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Abstract

Using uniform global Carleman estimates for semi-discrete elliptic and hyperbolic equations,
we study Lipschitz and logarithmic stability for the inverse problem of recovering a potential
in a semi-discrete wave equation, discretized by finite differences in a 2-d uniform mesh, from
boundary or internal measurements. The discrete stability results, when compared with their
continuous counterparts, include new terms depending on the discretization parameter h. From
these stability results, we design a numerical method to compute convergent approximations of
the continuous potential.

Résumé

A partir d’inégalités de Carleman pour des équations aux dérivées partielles dicrétisées elliptiques
et hyperboliques, nous étudions la stabilité Lipschitz et logarithmique du probléme inverse de
détermination du potentiel dans une équation des ondes semi-discrétisée, par un schéma aux
différences finies sur un maillage 2-d uniforme, & partir de mesures internes ou frontiéres. Quand
ils sont comparés avec leur contrepartie continue, les résultats de stabilité dans le cadre discret
contiennent de nouveaux termes dépendants du pas h du maillage utilisé. C’est a partir de ces
résultats que nous décrivons une méthode numérique de calcul d’approximations convergentes du
potentiel continu.

1 Introduction

The goal of this article is to study the convergence of an inverse problem for the wave equation, which
consists in recovering a potential through the knowledge of the flux of the solution on a part of the
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boundary. This article follows the previous work [3] on that precise topic in the 1-d case.

1.1 The continuous inverse problem

Setting. We will first present the main features of the continuous inverse problem we consider in this
article. Let Q be a smooth bounded domain of R?, and for T > 0, consider the wave equation:

atty_Ay+qy:f7 in(O,T)XQ,
Yy = f(’?u on (OuT) X aQu (11)
y(0,-) =9% 9w(0,-) =y, Q.

Here, y = y(t,2) is the amplitude of the waves, (y°,y') is the initial datum, ¢ = ¢(x) is a potential,
f is a distributed source term and fy is a boundary source term.

In the following, we explicitly write down the dependence of the function y solution of (IIl) in terms
of ¢ by denoting it y[g] and similarly for the other quantities depending on g.

We assume that the initial datum (y°,y') and the source terms f and fs are known. We also assume
the additional knowledge of the flux

Mq) = 0yylg] on  (0,T) x Do, (1.2)

where I'g is a non-empty open subset of the boundary 99 and v is the unit outward normal vector
on Jf). Note that for this map to be well-defined, we need to give a precise functional setting: for
instance, we may assume (y°,y') € HY(Q) x L?(Q), f € L*((0,T); L3(2)), fo € H'((0,T) x 9) and
%) 5 = fo(t = 0) so that .# is well-defined for all ¢ € L>(2) and takes value in L*((0,T) x 99),
see e.g. [28].

This article is about the recovering the potential ¢ from .#[q]. As usual when considering inverse
problems, this topic can be decomposed into the following questions:

e Uniqueness: Does the measurement .# [g] uniquely determine the potential ¢?

e Stability: Given two measurements .#[q%] and .#[q"] which are close, are the corresponding
potentials ¢* and ¢® close?

e Reconstruction: Given a measurement .# [g|, can we design an algorithm to recover the potential
q?

Concerning the precise inverse problem we are interested in, the uniqueness result is due to [12] and
we shall focus on the stability properties of the inverse problem ([I)). The question of stability has
attracted a lot of attention and is usually based on Carleman estimates. There are mainly two types
of results: Lipschitz stability results, see [26], [32] 33, 23] 2l 24} [4] [36], provided the observation is done
on a sufficiently large part of the boundary and the time is large enough, or logarithmic stability
results [5l [7] when the observation set does not satisfy any geometric requirement. We also mention
the works [6], [13] for logarithmic stability of inverse problems for other related equations.

Below we present more precisely these two type of results, since our main goal will be to discuss
discrete counterparts in these two cases.

Lipschitz stability results under the Gamma-conditions. Getting Lipschitz stability results
for the continuous inverse problem usually requires the following assumptions, originally due to [19].
We say that the triplet (2,T',T) satisfy the Gamma-conditions (see [30]) if

o (0,T) satisfies the geometric condition:

oo e RV\Q, {2€09Q, s.t. (x —x0)-v(z) >0} CT, (1.3)



e T satisfies the lower bound:
T > sup |z — zo]. (1.4)
zEN

In [2], following the works [22] 2], the next stability result was proved:

Theorem 1.1 ([2]). Let m > 0 and consider a potential ¢* € L>() with [|q*| () < m, and
assume for some K > 0 the reqularity condition

ylg®) € H'(0,T;L%())  with  yla"]ll g 0,12 ()) < K- (1.5)

where y[q®] denotes the solution of (LLIl) with potential q®. Let us further assume that (2,To,T)
satisfies the Gamma-conditions (L3)—(L4) and the following positivity condition

Joy > 0, irgz 1v° ()| > av. (1.6)

Then there exists a constant C' > 0 depending on m, K and o such that for all ¢* € L>(Q) satisfying

quHLOO(Q) < m, we have .4 [q*] — #¢"] € H*(0,T; L*(Ty)) and

G lla" = &l 2gq) < 210" = A0 11 0, 1,1200)) < C 0" = @[] 2y (1.7)

Besides, if w is a neighborhood of Ty, i.e. for some d > 0, {x € Q, d(z,Ty) < §} C w, we also have
Orylq®] — Owyla®) € H'((0,T) x w) and

1 a b a b a b

G 10" =@l 2y < 119la®) = 0l |1 0,7y ) < Cll0" = @l 2y (1.8)

Remark 1.2. Note that in Theorem [ 1], we do not give assumptions on the smoothness of the data
yY, vy, f, fo directly. They rather appear through the bound K in (L5 in an intricate way. Also note
that estimate (L) is not written in [2], but the proof of (L) follows line to line the one of ([L).

Logarithmic stability results under weak geometric condition. Let us now explain what can
be done when the geometric part (I3]) of the Gamma conditions is not satisfied. In this case, to our
knowledge, the best result available is due to [5]. Below, we state a slightly improved version of it:

Theorem 1.3 ([5], revisited). Assume that there exist an open subset I'y C O of the boundary 09
and an open subset O of Q such that:

o I'y C Ty and (2, T1) satisfies the condition (L3);
e O contains a neighborhood of T'y in Q, i.e. for some § > 0,
{reQ,dz,T1)<d} CO. (1.9)
Let ¢* be a potential lying in the class A(Q, m) defined for @ € L*°(O) and m > 0 by
AMQ.m) ={q € L™(Q), s.t. glo=Q and |q|l =i < m}. (1.10)
Let y° € HY(Q) satisfying the positivity condition (L6) and assume that y[q®] satisfies the reqularity

condition
ylg"] € H'(0,T; L>(Q)) N W1(0,T; L*(52)). (1.11)



Let o >0 and M > 0. Then there exists C > 0 such that for T > 0 large enough, for all ¢® € A(Q,m)
satisfying
q“—quHé(Q) and Hq“—quHé(Q) < M, (1.12)

we have #[q*] — 4 [q*] € H(0,T; L*(Iy)) and

C 1+«
log | 2+ ' b
( l-#[q%] — ///[qb]|H1(O,T;L2(F0))>‘| ( )

Besides, the constant C' depends on m in ([[LI0), M in (LI2), oo in (L), a priori bounds on
HyOHHl(Q) + Hy[qa]||H1(O)T;Lm(ﬂ))ﬂwm(07T;L2(Q)) and the geometric setting (I'p,T'1, O, Q).

an - qum(Q) <C

To be more precise, [5] states the previous result with & = 1 and under slightly stronger geometric
and regularity conditions. Since Theorem [[3] states a slightly better result than the one in [5], we
will prove it in Section Bl Similarly as in [5], we will work on the difference y[¢?] — y[¢”] and use
the Fourier-Bros-Iagoniltzer transform which links solutions of the wave equation with solutions of
an elliptic PDE, but instead of considering the usual Gaussian transform as in [5] (see also [34] [35]),
we will consider the one used in [29] (see also [7, BI]). We will thus be led to prove a quantified
unique continuation result for an elliptic PDE, which we derive using a classical Carleman estimate
(|20]). Nevertheless, we will do it in a somewhat different way as the one in [35] BI] by constructing
one global weight which allows to prove Theorem [[.3] without the use of iterated three spheres in-
equalities. The proof of Theorem[[3 will then be completed by the use of the stability estimates (LJ]).

Objectives. Our goal is to derive counterparts of Theorem [[.I] and Theorem for the finite-
difference space approximations of the wave equation discretized on a uniform mesh. In order to give
precise statements, we need to introduce several notations listed in the next section. For simplicity of
notations, we make the choice of focusing on the unit square in the 2-d case

Q=(0,1)? (1.14)

though our methodology applies similarly in the case of the d-dimensional domains of rectangular
form Q = IT%_, [a;, b;] (still discretized on a uniform mesh). Note that, even if we stated Theorems[L.T]
and [[.3 for smooth bounded domains, both Theorems also hold in the case of a domain Q = (0, 1)2.

1.2 Some notations in the discrete framework

Here, we introduce the notations corresponding to the case of a finite-difference discretization of the
wave equation on a uniform mesh. Let N € N be the number of interior points in each direction, and
h =1/(N + 1) the mesh size. All the notations introduced in the discrete setting will be indexed by
the parameter h > 0 to avoid confusion with the continuous case.

Discrete domains. We introduce the following (see also an illustration in Figure [II):

Qn ={h,2h,...,Nh}?, Qn={0,h,2h,...,Nh,1}?

o0, = ({0 u{1}) x {h,...,Nhh U ({h,...,Nh} x ({0} U{1})),
Iy ={0}x{h,...,Nh}, T ,={h,...,Nh} x {0},

Iy ={1} x{h,...,Nh}, Iy ={h,...,Nh} x {1},

I, =T,,Ul,,  Tf=Tf urf,, 09, =T, ury,

Qi;l = U FI:,D Qf:,2 = U 1—‘};27 Q, = QI:,l N QI:,Q'

(1.15)
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Figure 1: Main discrete notations in Q = (0,1) x (0, 1).

Note that this naturally introduces two representations of the discrete set ;. We will use alternatively
xp, € Qp or (i,7) € [0, N+1]? (where [a, b] = [a, b]NN) to denote the point zj, = (ih, jh), the advantage
of the first writing being its consistency with the continuous model.

Discrete integrals. By analogy with the continuous case, if we denote by fr = (f(zn))z, e,
respectively fo = (f(2r)),, co- + frn = (f(zn)),, cq- . a discrete function, we will use the following
N W3 8p o

shortcuts:

N N N N N
— 2 — 2 —p2 - _
[ R SETY LD 3 SENY ME L 9 ST

ij=1 i=0 j=1 i=1 j=0

One should notice that if these symbols are applied to continuous functions or products of discrete
and continuous functions, they have to be understood as the corresponding Riemann sums.

When considering integrals on the boundary 0€,, we use the natural scale for the boundary and
we define, for f; a discrete function on 9y,

/mh fa=h Y flan). (1.17)

zpE€EOQ,
Subsets. In several places, we will consider open subsets O,w C (2 and we then note Op = O N Qp,
Op={r e, dxz0) <h}NQ, O, ={x € Q,Iec[0,h], z+ece, € O} NQ, ,, and similarly for
the sets wy,, Wy and w, , (notice that these sets are always non-empty for i small enough). Integrals
on these discrete approximations of open subsets of Q are given for f;, discrete functions on O, as

follows:
/ fo="[ [fnlo,, / fh:/ fnlp- (1.18)
On Qp Ok Q h,k

and similarly for the integrals on wy, wy, .
When considering open subsets I' of the boundary 0f2, we will similarly set I', = T' N 98y, and the
integrals on these discrete approximations of subsets of the boundary will be given by

/ Jn= fh]-Fh'
T'n O



Discrete LP-spaces. We also define in a natural way a discrete version of the LP({2)-norms as
follows: for p € [1,00), we introduce Lj (€2;,) (respectively L} (€, |)) the space of discrete functions
fn = (fij)ijeq,ny, (respectively i € [0, N, j € [1, N]) endowed with the norms

p —
IlEgiay = [ 10 (o Ul = [ 1) (119)

and, for p = 00, || full e () = WP jep,ng [fisl (tesp [ fall e oy ) = SuPiego,vizerr, Ny [fins]):

We define the spaces Lj (9, ,), L},(Oy) and Lj (wy) for open subsets O,w C Q in a similar way. We
also define discrete norms on parts of the boundary: if I" is an open subset of 99, the space L} (T';),
(p € [1,00)) is the set of discrete functions f; defined on I'j, endowed with the norm

1l 0y = / .

Discrete operators. We approximate the Laplace operator by the 5-points finite-difference approx-
imation: V(4,5) € [1, N]?,

(Arvn)ij = 75 (Wit1,5 + Vi1 +vim1, + 055 — 4vig). (1.20)

1
72 (
Besides the discrete Laplacian Ay, let us also introduce the following discrete operators:

Vit1,j + 205 + Vi1, Viyj+1 + 20i5 4 Vi1

(mpavn)i; = 1 ;o (mp2vn)ij = 1 )
+ I Vit H UG + — (— _ Vij T Vit
(mh,lvh)ivj = (mh,lvh)iJrl-,j = 2 ; (mh,zvh)i,j = (mh,lvh)iJrLj = 5 ;
Vig1,j — Vi—1,j Vi j+1 — Vi j— 0,
(Onavn)ij = % i (On2vn)i; = m+12h Wil oy, = < 62; ) :
B Vi1, — Vi B Vij41 — Vi
(@tlvh)i;j - (ah,lvh)i+1xj _ Vit ]h i (@tzvh)i,j = (6h,2Uh)ij+1 _ Yigt h LN
Vitl1,j — 2Vij + Vi—1,j Vi j41 — 2Vi 5 + Vi j L
(Ah,lvh)i,j = i+l thJ — ) (Ah,2vh)i,j = I thJ =

We finally introduce the following semi-discrete wave operator:
Op =0 — Ap =0 — Ap1 — Ap .

Spaces of more regularity. We will use the space H} () of discrete functions f, defined on Qn
endowed with the norm

Iy = Iy + 3 e

L2 ( Qg

We also denote H&h(Qh) the set of functions f;, defined on € and vanishing on 02, endowed with
the above norm.

Note down that H} () and Hj ,(Q5) denote spaces of functions defined on €. We decided to
slightly abuse the notations by denoting them that way, since the topology of these spaces is strong
enough to define the trace operators.

Similarly, when w is a non-empty open subset of €, we denote by H}(wp) the set of discrete
functions f5, defined in wy, endowed with the norm

Iy = Wiligem + 3 x|

L? (wh &



We finally introduce H7? () the set of discrete functions f;, defined on Q. endowed with the norm

2

2 2 2 2
1fullmz2 @) = 1nllaz @) + 1A SIT2 (@, + [1Bn2fullz2q,) + Haitﬁ;ith‘ L)
Besides, with an abuse of notations, we will often denote L?(0,7T; H}(Q2,)) N H'(0,T; L3 (2,)) by
HL((0,T) x Q) and the space H2(0, T; L2()) N H (0, T: H (Q4))NL2(0, T: H2(4)) by H2((0,T) x
).

