarantees 1/(1 4+ «) < v < 1). Introduce a function F defined on C as follows:

T or

F(z) = & [ T e e (3.6)

According to [29], this function F' is even, holomorphic on C and satisfies, for some positive
constants Cp, co, c1, Ca2:

F()| + |F'(2)] < Coexp (lS()[7), vzeC,

(3.7)
|F(2)] < Coexp (—cl|z|1/” , Vz € C with [S(2)| < c2|R(2)],
Then, for A > 1, we introduce
Fi(z) = N"F(\"z2), (3.8)
which, due to (87, satisfies the following estimates:
|Fx(2)] + [FL(2)] < CoA? exp (COA|S(Z)|1/~) , VzeC,
(3.9)

|Fx(2)] < CoXY exp (—61)\|z|1/“’) , Vz € C with |S(2)| < e2|R(2)].

Let us remark that F' defined by (3.6]) is the inverse Fourier transform of & — e € so that Fy
is an approximation of the identity as A — oco. Finally, notice that by construction, the Fourier

transform of F\(f) is
FENE = 7(F) (5 ) = e <— (%) ) . (3.10)

e Step 2. The Fourier-Bros-Iagoniltzer transform. Let ¢ be the solution of ([3I]). We introduce
a cut-off function n € C*°([-T,T7; [0, 1]) such that

=l 1 ARST/2
Tl 0 if |t >37T/4.

We define the FBI transform for s € R, a € [-T/4,T/4] and = € Q by
Vo x(8,x) = / Fx(a+is —t)n(t)¢(t, z) dt, (3.11)
R
where i denotes the imaginary unit. Since

Osva, N (8, x) = i/ﬂ;{FA (a+1is —t) 0:(n(t)C(t,x)) dt,

using integration by parts, one easily checks that v,,x solves the elliptic equation

(=0ss — Au + q)Var = far DR xQ,
{ Vg x =0 on R x 99, (3.12)
where fo,x is defined as fo,x = fa,x,1 + fa,r,2, With (since ¢ satisfies (3.1]))
fara(s,z) = /FA(G +is — 1) (20 (1)2eC(t, ) + 1" (1) (¢, 2)) dt,
(3.13)

far2(s,z) = iFA (a+1is—t)n(t)f(t,x) dt.

R
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On the one hand, using that 2n’9,¢ +n” ¢ is supported in {(t,z) € (=T,T) x Q s.t. |t| > T/2}
and the second estimate in ([33]) on the kernel F, we have

< C}\2w672c1)\(T/2)1/7 L/

2 2 2y —2c1M\(T/2
faralfioe (—s,3:22 () < 1 (o myxey < CAT e ™ e

2%, (3.14)

for any T > 12/cz, since a € [-T/4,T/4], |t| > T'/2 and since we decided to work for s € [—3, 3]
and needed |s| < cz|a — t| to apply (39).
On the other hand, the first estimate in (39) also yields, for ¢z = 2 - 31/7007

2 4 A 2 4 X2
Va1 (3,3 x0) < CAT€2 [l ((r.myx0y S CNT 27T, (3.15)

and, similarly,
2 4y _caA 2
||3uva,AHL2((73,3)Xro) <COXTe® ||8V<HL2((—T,T)><FO)' (3.16)

e Step 3. Estimating vg,x by an observation on (—3,3) x I'g. This step strongly relies on a
Carleman estimate for the following elliptic problem:

{ (—0ss — Ap +Qu =g in (-3,3) x Q, (3.17)

w=0 on 9((—3,3) x Q).

One of the most important points is to suitably choose the Carleman weight. First construct
a smooth function ¥y = ¥o(x) on @ such that

Vz € @, Yo(z) >0,

infz{|Vol|} > 0,

Vo € 0w\ To, dviho(x) < 0. (3.18)
Vo € Ow \ T, 1/10(33) =0,

%0l oo () < 1/2.

Note that such a function g exists according to the construction in [I7] (see also [38, Appendix
I1I]). We then extend this function 1o as a smooth function ¢ on €2 satisfying |[¢)|| ;) < 1. By
continuity, there exists a positive constant R € (0, Ro) such that in the set

wr = {z € Q, d(z,w) < R},
where the source term f vanishes by assumption ([B:2]), we have
inf {|Vy(z)[} >0
TEWR
and such that in the set R
%:{xeﬁ, 3 <d(x,w)<R},

we have, as pictured in Figure 2]
0 =infvy > sup. (3.19)
@ G

Then set, for p > 1,
= p(s,2) = exp(u(¥(e) —s%),  (s,2) €[-3,3] x Q. (3.20)
According to [20] (see also [I7] B5]) one has the following Carleman estimate for (BI7):

Lemma 3.2 (An elliptic Carleman estimate). There exist u > 1 and a constant C' > 0 such that
for all T > 1, for all g € L*((—=3,3) x Q) and w solution of FIT) supported in (—3,3) X wr,

3 2 2
Tl w2 (—s,3)x0) F TN ViaawllL2 (5,3 x0)

T 2 T 2
<Clle ¢g|‘L2((73,3)><Q) +Ctlle SDar/wHL?((,3,3)><r0) o (3.21)

where the constant C' can be taken uniformly with respect to ¢ € L (Q) with ||q|| o < m.
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Figure 2: Construction of the weight function i (x).

Estimate ([3:2])) has to be understood as a Carleman estimate with observation on (—3,3) x I'g
and in (—3,3) x (2 \ wr). But, as we assumed that w is supported in (—3,3) X wgr, we simply
omit the observation in (—3,3) X (Q\ wr).

Now, introduce smooth cut-off functions xs = xs(s) and xr = xr(x) such that

(1 iflsl <2,
xs(e) 7{ 0 iffs>s O Pslwese <€

and
/2,

)

1 ifd(z,w)
XR(”’”)_{ 0 ifd(z,w)

We can then define

<R
g R and ||XRHW2~°°(Q) <C.

Wa (s, 2) = xs($)Xr(Z)var(s,2), (s,2) ERXQ (3.22)

which satisfies

(_aSS - AI + q)wll)\ = Ga,X in (_37 3) X Qv (3 23)
Wa,x =0 on 9((—3,3) x Q), :
where (using the fact that f, 2 vanishes in wr by assumption ([3.2)))
Ja,x = XSXRfax1 — 2XROsXS0sVa,x — XROssXSVa,x — 2XSVXRVVa,x — XSAXRVa, -
Thus, Carleman estimate ([B.2I) can be applied: for all 7 > 1,
3 T 2 T 2
Tl wallL2 (—s.3x0) + T N€T VeawanllLa (5.3 xa)
T 2 T 2
<Clle S0911,>\HL2((73,3)><Q) +Crlle wavwa,AHL2((73,3)><r0) - (3.29)

Since wa,x = va,x on (=1,1) x w and [[xsX &y 2.0 gxoy < €, we obtain

3 T 2 T 2
™ |le SD’Ua,/\||L2((71,1)><w) +7le wvs,wva,/\||L2((71,1)><w))
T 2 T 2
<Clle vga,AHL2((73,3)xQ) +Crlle (Pauva,AHL2((73,3)xr) - (3.25)

Now, we estimate from below the left hand side and from above the right hand side of (3:25]).
Notice first that according to (3I9), we can choose g € (0,1) such that

in @©> sup . (3.26)
|s|<eq, z€EwW [s|<3, ze¥

22



In order to simplify notations, we set

Fo=_ _inf o, S = sup ¢, Sz = sup p, Se= sup . (3.27)
|s|<eg,z€w |s|<3,z€Q |s|€(2,3), z€Q |s|<3, z€€

Remark that, similarly to (3:26]), that writes now %, > .%«, using the explicit form of ¢ and the
fact that [|1)]| oo (q) < 1, we have
L > y(zy(g). (328)

Going back to (3:28]), on the one hand, for all 7 > 1,
27 S 2 3 T 2 T 2
€ 1V x e (—egreoyxwn) S T M€ Var T2 1,1)wwy TN Vozvarllia(1,1)wwy - (3:29)

On the other hand, the first term of the right hand side in (3:25)) can be estimated from above:

2 2r 2
Heﬂpga,A”L?((f&g)xQ) <e’ |‘f¢17)\71HL2((73,3)><Q)

+C (627—5’(2,3) + GZTV%”) HUG»A”f‘{l((fB,B)xQ) , (3.30)

since Osxs, OssXs are supported in {s € R, s.t. |s| € (2,3)} and Vxr, Axr are supported in €.

