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Abstract

Using uniform global Carleman estimates for semi-discrete elliptic and hyperbolic equations,

we study Lipschitz and logarithmic stability for the inverse problem of recovering a potential

in a semi-discrete wave equation, discretized by finite differences in a 2-d uniform mesh, from

boundary or internal measurements. The discrete stability results, when compared with their

continuous counterparts, include new terms depending on the discretization parameter h. From

these stability results, we design a numerical method to compute convergent approximations of

the continuous potential.

Résumé

A partir d’inégalités de Carleman pour des équations aux dérivées partielles dicrétisées elliptiques

et hyperboliques, nous étudions la stabilité Lipschitz et logarithmique du problème inverse de

détermination du potentiel dans une équation des ondes semi-discrétisée, par un schéma aux

différences finies sur un maillage 2-d uniforme, à partir de mesures internes ou frontières. Quand

ils sont comparés avec leur contrepartie continue, les résultats de stabilité dans le cadre discret

contiennent de nouveaux termes dépendants du pas h du maillage utilisé. C’est à partir de ces

résultats que nous décrivons une méthode numérique de calcul d’approximations convergentes du

potentiel continu.

1 Introduction

The goal of this article is to study the convergence of an inverse problem for the wave equation, which
consists in recovering a potential through the knowledge of the flux of the solution on a part of the
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boundary. This article follows the previous work [3] on that precise topic in the 1-d case.

1.1 The continuous inverse problem

Setting. We will first present the main features of the continuous inverse problem we consider in this
article. Let Ω be a smooth bounded domain of Rd, and for T > 0, consider the wave equation:





∂tty −∆y + qy = f, in (0, T )× Ω,
y = f∂ , on (0, T )× ∂Ω,
y(0, ·) = y0, ∂ty(0, ·) = y1, in Ω.

(1.1)

Here, y = y(t, x) is the amplitude of the waves, (y0, y1) is the initial datum, q = q(x) is a potential,
f is a distributed source term and f∂ is a boundary source term.
In the following, we explicitly write down the dependence of the function y solution of (1.1) in terms
of q by denoting it y[q] and similarly for the other quantities depending on q.
We assume that the initial datum (y0, y1) and the source terms f and f∂ are known. We also assume
the additional knowledge of the flux

M [q] = ∂νy[q] on (0, T )× Γ0, (1.2)

where Γ0 is a non-empty open subset of the boundary ∂Ω and ν is the unit outward normal vector
on ∂Ω. Note that for this map to be well-defined, we need to give a precise functional setting: for
instance, we may assume (y0, y1) ∈ H1(Ω)× L2(Ω), f ∈ L1((0, T );L2(Ω)), f∂ ∈ H1((0, T )× ∂Ω) and
y0
∣∣
∂Ω

= f∂(t = 0) so that M is well-defined for all q ∈ L∞(Ω) and takes value in L2((0, T ) × ∂Ω),
see e.g. [28].
This article is about the recovering the potential q from M [q]. As usual when considering inverse
problems, this topic can be decomposed into the following questions:

• Uniqueness: Does the measurement M [q] uniquely determine the potential q?

• Stability: Given two measurements M [qa] and M [qb] which are close, are the corresponding
potentials qa and qb close?

• Reconstruction: Given a measurement M [q], can we design an algorithm to recover the potential
q?

Concerning the precise inverse problem we are interested in, the uniqueness result is due to [12] and
we shall focus on the stability properties of the inverse problem (1.1). The question of stability has
attracted a lot of attention and is usually based on Carleman estimates. There are mainly two types
of results: Lipschitz stability results, see [26, 32, 33, 23, 2, 24, 4, 36], provided the observation is done
on a sufficiently large part of the boundary and the time is large enough, or logarithmic stability
results [5, 7] when the observation set does not satisfy any geometric requirement. We also mention
the works [6, 13] for logarithmic stability of inverse problems for other related equations.

Below we present more precisely these two type of results, since our main goal will be to discuss
discrete counterparts in these two cases.

Lipschitz stability results under the Gamma-conditions. Getting Lipschitz stability results
for the continuous inverse problem usually requires the following assumptions, originally due to [19].
We say that the triplet (Ω,Γ, T ) satisfy the Gamma-conditions (see [30]) if

• (Ω,Γ) satisfies the geometric condition:

∃x0 ∈ R
N \ Ω, {x ∈ ∂Ω, s.t. (x− x0) · ν(x) ≥ 0} ⊂ Γ, (1.3)
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• T satisfies the lower bound:
T > sup

x∈Ω
|x− x0|. (1.4)

In [2], following the works [22, 21], the next stability result was proved:

Theorem 1.1 ([2]). Let m > 0 and consider a potential qa ∈ L∞(Ω) with ‖qa‖L∞(Ω) ≤ m, and
assume for some K > 0 the regularity condition

y[qa] ∈ H1(0, T ;L∞(Ω)) with ‖y[qa]‖H1(0,T ;L∞(Ω)) ≤ K, (1.5)

where y[qa] denotes the solution of (1.1) with potential qa. Let us further assume that (Ω,Γ0, T )
satisfies the Gamma-conditions (1.3)–(1.4) and the following positivity condition

∃α0 > 0, inf
x∈Ω
|y0(x)| ≥ α0. (1.6)

Then there exists a constant C > 0 depending on m, K and α0 such that for all qb ∈ L∞(Ω) satisfying∥∥qb
∥∥
L∞(Ω)

≤ m, we have M [qa]−M [qb] ∈ H1(0, T ;L2(Γ0)) and

1

C

∥∥qa − qb
∥∥
L2(Ω)

≤
∥∥M [qa]−M [qb]

∥∥
H1(0,T ;L2(Γ0))

≤ C
∥∥qa − qb

∥∥
L2(Ω)

. (1.7)

Besides, if ω is a neighborhood of Γ0, i.e. for some δ > 0, {x ∈ Ω, d(x,Γ0) < δ} ⊂ ω, we also have
∂ty[q

a]− ∂ty[qb] ∈ H1((0, T )× ω) and

1

C

∥∥qa − qb
∥∥
L2(Ω)

≤
∥∥∂ty[qa]− ∂ty[qb]

∥∥
H1((0,T )×ω)

≤ C
∥∥qa − qb

∥∥
L2(Ω)

. (1.8)

Remark 1.2. Note that in Theorem 1.1, we do not give assumptions on the smoothness of the data
y0, y1, f, f∂ directly. They rather appear through the bound K in (1.5) in an intricate way. Also note
that estimate (1.8) is not written in [2], but the proof of (1.8) follows line to line the one of (1.7).

Logarithmic stability results under weak geometric condition. Let us now explain what can
be done when the geometric part (1.3) of the Gamma conditions is not satisfied. In this case, to our
knowledge, the best result available is due to [5]. Below, we state a slightly improved version of it:

Theorem 1.3 ([5], revisited). Assume that there exist an open subset Γ1 ⊂ ∂Ω of the boundary ∂Ω
and an open subset O of Ω such that:

• Γ0 ⊂ Γ1 and (Ω, Γ1) satisfies the condition (1.3);

• O contains a neighborhood of Γ1 in Ω, i.e. for some δ > 0,

{x ∈ Ω, d(x,Γ1) < δ } ⊂ O. (1.9)

Let qa be a potential lying in the class Λ(Q,m) defined for Q ∈ L∞(O) and m > 0 by

Λ(Q,m) = {q ∈ L∞(Ω), s.t. q|O = Q and ‖q‖L∞(Ω) ≤ m}. (1.10)

Let y0 ∈ H1(Ω) satisfying the positivity condition (1.6) and assume that y[qa] satisfies the regularity
condition

y[qa] ∈ H1(0, T ;L∞(Ω)) ∩W 2,1(0, T ;L2(Ω)). (1.11)
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Let α > 0 and M > 0. Then there exists C > 0 such that for T > 0 large enough, for all qb ∈ Λ(Q,m)
satisfying

qa − qb ∈ H1
0 (Ω) and

∥∥qa − qb
∥∥
H1

0 (Ω)
≤M, (1.12)

we have M [qa]−M [qb] ∈ H1(0, T ;L2(Γ0)) and

∥∥qa − qb
∥∥
L2(Ω)

≤ C
[
log

(
2 +

C

‖M [qa]−M [qb]‖H1(0,T ;L2(Γ0))

)]− 1
1+α

. (1.13)

Besides, the constant C depends on m in (1.10), M in (1.12), α0 in (1.6), a priori bounds on∥∥y0
∥∥
H1(Ω)

+ ‖y[qa]‖H1(0,T ;L∞(Ω))∩W 2,1(0,T ;L2(Ω)) and the geometric setting (Γ0,Γ1,O,Ω).

To be more precise, [5] states the previous result with α = 1 and under slightly stronger geometric
and regularity conditions. Since Theorem 1.3 states a slightly better result than the one in [5], we
will prove it in Section 3. Similarly as in [5], we will work on the difference y[qa] − y[qb] and use
the Fourier-Bros-Iagoniltzer transform which links solutions of the wave equation with solutions of
an elliptic PDE, but instead of considering the usual Gaussian transform as in [5] (see also [34, 35]),
we will consider the one used in [29] (see also [7, 31]). We will thus be led to prove a quantified
unique continuation result for an elliptic PDE, which we derive using a classical Carleman estimate
([20]). Nevertheless, we will do it in a somewhat different way as the one in [35, 31] by constructing
one global weight which allows to prove Theorem 1.3 without the use of iterated three spheres in-
equalities. The proof of Theorem 1.3 will then be completed by the use of the stability estimates (1.8).

Objectives. Our goal is to derive counterparts of Theorem 1.1 and Theorem 1.3 for the finite-
difference space approximations of the wave equation discretized on a uniform mesh. In order to give
precise statements, we need to introduce several notations listed in the next section. For simplicity of
notations, we make the choice of focusing on the unit square in the 2-d case

Ω = (0, 1)2, (1.14)

though our methodology applies similarly in the case of the d-dimensional domains of rectangular
form Ω = Πdj=1[aj , bj ] (still discretized on a uniform mesh). Note that, even if we stated Theorems 1.1

and 1.3 for smooth bounded domains, both Theorems also hold in the case of a domain Ω = (0, 1)2.

1.2 Some notations in the discrete framework

Here, we introduce the notations corresponding to the case of a finite-difference discretization of the
wave equation on a uniform mesh. Let N ∈ N be the number of interior points in each direction, and
h = 1/(N + 1) the mesh size. All the notations introduced in the discrete setting will be indexed by
the parameter h > 0 to avoid confusion with the continuous case.

Discrete domains. We introduce the following (see also an illustration in Figure 1):

Ωh = {h, 2h, . . . , Nh}2, Ωh = {0, h, 2h, . . . , Nh, 1}2,
∂Ωh = (({0} ∪ {1})× {h, . . . , Nh}) ∪ ({h, . . . , Nh} × ({0} ∪ {1})) ,
Γ−
h,1 = {0} × {h, . . . , Nh}, Γ−

h,2 = {h, . . . , Nh} × {0},
Γ+
h,1 = {1} × {h, . . . , Nh}, Γ+

h,2 = {h, . . . , Nh} × {1},
Γ−
h = Γ−

h,1 ∪ Γ−
h,2, Γ+

h = Γ+
h,1 ∪ Γ+

h,2, ∂Ωh = Γ−
h ∪ Γ+

h ,

Ω−
h,1 = Ωh ∪ Γ−

h,1, Ω−
h,2 = Ωh ∪ Γ−

h,2, Ω−
h = Ω−

h,1 ∩ Ω−
h,2.

(1.15)
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x1
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Γ
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−
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Figure 1: Main discrete notations in Ω = (0, 1)× (0, 1).

Note that this naturally introduces two representations of the discrete set Ωh. We will use alternatively
xh ∈ Ωh or (i, j) ∈ J0, N+1K2 (where Ja, bK = [a, b]∩N) to denote the point xh = (ih, jh), the advantage
of the first writing being its consistency with the continuous model.

Discrete integrals. By analogy with the continuous case, if we denote by fh = (f(xh))xh∈Ωh
,

respectively fh = (f(xh))xh∈Ω−

h,1
, fh = (f(xh))xh∈Ω−

h,2
, a discrete function, we will use the following

shortcuts:

∫

Ωh

fh =

∫

Ωh

fi,j = h2
N∑

i,j=1

fi,j ;

∫

Ω−

h,1

fh = h2
N∑

i=0

N∑

j=1

fi,j ;

∫

Ω−

h,2

fh = h2
N∑

i=1

N∑

j=0

fi,j . (1.16)

One should notice that if these symbols are applied to continuous functions or products of discrete
and continuous functions, they have to be understood as the corresponding Riemann sums.

When considering integrals on the boundary ∂Ωh, we use the natural scale for the boundary and
we define, for fh a discrete function on ∂Ωh,

∫

∂Ωh

fh = h
∑

xh∈∂Ωh

f(xh). (1.17)

Subsets. In several places, we will consider open subsets O, ω ⊂ Ω and we then note Oh = O ∩ Ωh,
Oh = {x ∈ Ω, d(x,O) ≤ h} ∩ Ωh, O−

h,k = {x ∈ Ω, ∃ǫ ∈ [0, h], x + ǫek ∈ O} ∩ Ω−
h,k, and similarly for

the sets ωh, ωh and ω−
h,k (notice that these sets are always non-empty for h small enough). Integrals

on these discrete approximations of open subsets of Ω are given for fh discrete functions on Oh as
follows: ∫

Oh

fh =

∫

Ωh

fh1Oh
,

∫

O−

h,k

fh =

∫

Ω−

h,k

fh1O−

h,k
, (1.18)

and similarly for the integrals on ωh, ω
−
h,k.