Extension and restriction operators. Finally, we shall explain how to compare discrete functions
with continuous ones. In order to do so, we introduce extension and restriction operators.

The first one extends discrete functions by continuous piecewise affine functions and is denoted by
en. To be more precise, if f;, is a discrete function (f; ;)i jefo,n+1], the extension ey (fs) is defined on
[0,1]% for (z1,x2) € [ih, (i + 1)h] x [jh, (j + 1)h] by

iy = (1= 25 ) (1252 g (25) (1252 g
" (1_ 1 h ) ( : hj >fz‘,j+1+ < - 5 ) ( 2 hj >fi+1,j+1. (1.21)

This extension presents the advantage of being naturally in H'(£2). The second extension operator is
the piecewise constant extension ef)(f,), defined for discrete functions fi, = (fi,;)i jeq1,n] by

QU = Fis o [l = 1G4 VDR~ VDG4 YDA, GG €N
eV (fn) =0 elsewhere. '
This one is natural when dealing with functions lying in L2(f2) as He?z(fh)Hm(Q) = Iz (@,)- Also

note that easy (but tedious) computations show that ey (fs) converge to f in L?(Q) if and only if
9 (fn) converge to f in L*(Q).
We finally introduce restriction operators rp, Tp, and rp po where rp, is defined for continuous

function f € C(£2) by

tn(f) = fu given by f;; = f(ih,jh), Vi,j € [1,N],

ip, for functions f € L?(2) by

1 ..
fl,]:ﬁ // f((El,(EQ)d.’IIldJIQ, Vl,] eﬂluNﬂu
|21 —ih|<h/2
|z —jh|<h/2
tn(f) = fn given by 1 o
fii= Y f(z1,22) derdrs, Vap = (ih,jh) € 0Qy,
lo1—ih|<h/2
|z2—jh|<h/2
(z1,22)EN

and 15, oo for functions fo € L*(9€2) by

rp.00(fa)(zn) = % / fo(z)do for xj, € O,

|I7$h|§h/27
€002



1.3 The semi-discrete inverse problem and main results

We discretize the usual 2-d wave equation on = (0,1)? using the finite difference method on a
uniform mesh of mesh size h > 0. Using the above notations, this leads to the following equation:

Ouyn — Anyn + quyn = frn - in (0,T) X Qp,
Yn = Jon on (0,T) x 0%, (1.23)
yn(0) =92, Owyn(0) =y} in Q.

Here, yp(t, ) is an approximation of the solution y of () in (¢, xy), A approximates the Laplace
operator and we assume that (y}),y}) are the initial sampled data (y°,y') at zj, and the source terms
fo.n € L2(0,T; L2 (09Q,)) and fp € L'(0,T; L7 (€2,)) are discrete approximations of the boundary and
source terms fy and f.

Our main goal is to establish the convergence of the discrete inverse problems for (23] toward
the continuous one for (L)) in the sense developed in [3]. Let us rapidly present what kind of results
should be expected.

The natural idea to compute an approximation of the potential ¢ in (LI)) from the boundary
measurement . [q] is to try to find a discrete potential g, such that the measurement

AMlar] = Oven(ynlan]) on  (0,T) x Ty (1.24)

where yp[gr] is the solution of ([23), and ej is the piecewise affine extension defined in (21,
approximates . [q] defined in (LZ). We are thus asking the following:

if one finds a sequence g, of discrete potentials such that .#},[qn] converges towards . [q]
as h — 0 (in a suitable topology), can we guarantee that the sequence ¢, converges (in a
suitable topology) towards ¢ ?

As it is classical in numerical analysis - this is the so-called Lax theorem for the convergence of
numerical schemes - such result can be achieved using the consistency and the uniform stability of the
problem. In our context, even if the consistency requires some work, the stability issue is much more
intricate since even in the continuous case it is based on Carleman estimates. Here, stability refers to
the possibility of getting bounds of the form

leh (af — ap)ll, < C||-#ulas) — nlar)]] . - (1.25)

where e is the piecewise constant extension defined in (L2Z), and the norms [|-||, and ||| 4 have to
be precised, for some positive constant C' independent of h.

As we already pointed out in [3] in the 1-d case, a stability estimate of the form (L[2H) is far
from obvious and actually, instead of getting an estimate like (IL.2H), we proposed a slightly modified
observation operator % for which we prove uniform stability estimates and the convergence of the
inverse problem.

Hence the main difficulty in obtaining convergence results is to derive suitable stability estimates
for the discrete inverse problem under consideration. We will thus state convergence results for the
discrete inverse problems in the forthcoming Theorem [[.6] while the main part of the article focuses
on the proof of stability estimates for the discrete inverse problem set on ([L23]) stated hereafter in
Theorems [[L4] and

1.3.1 Discrete stability results

Discrete Lipschitz stability. Since we assumed 2 = (0,1)2, the condition (I3) will be satisfied
by a set I'g C 09 if and only if 'y contains two consecutive edges, and in this case the time T in



() can be taken to be any T' > /2. Thus, with no loss of generality, when the Gamma-conditions
([C3)-(T4) are satisfied, we can focus on the study of the case

Q=(0,1)2, TooTy={1}x(0,1)U((0,1)x{1}), T>2 (1.26)

When the measurement is done on a part of the boundary I'y satisfying the above conditions, we will
prove the following counterpart of Theorem [T}

Theorem 1.4 (Lipschitz stability under Gamma-conditions). Assume that (2, T, T) satisfy the con-
figuration (L20). Let m >0, K >0, ag > 0, and ¢ € Ly (Qp) with ||q,‘§||Lm(Q}) < m. Assume also
h h

that v and the solution yp[q}] of (L23) with potential qf satisfy
inflyhl = a0 and  ynlailll o100 < K- (1.27)

Then there exists a constant C = C(T,m, K, ag) > 0 independent of h such that for all ¢} € L°(Q,)
with HqZHLOO(Q}) < m, the following uniform stability estimate holds:
h h

qu - qZHLi(Qh) <C H///h[qg] - '///h[qZ]HHl(o,T;Li(FO,h))

Ch > |07 duunlas] - 05 uunlah)| 1.28
+ k;2 .k '+ yn 4] h.k s+ yn [qp] L2015 L2 (25 ) ( )
where yp[q2] is the solution of (LZ3) with potential q’.
Similarly, if w is a neighborhood of I'y, i.e. there exists § > such that
(1,1 = 8) x (0,1)) U((0,1) x (1—8,1)) C w, (1.29)

then there exists a constant C = C(T,m, K, ap, ) > 0 independent of h such that for all ¢¢ € L$°(Q,)
with HqZHLw(Q}) < m, the following uniform stability estimate holds:
h h

97 = @il 12 0y < C 10ewnlai] = Bemlai | 11 o .12 ()

+o Y Ha,tkatyh[q;ﬂ - aftkatyh[qg]‘
k=1,2

L2(0,T;Lj (wy, 1))

+Ch Z Haftkattyh[qm - @tkﬁttyh[ﬂ]’
k=1,2

. (1.30)
L2(0,T;L3 (2, )

When comparing Theorem [[L4] with Theorem [[LT] one immediately sees that estimate (L2g) is a
reinforced version of (L) due to the additional term

Ch Y |01 Ouwnlai) — 0 Drunlal] (1.31)

k=1,2

L2(0,T5L3 (2, 1))

This was already observed in [3] for the corresponding 1-d inverse problems, and is remanent from
the fact that observability estimates for the discrete wave equations do not hold uniformly if they
are not suitably penalized, see [25] 40, [I5]. Note in particular that as A — 0 and under suitable
convergence assumptions, this term vanishes and allows to recover the left hand side inequality of
(IO by passing to the limit in (L28). Theorem [[4is proved in Section 241 Following the proof of
its continuous counterpart Theorem [[.1] the main issue is to derive a discrete Carleman estimate for
the wave operator (Theorem 271]), as it was already done in [3] in the 1-d setting. Though the proof
of this discrete Carleman estimate is very close to the one in 1-d, the dimension 2 introduces new



cross-terms involving discrete operators in space that require careful computations. Note however
that our proof also applies in higher dimension when the domain is a cuboid discretized on uniform
meshes as this would involve similar terms. Actually, this has already been done in the context of
elliptic equations, see [9].

Discrete logarithmic stability. Since we limit ourselves to the case Q2 = (0,1)?, we may assume
that Ty is a (non-empty) subset of one edge and that the counterpart of I'; appearing in Theorem [[3]
satisfying the Gamma conditions (3] is formed by two consecutive edges. Due to the invariance by
rotation, with no loss of generality, we may thus assume:

Q=(0,1)%, Toc{1}x(0,1), Ty=T4={1}x(0,1))U((0,1)x {1}). (1.32)

Theorem 1.5 (Logarithmic stability under weak geometric conditions). Assume that the triplet
(Q,To,T'1) satisfy the geometric configuration (L32)) and the existence of an open set O C Q such that

e O contains a neighborhood w of T'y in £, i.e. such that (L29]) holds.
o the potential g5 is known on 0Qy, and in O, where it takes the value Qp, € Ly°(Op).
Let ¢f be a potential lying in the class Ap(Qn,m) defined for Qpn € Ly°(Op) and m > 0 by
An(@n,m) = {an € Ly (@), st anlo, = @n and lgnl = (q,) < m}- (1.33)

Let ag > 0,M > 0 and o > 0. Assume also that y) € H}(Qn) and the solution yplqf] of (L23) with
potential qj; satisfy the conditions

inflypl > a0 and  yalg"] € H'(0,T;5 L3 (Qn)) VW (0, T; Li (). (1.34)
h

Then there exist C > 0 and hg > 0 such that for T > 0 large enough, for all h € (0,hg), for all
a4}, € A (Qn,m) satisfying

G —an € Hon()  and  [|gi = ai [l 1 g,y <M, (1.35)

we have

HqZ - ngLi(Qh,) < Opt/H 4 ¢

C 1+
log | 2+
( ||//fh lgi] — #nla}) ||H1(0,T;L2(r0)) )]

+Ch Z Haftkattyh[QZ] - a;tkattyh[qm
k=1,2

L (136)
L2(0,TL2 (2, )

Besides, the constant C depends on the constants m, M in (L38), ap in (L34), an a priori bound on
Hy?LHH;’(Qh) + llyn [qz]HHl(O,T;Lf(ﬂh))ﬂwzvl(O,T;Li(Qh))’ and on the geometric configuration.

When compared with the corresponding continuous result of Theorem [[.3] the stability estimate
(C36) contains two extra terms: the penalization term (L3I) and the new term Ch'/(1+a),

The proof of (I.36), given in Section[3] follows the same path as in the continuous case and combines
the stability results obtained in the case where the Gamma conditions are satisfied with stability
results obtained for solutions of the wave equation through a Fourier-Bros-Iagoniltzer transform and
a Carleman estimate for elliptic operators due to [8, [9]. Hence, the penalization term (L3I)) is
remanent from Theorem [[4l But the term Ch'/(1+®) comes from the fact that the parameters within
the discrete Carleman estimates cannot be made arbitrarily large and should be at most at the order
of 1/h. This fact has already been observed in several articles in the elliptic case, see [8] @] [14]. We
also refer to [27] for a previous work related to the convergence of the quasi-reversibility method.
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1.3.2 Discrete convergence results

The stability results of the previous Theorems [[.4] and suggest to introduce the observation oper-
ators Ay, = AMn{y),y}, fn, fo.n} defined for h > 0 by

My L) —  L2(0,T; L*(Ty)) x L2((0,T) x €)

an = (Oven(unlan]), hV e (Buynlan)), (1.37)

where yp, [gn] is the solution of (LZ3) with potential ¢, and data y2, y}, fn, fo.n and ey, is the piecewise
affine extension defined in (IL2I). Corresponding to the case h = 0, we introduce its continuous

analogous % = %{yo,y1, fi fa}:

My: L®Q) —  L*0,T;L3(Ty)) x L2((0,T) x Q)

a = (0wyla0), (1.38)

where y[q] is the solution of (IIl). Recall that according to [28], this map My is well defined on
L*>°(Q) for data

(W% y' £, fo) € HY(Q) x L*(Q) x L1((0,T); L*(Q)) x H((0,T) x 99)

. 1.39
with 40|, = folt = 0). (1:39)

that we shall always assume in the following.
Remark that with these notations, the quantities

Hj/h[QZ] - j/h [QZ] HHI((OvT);Li(FO,h,)) +h Z Ha;—:kattyh [q}aL] - 3;{);@3”3/}1 [QZ]’ L2((0.T)x2; )
k=1,2 ’ v

and . .
Arlai) — Anlah)|
H nld] nld] HY(0,T5L2(To)) x L2((0,T) x Q)
are equivalent, uniformly with respect to the parameter h > 0. Hence the stability results in Theorems

4 and easily recast into stability results for .#},.
Our convergence result is then the following:

Theorem 1.6 (Convergence of the inverse problem). Let ¢ € H' N L°°(Q) and assume that we
know qs = qloa. Let the data (3y°,y', f, fo) follow conditions ([L39) and the positivity condition
infg |y°| > ap > 0. Furthermore, assume that the trajectory y(q) solution of (L)) satisfies

ylg] € H*(0,T; H'(Q)) n H*(0,T; H*(Q)). (1.40)
We can construct discrete sequences (Y5, yt, fn, fo.n), such that if we assume either

o (0, Ty, T) satisfy the configuration (L26]), and in this case we define
X = L7 (),

or

o (O, Ty, T'}) satisfy the configuration (L32), T > 0 is large enough, q is known on O,
neighborhood of Ty, and takes the value qlo = Q, and we define

Xn = {an € Ly’ () s:t. anlo, =Tn(Q),
and qn, extended on Oy, by qnloq, = rh.00(gs), belongs to H ()},

that we endow with the L>(2,) N H} (Q4)-norm,
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then
- there exists a sequence (qp)n>0 € Xp, of potentials such that

=0,  (141)

I < o, d i H% — H -
1r21jgpl|Qh|‘X,L oo, and  lim |7 q] olq] H1(0,T;L%(T0)) x L2((0,T) x2)

- for all sequence (qn)n>0 € Xp of potentials satisfying (LA, we have
. 0 _ _
%{I}) ||eh(Qh) q||L2(Q) 0.

Let us briefly comment the assumptions of Theorem [[.6] which might seem much stronger com-
pared to the ones for the stability results in Theorems[[4and[[LEl This is due to the consistency of the
inverse problem, detailed in Lemma 3] which requires to find discrete potentials such that the cor-
responding solutions of the discrete wave equation (L.23]) belongs to H'(0,7; L>°(f2)). But this class
is not very natural for the wave equation, and we will thus rather look for the class H'(0,T; H?(Q)),
which embeds into H'(0,7; L>(2)) according to Sobolev’s embeddings (since Q@ C R?). This is
actually the only place in the article which truly depends on the dimension.