Plugging (3.14]) and [BI3) into (330), we obtain

T T —4C / T T C
1™ g2y < CE77 NI G2 0 (27 2 4 2TT) N 2 (3.31)

Combining now estimates ([3:25]) with (3:29), (3.16) and B31]), we get

2.7, 2 27512y 21 M(T/2)Y/ 7 2
e Ve n 71 ((—eq,eyxewy < C€7 A e 9

T TS A T A
+C (62 @9 4 ¢2 %) AP G2 4 07T X 0,C2 s _rryergy - (3:32)
o Step 4. Estimating ¢ from its FBI transform v, x. Writing ¢ as follows,
C(t,x) = C(t, ) — ve, 2 (0, ) + v 2 (0, ).
we obtain that, for ¢ € (=T/8,T/8),
HC||L2((7T/8,T/8)><LL;) < |[(t,z) = ¢(t, ) — ve,a(0, $)||L2((—T/8,T/8)><w)

+ (@, 2) = vax(0,2)| L2 (/8 7/8)xw) - (3-33)

As already detailed in [31], since v¢ 2 (0,2) = Fx * (n¢)(t), where the convolution is only in the
time variable, we obtain, from (BI0) the following estimate (notice n =1 in (—7'/8,7T'/8)):

[t @) = ¢t @) = vex(0, @) 218, r/8)wy = IMC = Fx* O 2~ 1/8,7/8)xw)
<0 = F ) F0O e
< o~ Hirmoeo)
L2(RXw)

C C
5% ||77C||H1(]R><w) < 5% ||C||H1((7T,T)><w) .

IN

Besides, since F) is holomorphic, the map a + is — v4,1(s, z) is holomorphic in the variable
a—+1is for all A and z, and the Cauchy formula implies that (see appendix of [5], for some details)

Va, (0, _ w <C sup Va,x —€0,€0) Xw) *
[0a,x (0, @) L2 ((— 78, 7/8) xw0) Ay [vanll 2 ((—eq,c0) %)

Hence, from ([333)), combining the above estimates we get

C
||C||L2((7T/8,T/8)><w) < F ||C||H1((,T,T)><w) + Cae(,'sl}}liT/Al) Hva,A”LQ((feo,eo)Xw) .
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Having an estimate on v, » in H'((—€o, €0) X w) at our disposal, we can apply this last estimate
to 0:¢ and V( and obtain

C
5% HCIIHQ((,TVT)XW) +C sup ||vavAHH1((750,€0)Xw)

¢ _ w
€l 2 (/8,78 %) e

C
< F@+C sup lvaall g (3.34)

ae(=T/4,T/4) (—€0,€0)Xw) *

e Step 5. Concluding step. Combining estimates (3:32)) and (3:34]), we have shown that for all
A>1land 7> 1,

2 C o 27(F — T\ 27 . —2c1 M(T/2)Y 7 2
Hg”Hl((fT/S,T/S)Xw) S WE@ +Ce ( ))\ "/e 1A(T/2) 9

%—(76727}1’(6275/@’” 4-627546) XNer P 4 Cre?™ T T ONT SN 10,¢1 50 (Lprywrgy - (3-35)

Recalling ([3.26) and (3:28)), we can choose the Carleman parameter 7 as a linear function of the

FBI parameter A by setting
63)\
= . 3.36
S —max{Fe, S 2,3} ( )

With this choice, one should assume A > A., where

1
A = C_S (]w — max{y%yy@ﬁ)}) ’

in order to guarantee ([334) (since 7 > 1). Thereby, there exist positive constants ca, ¢s, ¢ such
that for all A > A,

o275 (6275#(213) _’_ezrycg) PRAPREE) < 06704A7
ezf(yfyw))\2~,672c1,\(tr/2)1/7 < CeA(C572c1(T/2)1/'Y)7
7'627—(5‘;7]‘”))\47663)\ < C@CGA.

Obviously, there exists Ty > 0 such that for all T' > Tp, ¢5 < ¢1(T/2)"/7. Thus, estimate (335)
yields, for all T > Ty and A > A,

2 2 1 —cah | —del(T/2)M/ A 2
ISz (—rys,1/8)x0) < C 7 <ﬁ+6 X e/ + Ce“ 0uCll L2 ((—r.myx10)

or, in a more concise form, for all A > A,

¢ A2
161t (.78 0) S 357 + O 10C (v - (3:37)
Finally, if we define the ratio “data over measurement”

9
10uCll L2~y xr0) |

= (3.38)

and the critical value 1
6

taking A = Ao if Ao > A« we have

1 (2 + p)/?
ISl 1~ 7/8,7/8)x0) S CZ <[log(2 o T :

We can drop the second term of the right hand side since the first term dominates as p — oo
(p is bounded from below by the continuity of the operator z + 9,z from H?((=T,T) x Q) to
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LA((=T,T) x 89Q)). Otherwise, if Ao < A., we take X = A, : In this case we use that p < C, i.e.
2 < 10uCllp2((—,myxry) SO that B3T) with A = A. yields

9
||<||H1((7T/8,T/8)><w) <C H8V<||L2((7T,T)><F0) < C;'
This concludes the proof of [B3) since —y < —1/(1 4 «). |

Remark 3.3. When f vanishes everywhere in (0,T) X Q, no cut-off function xr is needed and
one obtains the following quantification of unique continuation result due to [31, Theorem F] (see
also [35] for oo = 1): For all T > 0 large enough, for all ( € H*((=T,T) x Q) solution of the wave

equation (I with f =0,

1
||CHH2((—T,T)><Q) )} e

€l ooz = O Welazmm e [log <2 i 100 Cll 2~ 7.7y x)

or, equivalently,

H<||H2((7T,T)><Q)

1
HC||H2((—T,T)><Q) < Cexp (C’A +a) ||8VCHL2((7T,T)><F)7 where A = 1§ .
HY((=T/8,T/8)xQ)

Since ¢ in that case is a solution of the wave equation with no source term, this last formulation
can be written in terms of the initial data (C(0),0:¢(0)) = (¢°,¢") € H> N H(Q) x HH(Q):
0 ~1 1+a
H(C 7<‘ )HH2ﬁHé(Q)><Hé(Q) < Cexp(CAo ) |‘8V€||L2((7T,T)><F) ’

||(<07 (1)HH20H6><H[%

||(C07C1)||Hé><L2

where Ay =

3.2 Uniform stability in the semi-discrete case

The goal of this section is to derive the semi-discrete counterpart of Theorem Bl Similarly as in
the continuous case, that will be the main ingredient for the proof of Theorem

As specified in the introduction, we limit ourselves to the case Q = (0, 1)24 We may thus assume
that T'o is a subset of one edge. Due to the invariance by rotation, with no loss of generality, we
may further assume that this edge is {1} x (0,1).