When considering open subsets Γ of the boundary ∂Ω, we will similarly set Γh = Γ ∩ ∂Ωh, and the
integrals on these discrete approximations of subsets of the boundary will be given by

∫

Γh

fh =

∫

∂Ωh

fh1Γh
.
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Discrete Lp-spaces. We also define in a natural way a discrete version of the Lp(Ω)-norms as
follows: for p ∈ [1,∞), we introduce Lph(Ωh) (respectively Lph(Ω

−
h,1)) the space of discrete functions

fh = (fi,j)i,j∈J1,NK, (respectively i ∈ J0, NK, j ∈ J1, NK) endowed with the norms

‖fh‖pLp
h(Ωh)

=

∫

Ωh

|fh|p
(
resp. ‖fh‖pLp

h(Ω
−

h,1)
=

∫

Ω−

h,1

|fh|p
)
, (1.19)

and, for p =∞, ‖fh‖L∞
h (Ωh)

= supi,j∈J1,NK |fi,j |, (resp. ‖fh‖L∞
h (Ω−

h,1)
= supi∈J0,NK;j∈J1,NK |fi,j |).

We define the spaces Lph(Ω
−
h,2), L

p
h(Oh) and Lph(ωh) for open subsets O, ω ⊂ Ω in a similar way. We

also define discrete norms on parts of the boundary: if Γ is an open subset of ∂Ω, the space Lph(Γh),
(p ∈ [1,∞)) is the set of discrete functions fh defined on Γh endowed with the norm

‖fh‖pLp
h(Γh)

=

∫

Γh

|fh|p.

Discrete operators. We approximate the Laplace operator by the 5-points finite-difference approx-
imation: ∀(i, j) ∈ J1, NK2,

(∆hvh)i,j =
1

h2
(vi+1,j + vi,j+1 + vi−1,j + vi,j − 4vi,j) . (1.20)

Besides the discrete Laplacian ∆h, let us also introduce the following discrete operators:

(mh,1vh)i,j =
vi+1,j + 2vi,j + vi−1,j

4
; (mh,2vh)i,j =

vi,j+1 + 2vi,j + vi,j−1

4
;

(m+
h,1vh)i,j = (m−

h,1vh)i+1,j =
vi+1,j + vi,j

2
; (m+

h,2vh)i,j = (m−
h,1vh)i+1,j =

vi,j + vi,j+1

2
;

(∂h,1vh)i,j =
vi+1,j − vi−1,j

2h
; (∂h,2vh)i,j =

vi,j+1 − vi,j−1

2h
; ∇h =

(
∂h,1
∂h,2

)
;

(∂+h,1vh)i,j = (∂−h,1vh)i+1,j =
vi+1,j − vi,j

h
; (∂+h,2vh)i,j = (∂−h,2vh)i,j+1 =

vi,j+1 − vi,j
h

;

(∆h,1vh)i,j =
vi+1,j − 2vi,j + vi−1,j

h2
; (∆h,2vh)i,j =

vi,j+1 − 2vi,j + vi,j−1

h2
.

We finally introduce the following semi-discrete wave operator:

2h = ∂tt −∆h = ∂tt −∆h,1 −∆h,2.

Spaces of more regularity. We will use the space H1
h(Ωh) of discrete functions fh defined on Ωh

endowed with the norm

‖fh‖2H1
h
(Ωh)

= ‖fh‖2L2
h(Ωh)

+
∑

k=1,2

∥∥∥∂+h,kfh
∥∥∥
2

L2
h(Ω

−

h,k)
.

We also denote H1
0,h(Ωh) the set of functions fh defined on Ωh and vanishing on ∂Ωh endowed with

the above norm.
Note down that H1

h(Ωh) and H1
0,h(Ωh) denote spaces of functions defined on Ωh. We decided to

slightly abuse the notations by denoting them that way, since the topology of these spaces is strong
enough to define the trace operators.

Similarly, when ω is a non-empty open subset of Ω, we denote by H1
h(ωh) the set of discrete

functions fh defined in ωh endowed with the norm

‖fh‖2H1
h(ωh)

= ‖fh‖2L2
h(ωh)

+
∑

k=1,2

∥∥∥∂+h,kfh
∥∥∥
2

L2
h(ω

−

h,k)
.
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We finally introduce H2
h(Ωh) the set of discrete functions fh defined on Ωh endowed with the norm

‖fh‖2H2
h(Ωh)

= ‖fh‖2H1
h(Ωh)

+ ‖∆h,1fh‖2L2
h(Ωh)

+ ‖∆h,2fh‖2L2
h(Ωh)

+
∥∥∥∂+h,1∂+h,2fh

∥∥∥
2

L2(Ω−

h )
.

Besides, with an abuse of notations, we will often denote L2(0, T ;H1
h(Ωh)) ∩ H1(0, T ;L2

h(Ωh)) by
H1
h((0, T )×Ωh) and the space H2(0, T ;L2

h(Ωh))∩H1(0, T ;H1
h(Ωh))∩L2(0, T ;H2

h(Ωh)) by H2
h((0, T )×

Ωh).

Extension and restriction operators. Finally, we shall explain how to compare discrete functions
with continuous ones. In order to do so, we introduce extension and restriction operators.

The first one extends discrete functions by continuous piecewise affine functions and is denoted by
eh. To be more precise, if fh is a discrete function (fi,j)i,j∈J0,N+1K, the extension eh(fh) is defined on
[0, 1]2 for (x1, x2) ∈ [ih, (i+ 1)h]× [jh, (j + 1)h] by

eh(fh)(x1, x2) =

(
1− x1 − ih

h

)(
1− x2 − jh

h

)
fi,j +

(
x1 − ih
h

)(
1− x2 − jh

h

)
fi+1,j

+

(
1− x1 − ih

h

)(
x2 − jh

h

)
fi,j+1 +

(
x1 − ih
h

)(
x2 − jh

h

)
fi+1,j+1. (1.21)

This extension presents the advantage of being naturally in H1(Ω). The second extension operator is
the piecewise constant extension e0h(fh), defined for discrete functions fh = (fi,j)i,j∈J1,NK by

e0h(fh) = fi,j on [(i − 1/2)h, (i+ 1/2)h[×[(j − 1/2)h, (j + 1/2)h[, i, j ∈ J1, NK,

e0h(fh) = 0 elsewhere.
(1.22)

This one is natural when dealing with functions lying in L2(Ω) as
∥∥e0h(fh)

∥∥
L2(Ω)

= ‖fh‖L2
h(Ωh)

. Also

note that easy (but tedious) computations show that eh(fh) converge to f in L2(Ω) if and only if
e0h(fh) converge to f in L2(Ω).

We finally introduce restriction operators rh, r̃h and rh,∂Ω where rh is defined for continuous
function f ∈ C(Ω) by

rh(f) = fh given by fi,j = f(ih, jh), ∀i, j ∈ J1, NK,

r̃h for functions f ∈ L2(Ω) by

r̃h(f) = fh given by





fi,j =
1

h2

∫∫

|x1−ih|≤h/2
|x2−jh|≤h/2

f(x1, x2) dx1dx2, ∀i, j ∈ J1, NK,

fi,j =
1

2h2

∫∫

|x1−ih|≤h/2
|x2−jh|≤h/2
(x1,x2)∈Ω

f(x1, x2) dx1dx2, ∀xh = (ih, jh) ∈ ∂Ωh

and rh,∂Ω for functions f∂ ∈ L2(∂Ω) by

rh,∂Ω(f∂)(xh) =
1

h

∫

|x−xh|≤h/2,
x∈∂Ω

f∂(x)dσ for xh ∈ ∂Ωh.
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1.3 The semi-discrete inverse problem and main results

We discretize the usual 2-d wave equation on Ω = (0, 1)2 using the finite difference method on a
uniform mesh of mesh size h > 0. Using the above notations, this leads to the following equation:





∂ttyh −∆hyh + qhyh = fh in (0, T )× Ωh,
yh = f∂,h on (0, T )× ∂Ωh,
yh(0) = y0h, ∂tyh(0) = y1h in Ωh.

(1.23)

Here, yh(t, xh) is an approximation of the solution y of (1.1) in (t, xh), ∆h approximates the Laplace
operator and we assume that (y0h, y

1
h) are the initial sampled data (y0, y1) at xh, and the source terms

f∂,h ∈ L2(0, T ;L2
h(∂Ωh)) and fh ∈ L1(0, T ;L2

h(Ωh)) are discrete approximations of the boundary and
source terms f∂ and f .

Our main goal is to establish the convergence of the discrete inverse problems for (1.23) toward
the continuous one for (1.1) in the sense developed in [3]. Let us rapidly present what kind of results
should be expected.

The natural idea to compute an approximation of the potential q in (1.1) from the boundary
measurement M [q] is to try to find a discrete potential qh such that the measurement

Mh[qh] = ∂νeh(yh[qh]) on (0, T )× Γ0 (1.24)

where yh[qh] is the solution of (1.23), and eh is the piecewise affine extension defined in (1.21),
approximates M [q] defined in (1.2). We are thus asking the following:

if one finds a sequence qh of discrete potentials such that Mh[qh] converges towards M [q]
as h→ 0 (in a suitable topology), can we guarantee that the sequence qh converges (in a
suitable topology) towards q ?

As it is classical in numerical analysis - this is the so-called Lax theorem for the convergence of
numerical schemes - such result can be achieved using the consistency and the uniform stability of the
problem. In our context, even if the consistency requires some work, the stability issue is much more
intricate since even in the continuous case it is based on Carleman estimates. Here, stability refers to
the possibility of getting bounds of the form

∥∥e0h(qah − qbh)
∥∥
∗
≤ C

∥∥Mh[q
a
h]−Mh[q

b
h]
∥∥
#
, (1.25)

where e0h is the piecewise constant extension defined in (1.22), and the norms ‖·‖∗ and ‖·‖# have to
be precised, for some positive constant C independent of h.

As we already pointed out in [3] in the 1-d case, a stability estimate of the form (1.25) is far
from obvious and actually, instead of getting an estimate like (1.25), we proposed a slightly modified

observation operator M̃h for which we prove uniform stability estimates and the convergence of the
inverse problem.

Hence the main difficulty in obtaining convergence results is to derive suitable stability estimates
for the discrete inverse problem under consideration. We will thus state convergence results for the
discrete inverse problems in the forthcoming Theorem 1.6, while the main part of the article focuses
on the proof of stability estimates for the discrete inverse problem set on (1.23) stated hereafter in
Theorems 1.4 and 1.5.

1.3.1 Discrete stability results

Discrete Lipschitz stability. Since we assumed Ω = (0, 1)2, the condition (1.3) will be satisfied
by a set Γ0 ⊂ ∂Ω if and only if Γ0 contains two consecutive edges, and in this case the time T in
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(1.4) can be taken to be any T >
√
2. Thus, with no loss of generality, when the Gamma-conditions

(1.3)–(1.4) are satisfied, we can focus on the study of the case

Ω = (0, 1)2, Γ0 ⊃ Γ+ = ({1} × (0, 1)) ∪ ((0, 1)× {1}), T >
√
2. (1.26)

When the measurement is done on a part of the boundary Γ0 satisfying the above conditions, we will
prove the following counterpart of Theorem 1.1:

Theorem 1.4 (Lipschitz stability under Gamma-conditions). Assume that (Ω,Γ0, T ) satisfy the con-
figuration (1.26). Let m > 0, K > 0, α0 > 0, and qah ∈ L∞

h (Ωh) with ‖qah‖L∞
h (Ωh)

≤ m. Assume also

that y0h and the solution yh[q
a
h] of (1.23) with potential qah satisfy

inf
Ωh

|y0h| ≥ α0 and ‖yh[qah]‖H1(0,T ;L∞
h (Ωh))

≤ K. (1.27)

Then there exists a constant C = C(T,m,K, α0) > 0 independent of h such that for all qbh ∈ L∞
h (Ωh)

with
∥∥qbh
∥∥
L∞

h (Ωh)
≤ m, the following uniform stability estimate holds:

∥∥qah − qbh
∥∥
L2

h(Ωh)
≤ C

∥∥Mh[q
a
h]−Mh[q

b
h]
∥∥
H1(0,T ;L2

h(Γ0,h))

+ Ch
∑

k=1,2

∥∥∥∂+h,k∂ttyh[qah]− ∂+h,k∂ttyh[qbh]
∥∥∥
L2(0,T ;L2

h(Ω
−

h,k))
(1.28)

where yh[q
b
h] is the solution of (1.23) with potential qbh.

Similarly, if ω is a neighborhood of Γ+, i.e. there exists δ > such that

((1, 1− δ)× (0, 1)) ∪ ((0, 1)× (1− δ, 1)) ⊂ ω, (1.29)

then there exists a constant C = C(T,m,K, α0, δ) > 0 independent of h such that for all qbh ∈ L∞
h (Ωh)

with
∥∥qbh
∥∥
L∞

h (Ωh)
≤ m, the following uniform stability estimate holds:

∥∥qah − qbh
∥∥
L2

h(Ωh)
≤ C

∥∥∂tyh[qah]− ∂tyh[qbh]
∥∥
H1(0,T ;L2

h(ωh))

+ C
∑

k=1,2

∥∥∥∂+h,k∂tyh[qah]− ∂+h,k∂tyh[qbh]
∥∥∥
L2(0,T ;L2

h(ω
−

k,h))

+ Ch
∑

k=1,2

∥∥∥∂+h,k∂ttyh[qah]− ∂+h,k∂ttyh[qbh]
∥∥∥
L2(0,T ;L2

h(Ω
−

h,k))
. (1.30)

When comparing Theorem 1.4 with Theorem 1.1, one immediately sees that estimate (1.28) is a
reinforced version of (1.7) due to the additional term

Ch
∑

k=1,2

∥∥∥∂+h,k∂ttyh[qah]− ∂+h,k∂ttyh[qbh]
∥∥∥
L2(0,T ;L2

h(Ω
−

h,k))
. (1.31)

This was already observed in [3] for the corresponding 1-d inverse problems, and is remanent from
the fact that observability estimates for the discrete wave equations do not hold uniformly if they
are not suitably penalized, see [25, 40, 15]. Note in particular that as h → 0 and under suitable
convergence assumptions, this term vanishes and allows to recover the left hand side inequality of
(1.7) by passing to the limit in (1.28). Theorem 1.4 is proved in Section 2.4. Following the proof of
its continuous counterpart Theorem 1.1, the main issue is to derive a discrete Carleman estimate for
the wave operator (Theorem 2.1), as it was already done in [3] in the 1-d setting. Though the proof
of this discrete Carleman estimate is very close to the one in 1-d, the dimension 2 introduces new
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cross-terms involving discrete operators in space that require careful computations. Note however
that our proof also applies in higher dimension when the domain is a cuboid discretized on uniform
meshes as this would involve similar terms. Actually, this has already been done in the context of
elliptic equations, see [9].