It may also seem surprising to assume the knowledge of ¢ on the boundary even in the configuration
(L26), for which Theorem [[.4] applies with only an Ly°(£2;)-norm on the potential. This is actually
due to the fact that the knowledge of ¢|5q is hidden in the regularity assumptions on y[q]. Indeed, if
y[q] is smooth and satisfies (I1]), we may write 9::y(0, z) = Ay®(z) — q(z)y°(x) + £(0,z) for all z €
and in particular € 99, whereas 9yy(0, ) = 0y f5(0, x) for x € Q. In particular, since y° does not
vanish on the boundary, these two identities imply that gpq can be immediately deduced from the
knowledge of y°, f and fp for sufficiently smooth solutions, see Remark

Details on the derivation of Theorem [I.6] are given in Section 4] with a particular emphasis on the
related consistency issues. In particular, Lemma explains how to derive the discrete data y,OL, y,ll,
fr and fsj from the data y°, y*, f, fo and 4l 9-

1.4 Outline

Section [Z will be devoted to the establishment of a uniform semi-discrete hyperbolic Carleman esti-
mates in two-dimensions, including the boundary observation case in Theorem [ZT]and the distributed
observation case in Theorem We will then derive from these tools the discrete stability result of
Theorem[T4l In Section[3] we will present a revisited version of Theorem [I.3] based on a global elliptic
Carleman estimate and follow the same strategy to establish the discrete stability result of Theorem
[T that relies on a global uniform semi-discrete elliptic Carleman estimate due to [9]. Finally, Sec-
tion ] will gather the proof of Theorem [[L6] some informations about the Lax type argument, and a
detailed discussion about consistency issues.

2 Application of hyperbolic Carleman estimates

In this section, we discuss uniform Carleman estimates for the 2-d space semi-discrete wave operator
discretized using the finite difference method and applications to stability issues for discrete wave
equations. These discrete results are closely related to the study of the 1-d space semi-discrete wave
equation one can read in [3]. Actually, our methodology (here and in [3]) goes back to the articles
[8, @] where uniform Carleman estimates were derived for elliptic operators.

12



2.1 Discrete Carleman estimates for the wave equation in a square

The proofs of the results stated here will be presented in Sections and
Recall that we assume the geometric configuration

Q=(0,1)% TooIy=({1}x(0,1)uU((0,1)x {1}). (2.1)

Carleman weight functions. Let a > 0, 7, = (—a,—a) ¢ Q = [0,1]?, and 8 € (0,1). In
[-T,T] x [0,1]?, we define the weight functions ¢ = ¢ (t,z) and ¢ = ¢(t, ) as

¢(ta$) = |.’II - :Ea|2 - ﬁt2 =+ co, (p(tu (E) = eHw(t@)7 (22)
where co > 0 is such that ¢» > 1 on [T, T] x [0,1]? and p > 1 is a parameter.
Uniform discrete Carleman estimates: the boundary case. One of the main results of this
article is the following:

Theorem 2.1. Assume the configuration 210 for Q and T'y. Let a > 0, 8 € (0,1) in 22) and
T >0. There exist o > 1, u>1,€ >0, hg > 0 and a constant C = C(79,pu, T, ¢, 3) > 0 independent
of h > 0 such that for all h € (0,hy) and T € (10,e/h), for all wy, satisfying

Opwyp, € L2( T,T; Lh(Qh))
wo,j(t) = wnt1,(t) = wio(t) =wint1(t) =0  Vte (=T,T),4,5 €[0,N +1], (2.3)
wi j(£T) = yw; j(£T) =0 Vi, j € [0, N + 1],
we have
T
T/ / T | pwn | dt + 7Y / / 2o |O)F wn | dt + 7 / / e27#n wy, |2 dt

=T k=1, n

< c/ / XM | Opw [ dt + C1 Y / / 27en kwh‘ gt (2.4)

=T JQy k=12
+CTh? Z / / 27“"h|8 8twh|2 dt,
k=1,2 Q

where @y, is defined as the approzimation of ¢ given by on(t) = rpp(t) for t € [0,T).
Besides, if wp,(0,xp) =0 for all z, € Qp, we also have

T
71/2/ 62”"’1(0)|5)twh(0,xh)|2 gc/ / e27on D pun 2 dt
Qp Qp

e27¢n
F+

The proof of Theorem 211 will be given later in Section It is very similar to the one of [3]
Theorem 2.2] but more intricate. The continuous counterpart of Theorem 21]is given in [4, Theorem
2.1 and Theorem 2.10], and very close versions of it can be found in [22, 2I]. However, two main
differences with respect to the corresponding continuous Carleman estimates appear:

e The parameter 7 is limited from above by the condition 7h < &: this restriction on the range
of the Carleman parameter always appear in discrete Carleman estimates, see [8, [9] [3] [14]. This is
related to the fact that the conjugation of discrete operators with the exponential weight behaves as
in the continuous case only for 7h small enough, since for instance

a9, wh‘ dt + Cth? Z/ / 2T Oywp P dt. (2.5)
k=1,2 Qe

€"P0p(e”™¥) ~ =70, only for Th small enough.
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e There is an extra term in the right hand-side of [2.4]), namely

T
Th: > /T/V M O;F  Oywn |? dt, (2.6)
k=1,2"" ok

that cannot be absorbed by the left hand-side terms of ([2:4)). This is not a surprise as this term already
appeared in the Carleman estimates obtained for the waves in the 1-d case, see [3, Theorem 2.2], and
also in the multiplier identity [25]. As it has been widely studied in the context of the control of dis-
crete wave equations (see e.g. the survey articles [40, [I5]), this term is needed since the discretization
process creates spurious frequencies that do not travel at the velocity prescribed by the continuous dy-
namics (see also [37]). Also note that this additional term only concerns the high-frequency part of the
solutions, since the operators ha,tl, h[);z are of order 1 for frequencies of order 1/h, whereas it can be

absorb by the right hand-side of ([2.4)) for scale O(1/h'~¢) for all ¢ > 0 by choosing h sufficiently small.

Uniform discrete Carleman estimates: the distributed case. The usual assumption in the
distributed case for getting Carleman estimates in the continuous setting (see [2I]) is that the obser-
vation set w is a neighborhood of a part of the boundary satisfying the Gamma condition (L3)). Since
in our geometric setting Q = (0,1)2, with no loss of generality we may assume that there exists § > 0
such that ([29) holds. Under these conditions, we show:

Theorem 2.2. Assume the configuration (L29) for w. We then set
wp = Nw, w,, =Q , Nw, ke {1,2}.

Leta > 0,8 € (0,1) in @2) and T > 0. There exist 790 > 1, u > 1, € > 0, hg > 0 and a constant
C = C(1o,,T,e,8) > 0 independent of h > 0 such that for all h € (0,hg) and T € (10,€/h), for all
wy, satisfying (23)),

T T T
7'/ / e2TPr | Qpwy, |2 dt + T Z / / e2Ten |8,tkwh|2 dt + 73 / / 2T lwy, |2 dt
—TJa, -rJo,, —TJa,

k=1,2

T T
gc/ / 2o | Dywn 2 dt + CTh? Z/ / 2|3 Dy dt (2.7)
—-TJay, -1 Ja;, ’

k=1,2
T
OT/ / e2Ten|Qywy|? dt + CT Z/

-T k=1,27 T Jwy

T T
e?Ter o wp P dt + CT° / / 2 wy, |2 dt,
’ -T Wh

where op(t) = rpp(t) for t € [0,T]. Besides, if wy(0,21) = 0 for all xp, € Qp, the term
71/2/ 62”"’1(0)|8twh(0,xh)|2
Qp

is also bounded by the right hand side of (21).

Of course, Theorem shares the same features as Theorem .11 Actually, Theorem 2.2 is a
corollary of Theorem 2] and we postpone its proof to Section 2.3

2.2 Proof of the discrete Carleman estimate - boundary case

Proof of Theorem [Zl The proof of estimate (24) is long and follows the same lines as [3, Theorem
2.2]. In particular, the main idea is to work on the conjugate operator

Lo, = €70y (e T up). (2.8)

The precise computation of %, already involves tedious computations summed up below:
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Proposition 2.3. The conjugate operator £, can be written in the following way:

Lhvn = Opvn — 2T @ O) Opvy, + T2 %02 (8t¢)2 vp — TP (8t¢)2 v, — Tpp(Opth)op, (2.9)
_ Z (1 + Ao,k)Ah,kvh + 27w Z Al,kah,kvh — Z (7’2#214211@ — T,LL2A37k — T,LLA4,k)Uh7
k=1,2 k=1,2 k=1,2

where the coefficients Ag . are given, for (t,xy) € (=T,T) x Qp and e' = (1,0), e = (0,1), by

1 1 A e—'rga(t,mh—i-ahek)
Avk(t,zn) = 5 / X [0z, Y] (t, 2n + ohe”) ———F=~—do, (2.10)
1 ) ) . e—Tcp(t,mh-i-o’hek)
A27k(t,.’lih) = ‘/_1(1 — |0'|) I:QO ((%kw) ] (t,.’L’h + ohe )W dO'7 (211)
1 _ k
e T (t,xp+ohe™)
As i (t,zn) = /_1(1 = lo]) [0(02,9)?] (t,2n + ahek)m do, (2.12)
1 e—Tcp(t,mh—i-o'hek)
4,k(t, xn) = —101]) [P0z t,xp +ohe”) ———=—=— do, .
Ay, 1 1 Ovpar ¥ he® g el 2.13
h2
AO,k = 7(7'2,U2A2,k — T/L2A31k — T,LLA41]€). (214)

In particular, these functions Ay, defined on [0,T] x Q, can be extended on [0,T] x Q in a natural
way by the formulas (ZI0)-@I3) and satisfy the following property: setting

Jor =0, fig =001, for =0 0u,0)? for =@0n,0)?  fik = @Ora,t),
for some constants C,, depending on p but independent of T and h, we have
||Ag7k - fka”C?([O,T]xﬁ) < CMTh, Vil e {0, cee 4}, Vk € {1, 2}. (2.15)

The proof of Proposition 23] can be easily deduced from the detailed one in [3, Propositions 2.7,
2.8 and Lemma 2.9, 2.10] and the details are left to the reader. Note in particular that (ZI5]) implies
for all (¢, k) € [0,4] x {1, 2},

Ak = okl poe o0 + H5+ Ag g — rhaszz,kH
[ Iz ((0,T);L52 () k/;z h,k L= (O THLE ()
+ ||AhAé,k - rhAfévk||L°°((O,T);L§°(Qh)) < CHTh-

Afterwards, one step of the usual way to prove a Carleman estimate is to split %}, into two operators
Zh1 and &, 2, that, roughly speaking, corresponds to a decomposition into a self-adjoint part and a
skew-adjoint one. To be more precise, using the notations

Ay = Ag 1 + Ao, Ag = Az + Az, Ay = Ayq + Ay,

we set
Lhavy = Ouvn — Z (1 + Ao k) A gvp + 72407 (802 (0n)” — Az) Up (2.16)
k=1,2

Lnovn = (a1 — D7u(pduh — Ag) vy — Tp? (<p|8t1/)|2 — Ag) vp

—27’;1, goatwat’vh — Z A17k8h7kvh N (2.17)
k=1,2
. B+1

Fnvn = 1T (P0uy) — Ag)vp,  with ag = Fie (2.18)
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so that we have £, 1v+.%, 2v = Lpv+Zpv. Here, %), will be considered as a lower order perturbation
of no interest and the letter # states for “reminder”. More precisely, all our computations will be
based on the following straightforward estimate:

/ / |fh 1’Uh|2 dt-i—/ / |$h 2’Uh|2 dt+2/ Lp1Vn L ovp dt
Qp Qp Qp

T
< 2/ / | ZLnon? dt+2/ / | %) dt.  (2.19)
=T JQp —-T JQy,

In particular, we claim the following proposition, proved in Appendix [B

Proposition 2.4. For any T > 0, there exist p > 1, 79 > 1, €9 > 0 and a constant Cy > 0 such
that for all T € (19,e0/h), for all vy, satisfying vo; = UnN41,; = Vi = Vin+1 = 0 and v, ;(£T) =
8tvi,j(j:T) = O,Vi,j S [[O,N + 1]],

T T
/ / |8tvh|2dt+TZ/ / |a,jkvh|2dt+73/ / |Uh|2dt+/ / Lo on|? dt
T JQp T JQp

k=1,2
< Oo/ / |fhvh| dt + Cor Z / /+ ’8 5 Uh dt + C()Th2 Z / / |a at’uh|2 dt
T JQp k=1,2

k=1,2

(2.20)

where the operators £y, and £p1 are defined by (2.8) and (2.16).

The proof of Proposition [Z.4] is the core of the derivation of the discrete Carleman estimate and
consists in estimating from below the cross-product fEFT ‘[Qh L0 L ovn dt in (2.19). This is done in
two steps: Computation of the cross-product and computations of the leading order terms coefficients
in front of vy, Oy, 8h xUh- The proof of Proposition 24 is given in Appendix [Bl

Actually, this closely follows the proof of [3, Lemma 2.11] corresponding to the 1-d case. The main
novelties with respect to [3, Lemma 2.11] are the following ones:

e Some computations in the cross-product of ., 1vp, and % v, are new since the term (o —
D1u(@0uty — 3, Aag)vn in Lo in (ZI7) vanishes in dimension 1. Actually, the coefficient oy is
chosen in some range that depends on the dimension d of the space variable and is required to belong
to (28/(B +d),2/(8 + d)). Hence, since d =1 in [3], we chose a; = 1 to simplify the computations.

e There are also new cross-products involving integration by parts of discrete derivatives in different
directions. In particular, besides the 1-d integration by parts formula in [3| Lemma 2.6] that we recall
in [A] we will need the following specific 2-d formula:

Lemma 2.5 (discrete integration by part formula). Let vy, gn be discrete functions depending on the
variable x, € [0,1]? such that v, = 0 on the boundary of the square. Then we have the following
identity:

1
/ gh An1vn Opavn = 5/ Iailvhl%m(milgh)—/ Oy 1vnmyy 1 (On,2vn) Oy 1 9n
Qh N Q;,l

h,1

h2
4 7|8ft18ft2“h|28ff,2(m{19h)- (2.21)

h

Though the formula ([Z2T]) cannot be found as it is in [3], it can be easily deduced from the inte-
gration by parts formula in Appendix [Al and the proof is left to the reader.
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Furthermore, if we assume v, (0) = 0 in Qj, we can compute the following cross-product (it is a
straightforward modification of the computations in [3| p.586]):

0 1 1
/ 8t1)h fhylvh dt = = / |8tvh( - = / / mh k 8tA0 k) |8 kvh|2 dt
—T JQyp 2 Qp 2 Q.

0 2 2
+ Y O Ao O5f oon i (Bvon) dit — [on 20 (* ()" — As) dt
Qn

he12/ T/,

Therefore, based on Proposition 2.3l we easily get

0 0
/ |8tvh(0)|2§%/ / |.$h71vh|2dt+0\/F/ / Oyun 2 dt
Qp

+ Cuth Z / / |0, kvh|2dt+C Th Z/ /7 |Ovn|? dt + C,, 7 / / o, |2 dt.

k=1,2 k=1,2

As 7h < 1, applying Proposition 2.4 then immediately yields

7'1/2/ |8’Uh <C/ / |Zhvh| dt+Ct Z/ /+ ‘8hkvh
Qp r

k=1,2

dt

+ Cth? O B2 dt.  (2.22
h.k
— Q.