We claim the following result:

Theorem 3.4. Let Q = (0,1)? and Ty be a non-empty open subset of the edge {1} x (0,1).
Let w be a connected open subset of 0 with Lipschitz boundary and assume that Ow N O) is
an open neighborhood of T'g. Also set wp, = w N Q. Let m > 0 and qn, € L5 (Q) satisfying
th”L;’f’(Qh) <m. Let 2 >0 and Ro > 0, and assume that (x is a solution of the wave equation

{ 01:Ch — ACh + qnlh = fn, in (=T,T) x Q, (3.40)
¢h=0 on (=T, T) x OQp,
for some fr, € L'(=T,T; L} (Q)) satisfying
Fn=0in (=T,T) x {zn € U, d(zn,w) < Ro}, (3.41)
and satisfies ¢, € HE((=T,T) x Q) with
HChHH}%((fT,T)XQh) <9 (3.42)

for some Ry > 0 and 2 independent of h > 0.
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Let o > 0. There exist To > 0 and ho > 0 such that for any T > Ty, there exists a constant C'
independent of h such that for all h € (0, ho),

1
Tta

G
7 +C R (3.43)

||<hHH;ll((7T/8,T/8)><wh) S c9 lOg 2+ —
o2

L2((=T,T);L3 (To,1))

Before proving Theorem [3.4] let us point out that it differs from Theorem [3.I] by the last term
RY (42 9 in [B43). Nonetheless, this term vanishes in the limit A — 0 and thus estimate (3.3)
can be recovered from (B43]) by passing to the limit Ao — 0. But in particular, estimate ([B3.43])
does not state a uniqueness result anymore, but rather an “almost-uniqueness” result: if 9, ,(x
vanishes on (—7,T) x g for some ¢} satisfying the assumptions of Theorem [34] we only have
that the norm of ¢, in HY((=T/8,T/8) x wy) is smaller than Ch*/ %) @ Due to the definition
of 2, this corresponds to the case where

1/(1+
IChll 13 (1 /8,7/8) xep) < CP /e Il k2 ((— 7y x 2y -

i.e. functions that are localized outside (—T/8,T/8) x wy. This is completely consistent with
the presence of spurious high-frequency modes that are localized, see [37, 40} [I5]. We refer for
instance to a counterexample due to O. Kavian: if w; denotes the discrete function given by
w;,; = (—1)" when i = j and vanishing for i # j, the function (p (¢, z5) = exp(2it/h)wn(xp) is a
solution of ([340) with ¢, = 0 and f;, = 0 whose discrete normal derivative on {1} x (1/4,3/4)
vanishes identically.

Proof of Theorem[34 It follows the same steps as the one of Theorem Bl More precisely,
Steps 1, 2 and 4 involving the FBI transform in time are left unchanged, but Steps 3 and 5 need
to be modified. Indeed, Step 3 in the proof of Theorem [3.1] is based on the Carleman estimate
in Lemma and we should thus use a semi-discrete counterpart. Namely, we use the discrete
Carleman inequality proved in [0 Theorem 1.4] that we rewrite below within our setting and
using our notations.

Before stating this result, let us make precise how we choose the weight function. In particular,
let us emphasize that the weight function in [J] is assumed to be C?([—3, 3] x Q) for p large enough,
and this cannot be true with the construction we did for the proof of Theorem 3.1l We thus build
the weight function v as follows (here the subscript ‘r’ stands for ‘regularized’): first we conceive
an open subset w; such that w: C {z € Q, d(z,w) < Ro/2 }, w C wr, and dw; \ '+ is smooth (see
Fig. [B). We can then design a smooth weight function o, such that

Vo € Wy, o (x) >0,

1nfm{|V1/10,r($)|} > 07

Vz € Owr \ Lo, Outpo () <0, (3.44)
Va € awr \ F+7 'l/}()’r(ilf) = 0’

||1/)0,r||L00(wr) < 1/2‘

Again, such a function o, exists ‘according to the construction in [17, [38] and it can be
extended as a smooth function ¢r on Q satisfying [[¢)x|| o) < 1. By continuity, there exists
R € (0, Ro/2) such that for the sets

wrr={r€Q,d(m,w) <R} and % ={reQ, R/2<d(z,w) <R},

we have
inf {|V¢:(x)|} >0, and  inf > sup ;. (3.45)
Wr,R Wr 7r
We then set ¢, as in (B20) but with this function ,: for p > 1, and (s,z) € [-3,3] x Q,
r = pr(s,2) = exp(p(vr(z) — 5%)).
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Figure 3: Construction of the weight function g ,(x) when w is a neighborhood of two consecutive
edges.

Theorem 3.5 ([9]). Let or be as above and oy n = ripr.

There exist p > 1, C > 0, ho > 0 and €0 > 0 such that for all h € (0, ho), 7 > 1 with Th < o,
for all gr, € L*((—3,3); L2(Qn)) and wy, solution of

(=0ss — An 4 qn)wn = gn in (=3,3) X, (3.46)
wp, =0 on ((—3,3) x 92,) U ({—3,3} x Q4), ‘
supported in (—3,3) X wr,R,

3 2
- ”e-rw,hrwhHL2(73,3;L,2L(9;1))

2 + 2
+ 7 e Vawnl G2 gz TT D le™ 05 kwnll a5 5,22 )
k=1,2 o

TPy, h 2 TPr,h 9~ 2
<Clle gh||L2(*3v34L%(Qh,)) +0r|le ah»2whHL?(—S,S;L%(FM)) - (347)
Besides, the constant C' can be taken uniformly with respect to qn € Li° () with th||L;>° <m.

Remark 3.6. Before going further, let us comment more precisely Theorem [3.5, which cannot
be found under that precise form in [9] and differs from [9, Theorem 1.4] at three levels.

The first issue is that Theorem 1.4 in [9] concerns the case of an observation on the boundary of
the continuous variable, corresponding here to s = £3. Therefore, Assumption 1.8 on the weight
function in [9] is designed to yield observations on the boundary of the continuous variable, and
in our case, they are replaced by the condition Yz € dw: \ To, Ouo,r(x) < 0 appearing in (B44).
We claim that this condition is enough to guarantee a Carleman estimate with an observation on
the boundary of the discrete variables. This can be proved following the lines of [9] in that case
and looking at the boundary terms denoted Y and estimated in [9, Lemma 3.7/, which are strong
enough to absorb the boundary terms in Ji1 in [9, Lemma 3.3] on 0Q\ T'o.
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The second issue is that Assumption 1.3 in [9] requires some convexity condition in the neigh-
borhood of the boundary. But, as mentioned in [11, Remark 1.3/, this can be avoided by suitably
modifying the proof of Lemma C.4 in [9].

The third and last issue is that our weight function may degenerate outside (—3,3) X wr,R.
But, as in the continuous case, this actually does mot come into play as we apply the Carleman
estimate (347 to discrete functions wy, supported in (—3,3) X wr,R.

Note that the main difference in the discrete Carleman estimate in Theorem with respect
to the one in Lemma is the fact that the parameter 7 is assumed to satisfy 7h < €9. The
proof of Theorem [3.I] shall then be modified to keep track on this restriction. Thus, Step 3 can
be done as in the proof of Theorem [B.I] except that the construction of the cut-off function yr
is now based on wy, and the existence of €9 > 0 such that

inf Ur(s, ) > sup (s, )
|s|<eq,zEwr |s]<3, x€Cr

is granted by (.40). Then, all the constants %, .7, H2,3), S in B.27), now denoted .7, .7,
S 2,3), L., are defined by replacing w by wr, ¢ by ¢r and € by %:. Hence, instead of ([3.35]), we
obtain the following: for all h € (0, ho), 7 > 1 with 7h < eg, for all A > 1,

2
IChllzrg (— /8778 xm) < NSl (— /8,778 % )
< )\%92 +C@QT(yf.ﬂwr))\2'}/67261A(T/2)1/’Y D 4 Ce 2T en (6275#(213) _’_ezfycgr) A1 082 g2
= A2
27 (S — Fup ) v 4y 3 — 2

+ Cre Ale Hah,2<hHLz(fT,T;Lg(ro,h)) :
The discussion then follows the same path as in the Step 5 of the proof of Theorem [BI} the
natural choice is to take T as a linear function of X as in ([306]). Thereby, we get the following
discrete counterpart of ([337): there are constants C' > 0 and £, > 0 independent of h > 0 such
that for all h € (0, ho) and for all A € (A, e4/h),

C A/2 || A—
1<all 2 (8,778 xeom) S 372+ C€° 2 Oalull oz (g ) - (3.48)

Introducing the ratio

9

ph =

I

ol

the optimal value of the parameter X is Ao, = log (2 + pp) /ce, corresponding to the choice (3:39)
in the proof of Theorem Bl We then have to discuss the cases Ao.n < Ax, Ao, € (As,ex/h) and
Ao, > €« /h. Of course, the first two cases can be handled as in the continuous setting. There only
remains the last case Ao, > €. /h. But this corresponds to pr > exp(cse«/h)—2 > exp(cse«/h)/2,
for h small enough, which in particular implies

L2(—T,T;L% (To,1))

2 ”8};201HLz(fT,T;Li(FOYh,)) < P exp(—cesex/h).