Discrete logarithmic stability. Since we limit ourselves to the case Ω = (0, 1)2, we may assume
that Γ0 is a (non-empty) subset of one edge and that the counterpart of Γ1 appearing in Theorem 1.3
satisfying the Gamma conditions (1.3) is formed by two consecutive edges. Due to the invariance by
rotation, with no loss of generality, we may thus assume:

Ω = (0, 1)2, Γ0 ⊂ {1} × (0, 1), Γ1 = Γ+ = ({1} × (0, 1)) ∪ ((0, 1)× {1}). (1.32)

Theorem 1.5 (Logarithmic stability under weak geometric conditions). Assume that the triplet
(Ω,Γ0,Γ1) satisfy the geometric configuration (1.32) and the existence of an open set O ⊂ Ω such that

• O contains a neighborhood ω of Γ1 in Ω, i.e. such that (1.29) holds.

• the potential qh is known on ∂Ωh and in Oh, where it takes the value Qh ∈ L∞
h (Oh).

Let qah be a potential lying in the class Λh(Qh,m) defined for Qh ∈ L∞
h (Oh) and m > 0 by

Λh(Qh,m) = {qh ∈ L∞
h (Ωh), s.t. qh|Oh

= Qh and ‖qh‖L∞
h

(Ωh)
≤ m}. (1.33)

Let α0 > 0,M > 0 and α > 0. Assume also that y0h ∈ H1
h(Ωh) and the solution yh[q

a
h] of (1.23) with

potential qah satisfy the conditions

inf
Ωh

|y0h| ≥ α0 and yh[q
a] ∈ H1(0, T ;L∞

h (Ωh)) ∩W 2,1(0, T ;L2
h(Ωh)). (1.34)

Then there exist C > 0 and h0 > 0 such that for T > 0 large enough, for all h ∈ (0, h0), for all
qbh ∈ Λh(Qh,m) satisfying

qah − qbh ∈ H1
0,h(Ωh) and

∥∥qah − qbh
∥∥
H1

0,h(Ωh)
≤M, (1.35)

we have

∥∥qah − qbh
∥∥
L2

h(Ωh)
≤ Ch1/(1+α) + C

[
log

(
2 +

C∥∥Mh[qah]−Mh[qbh]
∥∥
H1(0,T ;L2(Γ0))

)]− 1
1+α

+ Ch
∑

k=1,2

∥∥∥∂+h,k∂ttyh[qah]− ∂+h,k∂ttyh[qbh]
∥∥∥
L2(0,T ;L2

h(Ω
−

h,k))
. (1.36)

Besides, the constant C depends on the constants m, M in (1.35), α0 in (1.34), an a priori bound on∥∥y0h
∥∥
H1

h(Ωh)
+ ‖yh[qah]‖H1(0,T ;L∞

h
(Ωh))∩W 2,1(0,T ;L2

h
(Ωh))

, and on the geometric configuration.

When compared with the corresponding continuous result of Theorem 1.3, the stability estimate
(1.36) contains two extra terms: the penalization term (1.31) and the new term Ch1/(1+α).

The proof of (1.36), given in Section 3, follows the same path as in the continuous case and combines
the stability results obtained in the case where the Gamma conditions are satisfied with stability
results obtained for solutions of the wave equation through a Fourier-Bros-Iagoniltzer transform and
a Carleman estimate for elliptic operators due to [8, 9]. Hence, the penalization term (1.31) is
remanent from Theorem 1.4. But the term Ch1/(1+α) comes from the fact that the parameters within
the discrete Carleman estimates cannot be made arbitrarily large and should be at most at the order
of 1/h. This fact has already been observed in several articles in the elliptic case, see [8, 9, 14]. We
also refer to [27] for a previous work related to the convergence of the quasi-reversibility method.
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1.3.2 Discrete convergence results

The stability results of the previous Theorems 1.4 and 1.5 suggest to introduce the observation oper-

ators M̃h = M̃h{y0h, y1h, fh, f∂,h} defined for h > 0 by

M̃h : L∞
h (Ωh) → L2(0, T ;L2(Γ0))× L2((0, T )× Ω)
qh 7→

(
∂νeh(yh[qh]), h∇xeh(∂ttyh[qh])

)
,

(1.37)

where yh[qh] is the solution of (1.23) with potential qh and data y0h, y
1
h, fh, f∂,h and eh is the piecewise

affine extension defined in (1.21). Corresponding to the case h = 0, we introduce its continuous

analogous M̃0 = M̃0{y0, y1, f, f∂}:

M̃0 : L∞(Ω) → L2(0, T ;L2(Γ0))× L2((0, T )× Ω)
q 7→

(
∂νy[q], 0

)
,

(1.38)

where y[q] is the solution of (1.1). Recall that according to [28], this map M̃0 is well defined on
L∞(Ω) for data

(y0, y1, f, f∂) ∈ H1(Ω)× L2(Ω)× L1((0, T );L2(Ω))×H1((0, T )× ∂Ω)
with y0

∣∣
∂Ω

= f∂(t = 0),
(1.39)

that we shall always assume in the following.
Remark that with these notations, the quantities

∥∥Mh[q
a
h]−Mh[q

b
h]
∥∥
H1((0,T );L2

h(Γ0,h))
+ h

∑

k=1,2

∥∥∥∂+h,k∂ttyh[qah]− ∂+h,k∂ttyh[qbh]
∥∥∥
L2((0,T )×Ω−

h,k
)

and ∥∥∥M̃h[q
a
h]− M̃h[q

b
h]
∥∥∥
H1(0,T ;L2(Γ0))×L2((0,T )×Ω)

are equivalent, uniformly with respect to the parameter h > 0. Hence the stability results in Theorems

1.4 and 1.5 easily recast into stability results for M̃h.
Our convergence result is then the following:

Theorem 1.6 (Convergence of the inverse problem). Let q ∈ H1 ∩ L∞(Ω) and assume that we
know q∂ = q|∂Ω. Let the data (y0, y1, f, f∂) follow conditions (1.39) and the positivity condition
infΩ |y0| ≥ α0 > 0. Furthermore, assume that the trajectory y[q] solution of (1.1) satisfies

y[q] ∈ H2(0, T ;H1(Ω)) ∩H1(0, T ;H2(Ω)). (1.40)

We can construct discrete sequences (y0h, y
1
h, fh, f∂,h), such that if we assume either

• (Ω,Γ0, T ) satisfy the configuration (1.26), and in this case we define
Xh = L∞

h (Ωh),

or

• (Ω,Γ0,Γ+) satisfy the configuration (1.32), T > 0 is large enough, q is known on O,
neighborhood of Γ+, and takes the value q|O = Q, and we define

Xh = {qh ∈ L∞
h (Ωh) s.t. qh|Oh

= r̃h(Q),

and qh, extended on ∂Ωh by qh|∂Ωh
= rh,∂Ω(q∂), belongs to H1

h(Ωh)},

that we endow with the L∞(Ωh) ∩H1
h(Ωh)-norm,
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then
- there exists a sequence (qh)h>0 ∈ Xh of potentials such that

lim sup
h→0

‖qh‖Xh
<∞, and lim

h→0

∥∥∥M̃h[qh]− M̃0[q]
∥∥∥
H1(0,T ;L2(Γ0))×L2((0,T )×Ω)

= 0, (1.41)

- for all sequence (qh)h>0 ∈ Xh of potentials satisfying (1.41), we have

lim
h→0

∥∥e0h(qh)− q
∥∥
L2(Ω)

= 0.

Let us briefly comment the assumptions of Theorem 1.6, which might seem much stronger com-
pared to the ones for the stability results in Theorems 1.4 and 1.5. This is due to the consistency of the
inverse problem, detailed in Lemma 4.3, which requires to find discrete potentials such that the cor-
responding solutions of the discrete wave equation (1.23) belongs to H1(0, T ;L∞(Ω)). But this class
is not very natural for the wave equation, and we will thus rather look for the class H1(0, T ;H2(Ω)),
which embeds into H1(0, T ;L∞(Ω)) according to Sobolev’s embeddings (since Ω ⊂ R2). This is
actually the only place in the article which truly depends on the dimension.

It may also seem surprising to assume the knowledge of q on the boundary even in the configuration
(1.26), for which Theorem 1.4 applies with only an L∞

h (Ωh)-norm on the potential. This is actually
due to the fact that the knowledge of q|∂Ω is hidden in the regularity assumptions on y[q]. Indeed, if
y[q] is smooth and satisfies (1.1), we may write ∂tty(0, x) = ∆y0(x)− q(x)y0(x)+ f(0, x) for all x ∈ Ω
and in particular x ∈ ∂Ω, whereas ∂tty(0, x) = ∂ttf∂(0, x) for x ∈ ∂Ω. In particular, since y0 does not
vanish on the boundary, these two identities imply that q|∂Ω can be immediately deduced from the
knowledge of y0, f and f∂ for sufficiently smooth solutions, see Remark 4.5.

Details on the derivation of Theorem 1.6 are given in Section 4, with a particular emphasis on the
related consistency issues. In particular, Lemma 4.3 explains how to derive the discrete data y0h, y

1
h,

fh and f∂,h from the data y0, y1, f , f∂ and q|∂Ω.

1.4 Outline

Section 2 will be devoted to the establishment of a uniform semi-discrete hyperbolic Carleman esti-
mates in two-dimensions, including the boundary observation case in Theorem 2.1 and the distributed
observation case in Theorem 2.2. We will then derive from these tools the discrete stability result of
Theorem 1.4. In Section 3, we will present a revisited version of Theorem 1.3 based on a global elliptic
Carleman estimate and follow the same strategy to establish the discrete stability result of Theorem
1.5, that relies on a global uniform semi-discrete elliptic Carleman estimate due to [9]. Finally, Sec-
tion 4 will gather the proof of Theorem 1.6, some informations about the Lax type argument, and a
detailed discussion about consistency issues.

2 Application of hyperbolic Carleman estimates

In this section, we discuss uniform Carleman estimates for the 2-d space semi-discrete wave operator
discretized using the finite difference method and applications to stability issues for discrete wave
equations. These discrete results are closely related to the study of the 1-d space semi-discrete wave
equation one can read in [3]. Actually, our methodology (here and in [3]) goes back to the articles
[8, 9] where uniform Carleman estimates were derived for elliptic operators.
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2.1 Discrete Carleman estimates for the wave equation in a square

The proofs of the results stated here will be presented in Sections 2.2 and 2.3.
Recall that we assume the geometric configuration

Ω = (0, 1)2, Γ0 ⊃ Γ+ = ({1} × (0, 1)) ∪ ((0, 1)× {1}). (2.1)

Carleman weight functions. Let a > 0, xa = (−a,−a) /∈ Ω = [0, 1]2, and β ∈ (0, 1). In
[−T, T ]× [0, 1]2, we define the weight functions ψ = ψ(t, x) and ϕ = ϕ(t, x) as

ψ(t, x) = |x− xa|2 − βt2 + c0, ϕ(t, x) = eµψ(t,x), (2.2)

where c0 > 0 is such that ψ ≥ 1 on [−T, T ]× [0, 1]2 and µ ≥ 1 is a parameter.

Uniform discrete Carleman estimates: the boundary case. One of the main results of this
article is the following:

Theorem 2.1. Assume the configuration (2.1) for Ω and Γ+. Let a > 0, β ∈ (0, 1) in (2.2) and
T > 0. There exist τ0 ≥ 1, µ ≥ 1, ε > 0, h0 > 0 and a constant C = C(τ0, µ, T, ε, β) > 0 independent
of h > 0 such that for all h ∈ (0, h0) and τ ∈ (τ0, ε/h), for all wh satisfying





2hwh ∈ L2(−T, T ;L2
h(Ωh)),

w0,j(t) = wN+1,j(t) = wi,0(t) = wi,N+1(t) = 0 ∀t ∈ (−T, T ), i, j ∈ J0, N + 1K,
wi,j(±T ) = ∂twi,j(±T ) = 0 ∀i, j ∈ J0, N + 1K,

(2.3)

we have

τ

∫ T

−T

∫

Ωh

e2τϕh |∂twh|2 dt+ τ
∑

k=1,2

∫ T

−T

∫

Ω−

h,k

e2τϕh |∂+h,kwh|2 dt+ τ3
∫ T

−T

∫

Ωh

e2τϕh|wh|2 dt

≤ C
∫ T

−T

∫

Ωh

e2τϕh |2hwh|2 dt+ Cτ
∑

k=1,2

∫ T

−T

∫

Γ+
h,k

e2τϕh

∣∣∣∂−h,kwh
∣∣∣
2

dt (2.4)

+Cτh2
∑

k=1,2

∫ T

−T

∫

Ω−

h,k

e2τϕh|∂+h,k∂twh|2 dt,

where ϕh is defined as the approximation of ϕ given by ϕh(t) = rhϕ(t) for t ∈ [0, T ].
Besides, if wh(0, xh) = 0 for all xh ∈ Ωh, we also have

τ1/2
∫

Ωh

e2τϕh(0)|∂twh(0, xh)|2 ≤ C
∫ T

−T

∫

Ωh

e2τϕh |2hwh|2 dt

+ Cτ
∑

k=1,2

∫ T

−T

∫

Γ+
h,k

e2τϕh

∣∣∣∂−h,kwh
∣∣∣
2

dt+ Cτh2
∑

k=1,2

∫ T

−T

∫

Ω−

h,k

e2τϕh|∂+h,k∂twh|2 dt. (2.5)

The proof of Theorem 2.1 will be given later in Section 2.2. It is very similar to the one of [3,
Theorem 2.2] but more intricate. The continuous counterpart of Theorem 2.1 is given in [4, Theorem
2.1 and Theorem 2.10], and very close versions of it can be found in [22, 21]. However, two main
differences with respect to the corresponding continuous Carleman estimates appear:
• The parameter τ is limited from above by the condition τh ≤ ε: this restriction on the range

of the Carleman parameter always appear in discrete Carleman estimates, see [8, 9, 3, 14]. This is
related to the fact that the conjugation of discrete operators with the exponential weight behaves as
in the continuous case only for τh small enough, since for instance

eτϕ∂h(e
−τϕ) ≃ −τ∂xϕ only for τh small enough.
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• There is an extra term in the right hand-side of (2.4), namely

τh2
∑

k=1,2

∫ T

−T

∫

Ω−

h,k

e2τϕh|∂+h,k∂twh|2 dt, (2.6)

that cannot be absorbed by the left hand-side terms of (2.4). This is not a surprise as this term already
appeared in the Carleman estimates obtained for the waves in the 1-d case, see [3, Theorem 2.2], and
also in the multiplier identity [25]. As it has been widely studied in the context of the control of dis-
crete wave equations (see e.g. the survey articles [40, 15]), this term is needed since the discretization
process creates spurious frequencies that do not travel at the velocity prescribed by the continuous dy-
namics (see also [37]). Also note that this additional term only concerns the high-frequency part of the
solutions, since the operators h∂+h,1, h∂

+
h,2 are of order 1 for frequencies of order 1/h, whereas it can be

absorb by the right hand-side of (2.4) for scale O(1/h1−ε) for all ε > 0 by choosing h sufficiently small.