Finally, for wy, satisfying (2.3), we set v, := e"¥rwy,. Remarking that by construction Zv, =
e Opwy, we can apply directly Proposition 224l We notice that for 7h < 1,

Jwp,[2e?7n < Cpilon]?,

|Ovwn[*e*™n < Cu(|0ponl® + [onl?), 10 ywnl?e® ™" < Cu(10 wonl? + Cur?my) on ),

|8,J{7k8tvh|2 < Cﬂ|8ik8twh|262w”' +C,7? (|8,J£kwh|2 + |m;k8tw|2)62w” + C#T4|m;kw|262w”,
and |9, ,vnl* < C,l0, wn|?e™#" on the boundary i i, s wp vanishes on 0€,. We thus deduce

Carleman estimate (Iﬂl) for 7 large enough and 7h small enough directly from (Z20). Besides, when
wy(0) = 0 on Qy,, then v;,(0) = 0 and d;v;,(0) = dywp, (0)e™#+() on Oy, hence we conclude (Im) from

2. O

2.3 Proof of the discrete Carleman estimate - distributed case

Proof of Theorem[2.2, Tt can be deduced from Theorem 2.1l Indeed, under assumption (L29), it
suffices to define a cut-off function x € C*°(€2;[0,1]) taking value 1 on Q\ {z € Q, d(z,To) < §/2}
and vanishing on the boundary T'y = ({1} x (0,1))U((0,1) x {1}) and to apply the Carleman estimate
@A) to xpwp, with x, = rp(x): the boundary terms in (Z4]) vanish by construction but we have

On(xnwn) = xnOrwn — 2Vaxa Vawy — Apxn(2mpws, — wp).
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Using that x =1 on Q\ {z € Q, d(z,T9) < §/2}, one easily checks that for h small enough, 9 xn and
Apxp are supported on w. We thus readily obtain

/ / TN Dpwn [* dt + 7 Z/ /, 27O (xnwn) |* dt + 7° / / X X wn | dt

k=1,2

SC/ / 62Twh'X}21|thh|2 dt—|—C/ / 627-@;1 (|Vhwh|2+|mhwh|2+|wh|2) dt
— Qp =T Jwp

+Crh22/ /7 2|0, O (xnwn)|? dt. (2.23)

k=1,2

One then easily checks that, for 7h small enough,

[ [ e (Tt ) e ot [ o oo P

k=1,2

C Z/ / e2wh|8ikwh|2dt+0/ / 2T lwy, |2 dt
k=127 T Jw, =T Jwy

h

T
+ C7h? / / 2| Qpwy,|? dt + CTh? Z / / eTen |8}tk8twh|2 dt.
—-7JQ,

k=1,2
We thus conclude (ZT) only by adding the terms
T T
7_/ / 2T<ph|a wh| dt + 7 Z / / 2T<ph,|a}-;kwh|2 dt+T3/ / e2ﬂph'|wh|2 dt
=T Jwp k=1,2 =T Jwp,

on both sides of (Z23) and by taking 7 large enough. O

2.4 Proof of the uniform Lipschitz stability result

As said in the introduction, Theorem [[.4lis a consequence of the Carleman estimates in Theorems 2.1]
and Its statement is very similar to the one of [3, Theorem 3.1] in the 1-d case. With respect to
the stability estimates obtained in the continuous case in [2] (see also [22], []), there is the additional
term (3T]) which is remanent from (Z) corresponding to some non-standard penalization of the
discrete inverse problems.

Proof of Theorem[I.7] Let us begin with the identity
T — a — b 2 a b 2
Z - ‘6h,kyh[qh] - ah,kyh[%w dt = H&,eh(yh[qh]) - aueh(yh[%])HHl(OﬁT;Lz(m)) )
h,k

that allows to end the proof of Theorem [[4] as soon as we obtain the stability estimate (L28) with
H///h[qh — M| qh HH1(0 T.L2(Ty)) replaced by

1/2

Z / / ‘6}1 wnlan] — h kyh[Qh] dt

k=1,2

Since the proof follows the one of [3] Theorem 3.1], we only sketch the main steps required.
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o Step 1. Energy estimates. We first write classical energy estimates in the context of the semi-
discrete wave equation in p, like the one written in [3, Lemma 3.3], and apply them to z, =
01 (ynla?] — ynlq?]) that satisfies

atch - AhZh + qzzh = (qz, - QZ)atyh[QZ]a in (07 T) X Qhu
zp =0, on (0,T) x 9y,
(2(0), 8:21(0)) = (0, (¢}, — 4/ )¥5)> in Q.

We thus get a constant C' = C(T,m) > 0 independent of h and such that for all ¢ € (0,7T),
107 26 30+ 10Ol @) + 1Oz < OK gt~ s gy (220

where ||yh[qm||H1(o7T;Lz°(Qh)) < K.
e Step 2. Choice of the Carleman weight. Since we assumed T > /2, we can find a > 0 and
B € (0,1) such that
BT? > sup |z — z4|* — inf |2 — 2,]* = 2 + 4a.
2€Q e

Therefore, we can choose 1 > 0 such that the Carleman weight function ¢ defined in (22)) satisfies

sup Y(t,z) < inf (0, z). (2.25)
[t|e(T—n,T), z€Q z€Q

We then choose a and S as above in the Carleman weight (2.2)), and choose u, 79, € > 0 such that
Theorem [21] holds.

e Step 3. Extension and truncation. We extend the equation in z, on (—=T,T), setting z,(t) =
—zp(—t) for all t € (—T,0). We also extend 0;yn[g}] as an odd function on (—T,T). We define the cut-
off function x € C*°(R;[0,1]) such that x(+£7") = Oyx(£T) =0and x(¢t) = 1 forallt € [-T+n,T —n].
Then wy, = xz, fulfills the assumptions of Theorem 2.1] and satisfies the following equation:

Opwp, — Apwp, + @Qwy, = O xzn + 206x0izn + (8 — ¢)Oynlql], in (=T,T) x Qp,

wp, =0, on (=T, T) x Oy,
(wn(0), Bwr(0)) = (0, (¢ — gb)yi), in Qp,
wh(:I:T) = O, 8twh(:|:T) = 0, in Qh.

e Step 4. Using the Carleman estimate. We apply Carleman estimates (Z3) and (Z4) to wy, and,
using the expression of d,wy,(0) and Assumption ([27), we get, for all 7 € (19,¢/h),

T T
\/; eT‘Ph(O)|qZ _ q2|2 + 7—3/ / e'rsahlwh|2 dt < C/ / e2‘rgah||:|hwh|2 dt
Q, —TJa, —1Ja,

T 9 T
ver Y [ [ el avom S
h=1,27 =T T,

k=127 T
The end of the proof finally consists in estimating the term containing Opwp,:

T T
/ / e2Ten|Opwy |2 dt < C/ / eXmen | qhwy,|? dt
=T Qh =T Qh

T
e /e2w(|atzh|2+|zh|2)dt+c/ / 2o (g8 — Vgl dt.  (2.27)
[t|e(T—n,T) JQp —T JQp

/ oo D Pt (2.26)
Qe

The first term of the right hand side of ([Z27) can be absorbed by the left hand-side of ([Z28) as ¢
is of bounded L°(€Qp,)-norm. In the second term, we bound the weight function by its supremum on

19



[T —n,T] and then use the energy bound ([2:24) on z;,. This can then be absorbed by the left hand-side
of (226) due to the comparison (2.28) of the weight at time 0 and on (T — 7, T). Finally, since the
weight function is maximal at ¢ = 0, the last term can be bounded by Cth 627‘/”1(0)|q;‘; — qZ|2 due
to the assumption ([27) and thus it can also be absorbed by the left hand-side of (Z28]). Therefore,
taking 7 large enough completes the proof of Theorem [[.4] in the case of a boundary observation
(C28]). The case of a distributed observation can be deduced similarly from Theorem stating a
Carleman estimate for a distributed observation. O

3 Application of elliptic Carleman estimates

3.1 Logarithmic stability estimate in the continuous case

The goal of this section is to prove Theorem [[.3] Actually, it is a direct consequence of the following
result, similar to the ones in [29] [31]:

Theorem 3.1. Let 'y be a non-empty open subset of 0 and let w be a smooth connected open
subset of Q such that dw N N is an open neighborhood of Ty. Let m > 0 and g € L>(Q) satisfying
llal| foe < m. Let 2 >0 and Ry > 0, and assume that ( = ((t,x) solves the wave equation

{ 8tt<_A<+q<:fa n (_TaT)XQa (3 1)
(=0 on (=T,T) x 99, ‘

for some f € LY (=T, T; L?(2)) satisfying
f=0 in(-T,7T) x {ze€Q,dx,w) < Ro}, (3.2)

and satisfies ¢ € H*((=T,T) x Q) with 1< g2~y x0) < Z-
Let o > 0. There exists Ty > 0 such that f07“ any T > Ty, there exists a constant C = C(T) > 0

such that )
~TFa
log | 2+ 7 . (3.3)
00 €l L2((—1,m)xT0)

Indeed, let us first show how Theorem Bl implies Theorem

IC a1 (=1/8,7/8) ) < CZ

Proof of Theorem[1.3. The idea is to apply Theorem Bl to ¢ = 0;(y[q%] — y[¢®]), which satisfies the

wave equation

OC — AC+ qu = (qb - qa)aty[qa]v (t7 .’L‘) (0,T) x £,
(=0 (t,x) € (0,T) x 092, (3.4)
C(Ov ‘T) =0, 5,5((0,.%‘) = (qb - qa)(x)yo(‘r)v z €.

Extending ¢ as an odd function on (=7, T), using the classical energy estimates on 9,¢, the fact that
0¢( is continuous at ¢ = 0 by construction, and recalling assumption (LI2) on ¢® — ¢°, we easily get:

1< g2~y x2) < Cm (H(qa - qb)yoHHg(Q) +(a" - qb)yal(sz) +1(¢" - qb)aty[qa]HWl,l(o,T;Lz(Q)))
< Cnm (||1/0HH1<9> + ||y1HL2(Q) + ”aty[qa]||W1’1<0,T;L2<9>>) +CmM Hy0||L°°(Q)

< Cp(m+ M) Hy[qa]HW?J(O,T;L2(Q))QH1(O,T;Lm(Q)) + Cpm HyOHHl(Q) =97. (3.5)
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Since the potentials ¢® and ¢ coincide on O by (L.I0), and because of (L), the source term f =
(¢* — ¢*)9y[q?] extended to an odd function on (—T,0), satisfies (3.2) for Ry = 6/2 and w = {x €
Q,d(z,T1) < /2 }. Applying Theorem B3], we obtain:

@ 1+a
a b
19ey14"] = 0914 | s (/5.8 ) < 2 [10% (2 Do R ral T)xmﬂ :

Because w = {x € Q, d(x,I'1) < §/2} satisfies the condition (L9) and is thus a neighborhood of
a boundary satisfying the Gamma-condition (L3)), the use of estimate (L&) of Theorem [[1] then
completes the proof of Theorem [I.3] O

Let us now focus on the proof of Theorem 3.1l As we said in the introduction, this result follows
from a suitable use of a Fourier-Bros-Iagoniltzer (FBI) transform to reduce the hyperbolic problem
to an elliptic problem and on an elliptic Carleman estimate.

As in [29] [3T], we use a FBI transform with a “Gaussian-polynomial” kernel: this ingredient allows us
to improve the exponent in (3.3 to any « > 0 instead of only av =1 as in [5].

Also, our proof shortcuts the one in [31] by using a global Carleman estimate for the elliptic equation,
allowing to get rid of the iterated three spheres inequalities in [31] (see also [5]). Though this does
not yield any particular improvement on the result in the continuous setting, we will follow the same
strategy in the semi-discrete case and that way, we will manage to avoid the iterated use of three
spheres inequalities in the discrete setting, which would induce tedious discussions.

Proof of Theorem[J1l The proof is rather long and can be split into several steps. Along this proof,
the constants written in large caps may depend on the parameter n € Nand 7' > 0 and are independent
of the other parameters. But constants with small caps, that will be numbered ¢y, c1, (...) have the
additional property that they do not depend on the time parameter T either.

e Step 1. The Fourier Bros Iagoniltzer kernel. In this step, we introduce the FBI kernel following
[29, p.473]. Let us set n € N* such that 1/(2n—1) < a and v = 1 — 1/(2n) (that guarantees
1/(1+ a) < < 1). Introduce a function F defined on C as follows:

F(z) ! /00 e*te " . (3.6)

:E .

According to [29], this function F is even, holomorphic on C and satisfies, for some positive constants
007 Co, C1, C2:

IFE)+ )] < Coesp (@lS()7), ¥ €, o
|F(2)] < Coexp (—c1]z[M7), Vz € C with |3(2)| < c2|R(2)], ’
Then, for A > 1, we introduce
Fi(z) = XNTF(\7z2),
which, due to (1), satisfies the following estimates:
|Fx(2)| + | F{(2)] < CoA?Y exp (coN|S(2)|V/7), VzeC, (3.8)
|Fx(2)| < CoXVexp (—c1A|2]Y7), Vz € C with |S(2)| < c2|R(2)|. ’

Let us remark that F defined by (Z0) is the inverse Fourier transform of £ — e~¢"" so that F is an
approximation of the identity as A — co. Finally, notice that by construction, the Fourier transform

of Fy(t) is )
FEO) = F(F) (5 ) = e (— (5) ) . (5.9)



e Step 2. The Fourier-Bros-Iagoniltzer transform. Let ¢ be the solution of ([B.I]). We introduce a
cut-off function n € C*°([-T,T}; [0,1]) such that

(1 it < T2,
n(t) _{ 0 if |t > 3T/4.

We define the FBI transform of ¢ for s € R, a € [-T/4,T/4] and = € Q by
va (s, 2) = / Fy(a+is—t)nt)(t, z) dt, (3.10)
R

where i denotes the imaginary unit. Since d,va,x(s,2) = i [ Fa(a + is — t) 8;(n(t)((t, x)) dt, using
integration by parts, one easily checks that v, solves the elliptic equation

(—=0ss = Dg + @)V = far InRxQ,
Vg x =0 on R x 09,

where f, » is defined as fox = fax1 + fa,r,2, With (since ¢ satisfies (3.1]))
fa,)\,l(sa .’L‘) = ~/RF>\ (a +is — t) (277/(15)(9,5((15, .’L‘) + ﬁ//(f)C(fa ‘T)) dt,
faralsa) = [ Filais=ont)f(t.a)dr

On the one hand, using that 21/9,¢ +1'¢ is supported in {(¢,z) € (=T,T) x Q s.t. |¢t| > T/2} and
the second estimate in ([3.8) on the kernel F, we have

< O>\27672C1A(T/2)1/7

e v
p < CN2 e 2eaN(T/2) /7 ||<||§{1((—T,T)xﬂ) >

2
||fa7)\11||L°°(73,3;L2(Q .@2, (311)
for any T' > 12/c¢g, since a € [-T/4,T/4], |t| > T/2 and since we decided to work for s € [—3, 3] and
needed |s| < ezla — t| to apply (B.8]).

On the other hand, the first estimate in B.8) also yields, for c3 = 2 -3¢,

2 c 2 c
lvanlzr(—s.mxa) < CATe 1< (—rmyxay < CXT e 22, (3.12)

and, similarly, , ,
||6VUG7A||L2((_373)><1“0) < C)\4’7603>\ HaVCHL?((fT,T)xFO) . (3-13)

e Step 3. Estimating vq,x by an observation on (—3,3)xT'g. This step strongly relies on a Carleman
estimate for the following elliptic problem:

(3.14)

(=0ss —As+qw =9 in (—=3,3) x Q,
w=0 on 0((—3,3) x Q).