Thus, taking A = e./h in ([3.48)), we obtain
1€k 1l st ((—/8,7/8) %0y < OB 2
This explains the presence of the last term in (3.43)). |
We finally conclude this section with the proof of Theorem

Proof of Theorem[I.d. As for the proof of Theorem [[3] from BII), it follows immediately by
applying Theorem BAlto ¢, = dwynlql] — dryn[ql]. The use of estimate (L31) of Theorem [ then
completes the proof. Details are left to the reader. O
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Remark 3.7. Following Remark[3.3, we can derive a quantification of a kind of unique continu-
ation result for solutions p, of discrete wave equations [BA0) with no source term: For all oo > 0
andT > 0 large enough, there exists a constant C' independent of h > 0 such that for all (p, solution
of the wave equation (3A0) with fn = 0 and initial data ({1, ¢h) € HE 0V HY () x Ho (),

14+ _
< ™M 10 ol 2 12 g )

+CRY | (G ¢

1665 € Ly, 2,922 ()

)HH%ﬁHéyh’(Qh)xHéyh(Qh) ’ (3‘49)

where 0 ~1
H (Ch Cn) HH,QLnHéyhy(Qh)XHé,h(Qh)

h — )

ll(<hs <}1L)|‘Héyh’(ﬂh)><L%’(Qh,)

or, equivalently,

14+«
(1- Chl/(Ha)Ah) H((;?, Ci)HHé’h(Qh)xLi(Qh) < Cetn Hah,2<HL2((—T,T);Li(f‘g,h)) ’
Note that BA49) only yields an “almost uniqueness” result in the sense that it does not imply
Cn = 0 when the discrete normal derivative 0, ,(n vanishes on (—=T,T) x I'gp. Recall here that
this term is needed as unique continuation for the discrete wave equations does not hold as shown
by the counterexample of O. Kavian of an eigenfunction of the discrete Laplace operator which is
localized on the diagonal of the square.

4 Convergence and consistency issues

This last section is devoted to the proof of the convergence results stated in Theorem

4.1 Convergence results for the inverse problem

We will first state and prove two theorems of convergence under more detailed consistency as-
sumptions. The feasibility of these assumptions will be studied next.

Under the Gamma-conditions, and more specifically in the geometric setting (L2T]), we get:

Theorem 4.1 (Convergence under Gamma-conditions). Assume that (2,T0,T) satisfies the
configuration (L2T) and that (y°,y', f, fa) follows the conditions (LA0). Let ¢ € L>®(Q) and
assume that there exist sequences gy € L5°(), and (v, yr, fr, fo.n) of discrete functions in
L7 ()% x L'(0,T; L () x L?(0,T; L2 (094)) such that

. 0/ a _
%E}T})Heh(qh) _QHL2(Q) _07 (41)
lim || (a5 — Aala] | —0 12
P nlan] old] H1(0,T;L2(I'g)) x L2 ((0,T) x Q) ’ (4.2)
. a
lin sup lanllLee @,y < o0 (4.3)
lim sup [|yn ]|l z1 0,750 (2,)) < 00, (4.4)
h—0
Jao > 0, Vh > 0, g1f|y2| > ao. (4.5)
h

Then for all sequence (qﬁ)h>0 of potentials satisfying

lim su H b‘ < 00, and  lim H,/Z// " — o H =0
hﬁgp h L5 (923) h—0 nlar] old] H1(0,T;L2(T0)) x L2((0,T) x Q)
we have

L2@)

. 0/ b
Jimn [ @) o
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When no geometric condition on the observation domain is satisfied, we get:

Theorem 4.2 (Convergence under weak geometric conditions). Assume the geometric configu-
ration (L33) for (Q,To,T4), the conditions (LAQ) for (v°,y", f, fa), and let O be a neighborhood
of T. Let g € L°°(Q) and assume that there exist sequences qi € L°(Qn), and (y5,yh, fu, fo.n)
of discrete functions in L3 (Q,)* x L*(0,T; L2 (Q4)) x L*(0, T; L2 (09,)) such that @), @) and
@3] are fulfilled, along with

111}1} Sgp llyn [qg]HHl(O,T;Lﬁo(Qh))ﬂW2x1(O,T;L?L(Qh)) < 00, (4.6)
—

. 0 . 0
Jag > 0, Vh > 0, 1thf lyn| > a0 and hr}?f(l)lp HthH;lz(Qh) < 00. (4.7)

Then for T > 0 large enough, for all sequence (g)n>o of potentials satisfying

I

@ =qi mOn and g —qy € Hy,(Q) with limsup Hqﬁ — g
h—0

Hy ()

< oo, and lim H%[qi] - %[Q]H =0
h—0

lim su H bH =
P |9 HL(0,T5L2 (o)) X L2((0,T) X 2)

h—o0 L2 (Qn)

we have

L2Q)
Theorems [4.1] and follow from the same arguments and can be proved simultaneously.

. 0/ b
Jimn ek @b o

Proof of Theorems[J-1] and[Z.3 Let gj and g}, be as assumed in Theorem [Tl (resp. Theorem 2.
One easily gets

iy | 7101~ 7| ~o
B0 nldi] hlan] H'(0,T3L2(T'9)) x L2 ((0,T) x2)

. : b

Since one can find m > 0 larger than [|g|| ;g and thUPhao(”ngL?(Qh) + thHLi"(Qh))’

according to Theorem [[4] (resp. Theorem [[H]), we get

=0, or equivalently, %13%) Heg (qh) —eb(qh)

lim H p— b‘ =
5o |[9r — 9n L2 (9p) L2(Q)

We then conclude by the triangular inequality

<Heo by _ o0 a‘
L) n(an) n(an)

|ef () — d IPNE S CACARE] e

since each term in the right hand-side converges to zero as h — 0. a

Of course, Theorems [£1] and are based on the strong assumption that there exists a
sequence of potentials gf satisfying suitable convergence assumptions for some (y§, yt, fr, fo.n)
that are not even supposed to be convergent to their continuous counterpart. This rises the natural
question: given (yo7 v, f, fa) satisfying (L40), can we guarantee that the natural approximations
(Yo, yb, fr, fo.n) of (y°,y*, f, fa) yields the existence of a sequence of potentials ¢f satisfying the
convergence conditions of Theorem 1] or Theorem ?

This is the consistency of the inverse problem, and the cornerstone of the proof of Theorem L]
once stability results are proved. These consistency issues are discussed in the following subsection.

4.2 Consistency issues

The difficulty to derive the consistency of the inverse problem is the condition (Z4) (or (L8] in
the case of Theorem [2]). Indeed, passing to the limit, it indicates that y[g] should belong to
H'((0,T); L>(R)). But there is no simple way to guarantee this condition, since the “natural”
spaces for the wave equation are the H*®(2)-spaces.

Let us remind the reader that we consider Q = (0,1)> C R% We recall this setting here
because of its influence on the Sobolev’s embeddings we will repeatedly use in this last section.

Besides that, as our theorems of stability are given with conditions on y[q] instead of conditions
on the coefficients (yo, vt 1, fa), we will stick to that approach. We claim the following result:
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Lemma 4.3. Assume q € H' N L*(Q) and that we know qo = qlaq. Furthermore, assume that
the trajectory ylq] solution of (L) satisfies the reqularity given in (LAI). Finally, assume there
exists ag > 0 such that infg|y°] > ao.

Then we can construct discrete sequences (Y2, i, fn, fo.n) depending only on (y°,y*, f, fo,q0)
such that the corresponding sequence yn[qn] solution of ([L24) for qn = Trh(q) satisfies conditions
ED)-@ED). In particular, if q is known on some open set O and takes value qlo = @, we can
further impose qn, = Th(Q) in Op.

Proof of Theorem [ B. Taking the discrete sequence (y§, yt, fr, fo.n) given by Lemma E3] the
sequence gp = Tx(q) satisfies the assumption of Theorem [£1] or Theorem if ¢ is known
in some open set O, which correspond to the first item of Theorem The second item of
Theorem thus follows immediately from Theorems 1] and a

Proof of Lemma[Z.3. We split it in two steps. First, we will construct (yf,yp, fr, fo,n) and q;
Second, we will explain why our construction is suitable for conditions ([{@I))—(7T).