Uniform discrete Carleman estimates: the distributed case. The usual assumption in the
distributed case for getting Carleman estimates in the continuous setting (see [21]) is that the obser-
vation set ω is a neighborhood of a part of the boundary satisfying the Gamma condition (1.3). Since
in our geometric setting Ω = (0, 1)2, with no loss of generality we may assume that there exists δ > 0
such that (1.29) holds. Under these conditions, we show:

Theorem 2.2. Assume the configuration (1.29) for ω. We then set

ωh = Ωh ∩ ω, ω−
h,k = Ω−

h,k ∩ ω, k ∈ {1, 2}.
Let a > 0, β ∈ (0, 1) in (2.2) and T > 0. There exist τ0 ≥ 1, µ ≥ 1, ε > 0, h0 > 0 and a constant
C = C(τ0, µ, T, ε, β) > 0 independent of h > 0 such that for all h ∈ (0, h0) and τ ∈ (τ0, ε/h), for all
wh satisfying (2.3),

τ

∫ T

−T

∫

Ωh

e2τϕh |∂twh|2 dt+ τ
∑

k=1,2

∫ T

−T

∫

Ω−

h,k

e2τϕh |∂+h,kwh|2 dt+ τ3
∫ T

−T

∫

Ωh

e2τϕh|wh|2 dt

≤ C
∫ T

−T

∫

Ωh

e2τϕh |2hwh|2 dt+ Cτh2
∑

k=1,2

∫ T

−T

∫

Ω−

h,k

e2τϕh|∂+h,k∂twh|2 dt (2.7)

Cτ

∫ T

−T

∫

ωh

e2τϕh|∂twh|2 dt+ Cτ
∑

k=1,2

∫ T

−T

∫

ω−

h,k

e2τϕh|∂+h,kwh|2 dt+ Cτ3
∫ T

−T

∫

ωh

e2τϕh|wh|2 dt,

where ϕh(t) = rhϕ(t) for t ∈ [0, T ]. Besides, if wh(0, xh) = 0 for all xh ∈ Ωh, the term

τ1/2
∫

Ωh

e2τϕh(0)|∂twh(0, xh)|2

is also bounded by the right hand side of (2.7).

Of course, Theorem 2.2 shares the same features as Theorem 2.1. Actually, Theorem 2.2 is a
corollary of Theorem 2.1, and we postpone its proof to Section 2.3.

2.2 Proof of the discrete Carleman estimate - boundary case

Proof of Theorem 2.1. The proof of estimate (2.4) is long and follows the same lines as [3, Theorem
2.2]. In particular, the main idea is to work on the conjugate operator

Lhvh := eτϕh2h(e
−τϕhvh). (2.8)

The precise computation of Lh already involves tedious computations summed up below:
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Proposition 2.3. The conjugate operator Lh can be written in the following way:

Lhvh = ∂ttvh − 2τµϕ∂tψ ∂tvh + τ2µ2ϕ2 (∂tψ)
2 vh − τµ2ϕ (∂tψ)

2 vh − τµϕ(∂ttψ)vh (2.9)

−
∑

k=1,2

(1 +A0,k)∆h,kvh + 2τµ
∑

k=1,2

A1,k∂h,kvh −
∑

k=1,2

(τ2µ2A2,k − τµ2A3,k − τµA4,k)vh,

where the coefficients Aℓ,k are given, for (t, xh) ∈ (−T, T )× Ωh and e1 = (1, 0), e2 = (0, 1), by

A1,k(t, xh) =
1

2

∫ 1

−1

[ϕ∂xk
ψ] (t, xh + σhek)

e−τϕ(t,xh+σhek)

e−τϕ(t,xh)
dσ, (2.10)

A2,k(t, xh) =

∫ 1

−1

(1 − |σ|)
[
ϕ2(∂xk

ψ)2
]
(t, xh + σhek)

e−τϕ(t,xh+σhek)

e−τϕ(t,xh)
dσ, (2.11)

A3,k(t, xh) =

∫ 1

−1

(1 − |σ|)
[
ϕ(∂xk

ψ)2
]
(t, xh + σhek)

e−τϕ(t,xh+σhek)

e−τϕ(t,xh)
dσ, (2.12)

A4,k(t, xh) =

∫ 1

−1

(1 − |σ|) [ϕ∂xkxk
ψ] (t, xh + σhek)

e−τϕ(t,xh+σhek)

e−τϕ(t,xh)
dσ, (2.13)

A0,k =
h2

2
(τ2µ2A2,k − τµ2A3,k − τµA4,k). (2.14)

In particular, these functions Aℓ,k defined on [0, T ]× Ωh can be extended on [0, T ]× Ω in a natural
way by the formulas (2.10)–(2.13) and satisfy the following property: setting

f0,k = 0, f1,k = ϕ∂xk
ψ, f2,k = ϕ2(∂xk

ψ)2, f3,k = ϕ(∂xk
ψ)2, f4,k = ϕ∂xkxk

ψ,

for some constants Cµ depending on µ but independent of τ and h, we have

‖Aℓ,k − fℓ,k‖C2([0,T ]×Ω) ≤ Cµτh, ∀ℓ ∈ {0, . . . , 4}, ∀k ∈ {1, 2}. (2.15)

The proof of Proposition 2.3 can be easily deduced from the detailed one in [3, Propositions 2.7,
2.8 and Lemma 2.9, 2.10] and the details are left to the reader. Note in particular that (2.15) implies
for all (ℓ, k) ∈ J0, 4K× {1, 2},

‖Aℓ,k − rhfℓ,k‖L∞((0,T );L∞
h (Ωh))

+
∑

k′=1,2

∥∥∥∂+h,k′Aℓ,k − rh∂xfℓ,k

∥∥∥
L∞((0,T );L2

h(Ω
−

h,k′ ))

+ ‖∆hAℓ,k − rh∆fℓ,k‖L∞((0,T );L∞
h (Ωh))

≤ Cµτh.

Afterwards, one step of the usual way to prove a Carleman estimate is to split Lh into two operators
Lh,1 and Lh,2, that, roughly speaking, corresponds to a decomposition into a self-adjoint part and a
skew-adjoint one. To be more precise, using the notations

A2 = A2,1 +A2,2, A3 = A3,1 +A3,2, A4 = A4,1 +A4,2,

we set

Lh,1vh = ∂ttvh −
∑

k=1,2

(1 +A0,k)∆h,kvh + τ2µ2
(
ϕ2 (∂tψ)

2 −A2

)
vh , (2.16)

Lh,2vh = (α1 − 1)τµ (ϕ∂ttψ −A4) vh − τµ2
(
ϕ|∂tψ|2 −A3

)
vh

−2τµ


ϕ∂tψ∂tvh −

∑

k=1,2

A1,k∂h,kvh


 , (2.17)

Rhvh = α1τµ (ϕ∂ttψ −A4) vh , with α1 =
β + 1

β + 2
, (2.18)
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so that we have Lh,1v+Lh,2v = Lhv+Rhv. Here, Rh will be considered as a lower order perturbation
of no interest and the letter R states for “reminder”. More precisely, all our computations will be
based on the following straightforward estimate:

∫ T

−T

∫

Ωh

|Lh,1vh|2 dt+
∫ T

−T

∫

Ωh

|Lh,2vh|2 dt+ 2

∫ T

−T

∫

Ωh

Lh,1vh Lh,2vh dt

≤ 2

∫ T

−T

∫

Ωh

|Lhvh|2 dt+ 2

∫ T

−T

∫

Ωh

|Rhv|2 dt. (2.19)

In particular, we claim the following proposition, proved in Appendix B:

Proposition 2.4. For any T > 0, there exist µ ≥ 1, τ0 ≥ 1, ε0 > 0 and a constant C0 > 0 such
that for all τ ∈ (τ0, ε0/h), for all vh satisfying v0,j = vN+1,j = vi,0 = vi,N+1 = 0 and vi,j(±T ) =
∂tvi,j(±T ) = 0, ∀i, j ∈ J0, N + 1K,

τ

∫ T

−T

∫

Ωh

|∂tvh|2 dt+ τ
∑

k=1,2

∫ T

−T

∫

Ω−

h,k

|∂+h,kvh|2 dt+ τ3
∫ T

−T

∫

Ωh

|vh|2 dt+
∫ T

−T

∫

Ωh

|Lh,1vh|2 dt

≤ C0

∫ T

−T

∫

Ωh

|Lhvh|2 dt+ C0τ
∑

k=1,2

∫ T

−T

∫

Γ+
h,k

∣∣∣∂−h,kvh
∣∣∣
2

dt+ C0τh
2
∑

k=1,2

∫ T

−T

∫

Ω−

h,k

|∂+h,k∂tvh|2 dt

(2.20)

where the operators Lh and Lh,1 are defined by (2.8) and (2.16).

The proof of Proposition 2.4 is the core of the derivation of the discrete Carleman estimate and

consists in estimating from below the cross-product
∫ T
−T

∫
Ωh

Lh,1vh Lh,2vh dt in (2.19). This is done in
two steps: Computation of the cross-product and computations of the leading order terms coefficients
in front of vh, ∂tvh, ∂

+
h,kvh. The proof of Proposition 2.4 is given in Appendix B.

Actually, this closely follows the proof of [3, Lemma 2.11] corresponding to the 1-d case. The main
novelties with respect to [3, Lemma 2.11] are the following ones:
• Some computations in the cross-product of Lh,1vh and Lh,2vh are new since the term (α1 −

1)τµ(ϕ∂ttψ −
∑
k A4,k)vh in Lh,2 in (2.17) vanishes in dimension 1. Actually, the coefficient α1 is

chosen in some range that depends on the dimension d of the space variable and is required to belong
to (2β/(β + d), 2/(β + d)). Hence, since d = 1 in [3], we chose α1 = 1 to simplify the computations.
• There are also new cross-products involving integration by parts of discrete derivatives in different

directions. In particular, besides the 1-d integration by parts formula in [3, Lemma 2.6] that we recall
in A, we will need the following specific 2-d formula:

Lemma 2.5 (discrete integration by part formula). Let vh, gh be discrete functions depending on the
variable xh ∈ [0, 1]2 such that vh = 0 on the boundary of the square. Then we have the following
identity:

∫

Ωh

gh∆h,1vh ∂h,2vh =
1

2

∫

Ω−

h,1

|∂+h,1vh|2∂h,2(m+
h,1gh)−

∫

Ω−

h,1

∂+h,1vhm
+
h,1(∂h,2vh) ∂

+
h,1gh

− h2

4

∫

Ω−

h

|∂+h,1∂+h,2vh|2∂+h,2(m+
h,1gh). (2.21)

Though the formula (2.21) cannot be found as it is in [3], it can be easily deduced from the inte-
gration by parts formula in Appendix A and the proof is left to the reader.
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Furthermore, if we assume vh(0) = 0 in Ωh, we can compute the following cross-product (it is a
straightforward modification of the computations in [3, p.586]):

∫ 0

−T

∫

Ωh

∂tvh Lh,1vh dt =
1

2

∫

Ωh

|∂tvh(0)|2 −
1

2

∑

k=1,2

∫ 0

−T

∫

Ω−

h,k

m+
h,k(∂tA0,k) |∂+h,kvh|2 dt

+
∑

k=1,2

∫ 0

−T

∫

Ω−

h,k

∂+h,kA0,k ∂
+
h,kvhm

+
h,k(∂tvh) dt−

τ2µ2

2

∫ 0

−T

∫

Ωh

|vh|2∂t
(
ϕ2 (∂tψ)

2 −A2

)
dt.

Therefore, based on Proposition 2.3, we easily get

∫

Ωh

|∂tvh(0)|2 ≤
C√
τ

∫ 0

−T

∫

Ωh

|Lh,1vh|2 dt+ C
√
τ

∫ 0

−T

∫

Ωh

|∂tvh|2 dt

+ Cµτh
∑

k=1,2

∫ 0

−T

∫

Ω−

h,k

|∂+h,kvh|2 dt+ Cµτh
∑

k=1,2

∫ 0

−T

∫

Ω−

h,k

|∂tvh|2 dt+ Cµτ
2

∫ 0

−T

∫

Ωh

|vh|2 dt.