One of the most important points is to suitably choose the Carleman weight. First construct a smooth
function ¥y = 1o(x) on @ such that

Vo € wv 1/)0(513) Z 05

1wa{|v¢0|} > 07

Vo € Ow \ T, ¥o(x) =0 and dy1ho(z) < 0,
%0l oo () < 1/2.

(3.15)
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Note that such a function 1y exists according to the construction in [I7] (see also [38, Appendix III]).
We then extend this function ¢ as a smooth function ¢ on Q satisfying ||¢|| L~(q) < 1. By continuity,
there exists a positive constant R € (0, Ro) such that in the set

wr = {z € Q, d(r,w) < R},

where the source term f vanishes by assumption [B.2), we have inf,ezz{|V¢ ()|} > 0 and such that
in the set

%z{er, §<d(:1c,w)<R},

we have, as pictured in Figure 2]
0 =inf ¢ > sup . (3.16)
« €

A
NN - <S\>7
B R AR DS
AN\

Q ‘\

Figure 2: Construction of the weight function ¢ (x).

We finally define, for p > 1,

¢ = @(s,x) = exp(u(h(z) — 5%)), (s,x) € [-3,3] xQ. (3.17)
According to [20] (see also [I7, B5]) one has the following Carleman estimate for (3.14):

Lemma 3.2 (An elliptic Carleman estimate). There exist u > 1 and a constant C > 0 such that for
all 7 > 1, for all g € L*((—3,3) x Q) and w solution of BI4) supported in (—3,3) X wg,

2 2
e wl a0y + T 1€ Vsowlla (s 5x0)

<C H€w9|‘i2((73,3)xsz) +Cr ||ewauw||i2((73,3)xro) , (3.18)

where the constant C' can be taken uniformly with respect to q € L>(Q) with ||q|| . < m.

Estimate [B.I8]) has to be understood as a Carleman estimate with observation on (—3,3) x I'g
and in (—3,3) x (Q\ wg). But, as we assumed that w is supported in (—3,3) X wg, we simply omit
the observation in (—3,3) x (Q\ wg).

Now, introduce smooth cut-off functions xs = xs(s) and xg = xr(x) such that

NERIED
XS(S) = { 0 if |S| >3, and ||XS||W2~°°(R) <C,
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and

1 ifd(z,w) < R/2,
Xr(@) = { 0 itdrw) >k 0 Ixelwaee SO
We can then define
wa,)\(sa $) = XS(S)XR(‘I)Ua,A(Sa $), (Sa $) eERxQ (319)

which satisfies

{ (=0ss = Ag + QWax = ga,x  in (=3,3) x Q, (3.20)

Wex =0 on 0((—3,3) x Q),
where (using the fact that f, x 2 vanishes in wr by assumption ([B.2]))
Jax = XsXRSax1 — 2XROsX$05Va,x — XROssXSVa,x — 2XsVXRVVa,x — XSAXRVa,x-
Thus, Carleman estimate (3.I8) can be applied, and gives: for all 7 > 1,
7’ ||€wwa,/\||iz((_3,3)xﬂ) +7 Hewv&ww“v)‘||2L2((—373)XQ)
<C ||€T<pga,)\||§;2((7313)><g) +Cr ||ewavwa,k||iz((73,3)xro) :

Since wa x = va,x o0 (—1,1) X w and |[XsX w200 rxo) < C, We obtain

2 2
3 ||67¢UG7A||L2((—1,1)><0.;) +7 ||e"'tpvs,zva,>\||L2((_1)1)><w))

< C e ganlliaszway + O 1€ 0vanltzg_sayxr - (3:21)

Now, we estimate from below the left hand side and from above the right hand side of (B3.2I)).
Notice first that according to (B.I6), we can choose €y € (0, 1) such that

inf o> sup o (3.22)
|s|<eo, zEW |s|<3, z€€
In order to simplify notations, we set
Jo= inf ¢ = sup ¢, Haz = sup @, Fe= sup . (3.23)
|s|<eo, TEW |s|<3, zeQ |s|€(2,3), z€Q |s|<3, z€€

Remark that, similarly to (8:22), that writes now .7, > %, using the explicit form of ¢ and the fact
that |9l e (q) < 1, we have

S, > y(zg). (3.24)
Going back to (BZI]), on the one hand, for all 7 > 1, the left hand side satisfies,
T Va3 (—eoeorwy < TN VAo (C1aywwy + TN VswtarTo(Craywy - (3:25)

On the other hand, the first term of the right hand side in ([B:21]) can be estimated from above:

< 62T.5ﬂ|

T 2 2 T T
||€ ‘pga,)\||L2((_3)3)XQ) >~ |fa>>‘71||L2((—3,3)><Q) —+ C (62 S(2,3) + 62 .5”‘6) |

2
o301 (3.3 (3-26)

since Jsxs, Ossxs are supported in {s € R, s.t. |s| € (2,3)} and Vxg, Axg are supported in €.

Plugging (BI1)) and (B12)) into ([B26]), we obtain

1e™ Ga Al 2 sy xqy < CETT A NI @2 4 0 (27700 4 2TTe) N g? (3.27)
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Combining now estimates B.21I)) with (325, BI13)) and B21), we get

62Tj“’ | < C€2T=5”)\2v6—2c1)\(T/2)1/’v 92

2
||va>>‘||H1((—eo,eo)><w
+C (eQT‘y(“) + 62T‘yﬁ) MV P2 | Crem? \4eesA ||8VC||22((_T7T)XFU) . (3.28)
o Step 4. Estimating ¢ from its FBI transform v, . Writing ¢ as follows,
C(f, :E) = C(tu :E) - Ut,)\(ou :E) + Ut,)x(ou :E)u
we obtain that, for ¢t € (—=7/8,T/8),
||C||L2((7T/8,T/8)><w) < It 2) = ¢t z) — U,;A(O,x)||L2((_T/87T/8)Xw)
+ || (G/, :E) — Ua,)\(oa x)||L2((—T/8,T/8)><w) . (329)

As already detailed in [31], since v;2(0,2) = Fx x (n¢)(t), where the convolution is only in the time
variable, we obtain, from (39 the following estimate (notice n =1 in (=7/8,7/8)):

[(t,2) = ((t,z) — Ut,A(Oax)”p((_:r/g,:r/g)Xw) = [In¢ — Fxx (WC)HL?((fT/g,T/s)xw)

100 = FE) FOOlaese < |€2) = EIF0OE )

IN

L2(Rxw)

IN

C C
%I ¢ (mxwy < ’%l I ar (= 7)) -

Besides, since F) is holomorphic, the map a + is — vg (s, z) is holomorphic in the variable a + is
for all A and z, and the Cauchy formula implies that (see appendix of [5], for some details)

a,z) — g 2 (0,2 _ w <C sup Va,A —€0,€0) Xw)
Il( ) ( )”Lz(( T/8,T/8) xw) ac(_T)4T/4) [ ||L2(( 0,€0) XW)

Hence, from ([3.:29), combining the above estimates we get

C

1Sl 2 (=1 /8,7/8) xw) < ’%l IS ae (=11 x) + Cae(isTlﬁTM) vanllL2((—eq,co)xw) -

Having an estimate on v, » in H'((—ep, €9) X w) at our disposal, we can apply the latter to 9;¢ and
V(¢ and obtain

IS e ((—7/8,7/8) %)

C
— I _ o T C sup Vg, en o) X
bR [ ||H2(( T,T)xw) ac(—T)4T/4) I ”Hl(( 0,€0) Xw)
C

< —9+4+C sup Va, A e e ) ¢ 3.30
R JO P a0

e Step 5. Concluding step. Combining estimates (328) and ([B30), we have shown that for all
A>land72>1,

1/v

c
2 T7(SF =L —2c1 A
||C||H1((7T/8,T/8)><w) < W@2 + e ( IN2ve—2aM(T/2)77 2

+ 06727'(7“, (627-{9(213) + eQTycg) )\4’Y€C3)\.@2 + CTGQT(yfﬂw))\ﬁl’yng)\ ||8VC||§/2((_T7T)XFU) . (331)
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Recalling (3:22) and ([3:24), we can choose the Carleman parameter 7 as a linear function of the FBI
parameter A\ by setting
63)\
T= . 3.32

S —max{ S, S (23} (3.32)
With this choice, one should assume A > \,, where A\, = é (fw — max{ycg,y(zg)}) , in order to
guarantee ([B3I) (since 7 > 1). Thereby, there exist positive constants c4, cs5,cs such that for all
A Z >\*a

e—QTﬂw (627'.5/’(2’3) + e?Tch) )\4v603)\ < Ce—C4>\
— )
e2‘r(.5”—fw)/\276—201X(T/2)1/7 < Oek(cs—2cl(T/2)1/")
— 3
TEZT(yf(ﬁw)AAL'ye%)\ < Oec(;)\.

Obviously, there exists Ty > 0 such that for all T > Ty, 5 < ¢ (T/2)'/7. Thus, estimate B.31)) yields,
forall T > Ty and A > \,,

2 1 PN S 1/~ ¢ 2
115 /8778y xw) < C2? (ﬁ e e T/ ) + CeM |0,C N L2 11y xro)

or, in a more concise form, for all A > A,,
O Cﬁ)\/Q
€~z /8,778y x0) S 352 + O N0uC L2 m)xry) - (3.33)

Finally, if we define the ratio “data over measurement”

B 9
||6V<||L2((—T,T)><Fo)

p

and the critical value 1
Ao = = log (2+ p), (3.34)
6

taking A = A\g if Ay > A, we have

1 (2+p)1/2>
e <C9 + .
ICH e~ /8, 778) ) <[log(2+ﬂ)]v p

We can drop the second term of the right hand side since the first term dominates as p — oo
(p is bounded from below by the continuity of the operator z + 8,z from H?((=T,T) x Q) to
L?((=T,T) x 09)). Otherwise, if \g < A, we take A\ = \, : In this case, p < exp(csA) = C, i.e.
2 < Cl0uCll p2((—1,7)x10)> SO that B.33) with A = A, yields

2
||<||H1((—T/8,T/8)><w) <C ||8V<||L2((_T7T)><p0) < C?-
This concludes the proof of ([B.3]) since —y < —1/(1+ «). O

Remark 3.3. When f vanishes everywhere in (0,T) x Q, no cut-off function xr is needed and one
obtains the following quantification of unique continuation result due to [31, Theorem F| (see also [35]
for o =1): For all T > 0 large enough, for all ( € H*((—=T,T) x Q) solution of the wave equation

BI) with f =0,

1
<1 2~y ) )] e

€l zrmiziopear = Ml oy llog (“ 10 €T ey
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or, equivalently,

<l 2~y x9)

<l 2 =11y x2) < Cexp (CAT*) 10 Cll 2~y xry » where A = ’
<l £t ((—178,778) %)

Since  in that case is a solution of the wave equation with no source term, this last formulation can
be written in terms of the initial data (¢(0),8:¢(0)) = (¢Y,¢Y) € H> N HH(Q) x HE(Q):

1(Cos COll 2y g

(R

1¢°, Cl)HHzmH&(sz)xH&(sz) < Cexp(CA™) 100C 1 21,1y <y » where Ao =

3.2 Uniform stability in the semi-discrete case

The goal of this section is to derive the semi-discrete counterpart of Theorem Bl Similarly as in the
continuous case, that will be the main ingredient for the proof of Theorem

As specified in the introduction, we limit ourselves to the case Q = (0,1)2. We may thus assume
that T'y is a subset of one edge. Due to the invariance by rotation, with no loss of generality, we may
further assume that this edge is {1} x (0,1).

We claim the following result:

Theorem 3.4. Let Q = (0,1)? and Ty be a non-empty open subset of the edge {1} x (0,1). Let w be a
connected open subset of Q with Lipschitz boundary and assume that dw N O is an open neighborhood
of Ty. Also set wp, = wN Q. Let m > 0 and q, € L7°(Yy,) satisfying ||Qh||LZO(Qh) <m. Let 2 >0
and Ry > 0, and assume that p, is a solution of the wave equation

04Ch — ACh + qnCh = fn, in (=T,T) x Qp, (3.35)
Ch =0 on (—T, T) X 6Qh, ’

for some fr, € L*(=T,T;L2(Q)) satisfying fr, = 0 in (=T,T) x {zp € Qp, d(zp,w) < Ry}, and
satisfies Cp € HE (=T, T) x Qp,) with
||Ch||H§((7T,T)th) <.

for some Ry > 0 and & independent of h > 0.
Let o > 0. There exist Ty > 0 and hg > 0 such that for any T > Ty, there exists a constant C
independent of h such that for all h € (0, ho),

1
T+a

=4 +CPhM 0+ (3.36)

HChHH}L((—T/&T/S)th) <C9 log 24+ —
oz

L2((=T,T);L3(To,n))

Before proving Theorem [3.4] let us point out that it differs from Theorem B by the last term
ht/(+2) 9 in (336). Nonetheless, this term vanishes in the limit & — 0 and thus estimate (3.3 can be
recovered from (B:36) when h — 0. But in particular, estimate (B:36]) does not state a uniqueness result
anymore, but rather an “almost-uniqueness” result: if 6,; 5Ch vanishes on (=T,T) x I'gp, for some ¢
satisfying the assumptions of Theorem B.4] we only have that the norm of ¢, in H} ((—7'/8,T/8) x wp,)
is smaller than ChY/ (1% 2. Due to the definition of 2, this corresponds to the case where

”ChHH}l((fT/g,T/g)th) < opt/0+a) ||Ch||H}2l((—T7T)><Qh’) )

i.e. functions that are localized outside (—7/8,7/8) x wp. This is completely consistent with the
presence of spurious high-frequency modes that are localized, see [37, 40, [15]. We refer for instance to
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a counterexample due to O. Kavian: if wy, denotes the discrete function given by w; ; = (—1)" when
i = j and vanishing for ¢ # j, the function (, (¢, ) = exp(2it/h)wp () is a solution of ([B.37]) with
gn =0 and f, = 0 whose discrete normal derivative on {1} x (1/4,3/4) vanishes identically.

Proof of Theorem[34] It follows the same steps as the one of Theorem 3.1l More precisely, Steps 1, 2
and 4 involving the FBI transform in time are left unchanged, but Steps 3 and 5 need to be modified.
Indeed, Step 3 in the proof of Theorem [B.1]is based on the Carleman estimate in Lemma and we
should thus use a semi-discrete counterpart. Namely, we use the discrete Carleman inequality proved
in [9 Theorem 1.4] that we rewrite below within our setting and using our notations.

Before stating this result, let us make precise how we choose the weight function. In particular,
let us emphasize that the weight function in [9] is assumed to be CP([—3,3] x Q) for p large enough,
and this cannot be true with the construction we did for the proof of Theorem Bl since 2 = (0, 1)
contains corners.. We thus build the weight function )y, as follows (here the subscript ‘r’ stands for

‘regularized’): first we conceive an open subset w; such that w, C {x € Q, d(z,w) < Ro/2 }, w C wy,
and Ow, \ T'y is smooth (see Fig. ).