Let us choose § € H' N L°°(Q) with §lag = gs (note that such § exists since gp is the trace of
q € H'NL*(Q) by assumption). We define § = y[g] the solution of (I} with potential §. Then,
setting z = y[q] — 7, it satisfies

Oz — Az + gz = (4 — 9)yldl, in (0,7) x €,
z=0, on (0,T) x 09, (4.8)
2(0,-) =0, 08:2(0,-)=0. in Q,
Hence 22 = 92 solves
Orzz — Azz + §z2 = (¢ — ¢)0uylal, in (0,7) x &,
22 =0 on (0,T) x 09, (4.9)
Z2(07 ) = ({j - Q)yov 8tz2(07 ) = ({j - Q)yl' in Q.

Since (TAI) implies y° € H' N L*>®(Q), y* € L*(Q) and duylg] € L*(0,T;L*(Q)), and since
q— 4 € HyNL>®(Q), we have that ze = dyz belongs to C([0,T]; H3 () N C* ([0, T); L*(R)). In
particular, since z(0,-) = 8;2(0,-) = 0, we have z € H?(0,T; H5(Q)).

Besides, by differentiating (48] once with respect to time, we get that 9.z solves
(=A+§)0z = (§— q)0wylq] — Orrz € C([0,T]; L*(R)),  with 8z = 0 for (¢,x) € (0,T) x ON.
Hence, by elliptic regularity estimates, see [I8, Theorem 3.2.1.2], 8:z € C([0, T]; H*(Q)), thus

z € HY(0,T; H*(Q)).
Recalling that § = y[q]— 2z and y[q] satisfies (LZT]), § belongs to H2(0,T; H*(Q))NH' (0, T; H*(Q)).
We then define g, =I5 () and, for g, = tr(q), we set

yh = Gn(0) = En(y”), yn = 0 (0) = Tu(y"), (4.10)
fn = 0uGn — Afn + @nin, fon(t) = gn(t)logy, - (4.11)
Note that this choice immediately implies that conditions (£1]), (£3]) and [@X1) (thus also (X))

are satisfied.

We now prove that this construction yields condition (£8]). This is based on the remark that
by construction, for gn = t'n(g) we have yp [qh] = Yn + zn, where zj, solves

Owtzn — Anzn + quzn = (G — qn)Yn, in (0,T) x Qn,
zn =0, on (0,7T) x 0Q, (4.12)
(2r(0), 821 (0)) = (0,0), in Qp.
Then 2o 5, = 0w zn, solves
Orez2,n — Anzon + qnze,n = (Gh — qn)OstUn, in (0,7) x Qp,
Z2,h = 0, on (07T) X 8Qh7 (4.13)

(22,1(0), 9e22,1(0)) = ((Gn — qn)yh, (Gn — qn)ys),  in Q.
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One easily checks that with our construction

Gn — qn € Ho () N L (Qn),
gn € H*(0,T; Hy.(Qn)) N H' (0, T; H (%)),
Yh € Hi(Qm) N LT (),  yn € L (),

where all these estimates stand with bounds uniform with respect to h > 0. Hence 22 is
uniformly bounded in C([0, T]; H{ ,, (€2,))NC* ([0, T; L7 (1)) by energy estimates, so that Oyez1 €
C([0,T]; L?(Q,)) and thus d;z;, solves

—Apdezn + qnbizn = (Gn — qn)0eGn — Owrzn € C([0,T7; L%(Qh)) with Orzp, = 0 on OQ,.
We now use the following lemma, whose proof is postponed to Appendix [Cl

Lemma 4.4. Let wy, € Li(Qh) be a solution of
— Apwn + qrwn =gn in Qp and  wp =0 on O (4.14)

with gr, € Li(Q) and qn € L7 (Qn). Let m > 0 and assume th”Lg“’(Qh) < m. Then, wy €
Hp N Hg () and there exists a constant C = C(m) > 0 independent of h > 0 such that

lwnlluzong , ) < Clonlliz @) - (4.15)

Accordingly, 0;zp is uniformly bounded in C([0, T]; Hy N H ,(Qn)). Thus, yrgn] = n + 2n
is uniformly bounded in H2(0,T; HE(Qx)) N H*(0,T; LY (), yielding (@) (thus @4)).

We finally focus on the proof of the convergence condition @2)). As § € H'(0,T; H*(Q)),
gn is uniformly bounded in H*(0,T; H?(Q4)). In particular, for k € {1,2}, O)f 1 Un is uniformly
bounded in H(0,T; Hi(ka)), so en (9 . gn) is uniformly bounded in HY(0,T; H(Q)). Be-
sides, it is easy to check that, since § € H*(0,T; H*(Q)), en (97 . gn) strongly converges to 0,7
in H'(0,T;L*(Q)). Hence we get the strong convergence of en (O 1 Gn) to 0z, ¢ in all spaces
H'(0,T; H*(Q)) with s < 1. We then remark that

_ o en(0Fgn)
8u6h(yh)—< eh(aiz'gh) v on 4, (4.16)

where v is the normal vector to €2 on I't+. But the sequence eh(ﬁikgh) strongly converges to 0z, §
in H*(0,T; H3*(Q)) and the trace operator is continuous from H*/*(Q) to L?(99) (see [18, Thm
1.5.2.1]). Therefore, dyengn strongly converges to d,y in H'(0,T; L?(99)).

One also easily checks that, since § € H?(0,T; H'(Q)), the discrete function a,jkattgh (k e
{1,2}) is uniformly bounded in L?(0,T; L3 (8, 1))- Hence hVey (0uegn) strongly converges to 0 as
h—0in L2((0,T) x Q).

We then study the convergence of the normal derivative of zj, and of hVep (9s2r). We have
seen that zj, is uniformly bounded in H?(0,T; H} ,(Q)) N HY(0,T; HZ(2,)). This immediately
implies that szamzh is uniformly bounded in L? 0,T;L3 (92;,4,)) for k € {1,2} and, following,
hVen (Orszn) strongly converges to 0 in L2((0,T) x Q) as h — 0. Let us then remark that ey, (qn)
and e (gn — qn) respectively converges to ¢, ¢ — g as h — 0 strongly in L*(Q), weakly in H*'(Q)
and weakly-* in L>°(Q). Besides, as § € H*(0,T; H'(Q)), en(fn) strongly converges to § in
H?(0,T; H*(Q)) for all s € [0,1). Following,

en(qn) 4 strongly in all LP(Q) with p < oo, (4.17)
—

en((@n = )in) —» (G- q)F  strongly in H*(0,T; L*(Q)), (4.18)

en((dn — an)yn) — (G—q)y’  strongly in L*(€). (4.19)
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Easy computations then yields that ey, (21,) and ey, (0:21,) strongly converge in H'((0,T) x Q) to 2
and 0;z, where z is the solution of (£8). This can indeed be done in three steps: First show that it
converges weakly in D'((0,7) x Q) toward 2z and 9;2; Second, use that the energy estimates imply
that the convergence is actually weak in H'((0,T) x Q) and in particular strong in L?(0, T; L?(Q))
for any p < co; Third, use the energy identity to show the convergence of the H'((0,T) x Q)
norm.

Hence ey, (9) . 2n) strongly converges to Vz in H*(0,T; L*(Q)). Recall that zy, is also uniformly
bounded in H*(0,T; HZ(Q4)), so that ey, (OFF yzn) is uniformly bounded in H(0,T; H(Q)). Thus
en () ,zn) strongly converges to Vz in H'(0,T; H¥*(Q)), so that formula {@I6) and the conti-
nuity of the trace operator from H*/*(Q) to L?*(89) show the strong convergence of d,e(zn) to
dyz in HY(0,T;L?(09)).

Since y[g] = §+ 2z, we have proved the convergence ([£2) for the sequence yn[gn] = Jn+2n. O

Remark 4.5. In the above proof, let us emphasize that the construction of the sequence of source
terms fh and fa,h in [@II) is not straightforward. But we point out that this is done explicitly
from the knowledge of the trace qo of ¢ on 0N.