As τh ≤ 1, applying Proposition 2.4 then immediately yields

τ1/2
∫

Ωh

|∂tvh(0)|2 ≤ C
∫ T

−T

∫

Ωh

|Lhvh|2 dt+ Cτ
∑

k=1,2

∫ T

−T

∫

Γ+
h,k

∣∣∣∂−h,kvh
∣∣∣
2

dt

+ Cτh2
∑

k=1,2

∫ T

−T

∫

Ω−

h,k

|∂+h,k∂tvh|2 dt. (2.22)

Finally, for wh satisfying (2.3), we set vh := eτϕhwh. Remarking that by construction Lhvh =
eτϕh2hwh, we can apply directly Proposition 2.4. We notice that for τh ≤ 1,

|wh|2e2τϕh ≤ Cµ|vh|2,
|∂twh|2e2τϕh ≤ Cµ(|∂tvh|2 + |vh|2), |∂+h,kwh|2e2τϕh ≤ Cµ(|∂+h,kvh|2 + Cµτ

2|m+
h,kvh|2),

|∂+h,k∂tvh|2 ≤ Cµ|∂+h,k∂twh|2e2τϕh + Cµτ
2(|∂+h,kwh|2 + |m+

h,k∂tw|2)e2τϕh + Cµτ
4|m+

h,kw|2e2τϕh,

and |∂−h,kvh|2 ≤ Cµ|∂−h,kwh|2e2τϕh on the boundary Γ+
h,k as wh vanishes on ∂Ωh. We thus deduce

Carleman estimate (2.4) for τ large enough and τh small enough directly from (2.20). Besides, when
wh(0) = 0 on Ωh, then vh(0) = 0 and ∂tvh(0) = ∂twh(0)e

τϕh(0) on Ωh, hence we conclude (2.5) from
(2.22).

2.3 Proof of the discrete Carleman estimate - distributed case

Proof of Theorem 2.2. It can be deduced from Theorem 2.1. Indeed, under assumption (1.29), it
suffices to define a cut-off function χ ∈ C∞(Ω; [0, 1]) taking value 1 on Ω \ {x ∈ Ω, d(x,Γ0) < δ/2}
and vanishing on the boundary Γ+ = ({1}×(0, 1))∪((0, 1)×{1}) and to apply the Carleman estimate
(2.4) to χhwh with χh = rh(χ): the boundary terms in (2.4) vanish by construction but we have

2h(χhwh) = χh2hwh − 2∇hχh∇hwh −∆hχh(2mhwh − wh).
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Using that χ ≡ 1 on Ω \ {x ∈ Ω, d(x,Γ0) < δ/2}, one easily checks that for h small enough, ∂hχh and
∆hχh are supported on ω. We thus readily obtain

τ

∫ T

−T

∫

Ωh

e2τϕhχ2
h|∂twh|2 dt+ τ

∑

k=1,2

∫ T

−T

∫

Ω−

h,k

e2τϕh |∂+h,k(χhwh)|2 dt+ τ3
∫ T

−T

∫

Ωh

e2τϕhχ2
h|wh|2 dt

≤ C
∫ T

−T

∫

Ωh

e2τϕhχ2
h|2hwh|2 dt+ C

∫ T

−T

∫

ωh

e2τϕh
(
|∇hwh|2 + |mhwh|2 + |wh|2

)
dt

+ Cτh2
∑

k=1,2

∫ T

−T

∫

Ω−

h,k

e2τϕh|∂+h,k∂t(χhwh)|2 dt. (2.23)

One then easily checks that, for τh small enough,

∫ T

−T

∫

ωh

e2τϕh
(
|∇hwh|2 + |mh(wh)|2 + |wh|2

)
dt+ τh2

∑

k=1,2

∫ T

−T

∫

Ω−

h,k

e2τϕh |∂+h,k∂t(χhwh)|2 dt

≤ C
∑

k=1,2

∫ T

−T

∫

ω−

h,k

e2τϕh|∂+h,kwh|2 dt+ C

∫ T

−T

∫

ωh

e2τϕh|wh|2 dt

+ Cτh2
∫ T

−T

∫

Ωh

e2τϕh|∂twh|2 dt+ Cτh2
∑

k=1,2

∫ T

−T

∫

Ω−

h,k

e2τϕh |∂+h,k∂twh|2 dt.

We thus conclude (2.7) only by adding the terms

τ

∫ T

−T

∫

ωh

e2τϕh|∂twh|2 dt+ τ
∑

k=1,2

∫ T

−T

∫

ω−

h,k

e2τϕh|∂+h,kwh|2 dt+ τ3
∫ T

−T

∫

ωh

e2τϕh |wh|2 dt

on both sides of (2.23) and by taking τ large enough.

2.4 Proof of the uniform Lipschitz stability result

As said in the introduction, Theorem 1.4 is a consequence of the Carleman estimates in Theorems 2.1
and 2.2. Its statement is very similar to the one of [3, Theorem 3.1] in the 1-d case. With respect to
the stability estimates obtained in the continuous case in [2] (see also [22, 4]), there is the additional
term (1.31) which is remanent from (2.6) corresponding to some non-standard penalization of the
discrete inverse problems.

Proof of Theorem 1.4. Let us begin with the identity

∑

k=1,2

∫ T

−T

∫

Γ+
h,k

∣∣∣∂−h,kyh[qah]− ∂−h,kyh[qbh]
∣∣∣
2

dt =
∥∥∂νeh(yh[qah])− ∂νeh(yh[qbh])

∥∥2
H1(0,T ;L2(Γ+))

,

that allows to end the proof of Theorem 1.4 as soon as we obtain the stability estimate (1.28) with∥∥Mh[q
a
h]−Mh[q

b
h]
∥∥
H1(0,T ;L2(Γ0))

replaced by


∑

k=1,2

∫ T

−T

∫

Γ+
h,k

∣∣∣∂−h,kyh[qah]− ∂−h,kyh[qbh]
∣∣∣
2

dt




1/2

.

Since the proof follows the one of [3, Theorem 3.1], we only sketch the main steps required.

18



• Step 1. Energy estimates. We first write classical energy estimates in the context of the semi-
discrete wave equation in Ωh, like the one written in [3, Lemma 3.3], and apply them to zh =
∂t(yh[q

b
h]− yh[qah]) that satisfies





∂ttzh −∆hzh + qbhzh = (qbh − qah)∂tyh[qah], in (0, T )× Ωh,
zh = 0, on (0, T )× ∂Ωh,
(zh(0), ∂tzh(0)) =

(
0, (qbh − qah)y0h

)
, in Ωh.

We thus get a constant C = C(T,m) > 0 independent of h and such that for all t ∈ (0, T ),
∥∥∂+h zh(t)

∥∥
L2

h(Ω
−

h )
+ ‖∂tzh(t)‖L2

h(Ωh)
+ ‖zh(t)‖L2

h(Ωh)
≤ CK

∥∥qah − qbh
∥∥
L2

h(Ωh)
, (2.24)

where ‖yh[qah]‖H1(0,T ;L∞
h

(Ωh))
≤ K.

• Step 2. Choice of the Carleman weight. Since we assumed T >
√
2, we can find a > 0 and

β ∈ (0, 1) such that
βT 2 > sup

x∈Ω
|x− xa|2 − inf

x∈Ω
|x− xa|2 = 2 + 4a.

Therefore, we can choose η > 0 such that the Carleman weight function ψ defined in (2.2) satisfies

sup
|t|∈(T−η,T ), x∈Ω

ψ(t, x) ≤ inf
x∈Ω

ψ(0, x). (2.25)

We then choose a and β as above in the Carleman weight (2.2), and choose µ, τ0, ε > 0 such that
Theorem 2.1 holds.
• Step 3. Extension and truncation. We extend the equation in zh on (−T, T ), setting zh(t) =

−zh(−t) for all t ∈ (−T, 0). We also extend ∂tyh[q
a
h] as an odd function on (−T, T ). We define the cut-

off function χ ∈ C∞(R; [0, 1]) such that χ(±T ) = ∂tχ(±T ) = 0 and χ(t) = 1 for all t ∈ [−T +η, T −η].
Then wh = χzh fulfills the assumptions of Theorem 2.1 and satisfies the following equation:





∂ttwh −∆hwh + qbhwh = ∂ttχzh + 2∂tχ∂tzh + (qbh − qah)∂tyh[qah], in (−T, T )× Ωh,
wh = 0, on (−T, T )× ∂Ωh,
(wh(0), ∂twh(0)) = (0, (qah − qbh)y0h), in Ωh,
wh(±T ) = 0, ∂twh(±T ) = 0, in Ωh.

• Step 4. Using the Carleman estimate. We apply Carleman estimates (2.5) and (2.4) to wh and,
using the expression of ∂twh(0) and Assumption (1.27), we get, for all τ ∈ (τ0, ε/h),

√
τ

∫

Ωh

eτϕh(0)|qah − qbh|2 + τ3
∫ T

−T

∫

Ωh

eτϕh |wh|2 dt ≤ C
∫ T

−T

∫

Ωh

e2τϕh |2hwh|2 dt

+ Cτ
∑

k=1,2

∫ T

−T

∫

Γ+
h,k

e2τϕh

∣∣∣∂−h,kwh
∣∣∣
2

dt+ Cτh2
∑

k=1,2

∫ T

−T

∫

Ω−

h,k

e2τϕh |∂+h,k∂twh|2 dt (2.26)

The end of the proof finally consists in estimating the term containing 2hwh:

∫ T

−T

∫

Ωh

e2τϕh|2hwh|2 dt ≤ C
∫ T

−T

∫

Ωh

e2τϕh|qbhwh|2 dt

+ C

∫

|t|∈(T−η,T )

∫

Ωh

e2τϕh(|∂tzh|2 + |zh|2) dt+ C

∫ T

−T

∫

Ωh

e2τϕh|(qah − qbh)∂ty[qah]|2 dt. (2.27)

The first term of the right hand side of (2.27) can be absorbed by the left hand-side of (2.26) as qbh
is of bounded L∞

h (Ωh)-norm. In the second term, we bound the weight function by its supremum on
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[T−η, T ] and then use the energy bound (2.24) on zh. This can then be absorbed by the left hand-side
of (2.26) due to the comparison (2.25) of the weight at time 0 and on (T − η, T ). Finally, since the
weight function is maximal at t = 0, the last term can be bounded by C

∫
Ωh
e2τϕh(0)|qah − qbh|2 due

to the assumption (1.27) and thus it can also be absorbed by the left hand-side of (2.26). Therefore,
taking τ large enough completes the proof of Theorem 1.4 in the case of a boundary observation
(1.28). The case of a distributed observation can be deduced similarly from Theorem 2.2 stating a
Carleman estimate for a distributed observation.

3 Application of elliptic Carleman estimates

3.1 Logarithmic stability estimate in the continuous case

The goal of this section is to prove Theorem 1.3. Actually, it is a direct consequence of the following
result, similar to the ones in [29, 31]:

Theorem 3.1. Let Γ0 be a non-empty open subset of ∂Ω and let ω be a smooth connected open
subset of Ω such that ∂ω ∩ ∂Ω is an open neighborhood of Γ0. Let m > 0 and q ∈ L∞(Ω) satisfying
‖q‖L∞ ≤ m. Let D > 0 and R0 > 0, and assume that ζ = ζ(t, x) solves the wave equation

{
∂ttζ −∆ζ + qζ = f, in (−T, T )× Ω,
ζ = 0 on (−T, T )× ∂Ω, (3.1)

for some f ∈ L1(−T, T ;L2(Ω)) satisfying

f = 0 in (−T, T )× {x ∈ Ω, d(x, ω) < R0}, (3.2)

and satisfies ζ ∈ H2((−T, T )× Ω) with ‖ζ‖H2((−T,T )×Ω) ≤ D .

Let α > 0. There exists T0 > 0 such that for any T ≥ T0, there exists a constant C = C(T ) > 0
such that

‖ζ‖H1((−T/8,T/8)×ω) ≤ CD

[
log

(
2 +

D

‖∂νζ‖L2((−T,T )×Γ0)

)]− 1
1+α

. (3.3)

Indeed, let us first show how Theorem 3.1 implies Theorem 1.3.

Proof of Theorem 1.3. The idea is to apply Theorem 3.1 to ζ = ∂t(y[q
a]− y[qb]), which satisfies the

wave equation





∂ttζ −∆ζ + qbζ = (qb − qa)∂ty[qa], (t, x) ∈ (0, T )× Ω,
ζ = 0 (t, x) ∈ (0, T )× ∂Ω,
ζ(0, x) = 0, ∂tζ(0, x) = (qb − qa)(x)y0(x), x ∈ Ω.

(3.4)

Extending ζ as an odd function on (−T, T ), using the classical energy estimates on ∂tζ, the fact that
∂tζ is continuous at t = 0 by construction, and recalling assumption (1.12) on qa − qb, we easily get:

‖ζ‖H2((−T,T )×Ω) ≤ Cm
(∥∥(qa − qb)y0

∥∥
H1

0 (Ω)
+
∥∥(qa − qb)y1

∥∥
L2(Ω)

+
∥∥(qa − qb)∂ty[qa]

∥∥
W 1,1(0,T ;L2(Ω))

)

≤ Cmm
(∥∥y0

∥∥
H1(Ω)

+
∥∥y1
∥∥
L2(Ω)

+ ‖∂ty[qa]‖W 1,1(0,T ;L2(Ω))

)
+ CmM

∥∥y0
∥∥
L∞(Ω)

≤ Cm(m+M) ‖y[qa]‖W 2,1(0,T ;L2(Ω))∩H1(0,T ;L∞(Ω)) + Cmm
∥∥y0
∥∥
H1(Ω)

= D . (3.5)
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Since the potentials qa and qb coincide on O by (1.10), and because of (1.9), the source term f =
(qa − qb)∂ty[qa] extended to an odd function on (−T, 0), satisfies (3.2) for R0 = δ/2 and ω = {x ∈
Ω, d(x,Γ1) < δ/2 }. Applying Theorem 3.1, we obtain:

∥∥∂ty[qa]− ∂ty[qb]
∥∥
H1((−T/8,T/8)×ω)

≤ D

[
log

(
2 +

D

‖∂ν∂ty[qa]− ∂ν∂ty[qb]‖L2((−T,T )×Γ0)

)]− 1
1+α

.