.
-~

Lo

Ry

R

.

Figure 3: Construction of the weight function g ,(x) when w is a neighborhood of two consecutive
edges.

We can then design a smooth weight function ¢, such that

Vo € @y, Yo, (x) > 0,

info{| Vo, c(z)[} > 0,

Vo € dwy \ To, Optpg (x) < 0, (3.37)
Vo € Ow \ T4, ¥or(x) =0,

||"/10,r| L (wy) < 1/2'

Again, such a function v, exists according to the construction in [I7, [38] and it can be extended

as a smooth function v, on Q satisfying [¥ell () < 1. By continuity, there exists R € (0, Ro/2)
such that for the sets

wr={r e dz,w) <R} and % ={zxeQ, R/2<d(z,w;)< R},
we have

inf {|Vie(x)|} >0, and infe, > sup . (3.38)
Wr, R Wr ?r
We then define ¢, as in (BI7) but with this function ¢,: for pu > 1,

or = pe(s,7) = exp(ultn(x) = ) (s,7) € [-3,3] x 1L
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Theorem 3.5 ([9]). Let ¢, be as above and its restriction on the mesh ¢y = rpe;.
There ezist 1 > 1, C >0, hg > 0 and g9 > 0 such that for all h € (0, hy), 7 > 1 with Th < &g, for all
gn € L*((=3,3); L2(,)) and wy, solution of

(=0ss — A + gn)wn, = gn in (—3,3) x Q,
wp =0 on ((—=3,3) x 0Q) U ({-3,3} x Qp),

supported in (—3,3) X wy R,

2
eTV’r,ha}Jerwh’ -
’ L2(=3,3;L3 (2, 1))

2 2
T [lem e wn 7 5 322 () T 1€ Vawnllra (s 5,02 (0, +7 > ’

’ (3.39)

2 _
<C ||6T¢r,hgh||L2(7373;Li(9h,)) +Cr ‘ eTPrh ah,Qwh‘

L2(=3,3L2(To.n))
Besides, the constant C' can be taken uniformly with respect to qn € L§° () with ||qh||L;2.O <m.

Remark 3.6. Before going further, let us comment more precisely Theorem [3.0, which cannot be
found under that precise form in [9] and differs from [4, Theorem 1.4] at three levels.

The first issue is that Theorem 1.4 in [9] concerns the case of an observation on the boundary
of the continuous variable, corresponding here to s = +£3. Therefore, Assumption 1.3 on the weight
function in [9] is designed to yield observations on the boundary of the continuous variable, and in
our case, they are replaced by the condition Vx € Ow, \ T'o, Oytbo(z) < 0 in B37). We claim that
this condition is enough to guarantee a Carleman estimate with an observation on the boundary of
the discrete variables. This can be proved following the lines of [9] in that case and looking at the
boundary terms denoted Y and estimated in [4, Lemma 3.7], which are strong enough to absorb the
boundary terms in Ji1 in [9, Lemma 3.3] on 00\ To.

The second issue is that Assumption 1.8 in [9] requires some convexity condition in the neighbor-
hood of the boundary. But, as mentioned in [T1, Remark 1.3/, this can be avoided by suitably modifying
the proof of Lemma C.4 in [9].

The third and last issue is that our weight function may degenerate outside (—3,3) X wy r. But, as
in the continuous case, this actually does not come into play as we apply Carleman estimate (3.39)
to discrete functions wy, supported in (—3,3) X wy g.

Note that the main difference in the discrete Carleman estimate of Theorem with respect to
the one in Lemma is the fact that the parameter 7 is assumed to satisfy 7h < €y3. The proof of
Theorem B.1] shall then be modified to keep track on this restriction. Thus, Step 3 can be done as in
the proof of Theorem [B.I] except that the construction of the cut-off function g is now based on wr,
and the existence of €5 > 0 such that

inf ¢r(8,$) > Sup ¢r(s7x)
|s|<eo, €W, [s|<3, z€%:

is granted by (B38). Then, all the constants .%,, ., .#(23), S% in B.23), now denoted .7, , .7,
S 2,3), Y., are defined by replacing w by w;, ¢ by ¢ and € by ;. Hence, instead of ([3.31), we
obtain the following: for all h € (0, hg), 7 > 1 with 7h < &g, for all A > 1,

) S i@z + 0627—('7_]“’7))\276_201>\(T/2)

A2y

+ Oe*ZTﬂwr (627'(5’(2,3) + 627-‘7%’“) )\4’}/603)\@2 + CTEQT(yfﬂwr)AAL'ye%)\ Ha}:2<—h’

) 1/~
ISkl e ((—7/8,7/8) xwnn 7

2

L2(=T,T;L3 (To,n))

The discussion then follows the same path as in the Step 5 of the proof of Theorem B} the natural
choice is to take 7 as a linear function of A as in ([B32). Thereby, we get the following discrete
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counterpart of ([B:33)): there are constants C' > 0 and e, > 0 independent of & > 0 such that for all
h € (0, ho) and for all A € (A, e4/h),

(3.40)

¢ ceMN/2 —
Gl (/37 /8) 50y = F@—i_ Cer Ha’“zgh‘ L2(—=T,T5L2 (Do)

Introducing the ratio

9

Ph =
ol

L2(=T,T;L3 (To,n))

the optimal value of the parameter A is
1
Ao,n = —log (2+ pa),
Ce

corresponding to the choice [834) in the proof of Theorem Bl We then have to discuss the cases
Aoh < A, Ao € (Asyex/h) and Ao, > e4/h. Of course, the first two cases can be handled as
in the continuous setting. There only remains the last case Ao n > €./h. But this corresponds to
pn > exp(cees/h) — 2 > exp(cses/h)/2, for h small enough, which in particular implies

2 HB,;QQL} < P exp(—cees/h).

Lz(—T,T;Li(Fo’h))

Thus, taking A = ¢, /h in ([.40), we obtain
IShll 213 ((~/8.7/8) xion) < CRY 2
This explains the presence of the last term in (B.36]). O
We finally conclude this section with the proof of Theorem

Proof of Theorem I3 As for the proof of Theorem [[.3 from (B1]), it follows immediately by applying
Theorem Bl to ¢, = drynlql] — Orynlgl]. The use of estimate (L30) of Theorem [ then completes
the proof. Details are left to the reader. O

Remark 3.7. Following Remark[3.3, we can derive a quantification of a kind of unique continuation
result for solutions p, of discrete wave equations (B35 with no source term: For all o > 0 and T > 0
large enough, there exists a constant C' independent of h > 0 such that for all {}, solution of the wave
equation (B.38) with fn =0 and initial data (), Cp) € Hi N H () x Hy (),

0 ~1 COALTe _
H(Ch,Ch)HHé’h(Qh)XLi(Qh) S Ce h Hah72c‘

L2 (—T,T;Li (FO,h))

+ CrY T (R ¢} 3.41)

)||H,2LﬂHéth(Qh)><Héyhr(Qh) ’ (

H (> Cfll)HHimHé’h(Qh)xHé’h(Qh)

where Ay, = or, equivalently,

|| (Cf?v C}DHHé,h((lh)xLi(Qh)

14+«
(1= OO n) G D i = O [0
Note that (BAI) only yields an “almost uniqueness” result in the sense that it does not imply ¢, =0
when the discrete normal derivative 0, 5(p, vanishes on (=T, T) x Ty . Recall here that this term is
needed as unique continuation for the discrete wave equations does not hold as shown by the coun-
terexample of O. Kavian of an eigenfunction of the discrete Laplace operator which is localized on the
diagonal of the square.
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4 Convergence and consistency issues

This last section is devoted to the proof of the convergence results stated in Theorem

4.1 Convergence results for the inverse problem

We will first state and prove two theorems of convergence under more detailed consistency assump-
tions. The feasibility of these assumptions will be studied next. Under the Gamma-conditions, and

more specifically in the geometric setting (L26)), we obtain:

Theorem 4.1 (Convergence under Gamma-conditions). Assume that (Q,T0,T) satisfies the con-
figuration (L26) and that (y°,y', f, fa) follows the conditions (L39). Let ¢ € L>=(S)) and assume
that there exist sequences qf € L5°(,), and (y9,y}, fu, fo.n) of discrete functions in L3 (Qp)? x
LY0,T; L3 () x L2(0,T; L2(0N2,)) such that

: 0/ a _
%%Heh(qh)_qulg(ﬂ) _07 (41)
i | 71) -~ 0| _ 2
50 nldi] old] H(0,T;L2(T0))x L2((0,T) Q) (42)
hr;ljgp il Loe () < 00 (4.3)
lim sup [[ynlapl | 0.7:50 (1)) < 00, (4.4)
h—0
Jag >0, Vh >0, inf lyp| > . (4.5)
h

Then for all sequence (¢%)n=0 of potentials satisfying

I bl < oo, d i H% A H -0,
H,?_S)ngqhHLh @) = an 50 nla] old] H(0,T;L2?(T0))x L2((0,T) x Q)
we have

. 0/ by _

%{L}rnoHeh(qh) qHLz(Q) 0

When no geometric condition on the observation domain is satisfied, we get:

Theorem 4.2 (Convergence under weak geometric conditions). Assume the geometric configuration
@32) for (2,Tg,Ty), the conditions [L39) for (y°,y%, f, fa), and let O be a neighborhood of T .
Let ¢ € L*>() and assume that there exist sequences gt € L (), and (Y3, v, fn, fo.n) of discrete
functions in L2 (Q4)? x LY(0,T;L2(Q4)) x L*(0,T; L2 (02,)) such that @I), @E2) and @3) are
fulfilled, along with

1121 sup lynlan]ll 10,7250 @) w21 0,722 (1)) < 09 (4.6)
N

1,0 : 0
Joy > 0, Vh > 0, 15?5 lyp] > a0 and 111?21>S(1le HthH}I(Qh) < 0. (4.7

Then for T > 0 large enough, for all sequence (qZ)h>0 of potentials satisfying

b . b - : b
qn=qy in Oy and q; —qp € H&h(ﬂh) with hI}IllSBlp th — quH(} () <00
— h

H(0,T;L2(T0)) x L2((0,T)xQ)

)

i b N e
llfflri)soliquhHLhm(Qh) < o0, and }IL%H///,L[%] ///O[q]H

we have
%11&) ||€2(q2) - q”Lz(Q) =0.
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Theorems [4.]] and follow from the same arguments and can be proved simultaneously.

Proof of Theorems[{.1] and[{-3. Let q¢f and ¢}, be as assumed in Theorem E1] (resp. Theorem E2).
One easily gets
im |7t — 14| ~0
hl—% nldi] nla] H1(0,T;L2(T0))x L2((0,T) X 2)
Since one can find m > 0 larger than ||q[| .« g, and lim suph_,0(||q,‘§||Lzo(Qh) +||ah
to Theorem [[4], (resp. Theorem [[H), we get

HLhoo(glh’)), according

. b _ . . 0(b 0 _
}ILE)I}) Hqg - QhHLi(Qh,) - 07 or equlvalently, }11—>H10 Heh(Qh) - eh(‘]ll]{)HLz(Q) =0.
We then conclude by the triangular inequality
leh(ah) = dll 120 < lleh(ah) = en(@i) 12 + [len(ah) = all 12y -
since each term in the right hand-side converges to zero as h — 0. O

Of course, Theorems[4.I]and .2l are based on the strong assumption that there exists a sequence of
potentials gj satisfying suitable convergence assumptions for some (yg, y,ll, fn, fa,n) that are not even
supposed to be convergent to their continuous counterpart. This rises the natural question: given
(v°, 9y, f, fo) satistying (I339), can we guarantee that the natural approximations (y3, v}, fn, fo.n) of
(y°,y', f, fa) yields the existence of a sequence of potentials ¢ satisfying the convergence conditions
of Theorem [4.1] or Theorem ?

This is the consistency of the inverse problem, and the cornerstone of the proof of Theorem
once stability results are proved. These consistency issues are discussed in the following subsection.

4.2 Consistency issues

The difficulty to derive the consistency of the inverse problem is the condition (@4) (or (6] in
the case of Theorem [L2). Indeed, passing to the limit, it indicates that y[g] should belong to
HY((0,T); L>°(Q)). But there is no simple way to guarantee this condition, since the “natural” spaces
for the wave equation are the H*())-spaces.

Let us remind the reader that we consider Q = (0,1)? C R?. We recall this setting here because
of its influence on the Sobolev’s embeddings we will repeatedly use in this last section.

Besides that, as our theorems of stability are given with conditions on y[g| instead of conditions
on the coefficients (y°, 3!, f, fa), we will stick to that approach. We claim the following result:

Lemma 4.3. Assume g € H' N L>=(Q) and that we know qs = qloq. Furthermore, assume that the
trajectory ylq] solution of (L)) satisfies the reqularity given in (L4Q). Finally, assume there exists
ag > 0 such that infg |y°| > ap.

Then we can construct discrete sequences (Y3, yr, fn, fo.n) depending only on (y°,y, f, fa,qo) such
that the corresponding sequence ynlqn] solution of ([L23) for qn = Trh(q) satisfies conditions (@I
&ED). In particular, if q is known on some open set O and takes value qlo = Q, we can further
impose qp, = T1(Q) in Op,.

Proof of Theorem[I.6 Taking the discrete sequence (y3, v}, fn, fo.n) given by Lemma 3] the se-
quence g = Tj(q) satisfies the assumption of Theorem E.I] or Theorem if ¢ is known in some
open set O, which corresponds to the first item of Theorem The second item of Theorem thus
follows immediately from Theorems 1] and O
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Proof of Lemmal[f.3 We split it in two steps. First, we will construct (y3, v}, fa, fo,n) and gn; Second,
we will explain why our construction is suitable for conditions (@I)—(T).

Let us choose ¢ € H' N L>(Q) with lan = ¢go (note that such G exists since gy is the trace of
q € H' N L>(Q) by assumption). We define § = y[g] the solution of (II)) with potential . Then,
setting z = y[q] — 7, it satisfies

Oz — Az + gz = (§ — q)yldl, in (0,7) x €,
z=0, on (0,T) x 99, (4.8)
2(0,-) =0, :2(0,-)=0. in £,
Hence zo = 04z solves
Ostza — Azo + Gz2 = (4 — q)Ouyldl, in (0,7) x €,
zo =0, on (0,7) x 09, (4.9)
22(0,) = (G—q)y°  92(0,-) = (4 — Q)y*. in Q.

Since (L4Q0) implies y° € H* N L>®(Q), y* € L*(Q) and duylq] € L(0,T; L*(Q)), and since ¢ — G €
H} N L*°(Q), we have that zo = ;2 belongs to C([0,T]; H(Q)) N C([0,T]; L?(Q2)). In particular,
since z(0,-) = 9;2(0,-) = 0, we have z € H?(0,T; H}(2)).

Besides, by differentiating (£8]) once with respect to time, we get that d;z solves

(=A 4+ §)0z = (G — q)0wylq] — Oz € C([0,T]; L*(R)),  with 9,2 = 0 for (t,x) € (0,T) x 9.

Therefore, by elliptic regularity estimates, see [I8, Theorem 3.2.1.2], 8,z € C([0,T]; H*(f)), thus
z € HY(0,T; H?(Q)).