Note however that this happens because we have chosen to keep a presemtation where the
assumptions are set on the trajectory y[q], and not directly on the data (y°,y*), f, fo. But this
other choice would not yield any improvement as the natural space to get ylg] € H'(0,T; L>(Q))
in 2-d is ylq] € H'(0,T; H*(Q)), or H*((0,T) x Q). According to [28], this would correspond to

e H*Q), y' e H*(Q), f€Mieo1 WM (0,T;H**(Q)), foec H*((0,T) x ),

with the compatibility conditions

Vg = fot=0),  y'|, = dfalt =0),
and (f(t=0)+ Ay° — qy®)|,, = Brefolt = 0).  (4.20)

Of course, this latest compatibility condition is very strong and requires in particular the knowledge
of q on the boundary, as we also assumed in the approach of Lemma[{.3 But very likely, taking
projections of all these data on the discrete mesh Qy, also yields a suitable sequence (y§, yt, fn, fo.n)
satisfying conditions [@2)—-([@T), even if one would have to study in that case the convergence of
the discrete wave equations with non-homogeneous boundary conditions, which to our knowledge
has only been done in 1-d so far in [16].
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A Discrete integration by parts formula in 1-d

For the sake of completeness, we mention the basic discrete integration by parts formula obtained
in |3} Lemma 2.6] in the 1-d setting as they are the main ingredients used to perform integration
by parts on 2-d (and higher dimensional) domains. To do so, we shall make precise some 1-d
notations.

We assume that we consider integration by parts on discretized versions of (0,1). For N € N,
we introduce h = 1/(IN 4+ 1) and the discrete sets

(0, V) ={jh, j € [LN]}, [0, D)n ={jh, 5 €[0,N]},  (0,1n = {jh, j € [1, N +1]}.
Here, discrete functions f are functions fn = (fj);eqo,...,n+13 for which we define
JRRECEUED SR RS S A A S D SR
(0,1)p je{l,- ,N} [0,1)n je{0,-- N} (0,1]p je{l, ,N+1}

fit1+fi |

We also introduce the discrete operators for j € {1,...,N}: (m} fn); = (my, fo)j+1 = 3 ;

(Onfr)j = fﬁ%hfﬁl s (O fn)s = 0y fn)jt = ijh_fj i (Anfn); = W
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Lemma A.1 ([3], 1-d discrete integration by parts formulas). Let vp, fn,gn be discrete functions
such that vo = vn+1 = 0. Then we have the following identities:

. / gn (93 fr) = —/ (Oh gn) fn + g1 fN+1 — gofo ; (A1)
[0,1)p (0,1],
h h _
o [ g = [ mian@f s - 0@ Do - Gona @ v (A2)
(0,1)p, [0,1),
h2
. 2/ grvn(Opvp) = —/ [on|? Ongn + 5 |0 on 05 gn (A.3)
(0,1)p, (0,1), [0,1)y,
. / n(Bovn) = / @ on) (B gn) — (OF v)ogo + (O v)w 419841 ; (A4)
(0,1)p, [0,1),
1
o [ gw@u) == [ @) g4y [ oA (45)
(0,1)p, [0,1)p, (0,1)p,

1 1 _ 2 1 2
. / Gh AV Opvp = —5/ |03 vn |0} gn + 5 |0 V)Nt | gngr — 3 |9 v)o|” go- (A.6)
(0,1)p [0,D)p

In a square in dimension 2, we will apply Lemma [A.J] when doing integrations by part in each
direction. For instance, identity (A.3)) easily yields, for k € {1, 2}:

h2
2/ gnon(On,kvn) = —/ (On.kgn)lvn|* + 7/ |0 on* 0 gn-
Qp, Qp, n

Dk

For convenience, we will also use the formula f[O,l)h mthfh = f(O,l]h vpmy, fr, valid for v, van-
ishing on the boundary, and its consequence

2

[ miw@tn@ie) = [ o@m@w) - [ @@, o)
(0,1)n (0,1)p

(0,1)

whose proof is left to the reader.

B Proof of a conjugate Carleman estimate

Proof of Proposition[2.4] Notations. In this proof, we will use the Landau notation O, (7h) to
denote discrete functions of (t,z) depending on u satisfying for some constant C,, > 0 that
HO“(Th)HLOO(L;.o) < Cuth. We will also use the shortcut O, (1) to denote bounded functions. We
will also write v instead of v, as no confusion can occur: here, v is always a discrete function
defined on (—T,T) x Qj, satisfying v(+T, xp,) = 0:v(£T, ) = 0 for all zj, € Qp, and v(t, ) = 0
for all t € (=T,T) and xp € 9Qx. In order to simplify the integrals, we will also set Qn =
(=T,T) x Qn, Qi) = (-T.T) x Qi ., L = (=T, T) x T, £, = (=T,T) x I'y, and use the
notations 7 7

Loolde Lol Lol LT
= 5 = 5 = 5 = .
Qn —T JQy Qik -T thk Zh -TJTy ka -T Fik

In the following we will use the estimates in Proposition 23] in particular (ZI3]), and the
discrete integration by parts formula in Lemma [A1] and Lemma Finally, let us emphasize
that all the constants below are independent of h € (0,1) and 7 > 1.

e Step 1. Explicit computations of the cross product. The proof of estimate ([2Z20)) relies first of
all on the computation of the multiplication of each term of %} 1v by each term of % 2v:

3
fh’lvfh’gvdt: Z Inm7

Qn n,m=1
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where I, denotes the product between the n-th term of %1 in (2I6]) and the m-th term of
%2 in (2I7). We now perform the computation of each I, term.
Computation of I11. As in [3], we integrate by parts in time:

= (o~ 17 | 0 (00— A
Qn

=(1- oel)Tu/Q 100> 0(Deet) — Anp) + 7'/

Qn

Ou(l)|v|2+r/ OH(Th)|8tv|2.
Qh

Here, we used A4 = @AY + O, (7h) and 9 As = O (@A) + Ou(Th).
Computation of I12. Similarly,

Lo = —714° Optv (<p|8t1/)|2 —Az)v
Qhn

- / 0020 — [VHP2) + 7 / Ou(Dof + 7 / Ou(rh)[0ef?,
Qn Qp Qn

where we used As = ¢|V|* + O, (7h) and 0 As = 9y (¢|VY|?) + Opu(Th).
Computation of Iis. Using Y, 0n kA1 = po|VY|> + 0AY + Ou(Th), OrA1k = 190, YO +
O, (7h), and ([A3)), we obtain:

Lis = —27p Orv (9OpOv — 31 A1 kOn k)
Qh

= /Q 100020 (Dt + Aap) + 7y /Q B0l + V)
h h

- 27';;2 Qv ) p Vpv - Vip — %Zk / - |h8,tk8tv|28}tkA17k

Qn Qp k

+7 O, (Th)|d:w]* + 7'/ 010 (32, Ou(Th)On ko) .
Qn Qn
Computation of I21. Since Ay = Ay + Ou(Th) and Ao = Ou(Th), we get:

Ipn=(1—oa1)Tp D14 Ao k) An kv (0O0ut) — Ag)v
Qn

= (o1 — D, / 10l e@ut = M) k7 [ O, 47, [ Ol
Qhn Qh,,k

Qh,k

Computation of Io. Using As = ¢|Vi|? + O, (th) and (AF), we obtain

Inp = 74 21+ Aok)An v (‘P|8ﬂ/)|2 —As)v
Qn

— =S, [ lotaele(ol ~ V) + 1 [ 0w+, [ ool
h,k Qn Qh,k
Computation of I23. We can split this term in two parts as follows

Io3 = 2T Zk(l + Ao,k)Ahka(pat’([) Ov —27’/1,/ Zk(l =+ Aoyk)Ah,k’U (ZZAl,eah,ev) .
Qn Qn

I234 Iz

For I3, we use App = 8,;k8,ik and the zero boundary conditions on v. Setting gox =
(1 + Ao,x) p 0ty and using (A), we get:

Iozq = — QTqu/ a}tkvﬁ,tk(go’katv)
Qp ke

8lj,kvaftk(atv)m;k90,k - 2Tﬂzk/ 8lj,kvm;,k(atv)alj,k90,k
Qh.k

= _2Tﬂ2k/7

Qp k
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Noticing that, on the one hand,

oy, / O O (B0t ok = THE / 18020 o)

h,k h,k

— S, [ 0P a0 + @D+ Ou(rh),

h,k

and on the other hand (using (A7),

—QTMZ;V/7 O kv My 1, (8e0) Dy o

h,k

Tuh?
= - 27#2 Oh, kv OtV On,kgo,k — ﬂT Z Ap kv 0tv Ap ko, k
k Qh k Qhn

- 2Tu2/ v 8 o Vv - (Vip + Ou(7h)) — Th? Z/ O, (1)Ap kv Orv,
Qn k JQn

the term I23, takes the form

Lse = TH2Y, /Q 1oE o Pelol? + TS, / 10 w0 (90uth + Ou(rh))

h,k Qh,,k

—21u® [ 8w dp o Vv - (Vi + Ou(Th)) — Th? Z/ Ou (DA kv .
Qn r 7Qn

To compute a3, we consider the integrals Iosp k¢ indexed by (k, £) € {1, 2}2 and defined by

Iosppe = —2Tu/ (14 Ao,k)An kv A1,g On ev.
Qh

When k = ¢, using formula (A6) with g = (14 Ao,k) A1,k = @0z, Y (1 + Ou(Th)), we obtain

Io3b, .k w/f |0 0”0 gk —TM/+ 9r|05 0] +w/7 |0y ol

h,k Sk Sk

_ + 2 — 2 + 2

=i [ 100l (0 (000 ) + O — 7 [ guloiiel [ ool
hk hk Shk

When k # £, we use Lemma 28] with gix¢ = (1 + Ao k) A1 e
sy = — TM/ 105 50 I* On.e (Ml gne) +2w/ O v iy 1, (On,0v) Oy y gne
hk Qh ke

2
Tuh
LRl U A )

h

Using (A7) for vy replaced by O ¢v, which vanishes on the boundary Xy x as k # £, we get:

Logp ke = — TH/ |07 501 (92, (902, 0) + Ou(Th)) + 2711 | Onkv Onev (Day, (90, ) + Opu(7h))
Qp Qn
Tph® Tuh? + oot 24+ (o +
+ T [ Aa0 0 (B (00n,0) + Outrt)) + T [ 10,01 o0 s
an Q5

h
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Hence we obtain

Loy = THY, /Q 100 (9o (902 8) = Eips D, (90,) + Ou(7h) )
h,k

+ 27 0,10 On,20 (Ogq (0025%) + Oy (00z,v) + Ou(Th))
h? )
#r0 [| OuD(@nsvna+ Bnaodhin) + [0 @i (90) + Ou(ri)
Qn o
_wZ/+ |aI;kU|2<Pazk7/}(1+Ou(Th))—|—THZ/7 107 xol*00m, (1 + O, (7h).
BT kY
We now remark that 9z, (992,%) + Ouy (9021 %) = 21490z, 0,7, and that we can write
47'/,02 / 8]1,1’[) 8h,2v @89011/)89021/) = 27-”2 / (P'th . V'l/)|2 _ 27—/1/2 Z/ |8h,kvl2|8gck1[)|2.
o Qn k Y Qn

Therefore,

Loy = T, / - |8,tkv|2 (202, (90, ) — div(eVY) + O, (Th))

Qh,k

—|—2T,u2/ g0|th-V1/;|2—27',uZZ/ |On k0| @|0n, ) + T Ou(Th)0On,1v Oh 2v
Qn r Y Qn Qn

—|—Th2/ (Ou(l)Ah,1v8h72v+(’)M(I)Ah,zv 8}1,1’0)
Qn

Tuh? oot 12
3 On 10y 20]” (div(eVY) + Opu(Th))

h

i [ 10k 0n b+ Ourh)) 4 S [ 1050l (9t + Ourh).
k h,k k h,k

Of course, this yields I3 as Ia3 = I3 + I23p.
Computation of Is1. Using Az = ¢°|V4|> + O, (1h) and As = @Awp + O, (Th), one easily obtains:

I3y = (a1 — 1)7'3u3/ |v|2 (4,02 (8t1/1)2 — Az) (pOutp — Ag)
Qhn

= (a1 — 1)y’ / [2® (10 — [VYI?) (Ot — AY) + 72 [ Ou(rh)|v]>.
Qh, Qh

Computation of Is2. Using here As = <p|VL/1|2 + Ou(7h),
Ip = — 73N4/ [0 (0% (0)* — Az) (0]t]” — As)
Qn

= / P (0 — [V2)? + 7 / Ou(rh)lol.

Qn Qn

Computation of Is3. Finally, using (A.3) we get
I33 = — 27-3p,3/ ((p2 (8{(/))2 — Az) v ((p 815’(/) Orv — ZkAl,kah,kv)
Qn

= 7'3#3/ o]0 ((£*100]” — A2) @ D) — 7'3#3/ 01" 3O,k (A1 (9?1000 — Az))
Qhn

Qn

T3M3h2 n 2t 9 9
+ B) Zk o |ah,k”| 8h,k (Al,k(SD [Oeep]” — AZ)) .
h,

k
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But we have
O ((9°|0ub|” — A2)p0ut))
= 3’ |0 * (1061 — [VYI?) + 0 0uetp (1001 — [VI?) + 20° |00 *0retp + Opu(7h),
SOk (ALk(9®0p]” — Az))
= 3u®|VY* (10 — [VoI?) + > A (|00 — V1) = >V - V(IVY[?) + Ou(rh),
O k(AL k(%[00 ]* = A2)) = Bay (% 0u, ¥ (1000]* — [VI)) + Opu(7h) = OL(1),

so that we obtain

Iy = 37 /Q 26 (bl — VP2 + 7 / o[26? (Burp — Ag) (19 — [V[?)

Qn

Qn

+r0u / 0@ (20u0)|0:]* + V- V (V) + 77 / Ou(th)ol* + 732, / L Ou(Th)|o) ol
Qn Qn ke
Final computation. Gathering all the terms, one can write

L0 ZLh2v = Iy + Ioy + It + ITych, (B.1)
Qh

where I, contains all the terms in |v|?:

1= [ wPFw), (B.2)
Qn
where
FW) = ar7’ 1010 — |VY[*) (0t — AY) + 72017 0% (2060 |VY[* + Vi - V(IVYI*))
+27° 1t Q% (1000 * — |VY*)? + 720, (7h) + TOL(1) ;
I, contains all the terms involving first-order derivatives of v:

|Viv - Voo — 4Tu2/ A A o Vv - Vi

Ioy = 2w2/ |0wv] ¢ [0 * + 2w2/
Qh, Qh

Qn

+Tp / |00 (200t — 01 (Buetp — M) + 7y / 10 P (an (Ot — A) + 200,2,1)
Qn k Qh,k

+orp’y (/ 103 01 010, —/
k Rk

Qn

|3h,kU|2<P|3zk1/1|2> + Io,

where Io contains all the terms involving O terms (and a first-order derivative of v);
Ir contains all the boundary terms:

fo= =S [ 0P e0n b+ Our) + 7S, [ 1070 (00 + O
Eh,,k Zh,k
Itych contains the terms corresponding to the Tychonoff regularization:
T
Ityen = — {Zk /Q* Ry 00| 05 Avi
h,k

£ [ RORAOLl? (Oami (14 Aoa) Ara) + O milo(1+ An2)Ar).
h
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e Step 2. Bounding each term from below.
Step 2.1. Dealing with the 0 order terms in v. Since Vb - V(|V9|?) = 4|Vy|*> = 16|z — 4%,
A = 4 and 0y = —23 and denoting X = |3t77/1|2 — |3z7,/1|2, one can obtain

F@) =10 (20X? = 2018+ DX +16(1 = Bl — zal*) +7°0,(7h) + TOL (1),

g(¥)
Since x4 ¢ Q, inf (o 1)2 |z — xq|? is strictly positive and we have

G(¥) > 2uX* =200 (B+2)X +¢, with c=16(1 — ) (in§2 |z — xa|> > 0.
0,1

Thus, there exists po > 1 such that for u = po, G(¥») > 0 uniformly. Therefore, we get co > 0
independent of h such that

L > 2c7° /Q 026® — (72O (7h) + 7O (1)) / Jo]? (B.3)
h

Qn

> CoTs/ |v|2 —TSOHO(T}L)/ |v|27 (B.4)
Qn Qn

where the last line is obtained by bounding ¢ from below by 1 and by taking 7 > 79 to absorb
the O, (1)-term. From now, we fix 1 = po and we simply write O, instead of O, .
Step 2.2. Dealing with the first-order derivatives. The first line in Iy, is positive as

1 1
‘/ 0w ) p Vv - Vz/)‘ < —/ |0 0|0w|® + = / Vv - V2.
Qhn 2 Qhn 2 Qhn
The second line of I5, can be computed explicitly as 0ut) = =20, Oz 2, ¥ = 2 and Ay = 4:

204t P — o (8tt’l/1 — A’(/)) = —45 + 20(1(2 + ﬂ)7 oel(@tu/) — A’l/)) + Qakk'(,[) = —2a1 (2 + ﬂ) + 4.