Because ω = {x ∈ Ω, d(x,Γ1) < δ/2} satisfies the condition (1.9) and is thus a neighborhood of
a boundary satisfying the Gamma-condition (1.3), the use of estimate (1.8) of Theorem 1.1 then
completes the proof of Theorem 1.3.

Let us now focus on the proof of Theorem 3.1. As we said in the introduction, this result follows
from a suitable use of a Fourier-Bros-Iagoniltzer (FBI) transform to reduce the hyperbolic problem
to an elliptic problem and on an elliptic Carleman estimate.
As in [29, 31], we use a FBI transform with a “Gaussian-polynomial” kernel: this ingredient allows us
to improve the exponent in (3.3) to any α > 0 instead of only α = 1 as in [5].
Also, our proof shortcuts the one in [31] by using a global Carleman estimate for the elliptic equation,
allowing to get rid of the iterated three spheres inequalities in [31] (see also [5]). Though this does
not yield any particular improvement on the result in the continuous setting, we will follow the same
strategy in the semi-discrete case and that way, we will manage to avoid the iterated use of three
spheres inequalities in the discrete setting, which would induce tedious discussions.

Proof of Theorem 3.1. The proof is rather long and can be split into several steps. Along this proof,
the constants written in large caps may depend on the parameter n ∈ N and T > 0 and are independent
of the other parameters. But constants with small caps, that will be numbered c0, c1, (. . . ) have the
additional property that they do not depend on the time parameter T either.
• Step 1. The Fourier Bros Iagoniltzer kernel. In this step, we introduce the FBI kernel following

[29, p.473]. Let us set n ∈ N∗ such that 1/(2n− 1) < α and γ = 1 − 1/(2n) (that guarantees
1/(1 + α) < γ < 1). Introduce a function F defined on C as follows:

F (z) =
1

2π

∫ ∞

−∞

eizξe−ξ
2n

dξ. (3.6)

According to [29], this function F is even, holomorphic on C and satisfies, for some positive constants
C0, c0, c1, c2:

{
|F (z)|+ |F ′(z)| ≤ C0 exp

(
c0|ℑ(z)|1/γ

)
, ∀z ∈ C,

|F (z)| ≤ C0 exp
(
−c1|z|1/γ

)
, ∀z ∈ C with |ℑ(z)| ≤ c2|ℜ(z)|,

(3.7)

Then, for λ ≥ 1, we introduce
Fλ(z) = λγF (λγz),

which, due to (3.7), satisfies the following estimates:

{
|Fλ(z)|+ |F ′

λ(z)| ≤ C0λ
2γ exp

(
c0λ|ℑ(z)|1/γ

)
, ∀z ∈ C,

|Fλ(z)| ≤ C0λ
γ exp

(
−c1λ|z|1/γ

)
, ∀z ∈ C with |ℑ(z)| ≤ c2|ℜ(z)|.

(3.8)

Let us remark that F defined by (3.6) is the inverse Fourier transform of ξ 7→ e−ξ
2n

so that Fλ is an
approximation of the identity as λ→∞. Finally, notice that by construction, the Fourier transform
of Fλ(t) is

F(Fλ)(ξ) = F(F )
(
ξ

λγ

)
= exp

(
−
(
ξ

λγ

)2n
)
. (3.9)
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• Step 2. The Fourier-Bros-Iagoniltzer transform. Let ζ be the solution of (3.1). We introduce a
cut-off function η ∈ C∞([−T, T ]; [0, 1]) such that

η(t) =

{
1 if |t| ≤ T/2,
0 if |t| ≥ 3T/4.

We define the FBI transform of ζ for s ∈ R, a ∈ [−T/4, T/4] and x ∈ Ω by

va,λ(s, x) =

∫

R

Fλ(a+ is− t)η(t)ζ(t, x) dt, (3.10)

where i denotes the imaginary unit. Since ∂sva,λ(s, x) = i
∫
R
Fλ(a + is − t) ∂t(η(t)ζ(t, x)) dt, using

integration by parts, one easily checks that va,λ solves the elliptic equation

{
(−∂ss −∆x + q)va,λ = fa,λ in R× Ω,
va,λ = 0 on R× ∂Ω,

where fa,λ is defined as fa,λ = fa,λ,1 + fa,λ,2, with (since ζ satisfies (3.1))

fa,λ,1(s, x) =

∫

R

Fλ(a+ is− t) (2η′(t)∂tζ(t, x) + η′′(t)ζ(t, x)) dt,

fa,λ,2(s, x) =

∫

R

Fλ(a+ is− t)η(t)f(t, x) dt.

On the one hand, using that 2η′∂tζ+ η
′′ζ is supported in {(t, x) ∈ (−T, T )×Ω s.t. |t| ≥ T/2} and

the second estimate in (3.8) on the kernel Fλ, we have

‖fa,λ,1‖2L∞(−3,3;L2(Ω)) ≤ Cλ2γe−2c1λ(T/2)
1/γ ‖ζ‖2H1((−T,T )×Ω) ≤ Cλ2γe−2c1λ(T/2)

1/γ

D
2, (3.11)

for any T > 12/c2, since a ∈ [−T/4, T/4], |t| ≥ T/2 and since we decided to work for s ∈ [−3, 3] and
needed |s| ≤ c2|a− t| to apply (3.8).

On the other hand, the first estimate in (3.8) also yields, for c3 = 2 · 31/γc0,

‖va,λ‖2H1((−3,3)×Ω) ≤ Cλ
4γec3λ ‖ζ‖2H1((−T,T )×Ω) ≤ Cλ4γec3λD2, (3.12)

and, similarly,
‖∂νva,λ‖2L2((−3,3)×Γ0)

≤ Cλ4γec3λ ‖∂νζ‖2L2((−T,T )×Γ0)
. (3.13)

• Step 3. Estimating va,λ by an observation on (−3, 3)×Γ0. This step strongly relies on a Carleman
estimate for the following elliptic problem:

{
(−∂ss −∆x + q)w = g in (−3, 3)× Ω,
w = 0 on ∂((−3, 3)× Ω).

(3.14)

One of the most important points is to suitably choose the Carleman weight. First construct a smooth
function ψ0 = ψ0(x) on ω such that





∀x ∈ ω, ψ0(x) ≥ 0,
infω{|∇ψ0|} > 0,
∀x ∈ ∂ω \ Γ0, ψ0(x) = 0 and ∂νψ0(x) < 0,
‖ψ0‖L∞(ω) ≤ 1/2.

(3.15)
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Note that such a function ψ0 exists according to the construction in [17] (see also [38, Appendix III]).
We then extend this function ψ0 as a smooth function ψ on Ω satisfying ‖ψ‖L∞(Ω) ≤ 1. By continuity,

there exists a positive constant R ∈ (0, R0) such that in the set

ωR = {x ∈ Ω, d(x, ω) < R},

where the source term f vanishes by assumption (3.2), we have infx∈ωR{|∇ψ(x)|} > 0 and such that
in the set

C =

{
x ∈ Ω,

R

2
< d(x, ω) < R

}
,

we have, as pictured in Figure 2,
0 = inf

ω
ψ > sup

C

ψ. (3.16)

ω

ω

C

B

A

← C

A B

ψ

Ω

Γ0

Figure 2: Construction of the weight function ψ(x).

We finally define, for µ ≥ 1,

ϕ := ϕ(s, x) = exp(µ(ψ(x) − s2)), (s, x) ∈ [−3, 3] × Ω. (3.17)

According to [20] (see also [17, 35]) one has the following Carleman estimate for (3.14):

Lemma 3.2 (An elliptic Carleman estimate). There exist µ ≥ 1 and a constant C > 0 such that for
all τ ≥ 1, for all g ∈ L2((−3, 3)× Ω) and w solution of (3.14) supported in (−3, 3)× ωR,

τ3 ‖eτϕw‖2L2((−3,3)×Ω) + τ ‖eτϕ∇s,xw‖2L2((−3,3)×Ω)

≤ C ‖eτϕg‖2L2((−3,3)×Ω) + Cτ ‖eτϕ∂νw‖2L2((−3,3)×Γ0)
, (3.18)

where the constant C can be taken uniformly with respect to q ∈ L∞(Ω) with ‖q‖L∞ ≤ m.

Estimate (3.18) has to be understood as a Carleman estimate with observation on (−3, 3) × Γ0

and in (−3, 3) × (Ω \ ωR). But, as we assumed that w is supported in (−3, 3)× ωR, we simply omit
the observation in (−3, 3) × (Ω \ ωR).

Now, introduce smooth cut-off functions χS = χS(s) and χR = χR(x) such that

χS(s) =

{
1 if |s| ≤ 2,
0 if |s| ≥ 3,

and ‖χS‖W 2,∞(R) ≤ C,
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and

χR(x) =

{
1 if d(x, ω) ≤ R/2,
0 if d(x, ω) ≥ R, and ‖χR‖W 2,∞(Ω) ≤ C.

We can then define
wa,λ(s, x) = χS(s)χR(x)va,λ(s, x), (s, x) ∈ R× Ω (3.19)

which satisfies {
(−∂ss −∆x + q)wa,λ = ga,λ in (−3, 3)× Ω,
wa,λ = 0 on ∂((−3, 3)× Ω),

(3.20)

where (using the fact that fa,λ,2 vanishes in ωR by assumption (3.2))

ga,λ = χSχRfa,λ,1 − 2χR∂sχS∂sva,λ − χR∂ssχSva,λ − 2χS∇χR∇va,λ − χS∆χRva,λ.

Thus, Carleman estimate (3.18) can be applied, and gives: for all τ ≥ 1,

τ3 ‖eτϕwa,λ‖2L2((−3,3)×Ω) + τ ‖eτϕ∇s,xwa,λ‖2L2((−3,3)×Ω)

≤ C ‖eτϕga,λ‖2L2((−3,3)×Ω) + Cτ ‖eτϕ∂νwa,λ‖2L2((−3,3)×Γ0)
.

Since wa,λ = va,λ on (−1, 1)× ω and ‖χSχR‖W 2,∞(R×Ω) ≤ C, we obtain

τ3 ‖eτϕva,λ‖2L2((−1,1)×ω) + τ ‖eτϕ∇s,xva,λ‖2L2((−1,1)×ω))

≤ C ‖eτϕga,λ‖2L2((−3,3)×Ω) + Cτ ‖eτϕ∂νva,λ‖2L2((−3,3)×Γ) . (3.21)

Now, we estimate from below the left hand side and from above the right hand side of (3.21).
Notice first that according to (3.16), we can choose ǫ0 ∈ (0, 1) such that

inf
|s|≤ǫ0, x∈ω

ϕ > sup
|s|≤3, x∈C

ϕ. (3.22)

In order to simplify notations, we set

Iω = inf
|s|≤ǫ0, x∈ω

ϕ, S = sup
|s|≤3, x∈Ω

ϕ, S(2,3) = sup
|s|∈(2,3), x∈Ω

ϕ, SC = sup
|s|≤3, x∈C

ϕ. (3.23)

Remark that, similarly to (3.22), that writes now Iω > SC , using the explicit form of ϕ and the fact
that ‖ψ‖L∞(Ω) ≤ 1, we have

Iω > S(2,3). (3.24)

Going back to (3.21), on the one hand, for all τ ≥ 1, the left hand side satisfies,

e2τIω ‖va,λ‖2H1((−ǫ0,ǫ0)×ω))
≤ τ3 ‖eτϕva,λ‖2L2((−1,1)×ω) + τ ‖eτϕ∇s,xva,λ‖2L2((−1,1)×ω) . (3.25)

On the other hand, the first term of the right hand side in (3.21) can be estimated from above:

‖eτϕga,λ‖2L2((−3,3)×Ω) ≤ e2τS ‖fa,λ,1‖2L2((−3,3)×Ω) + C
(
e2τS(2,3) + e2τSC

)
‖va,λ‖2H1((−3,3)×Ω) (3.26)

since ∂sχS , ∂ssχS are supported in {s ∈ R, s.t. |s| ∈ (2, 3)} and ∇χR, ∆χR are supported in C .
Plugging (3.11) and (3.12) into (3.26), we obtain

‖eτϕga,λ‖2L2((−3,3)×Ω) ≤ Ce2τSλ2γe−2c1λ(T/2)
1/γ

D
2 + C

(
e2τS(2,3) + e2τSC

)
λ4γec3λD2. (3.27)
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Combining now estimates (3.21) with (3.25), (3.13) and (3.27), we get

e2τIω ‖va,λ‖2H1((−ǫ0,ǫ0)×ω)
≤ Ce2τSλ2γe−2c1λ(T/2)

1/γ

D
2

+ C
(
e2τS(2,3) + e2τSC

)
λ4γec3λD2 + Cτe2τS λ4γec3λ ‖∂νζ‖2L2((−T,T )×Γ0)

. (3.28)

• Step 4. Estimating ζ from its FBI transform va,λ. Writing ζ as follows,

ζ(t, x) = ζ(t, x) − vt,λ(0, x) + vt,λ(0, x),

we obtain that, for t ∈ (−T/8, T/8),

‖ζ‖L2((−T/8,T/8)×ω) ≤ ‖(t, x) 7→ ζ(t, x) − vt,λ(0, x)‖L2((−T/8,T/8)×ω)

+ ‖(a, x) 7→ va,λ(0, x)‖L2((−T/8,T/8)×ω) . (3.29)

As already detailed in [31], since vt,λ(0, x) = Fλ ⋆ (ηζ)(t), where the convolution is only in the time
variable, we obtain, from (3.9) the following estimate (notice η = 1 in (−T/8, T/8)):

‖(t, x) 7→ ζ(t, x) − vt,λ(0, x)‖L2((−T/8,T/8)×ω) = ‖ηζ − Fλ ⋆ (ηζ)‖L2((−T/8,T/8)×ω)

≤ ‖(1−F(Fλ))F(ηζ)‖L2(R×ω) ≤
∥∥∥∥(ξ, x) 7→

|ξ|
λγ
|F(ηζ)(ξ, x)|

∥∥∥∥
L2(R×ω)

≤ C

λγ
‖ηζ‖H1(R×ω) ≤

C

λγ
‖ζ‖H1((−T,T )×ω) .