Recalling that § = y[q] — z and y[q] satisfies (I40), § belongs to H2(0,T; HY(Q)) N H'(0,T; H*(Q)).
We then define g, = 71,(9) and, for g, = 1(q), we set

Y = 9n(0) = Tn ("), yn = 0 (0) = Tn(y"), (4.10)

fh = Owln — AUn + @nYn fon(t) = gn(t)log, - (4.11)

Note that this choice immediately implies that conditions (1], (Z3) and 7)) (thus also [@3])) are
satisfied.

We now prove that this construction yields condition (). This is based on the remark that by
construction, for g, = 1 (q) we have yx[qn] = Jn + 21, where z, solves

Owuzn — Anzn + qnzn = (Gn — qn) G, in (0,7) x Qp,
Zh = 0, on (O,T) X 8Qh, (412)
(z1(0), Bz (0)) = (0,0), in Q.

Then 23 p, = Oy 2p, solves

Ouzan — DAnzan + qnzan = (Gh — qn)O0uln, in (0,7) x Qp,
z2.n =0, on (0,T) x 9Qy, (4.13)

(22,1(0), Or22,1(0)) = ((Gn — an)yh (Gn — qn)y3),  in Q.
One easily checks that with our construction
Gn — an € Hg () 0 L2 (Qn),
gn € H?(0,T; Hy, () N H' (0, T HY (Qn)),
Yh € Hy () VL (), yp, € L3 (),
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where all these estimates stand with bounds uniform with respect to A > 0. Hence 23} is uni-
formly bounded in C([O,T];H&)h(Qh)) N CY([0,T); L (S2,)) by energy estimates, so that Oz, €
C([0,T); L2(2,)) and thus 9,2y solves

—Ahatzh + qhﬁtzh = ((jh - qh)ﬁtgh - 8tttzh S C([O, T]; L%(Qh)) with 8tzh =0on th.

We use the following lemma, whose proof is postponed to Appendix
Lemma 4.4. Let wy, € L2(Q,) be a solution of

— Apwp, + qpwp, = gp in Q. and  wp =0 on Oy, (4.14)

with g, € L2(Qp) and g, € LP(Q). Let m > 0 and assume ||Qh||Lzo(Qh,) < m. Then, w, €
Hj; N Hy ,(Qn) and there exists a constant C = C(m) > 0 independent of h > 0 such that

HwhHHﬁﬂHé,h(Qh) <C ||9h||Li(Qh) : (4.15)

Accordingly, 9,2, is uniformly bounded in C([0,T]; Hi N Hy ;,(Qn)). Thus, ynlgn] = gn + 2 is
uniformly bounded in H2(0,T; H. () N HY(0,T; L°(Q,)), vielding (8) (and (@4)).

We finally focus on the proof of the convergence condition [@2). As § € HY(0,T; H*()), i is
uniformly bounded in H'(0,T; Hj(%)). In particular, for k € {1,2}, 7, gn is uniformly bounded
in Hl(O,T;H,i(Qik)), so en (9 gn) is uniformly bounded in H'Y(0,T; H(Q)). Besides, it is easy
to check that, since § € H'(0,T; H*(Q)), en(9; ,gn) strongly converges to 9y, 5 in H'(0,T; L*(Q2)).
Hence we get the strong convergence of ey, (9; 9n) to 9., 7 in all spaces HY(0,T; H(Q)) with s < 1.
We then remark that 5% i)

Oven(Jn) = < iz((a%ljj};) ) ‘v onTly, (4.16)
where v is the normal vector to Q on I'... But the sequence eh(a,fkgh) strongly converges to Oy, ¥
in H'(0,T; H>*(Q)) and the trace operator is continuous from H?/4(Q) to L?(09) (see [I8, Thm
1.5.2.1]). Therefore, 0, e, 7 strongly converges to d,y in H*(0,T; L?(99)).

One also easily checks that, since § € H?(0,T; H'(Q)), the discrete function @tkaﬁgjh (k € {1,2})
is uniformly bounded in L*(0,T; L7 (€2, ,,)). Hence hVep(9s:9n) strongly converges to 0 as h — 0 in
L3((0,T) x Q).

We then study the convergence of the normal derivative of z;, and of hVep(9s2,). We have seen
that zj, is uniformly bounded in H?(0,T; Hy (%)) N H'(0,T; Hi (). This immediately implies
that @tkaﬁzh is uniformly bounded in L*(0,T; L; (%, ,)) for k € {1,2} and, following, h¥Ven,(0s:2n)
strongly converges to 0 in L2((0,T) x Q) as h — 0. Let us then remark that ey (gs) and en(Gn — qn)
respectively converges to ¢, §—q as h — 0 strongly in L?(£2), weakly in H'() and weakly- in L>((2).
Besides, as § € H?(0,T; H*(Q)), en(Jn) strongly converges to § in H2(0,T; H*(Q2)) for all s € [0,1).
Following,

en(qn ) b4 strongly in all L”(Q) with p < oo, (4.17)
en((Gn = n)¥n) —> (@ —q)y  strongly in H*(0,T; L*(Q)), (4.18)
en((@n = an)yn) - (@—q)y”  strongly in L*(Q). (4.19)

Easy computations then yields that ej(z;) and ey (d;21,) strongly converge in H((0,7) x Q) to z
and 0yz, where z is the solution of ([@8]). This can indeed be done in three steps: First show that it
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converges weakly in D'((0,T) x Q) toward z and 0;z; Second, use that the energy estimates imply

that the convergence is actually weak in H((0,T) x Q) and in particular strong in L?(0,T; LP(Q2))

for any p < oo; Third, use the energy identity to show the convergence of the H'((0,7") x ) norm.
Hence ep, (0} ,zn) strongly converges to Vz in H'(0,T; L*(2)). Recall that 2 is also uniformly

bounded in H'(0,T; Hy(Qn)), so that e, (97, 2x) is uniformly bounded in H'(0,T; H'()). Thus
en(Off ,zn) strongly converges to Vz in H'(0,T; H3/4(Q)), so that formula (ZI6) and the continuity
of the trace operator from H3/4(Q) to L?(9€) show the strong convergence of d,ep,(z;) to 9,z in
HY(0,T; L*(0)).

Since y[q] = § + z, we have proved the convergence (£2) for the sequence yp[qn] = Jn + 2n- O

Remark 4.5. In this proof, let us emphasize that the construction of the sequence of source terms
fh and fa,h in (@II) is not straightforward. But we point out that this is done explicitly from the
knowledge of the trace qo of q on OS).

Note however that this happens because we have chosen to keep a presentation where the as-
sumptions are set on the trajectory y[q], and not directly on the data (y°,y'), f, fo. But this other
choice would not yield any improvement as the natural space to get ylq] € H*(0,T; L>(Q)) in 2-d is
ylgl € HY(0,T; H3(2)), or H3((0,T) x Q). According to [28], this would correspond to

Y e H3(Q), y'€ H*(Q), f€ Mo 2WHH0,T;H>F(Q)), foe€ H?(0,T) x 0),
with the compatibility conditions

ZJOIBQ = f@(t = O)a ylyag = 8tf8(t = O)a and (f(t = 0) + Ayo - qyo)lag = 8ttf6(t = 0)

Of course, this latest compatibility condition is very strong and requires in particular the knowledge
of q¢ on the boundary, as we also assumed in the approach of Lemma [{.3 But very likely, taking
projections of all these data on the discrete mesh €y, also yields a suitable sequence Y, v, fn, fon)
satisfying conditions [E2)-[T), even if one would have to study in that case the convergence of the
discrete wave equations with non-homogeneous boundary conditions, which to our knowledge has only
been done in 1-d so far in [16].
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A Discrete integration by parts formula in 1-d

For the sake of completeness, we mention the basic discrete integration by parts formula obtained in
[3, Lemma 2.6] in the 1-d setting as they are the main ingredients used to perform integration by
parts on 2-d (and higher dimensional) domains. To do so, we shall make precise some 1-d notations.

We assume that we consider integration by parts on discretized versions of (0,1). For N € N, we
introduce h = 1/(N + 1) and the discrete sets

(Ovl)h:{jhvje [[LNH}v [0,1)h={jh,j€ [[OvN]]}v (0,1]h={jh,j€ [[17N+1]]}'
Here, discrete functions fj, are functions fn = (f;);eqo,....n4+13 for which we define
/ fo=h > £ / fo=h > f / fo=h > fi
(0,1)n je{1,- N} [0,1)n je{0,- N} (0,1] je{l, ,N+1}

We also introduce the discrete operators for j € {1,...,N}:

(i )y = (my f)sn = LD
(Onfn); = % s (O fn)j = (O fu)je = @ s (Anfn)j = fio = 2;;] il

Lemma A.1 (3], 1-d discrete integration by parts formulas). Let vy, [, gn be discrete functions such
that vo = vy4+1 = 0. Then we have the following identities:

o / gn (0 fn) = —/ (O, gn)fn + gny1fN+1 — gofo (A1)
[Ovl)h (071]h
h h _
o [ oot = [ mfg)Of ) - 590(0] o~ Gowa@; Hver (A.2)
(Oxl)h [Oxl)h 2 2
h2
o 2/ gnon (Onun) = —/ lon|? Ongn + = 0 vn |0 g ; (A.3)
(0,1)n (0,1)n [0,1)
o [ @) == [ @) @) - @ v + (O vlvsagyen (A1)
(071))1 [0,1)}1,
1
. / gnon(Apvn) = —/ (05 vn)? (myfgn) + 5/ lvn?Angn ; (A.5)
(0;1))1 [Ovl)h (Oxl)h

1 1 _ 2 1 2
/ IhARVROR VR = ——/ 10; on 205 gn + = [(8, v)n+1 | gne1 — = |G v)o| g0 (A6)
©.1)n 2 Jio,0)n 2 2

In a square in dimension 2, we will apply Lemma [A.] when doing integrations by part in each
direction. For instance, identity (A3]) easily yields, for k € {1,2}:

h2
2/ 9rVn(On,kvn) = —/ (8h,kgh>|vh|2+7/ |0 10n|?O 1,91
Qp

Qn Q.
. . + o — . . .
For convenience, we will also use the formula f[O,l)h my vnfn = f(O,l]h vpmy, fr, valid for v;, vanishing

on the boundary, and its consequence

2

[ miw@m @i = [ @@+ [ @)@, A
[0,1);1 (Ovl)h (0,1)}1,

whose proof is left to the reader.
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B Proof of a conjugate Carleman estimate

Proof of Proposition[2.7] Notations. In this proof, we will use the Landau notation O, (7h) to denote
discrete functions of (t, ;) depending on p satisfying for some constant C,, > 0 that

”O“(Th)”Lm(LZO) < C#Th.

We will also use the shortcut O, (1) to denote bounded functions. Moreover, we will write v instead of
vj, as no confusion can occur: here, v is always a discrete function defined on (—T,T) x €, satisfying
v(£T, zp) = Ow(£T, zp) = 0 for all xp, € Qp, and v(t,z,) = 0 for all ¢t € (=T,T) and x, € Oy,
In order to simplify the integrals, we will also set Qp = (=T,T) x Qp, Qik = (-T,T) x Qik,
Sh = (=T,T) x T, £j;, = (=T, T) x I';;, and use the notations

T T T T
Qn T Joy, Qi -7 Jait, S, -7 JT}, S -7 Jrf,

In the following we will use the estimates of Proposition 23] in particular (2.IH), and the discrete
integration by parts formula in Lemma [A.T] and Lemma Finally, let us emphasize that all the
constants below are independent of h € (0,1) and 7 > 1.

e Step 1. Ezplicit computations of the cross product. The proof of estimate (220) relies first of all on
the computation of the multiplication of each term of %}, ;v by each term of %, sv:

3
Zhﬁlvfhygvdt: Z Inm,

Qn n,m=1

where I, denotes the product between the n-th term of .4, 1 in (ZI0) and the m-th term of .%, o
in 2I7). We now perform the computation of each I, term.
Computation of I1. As in [3], we integrate by parts in time:

I = (o1 — D)71p Orv (p0pt) — Ag)v
Qn

= (1—041)7',u/ |3tv|2<p(8tt1/J—A1/))—|—T/ O#(1)|v|2—|—7/ O, (Th)|Ow|?.

Qn Qn

Here, we used Ay = pAY + O, (Th) and 0y Ay = O (@AY) + O, (Th).
Computation of I12. Similarly,

112 = — TIUQ 815,51} (<p|8t1/)|2 — Ag) v
Qn

_— /Q uleol? - (Vo) +7 [ O.IP+7 [ O,(rh)al

h Qn

where we used Az = ¢|Vi)|? + O, (th) and 9y Az = Oy (0| VY[?) + Opu(Th).
Computation of I13. Using >, 0h x A1k = V|2 + oAy + O, (Th), 8; A1k = pupdy, vOup + O, (Th),
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and (A.3]), we obtain:
I3 = — 2Tu/ O v (900w — 31 A1 1OR1V)
Qn

=i [ 100 Po(@u + A + i / 0o (18] + V)
Qn

Qn
-
— 2712 O Oetp o Vpv - Vb — #Zk‘/ |h8}tk8tv|28}tkz417k
Qn Qp ok
47 OM(Th)|(9t’U|2 +7 0 (3, Ou(Th)On 1kv) .
Qn Qn

Computation of I>1. Since Ay = pAYp + O, (Th) and Ao = O, (Th), we get:
121 = (1 —Oél)T/L Zk(1+A0,k)Ah,kv ((pattl/}—A4)v
Qn
= on =V | ol e@ut — )47 [ O+ [ Outrg ol
h h,k

h,k

Computation of Isz. Using Az = ¢|V1)|? + O, (rh) and (A5, we obtain
Ly =711 [ 3,1+ Agr)An kv (9|0]* — As) v
Qn
= s | ool Ve 7 [ Ouelel 4 [ Ol
h h,k

h,k

Computation of Isz. We can split this term in two parts as follows

I3 = 27'u Zk(l +A01k)Ah7kU(pat1/} Opv —27’# Zk(l +A01k)Ah7kv (ZéAlﬁzahyg’U).
Qn Qn

Ioza Iosp

For I»3, we use Ay = 3;k3,jk and the zero boundary conditions on v. Setting gor = (1 +
Ao,k) ¢ Oryp and using (AI)), we get:

Ipza = _ZTUZk/ 8;,61)8;,@(90,;@&0)
Qp.k
= —271py ., /Q 8,ikv8,tk(8tv)m;kgoyk—ZTqu /Q 8,ikvm;k(8tv)8;kgoyk
h,k h,k

Noticing that, on the one hand,

h,k

2y [ O aiaommigos = miSe [ 105l omigan
h.k

— Y, / 10 0P (a0 + $Outh + O, (7h)),

h,k
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and on the other hand (using (A.7)),

oy, /Q O omi (0)0] w0
h,k

Tuh?
= - 27#2 O, kv O Op ke go,k — M2 Z Ap kv Ov Ap ko k
r YQn r Y Qn

= — 2 v b o Vv - (Vip + O, (Th)) — Th? Z/ O0,(1)Ap kv Oy,
Qn Y/ Qn

the term I»3, takes the form

o =715, [ 10000 4 Sy [ 100 (@0 + Oulrh)

h,k Qh,,k

— 271 O b o Vyv - (Vb + O, (Th)) — Th? Z/ O, (1)Ap kv Opv.
Qn r YQn

To compute Ia3;, we consider the integrals Iagp ¢ indexed by (k,£) € {1,2}? and defined by

Iosp e = —2TM/ (14 Ao,i)An, kv A1 g Oh ov.
Qn

When k = ¢, using formula (A6) with g, = (1 + Ao k) A1k = 90,9 (1 + O,(Th)), we obtain

Losp ok = m/f 10, 0?05 L9 —m/+ k10, v)? +m/7 9k|Op vl

h,k Zh,k Eh,,k

=i [ OO (000, 0) + Oulrh) = s [ gnlog o+ [ ool

Ik Zhk Zhk

When k # ¢, we use Lemma 25 with gi = (1 + Ag ) A1 ¢

Iosb ke = —m/i |03 101 On e (), 9.0) +2TM/ Oy 10 My 1 (O e0) O Tt

h,k Qi

T1h?