Hence the choice a1 = (84 1)/(8 + 2) makes each term strictly positive and equal to 2(1 — )
(recall 8 € (0,1)), so that

Tt / |00 [*p (200t — a1 (Ouep — A)) + 7Y / |01 1% (1 (Dustp — D) + 20k11))
Qn k YQuk

=2(1 - B)ru </Q |aw|2+§:/Cr |a,jku|2>. (B.5)

We now remark that the third line of I, is negligible. Indeed, writing Oy xrv = m,:)k(ﬁ,tkv), one
easily checks that

/ A R / 1O k0 2|0 W2 > / Okl
h,k Qhn Qh,k

Concerning the terms in o, the only term that needs to be discussed are the ones coming from
I23: But using that thh,k is a discrete operator with norm bounded by 8, we get

Th? / (Apav (On(1)8h 20 + O, (1)0v) + Th? / (Ap2v (0n(1)0h,1v + Ou(1)0:v)
Qn Q

h

<C </ 00| +Z/ |0 vl +TZ/ |v|2> -
Qn k YQuk Qn
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Combining these estimates, for 7 large enough, we obtain constants ¢1 > 0, Co > 0 such that

I, > ClT/ |8tv|2+c172k/ |8,;L’kv|2
Qh h.

Qu.k

_T/ OH(Th)|8tv|2—TZk/ Ou(m)w,jkvﬁ—cm?/ lv|>. (B.6)
Qn h

Qnk Qh

Step 2.3. The boundary terms. Since min_7 ryxq @0z, % > 0 (recall z, ¢ Q), then there exists
€1 > 0 such that taking 7h < e,

|Ou(rh)| <

< min
(t,2)E(=T,T)xQ

{(p(t7 90)83%1/1(?57 x)} .

so there exists C' > 0 independent of 7 and h such that
x-S, [ etz —Crs, [ ol B.7)
g Ry

Step 2.4. The Tychonoff regularization. We have 8;{71«41,;c = 1|0z, Y|? + @ Onpz, 0 + Ou(rh) =
O,(1) and 8;km;£((1+Ao,g)A1,k) = 119|0, |* 4+ Oz, 2, +Ou(Th). Thus, for T7h small enough,
i.e. Th < g5 for some e3 € (0,£1),

(O3 amil 1 (14 Ao1)Ar2) + O ymi 5 ((1+ Ag2)Ar1)) > 0,

and the term involving 8{18;21) is positive, whereas the other term in Irycn is negative. We
bound it directly and get a constant C' > 0 independent of 7 and h such that

Ityen > — crzk/ |hoyf 1,000l (B.8)
@k

e Step 3. End of the proof of Proposition[24) Collecting the results (B:)—(B3) of Step 2, we
have proved that for 7 > 79 and 7h < €9,

Lrav Lpov > 0073/Q |v|2—|—c17'/Q |8tv|2—|—cl7'zk/7 |8,ikv|2—Co7'2/ v|?
h h

hok Qn

Qn

—-cry, /E+ |a,;kv|2—072k/7 |hoy xOw]?

h,k Qp k

_73/ O, (Th)|v|? —T/ O, (Th)|d:v]? —rzkff Ou(Th) |9} vl
Qn Qn Qi

Therefore, taking 7 large enough so that co7 > 2Co7? and 7h small enough such that |0, (Th)| <
min {Co, ¢«, €2}, which defines g9 > 0, we obtain, for some constant C; > 0,

r / 0l + 75, / B ol + 7 / Jof?
Qpn Q, Qhn

h,k

<Gy gh,lvgh,2v+0172k/+ |5;:kv|2+017'zk/7 |h8}tk8tv|2.

Qn Zh ok Rk

From (2.19), there exists C2 > 0 such that

r [l ars, [ ol [t [ 1l
Qhn Q, Qhn Qhn

h,k

gcz/ |.,‘fhv|2—|—Cz/ |92hu|2+0272k/+ |a,;kv|2+cﬂzk/ W3} w0l (B.9)
Qn Qn h.

Sk Qu,k
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/ |%hv|2§072/ o2,
Qn Qn

which can also be absorbed by the left hand side of (B.9) by taking 7 large enough, thus yielding

to [220). O

C Proof of an elliptic regularity result

Proof of Lemma[{.4} Multiplying the equation (£.I4]) by ws, using the discrete Poincaré’s in-
equality, one easily obtains that

1 .
wn € Ho () with ||wh||H(} W () <C thHL}QL(Qh) ) (C.1)

for some constant C' = C(m) > 0 independent of h > 0. Accordingly, replacing g, by gn — grwp,
we are reduced to the case ¢, = 0, that we assume from now.

Since Q, = (hZ)? N (0,1)?, we first propose to extend wy, a priori defined on the discrete
domain Q;, to Qegen = (RZ)? N (—1,2)? as follows. First, for x;, € {(0,0),(1,0),(1,1),(0,1)},
we set Wp(zr) = 0. Then, for zn = (zn1,2r2) € [0,1] X (=1,2) N Qext,n, We set Wp(xh) =

—wh(xhyl,—xh,z) for Th2 € (—170) and ﬁ)h(mh) = —wh(xh,hl — (Jizyh — 1)) for Th2 € (1,2)4
This defines wp, on [0,1] X (—1,2) N Qext,n. We then extend it for zp, = (x1,h,Z2,n) € Qext,n Dy
setting wn(zrn) = —Wh(—2n,1,22,n) for xp,1 € (—1,0) and Wy (zp) = —0r(1 — (xh,1 — 1), Th,2) for

zn1 € (1,2). We do a similar extension gn of gn on Qexs,n taking care of choosing gn = 0 on
o, U{(0,0),(1,0),(1,1),(0,1)}.
We thus have constructed a solution wj, of

— Ahlf)h = gh in Qext,h and 'Lbh =0on 8Qext,h. (C2)

We then choose a function x € C2°((—1,2)?) such that x = 1 on [0,1]? and we multiply (C.2)
by —xrA1,nWr with x, = rp(x): After some integrations by parts where all the boundary terms
vanishes due to the choice of x, we obtain:

/ Xn|An 1| +/ s mit o Xn|05 1 O tion | (C.3)
Qext,h

Qext,h

~ - + + o4 + o+ + ot + oot -
= —/ thhAh,lwh‘F/ O o Xh Oy 2WhMy, o Ap1Wh —/ Oy 1M o XMy, 10y oWh Oy, 10y o Wh.
Q Q Q

ext,h ext,h ext,h

Of course, since x = 1 on [0,1]2, the left hand-side of (C3) is bounded from below by
2 2
”Ah)lwhHLi(Qh) + HaftlafJLF,thHLi(Qh) :

On the other hand, using that w, and gn are symmetric extensions of wy and gp, the right
hand-side of (C.3) is bounded from above by

C (llgnllzz @y + lwnllmy ) (1801081123 @) + 10520 20n] 12 )
for some constant C independent of h > 0. We thus obtain
HAhvlwh”Li(Qh,) + HaftlaljﬂwhHLg(Qh) <C (th”Li(Qh) + ”wh”H&,h(Qh)) )

which, together with (CI)) and —Ap, 2wn = (g — qrwn) + Ap 1wy, , yields ([@I5). O
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