Besides, since Fλ is holomorphic, the map a+ is 7→ va,λ(s, x) is holomorphic in the variable a+ is
for all λ and x, and the Cauchy formula implies that (see appendix of [5], for some details)

‖(a, x) 7→ va,λ(0, x)‖L2((−T/8,T/8)×ω) ≤ C sup
a∈(−T/4,T/4)

‖va,λ‖L2((−ǫ0,ǫ0)×ω)
.

Hence, from (3.29), combining the above estimates we get

‖ζ‖L2((−T/8,T/8)×ω) ≤
C

λγ
‖ζ‖H1((−T,T )×ω) + C sup

a∈(−T/4,T/4)

‖va,λ‖L2((−ǫ0,ǫ0)×ω)
.

Having an estimate on va,λ in H1((−ǫ0, ǫ0) × ω) at our disposal, we can apply the latter to ∂tζ and
∇ζ and obtain

‖ζ‖H1((−T/8,T/8)×ω) ≤ C

λγ
‖ζ‖H2((−T,T )×ω) + C sup

a∈(−T/4,T/4)

‖va,λ‖H1((−ǫ0,ǫ0)×ω)

≤ C

λγ
D + C sup

a∈(−T/4,T/4)

‖va,λ‖H1((−ǫ0,ǫ0)×ω)
. (3.30)

• Step 5. Concluding step. Combining estimates (3.28) and (3.30), we have shown that for all
λ ≥ 1 and τ ≥ 1,

‖ζ‖2H1((−T/8,T/8)×ω) ≤
C

λ2γ
D

2 + Ce2τ(S−Iω)λ2γe−2c1λ(T/2)
1/γ

D
2

+ Ce−2τIω
(
e2τS(2,3) + e2τSC

)
λ4γec3λD2 + Cτe2τ(S−Iω)λ4γec3λ ‖∂νζ‖2L2((−T,T )×Γ0)

. (3.31)
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Recalling (3.22) and (3.24), we can choose the Carleman parameter τ as a linear function of the FBI
parameter λ by setting

τ =
c3λ

Iω −max{SC ,S(2,3)}
. (3.32)

With this choice, one should assume λ ≥ λ∗, where λ∗ = 1
c3

(
Iω −max{SC ,S(2,3)}

)
, in order to

guarantee (3.31) (since τ ≥ 1). Thereby, there exist positive constants c4, c5, c6 such that for all
λ ≥ λ∗,

e−2τIω
(
e2τS(2,3) + e2τSC

)
λ4γec3λ ≤ Ce−c4λ,

e2τ(S−Iω)λ2γe−2c1λ(T/2)
1/γ ≤ Ceλ(c5−2c1(T/2)

1/γ),

τe2τ(S−Iω)λ4γec3λ ≤ Cec6λ.

Obviously, there exists T0 > 0 such that for all T ≥ T0, c5 ≤ c1(T/2)1/γ . Thus, estimate (3.31) yields,
for all T ≥ T0 and λ ≥ λ∗,

‖ζ‖2H1((−T/8,T/8)×ω) ≤ CD
2

(
1

λ2γ
+ e−c4λ + e−λc1(T/2)

1/γ

)
+ Cec6λ ‖∂νζ‖2L2((−T,T )×Γ0)

or, in a more concise form, for all λ ≥ λ∗,

‖ζ‖H1((−T/8,T/8)×ω) ≤
C

λγ
D + Cec6λ/2 ‖∂νζ‖L2((−T,T )×Γ0)

. (3.33)

Finally, if we define the ratio “data over measurement”

ρ =
D

‖∂νζ‖L2((−T,T )×Γ0)

and the critical value

λ0 =
1

c6
log (2 + ρ) , (3.34)

taking λ = λ0 if λ0 ≥ λ∗ we have

‖ζ‖H1((−T/8,T/8)×ω) ≤ CD

(
1

[log(2 + ρ)]γ
+

(2 + ρ)1/2

ρ

)
.

We can drop the second term of the right hand side since the first term dominates as ρ → ∞
(ρ is bounded from below by the continuity of the operator z 7→ ∂νz from H2((−T, T ) × Ω) to
L2((−T, T ) × ∂Ω)). Otherwise, if λ0 < λ∗, we take λ = λ∗ : In this case, ρ ≤ exp(c6λ∗) = C, i.e.
D ≤ C ‖∂νζ‖L2((−T,T )×Γ0)

, so that (3.33) with λ = λ∗ yields

‖ζ‖H1((−T/8,T/8)×ω) ≤ C ‖∂νζ‖L2((−T,T )×Γ0)
≤ CD

ρ
.

This concludes the proof of (3.3) since −γ < −1/(1 + α).

Remark 3.3. When f vanishes everywhere in (0, T )× Ω, no cut-off function χR is needed and one
obtains the following quantification of unique continuation result due to [31, Theorem F] (see also [35]
for α = 1): For all T > 0 large enough, for all ζ ∈ H2((−T, T ) × Ω) solution of the wave equation
(3.1) with f = 0,

‖ζ‖H1((−T/8,T/8)×Ω) ≤ C ‖ζ‖H2((−T,T )×Ω)

[
log

(
2 +

‖ζ‖H2((−T,T )×Ω)

‖∂νζ‖L2((−T,T )×Γ)

)]− 1
1+α

,
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or, equivalently,

‖ζ‖H2((−T,T )×Ω) ≤ C exp
(
CΛ1+α

)
‖∂νζ‖L2((−T,T )×Γ) , where Λ =

‖ζ‖H2((−T,T )×Ω)

‖ζ‖H1((−T/8,T/8)×Ω)

.

Since ζ in that case is a solution of the wave equation with no source term, this last formulation can
be written in terms of the initial data (ζ(0), ∂tζ(0)) = (ζ0, ζ1) ∈ H2 ∩H1

0 (Ω)×H1
0 (Ω):

∥∥(ζ0, ζ1)
∥∥
H2∩H1

0 (Ω)×H1
0 (Ω)
≤ C exp(CΛ1+α

0 ) ‖∂νζ‖L2((−T,T )×Γ) , where Λ0 =
‖(ζ0, ζ1)‖H2∩H1

0×H
1
0

‖(ζ0, ζ1)‖H1
0×L

2

.

3.2 Uniform stability in the semi-discrete case

The goal of this section is to derive the semi-discrete counterpart of Theorem 3.1. Similarly as in the
continuous case, that will be the main ingredient for the proof of Theorem 1.5.
As specified in the introduction, we limit ourselves to the case Ω = (0, 1)2. We may thus assume
that Γ0 is a subset of one edge. Due to the invariance by rotation, with no loss of generality, we may
further assume that this edge is {1} × (0, 1).
We claim the following result:

Theorem 3.4. Let Ω = (0, 1)2 and Γ0 be a non-empty open subset of the edge {1}× (0, 1). Let ω be a
connected open subset of Ω with Lipschitz boundary and assume that ∂ω∩∂Ω is an open neighborhood
of Γ0. Also set ωh = ω ∩ Ωh. Let m > 0 and qh ∈ L∞

h (Ωh) satisfying ‖qh‖L∞
h (Ωh)

≤ m. Let D > 0

and R0 > 0, and assume that ζh is a solution of the wave equation
{
∂ttζh −∆ζh + qhζh = fh, in (−T, T )× Ωh,
ζh = 0 on (−T, T )× ∂Ωh, (3.35)

for some fh ∈ L1(−T, T ;L2
h(Ωh)) satisfying fh = 0 in (−T, T ) × {xh ∈ Ωh, d(xh, ω) < R0}, and

satisfies ζh ∈ H2
h((−T, T )× Ωh) with

‖ζh‖H2
h((−T,T )×Ωh)

≤ D .

for some R0 > 0 and D independent of h > 0.
Let α > 0. There exist T0 > 0 and h0 > 0 such that for any T ≥ T0, there exists a constant C

independent of h such that for all h ∈ (0, h0),

‖ζh‖H1
h
((−T/8,T/8)×ωh)

≤ CD


log


2 +

D∥∥∥∂−h,2ζh
∥∥∥
L2((−T,T );L2

h(Γ0,h))







− 1
1+α

+ CDh1/(1+α). (3.36)

Before proving Theorem 3.4, let us point out that it differs from Theorem 3.1 by the last term
h1/(1+α)D in (3.36). Nonetheless, this term vanishes in the limit h→ 0 and thus estimate (3.3) can be
recovered from (3.36) when h→ 0. But in particular, estimate (3.36) does not state a uniqueness result
anymore, but rather an “almost-uniqueness” result: if ∂−h,2ζh vanishes on (−T, T )× Γ0,h for some ζh
satisfying the assumptions of Theorem 3.4, we only have that the norm of ζh in H1

h((−T/8, T/8)×ωh)
is smaller than Ch1/(1+α)D . Due to the definition of D , this corresponds to the case where

‖ζh‖H1
h((−T/8,T/8)×ωh)

≤ Ch1/(1+α) ‖ζh‖H2
h((−T,T )×Ωh)

,

i.e. functions that are localized outside (−T/8, T/8) × ωh. This is completely consistent with the
presence of spurious high-frequency modes that are localized, see [37, 40, 15]. We refer for instance to
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a counterexample due to O. Kavian: if wh denotes the discrete function given by wi,j = (−1)i when
i = j and vanishing for i 6= j, the function ζh(t, xh) = exp(2it/h)wh(xh) is a solution of (3.35) with
qh = 0 and fh = 0 whose discrete normal derivative on {1} × (1/4, 3/4) vanishes identically.

Proof of Theorem 3.4. It follows the same steps as the one of Theorem 3.1. More precisely, Steps 1, 2
and 4 involving the FBI transform in time are left unchanged, but Steps 3 and 5 need to be modified.
Indeed, Step 3 in the proof of Theorem 3.1 is based on the Carleman estimate in Lemma 3.2 and we
should thus use a semi-discrete counterpart. Namely, we use the discrete Carleman inequality proved
in [9, Theorem 1.4] that we rewrite below within our setting and using our notations.

Before stating this result, let us make precise how we choose the weight function. In particular,
let us emphasize that the weight function in [9] is assumed to be Cp([−3, 3]× Ω) for p large enough,
and this cannot be true with the construction we did for the proof of Theorem 3.1, since Ω = (0, 1)2

contains corners.. We thus build the weight function ψ0,r as follows (here the subscript ‘r’ stands for
‘regularized’): first we conceive an open subset ωr such that ωr ⊂ {x ∈ Ω, d(x, ω) < R0/2 }, ω ⊂ ωr,
and ∂ωr \ Γ+ is smooth (see Fig. 3).

Γ+

R0

2

R0

ω

ωr

Γ0

Figure 3: Construction of the weight function ψ0,r(x) when ω is a neighborhood of two consecutive
edges.

We can then design a smooth weight function ψ0,r such that




∀x ∈ ωr, ψ0,r(x) ≥ 0,
infωr{|∇ψ0,r(x)|} > 0,
∀x ∈ ∂ωr \ Γ0, ∂νψ0,r(x) < 0,
∀x ∈ ∂ωr \ Γ+, ψ0,r(x) = 0,
‖ψ0,r‖L∞(ωr)

≤ 1/2.

(3.37)

Again, such a function ψ0,r exists according to the construction in [17, 38] and it can be extended
as a smooth function ψr on Ω satisfying ‖ψr‖L∞(Ω) ≤ 1. By continuity, there exists R ∈ (0, R0/2)
such that for the sets

ωr,R = {x ∈ Ω, d(x, ωr) < R} and Cr = {x ∈ Ω, R/2 ≤ d(x, ωr) ≤ R},
we have

inf
ωr,R

{|∇ψr(x)|} > 0, and inf
ωr

ψr > sup
Cr

ψr. (3.38)

We then define ϕr as in (3.17) but with this function ψr: for µ ≥ 1,

ϕr := ϕr(s, x) = exp(µ(ψr(x)− s2)) (s, x) ∈ [−3, 3] × Ω.
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Theorem 3.5 ([9]). Let ϕr be as above and its restriction on the mesh ϕr,h = rhϕr.
There exist µ ≥ 1, C > 0, h0 > 0 and ε0 > 0 such that for all h ∈ (0, h0), τ ≥ 1 with τh ≤ ε0, for all
gh ∈ L2((−3, 3);L2

h(Ωh)) and wh solution of
{

(−∂ss −∆h + qh)wh = gh in (−3, 3)× Ωh,
wh = 0 on ((−3, 3)× ∂Ωh) ∪ ({−3, 3} × Ωh),

supported in (−3, 3)× ωr,R,

τ3 ‖eτϕr,hwh‖2L2(−3,3;L2
h(Ωh))

+τ ‖eτϕr,h∇swh‖2L2(−3,3;L2
h(Ωh))

+τ
∑

k=1,2

∥∥∥eτϕr,h∂+h,kwh

∥∥∥
2

L2(−3,3;L2
h(Ω

−

k,h))

≤ C ‖eτϕr,hgh‖2L2(−3,3;L2
h(Ωh))

+ Cτ
∥∥∥eτϕr,h∂−h,2wh

∥∥∥
2

L2(−3,3;L2
h(Γ0,h))

. (3.39)

Besides, the constant C can be taken uniformly with respect to qh ∈ L∞
h (Ωh) with ‖qh‖L∞

h
≤ m.