4 /Q 10O 01207 (i n0)-
h

Using (A7) for vy, replaced by dj ¢v, which vanishes on the boundary Xy, i, as k # £, we get:

Btnses = =70 | 1070 Or, (92 ) + Oulrh) + 270 | 000 0h0 (01 (900,0) + Op(rh)
Qnk Qn

Tuh?
2 Jan

T1h?

Ahykv 8}11[1) (Azk (gﬁazei/}) + O#(Th)) + / |aikaiév|2aié(m;)kgk7g).
Qn

41



Hence we obtain

o = S [ 1070l (00, (901,) = Ky (00s) + Ou(rh))

h,k

+ 270 | Op1v On,20 (On, (902,1) + Ouy (902, 9) + Op(Th))
Qn

h2
+7h? / O, (1) (D10 O 2t + Ap o Oy 1v) + —
Qn

/Q |8,;L718,;L72v|2 (div(eVy) + O, (Th))
— T'UZ /E+ |8};kv|2<p8mk1/)(1 + O, (th)) + T,LLZ /27 |8};L7kv|2<p8m1/)(1 + O, (7h)).
k h,k k h,k
We now remark that 9y, (003,%) + Oy, (904, %) = 2100y, 0y, 1, and that we can write

drp? On, 10 Oh,2V PO Y0yt = 2Tu2/ | Vpv - V|2 —2ru? Z/ |0n.10]?] 0, ]2
Qn Qn L Y Qn

Therefore,

o = 7S [ 100l (200, (602,0) — div(eT0) + O, (7))

h,k

+ 27@2/ ©|Vyv - VY|* — 2702 Z/ |Oh &V % 0|0, 0] + 7'/ O,,(Th)Oh,1v Op 2v
Qn k Qn Q

h
+ Th2 / (O#(l)Ahylv 8}112’0 + O‘u(l)Ah’Q’U 8;1711;)
Qn

Tph?
LT

/ |8,J[18,T2v| (div(eVy) + O, (Th))
—T'[LZ/ |8hkv| (p0z, 0 + O, (Th)) +T,LLZ/ |0, kv| (p0z 0 + O, (Th)).

Of course, this yields Io3 as Is3 = Ia34 + I23p-
Computation of I31. Using As = ¢*|V9|? + O, (th) and Ay = @Ay + O, (Th), one easily obtains:

I3 = (o1 — 1)73M3/ |U|2 (802 (3:51/))2 - A2) (¢ Outp — As)
Qn
= (a1 =17 / 0120 (10001 — V1) (Dt — M) + 73/ Ou(rh)lvl*.
Computation of Iss. Using here Az = ¢|Vi|> + O, (Th),

Iy = — 730 /Qh|v|2 (<P2 (O)” — AQ) (ldy]* — As)

= =t [ Pl ~ [P+ [ 0l
Qn Qn
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Computation of I33. Finally, using (A3) we get
Ba = =20 [ (0" — 42) 00000 0 — T, A1)
Qn

:T3u3/ 1020, ((92|01)]? — Az) pO) — 731 / 032401 (A1k(9?10)] — A2))
3h2

S | ool (Aol - A4).

,,k

But we have

3t((<ﬂ2|3t1/)|2 — A2)p0y1))

= 3’10 ? (100> — |VYI?) + @*0ut (1000 — |VYI?) +20°|0020utp + O, (Th),
Sk Ok (ALk (9?1002 — Ag))

= 3u®|VYI* (10:01° = [VUIP) + 9*A¢ (10:4° = [VYP) = *Ve - V(IVY[?) + Ou(Th),
O (AL (D210 = A2)) = 0, (9% O, ¥ (10117 — [VY?)) + Oplrh) = Op(1),

so that we obtain
By =37t [ [P (0P = [P+ o [ (oPe® @t - Av) (00l ~ [VuP)
Qn Qn
+73u3/ lv|23 (28tt1/)|8t1/)|2+V1/)-V(|V1j)|2))+73/ O#(Th)|v|2+7'zk/+ Ou(Th)|8;f Lol
Qh Qhr Qh,k

Final computation. Gathering all the terms, one can write

fh,lv Zh,QU = Iv + Iav + IF + ITych; (Bl)
Qn

where I, = |v[2F (1)) contains all the terms in |v|? with
Qn

F) = anm 1P (100> — [V ) (0uth — A) + 72120 (2000 | VO|* + Vb - V(IVY?))
+ 273 4 3(|8t1/1|2 |V1/)|2)2 —|—7'3(9#(7'h) +70,(1) ;

Iy, contains all the terms involving first-order derivatives of v:

Lo = 2712 / 10,020 |82 + 27122 / Vo VoPo—dri [ dwonpe Viv- Vi
Qn Qn Qn

+ TM/ 10:0*@ (200 — 01 (Bpet) — AY)) + 71 Z/ |05 0120 (1 (D) — AY) + 2002, 00)
Qn kY @nk

e 22(/ 0 o Peon, ol - [ |ah,kv|2so|amkw|2>+fow

h,k Qh

where Ip, contains all the terms involving O, terms (and a first-order derivative of v);
It contains all the boundary terms:

S / Oy 012 Byt + O(r) + 75, / 10 090y + Op(rh));

h, k Eh,,k
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Itycn contains the terms corresponding to the Tychonoff regularization:

-
ITych [ #Zk /Q |ha;£katv|28}tk/h’k

h,k

;
+ o 1070 e (05 2mi (4 Ao) Ar2) + 0 ymi (1 4+ Ao 2)Ava))

e Step 2. Bounding each term from below.
Step 2.1. Dealing with the 0 order terms in v. Since Vi - V(|V9|?) = 4|Vy|? = 16|z — x,]?, A =4
and 0y1) = —283 and denoting X = |0;|? — |0,1|?, one can obtain

F@) = e (20X = 2008+ 2)X +16(1 = B)|z — wal?) +7°0,(th) + rOu(1),

G(4)
Since @, ¢ Q, inf(g 1)2 [v — 24|? is strictly positive and we have

G(¥) >2uX? —201(B+2)X +¢, with c=16(1 — ) (31152 |z — x4]* > 0.

Thus, there exists pg > 1 such that for u = po, G(¢) > 0 uniformly. Therefore, we get ¢g > 0
independent of h such that

L > 2e0r [ [o2g® — (PO, (th) + 70, (1)) / o2 > egr / [0f2 = 730, (v1) / W, (B.2)
Qn Qn Qn Qn

where the last line is obtained by bounding ¢ from below by 1 and by taking 7 > 79 to absorb the
O, (1)-term. From now, we fix ;1 = p19 and we simply write O,, instead of O, .
Step 2.2. Dealing with the first-order derivatives. The first line in Iy, is positive as

1 1
‘/ 6{1) at’lb(pVh’U . V’QZJ’ S 5/ |6t’l}|290|6t’¢|2 + 5/ |Vh’U . V¢|2cp
Qn Qn Qn

The second line of I, can be computed explicitly as 0ut) = =25, Op,2, % = 2 and Ay = 4:
204+ ’Q/J — oy (8tt¢ — A’lﬁ) = —46 + 20 (2 + ﬁ), %] (att’lb — A’lﬁ) + 2(9]%’(# = —2041(2 + ﬁ) + 4.

Hence the choice ag = (8 +1)/(8 + 2) makes each term strictly positive and equal to 2(1 — ) (recall
B € (0,1)), so that

[ 100 20— ar(Ouw — 86)) + S [ 10,00 (0r Gu — ) +2000)
Qn E YQuk

= 2(1 — ﬂ)’?’,u </ |8tv|2 + Z/ |8,':kv|2> .
Qn k Y@nk

We now remark that the third line of Iy, is negligible. Indeed, writing 9y, xv = m;, k(@; V), one easily
checks that

/ 107 0 l0 b /Q 100 1020100, 0 > — /Q 0ol
h h,k

Qh,,k
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Concerning the terms in Ip,, the only term that needs to be discussed are the ones coming from I»3:
But using that h?Ay, x is a discrete operator with norm bounded by 8, we get

Th? / (Ap 10 (0,(1)0h 20 + 0,(1)0v) + Th? / (A 2v (0,(1)0h,1v + O,(1)0w)

h

<C </ |0sv]? —I—Z/ 0, o? +T2/ |’U|2> )
Qn Y. Qn

Combining these estimates, for 7 large enough, we obtain constants c¢; > 0, Cyp > 0 such that

Iy > ClT/ |5tv|2+0172k/7 |6,J£kv|2
h

h,k

. ou(m)|atv|2—¢zk/ (’)M(Th)|(9,tkv|2—0072/ W2 (B.3)
Qn Qp ke h

Step 2.3. The boundary terms. Since min_p 7)xo{90z,%} > 0 (recall z, ¢ Q), then there exists
€1 > 0 such that taking 7h < e,

< i .
Ourb] < | min {o(t2)05, (1, 2))

so there exists C' > 0 independent of 7 and h such that

Ir > — 2ka/
=

|3;§,kvl2<p3mk1/) > —OTZ]C/+ |8,;kv|2, (B.4)
k Eh,,k
Step 2.4. The Tychonoff regularization. We have 8,tkA17k = 1@|0u, V> + 9 Oz, ¥+ Opu(Th) = O, (1)

and 8,ikm;€((1 + Aop) A1) = ppl0s, 012 + 0040, + Ou(Th). Thus, for 7h small enough, i.e.
Th < g9 for some g9 € (0,¢1),

(a,ij;l(a + Ao1)Are) + O mit (1 + AO,Q)AM)) >0,

and the term involving 8;[18;[21) is positive, whereas the other term in I7y.; is negative. We bound
it directly and get a constant C' > 0 independent of 7 and h such that

Ityen = — CTZ;@/f |ho 0ol (B.5)

h,k

e Step 3. End of the proof of Proposition[2.7 Collecting the results (B.2)—(B.A) of Step 2, we have
proved that for 7 > 7y and 7h < &9,

Goro Loz > o / f? + err / 002 + 17y, / 0 o] — Cor? / [of?
Qn Qn N ’ Qn

h,k

Qn

—C’Tz:k/+ |8,;kv|2—07'2k/7 |h3,tk3tv|2

Xp ok Qh,k

—7'3/ O#(Th)|v|2—7'/ O#(Th)|8tv|2—7'zk/ O#(Th)|8;{7kv|2.
Qn Qn

h,k
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Therefore, taking 7 large enough so that com® > 2Co7? and 7h small enough such that |0, (7h)| <
min {cg, ¢1,e2}, which defines £y > 0, we obtain, for some constant Cy > 0,

T/ |8tv|2+72k/ |8}tkv|2+T3/ |v?
Qn Q. Qn

h,k

<Cy Lnav Lhov+ CiTy /+ |8,Zkv|2 + iy, / B |h8,tk8tv|2.

Qn Xk Qh ok

From (2.19), there exists Co > 0 such that

T/ |8tv|2+72k/ |a,jku|2+73/
Qn Q, Qr

h,k g

SCQ/ |$}LU|2+CQ/ |%h’v|2+027'zk/
Qn Q i+

T Eh,

/ Bn]? < O / [of2,
Qn Qn

which can also be absorbed by the left hand side of (B.f]) by taking 7 large enough, thus yielding to
.20 O

o+ [ 1Ll
Qn

|a,;kv|2+cgzk/f hoy Drl?. (B.6)
k

h,k

But

C Proof of an elliptic regularity result

Proof of Lemma[{.4} Multiplying the equation (@I14) by wy,, using the discrete Poincaré’s inequality,
one easily obtains that

wn € Hy () with Junly 0, < Cllgnllzz o) (C.1)

for some constant C = C(m) > 0 independent of h > 0. Accordingly, replacing gn by gn — qrwp, we
are reduced to the case ¢, = 0, that we assume from now.

Since ), = (hZ)?N (0, 1)2, we first propose to extend wy, a priori defined on the discrete domain Q,
t0 Qewt.n = (WZ)? N (—1,2)? as follows. First, for z;, € {(0,0), (1,0),(1,1),(0,1)}, we set wp,(z5) = 0.

Then, for x5, = (zn1,2n,2) € [0,1] X (=1,2) N Qexi,h, We set Wy (xpy) = —wp(Th1, —Th2) for zp0 €
(—1,0) and wp(zr) = —wp(zh,1,1 — (x2, — 1)) for zp 2 € (1,2). This defines wy, on [0,1] x (=1,2)N
Qexi,n. We then extend it for zp = (X140, 22.0) € Qext,n by setting wp,(xp) = —wp(—2xp,1,22,5) for
xp1 € (—1,0) and Wp(xp) = —W0p(1 — (xp,1 — 1), 2p,2) for 1 € (1,2). We do a similar extension g,

of gn on Qexs,p taking care of choosing g, = 0 on 992, U {(0,0),(1,0),(1,1),(0,1)}.
We thus have constructed a solution Wy, of

- Ahﬁ)h = gh in cht,h and ’lI)h =0on 8cht,h- (02)

We then choose a function x € C°((—1,2)?) such that y = 1 on [0,1]? and we multiply (C.2) by
—XnA1,pWp, with xp, = 15(x): After some integrations by parts where all the boundary terms vanish
due to the choice of x, we obtain:

/ Xh|Ah,17j’h|2 +/ m;,lmZ,QXHa}tlalthth (C.3)
Qext,h

Qext,h

_ ~ ~ + o+ + .+ + o+ + o+ -~
- _/ thhAh)lwh—i—/ 6h12Xh8h72whmh12Ah71wh—/ Bhﬁ1mh72Xhmh118h12wh8h716h12wh.
Q Q Q

ext,h ext,h ext,h
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Of course, since x = 1 on [0, 1]?, the left hand-side of (C.3)) is bounded from below by

2
2 + o+
1AR 1 wnllz ;) + Hah»lahvzwh‘ L)

On the other hand, using that w;, and g are symmetric extensions of wy, and gy, the right hand-side
of (C3)) is bounded from above by
L,%(QT)) ’

+ ot
1An,1wnll 2 @y + H8h718h72whHLi(m) <C (||9h||L;§(Qh) + ||wh||H5,h(Qh)) ;

C (llgnllzs ap) + lonlly, o)) (nAh,lwhnL% @ + |00 ]

for some constant C' independent of & > 0. We thus obtain

which, together with (Cl) and —Ap 2wy, = (gn — quwn) + Ap 1wy, , yields @I5). O
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