Remark 3.6. Before going further, let us comment more precisely Theorem 3.5, which cannot be
found under that precise form in [9] and differs from [9, Theorem 1.4] at three levels.

The first issue is that Theorem 1.4 in [9] concerns the case of an observation on the boundary
of the continuous variable, corresponding here to s = ±3. Therefore, Assumption 1.3 on the weight
function in [9] is designed to yield observations on the boundary of the continuous variable, and in
our case, they are replaced by the condition ∀x ∈ ∂ωr \ Γ0, ∂νψ0,r(x) < 0 in (3.37). We claim that
this condition is enough to guarantee a Carleman estimate with an observation on the boundary of
the discrete variables. This can be proved following the lines of [9] in that case and looking at the
boundary terms denoted Y and estimated in [9, Lemma 3.7], which are strong enough to absorb the
boundary terms in J11 in [9, Lemma 3.3] on ∂Ω \ Γ0.

The second issue is that Assumption 1.3 in [9] requires some convexity condition in the neighbor-
hood of the boundary. But, as mentioned in [11, Remark 1.3], this can be avoided by suitably modifying
the proof of Lemma C.4 in [9].

The third and last issue is that our weight function may degenerate outside (−3, 3)×ωr,R. But, as
in the continuous case, this actually does not come into play as we apply Carleman estimate (3.39)
to discrete functions wh supported in (−3, 3)× ωr,R.

Note that the main difference in the discrete Carleman estimate of Theorem 3.5 with respect to
the one in Lemma 3.2 is the fact that the parameter τ is assumed to satisfy τh ≤ ε0. The proof of
Theorem 3.1 shall then be modified to keep track on this restriction. Thus, Step 3 can be done as in
the proof of Theorem 3.1, except that the construction of the cut-off function χR is now based on ωr,
and the existence of ε0 > 0 such that

inf
|s|≤ε0, x∈ωr

ψr(s, x) > sup
|s|≤3, x∈Cr

ψr(s, x)

is granted by (3.38). Then, all the constants Iω, S , S(2,3), SC in (3.23), now denoted Iωr , S ,
S(2,3), SCr , are defined by replacing ω by ωr, ϕ by ϕr and C by Cr. Hence, instead of (3.31), we
obtain the following: for all h ∈ (0, h0), τ ≥ 1 with τh ≤ ε0, for all λ ≥ 1,

‖ζh‖2H1((−T/8,T/8)×ωr,h)
≤ C

λ2γ
D

2 + Ce2τ(S−Iωr)λ2γe−2c1λ(T/2)
1/γ

D
2

+ Ce−2τIωr
(
e2τS(2,3) + e2τSCr

)
λ4γec3λD2 + Cτe2τ(S−Iωr)λ4γec3λ

∥∥∥∂−h,2ζh
∥∥∥
2

L2(−T,T ;L2
h(Γ0,h))

.

The discussion then follows the same path as in the Step 5 of the proof of Theorem 3.1: the natural
choice is to take τ as a linear function of λ as in (3.32). Thereby, we get the following discrete
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counterpart of (3.33): there are constants C > 0 and ε∗ > 0 independent of h > 0 such that for all
h ∈ (0, h0) and for all λ ∈ (λ∗, ε∗/h),

‖ζh‖H1
h((−T/8,T/8)×ωh)

≤ C

λγ
D + Cec6λ/2

∥∥∥∂−h,2ζh
∥∥∥
L2(−T,T ;L2

h(Γ0,h))
. (3.40)

Introducing the ratio

ρh =
D∥∥∥∂−h,2ζh

∥∥∥
L2(−T,T ;L2

h
(Γ0,h))

,

the optimal value of the parameter λ is

λ0,h =
1

c6
log (2 + ρh) ,

corresponding to the choice (3.34) in the proof of Theorem 3.1. We then have to discuss the cases
λ0,h ≤ λ∗, λ0,h ∈ (λ∗, ε∗/h) and λ0,h ≥ ε∗/h. Of course, the first two cases can be handled as
in the continuous setting. There only remains the last case λ0,h ≥ ε∗/h. But this corresponds to
ρh ≥ exp(c6ε∗/h)− 2 ≥ exp(c6ε∗/h)/2, for h small enough, which in particular implies

2
∥∥∥∂−h,2ζh

∥∥∥
L2(−T,T ;L2

h
(Γ0,h))

≤ D exp(−c6ε∗/h).

Thus, taking λ = ε∗/h in (3.40), we obtain

‖ζh‖H1
h((−T/8,T/8)×ωh)

≤ ChγD .

This explains the presence of the last term in (3.36).

We finally conclude this section with the proof of Theorem 1.5.

Proof of Theorem 1.5. As for the proof of Theorem 1.3 from (3.1), it follows immediately by applying
Theorem 3.4 to ζh = ∂tyh[q

a
h] − ∂tyh[qbh]. The use of estimate (1.30) of Theorem 1.4 then completes

the proof. Details are left to the reader.

Remark 3.7. Following Remark 3.3, we can derive a quantification of a kind of unique continuation
result for solutions ζh of discrete wave equations (3.35) with no source term: For all α > 0 and T > 0
large enough, there exists a constant C independent of h > 0 such that for all ζh solution of the wave
equation (3.35) with fh = 0 and initial data (ζ0h, ζ

1
h) ∈ H2

h ∩H1
0,h(Ωh)×H1

0,h(Ωh),

∥∥(ζ0h, ζ1h)
∥∥
H1

0,h(Ωh)×L2
h(Ωh)

≤ CeCΛ1+α
h

∥∥∥∂−h,2ζ
∥∥∥
L2(−T,T ;L2

h(Γ0,h))

+ Ch1/(1+α)
∥∥(ζ0h, ζ1h)

∥∥
H2

h∩H
1
0,h(Ωh)×H1

0,h(Ωh)
, (3.41)

where Λh =

∥∥(ζ0h, ζ1h)
∥∥
H2

h∩H
1
0,h(Ωh)×H1

0,h(Ωh)

‖(ζ0h, ζ1h)‖H1
0,h(Ωh)×L2

h(Ωh)

or, equivalently,

(1− Ch1/(1+α)Λh)
∥∥(ζ0h, ζ1h)

∥∥
H1

0,h(Ωh)×L2
h(Ωh)

≤ CeCΛ1+α
h

∥∥∥∂−h,2ζ
∥∥∥
L2((−T,T );L2

h(Γ0,h))
.

Note that (3.41) only yields an “almost uniqueness” result in the sense that it does not imply ζh ≡ 0
when the discrete normal derivative ∂−h,2ζh vanishes on (−T, T )× Γ0,h. Recall here that this term is
needed as unique continuation for the discrete wave equations does not hold as shown by the coun-
terexample of O. Kavian of an eigenfunction of the discrete Laplace operator which is localized on the
diagonal of the square.
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4 Convergence and consistency issues

This last section is devoted to the proof of the convergence results stated in Theorem 1.6.

4.1 Convergence results for the inverse problem

We will first state and prove two theorems of convergence under more detailed consistency assump-
tions. The feasibility of these assumptions will be studied next. Under the Gamma-conditions, and
more specifically in the geometric setting (1.26), we obtain:

Theorem 4.1 (Convergence under Gamma-conditions). Assume that (Ω,Γ0, T ) satisfies the con-
figuration (1.26) and that (y0, y1, f, f∂) follows the conditions (1.39). Let q ∈ L∞(Ω) and assume
that there exist sequences qah ∈ L∞

h (Ωh), and (y0h, y
1
h, fh, f∂,h) of discrete functions in L2

h(Ωh)
2 ×

L1(0, T ;L2
h(Ωh))× L2(0, T ;L2

h(∂Ωh)) such that

lim
h→0

∥∥e0h(qah)− q
∥∥
L2(Ω)

= 0, (4.1)

lim
h→0

∥∥∥M̃h[q
a
h]− M̃0[q]

∥∥∥
H1(0,T ;L2(Γ0))×L2((0,T )×Ω)

= 0, (4.2)

lim sup
h→0

‖qah‖L∞
h (Ωh)

<∞, (4.3)

lim sup
h→0

‖yh[qah]‖H1(0,T ;L∞
h (Ωh)) <∞, (4.4)

∃α0 > 0, ∀h > 0, inf
Ωh

|y0h| ≥ α0. (4.5)

Then for all sequence (qbh)h>0 of potentials satisfying

lim sup
h→0

∥∥qbh
∥∥
L∞

h (Ωh)
<∞, and lim

h→0

∥∥∥M̃h[q
b
h]− M̃0[q]

∥∥∥
H1(0,T ;L2(Γ0))×L2((0,T )×Ω)

= 0,

we have
lim
h→0

∥∥e0h(qbh)− q
∥∥
L2(Ω)

= 0.

When no geometric condition on the observation domain is satisfied, we get:

Theorem 4.2 (Convergence under weak geometric conditions). Assume the geometric configuration
(1.32) for (Ω,Γ0,Γ+), the conditions (1.39) for (y0, y1, f, f∂), and let O be a neighborhood of Γ+.
Let q ∈ L∞(Ω) and assume that there exist sequences qah ∈ L∞

h (Ωh), and (y0h, y
1
h, fh, f∂,h) of discrete

functions in L2
h(Ωh)

2 × L1(0, T ;L2
h(Ωh)) × L2(0, T ;L2

h(∂Ωh)) such that (4.1), (4.2) and (4.3) are
fulfilled, along with

lim sup
h→0

‖yh[qah]‖H1(0,T ;L∞
h (Ωh))∩W 2,1(0,T ;L2

h(Ωh)) <∞, (4.6)

∃α0 > 0, ∀h > 0, inf
Ωh

|y0h| ≥ α0 and lim sup
h>0

∥∥y0h
∥∥
H1

h(Ωh)
<∞. (4.7)

Then for T > 0 large enough, for all sequence (qbh)h>0 of potentials satisfying

qbh = qah in Oh and qah − qbh ∈ H1
0,h(Ωh) with lim sup

h→0

∥∥qbh − qah
∥∥
H1

0,h(Ωh)
<∞,

lim sup
h→∞

∥∥qbh
∥∥
L∞

h (Ωh)
<∞, and lim

h→0

∥∥∥M̃h[q
b
h]− M̃0[q]

∥∥∥
H1(0,T ;L2(Γ0))×L2((0,T )×Ω)

= 0,

we have
lim
h→0

∥∥e0h(qbh)− q
∥∥
L2(Ω)

= 0.
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Theorems 4.1 and 4.2 follow from the same arguments and can be proved simultaneously.

Proof of Theorems 4.1 and 4.2. Let qah and qbh be as assumed in Theorem 4.1 (resp. Theorem 4.2).
One easily gets

lim
h→0

∥∥∥M̃h[q
a
h]− M̃h[q

b
h]
∥∥∥
H1(0,T ;L2(Γ0))×L2((0,T )×Ω)

= 0.

Since one can find m > 0 larger than ‖q‖L∞(Ω) and lim suph→0(‖qah‖L∞
h (Ωh)

+
∥∥qbh
∥∥
L∞

h (Ωh)
), according

to Theorem 1.4, (resp. Theorem 1.5), we get

lim
h→0

∥∥qah − qbh
∥∥
L2

h(Ωh)
= 0, or equivalently, lim

h→0

∥∥e0h(qbh)− e0h(q
a
h)
∥∥
L2(Ω)

= 0.

We then conclude by the triangular inequality

∥∥e0h(qbh)− q
∥∥
L2(Ω)

≤
∥∥e0h(qbh)− e0h(q

a
h)
∥∥
L2(Ω)

+
∥∥e0h(qah)− q

∥∥
L2(Ω)

,

since each term in the right hand-side converges to zero as h→ 0.

Of course, Theorems 4.1 and 4.2 are based on the strong assumption that there exists a sequence of
potentials qah satisfying suitable convergence assumptions for some (y0h, y

1
h, fh, f∂,h) that are not even

supposed to be convergent to their continuous counterpart. This rises the natural question: given
(y0, y1, f, f∂) satisfying (1.39), can we guarantee that the natural approximations (y0h, y

1
h, fh, f∂,h) of

(y0, y1, f, f∂) yields the existence of a sequence of potentials qah satisfying the convergence conditions
of Theorem 4.1 or Theorem 4.2 ?

This is the consistency of the inverse problem, and the cornerstone of the proof of Theorem 1.6
once stability results are proved. These consistency issues are discussed in the following subsection.

4.2 Consistency issues

The difficulty to derive the consistency of the inverse problem is the condition (4.4) (or (4.6) in
the case of Theorem 4.2). Indeed, passing to the limit, it indicates that y[q] should belong to
H1((0, T );L∞(Ω)). But there is no simple way to guarantee this condition, since the “natural” spaces
for the wave equation are the Hs(Ω)-spaces.

Let us remind the reader that we consider Ω = (0, 1)2 ⊂ R2. We recall this setting here because
of its influence on the Sobolev’s embeddings we will repeatedly use in this last section.

Besides that, as our theorems of stability are given with conditions on y[q] instead of conditions
on the coefficients (y0, y1, f, f∂), we will stick to that approach. We claim the following result:

Lemma 4.3. Assume q ∈ H1 ∩ L∞(Ω) and that we know q∂ = q|∂Ω. Furthermore, assume that the
trajectory y[q] solution of (1.1) satisfies the regularity given in (1.40). Finally, assume there exists
α0 > 0 such that infΩ |y0| ≥ α0.
Then we can construct discrete sequences (y0h, y

1
h, fh, f∂,h) depending only on (y0, y1, f, f∂ , q∂) such

that the corresponding sequence yh[qh] solution of (1.23) for qh = r̃h(q) satisfies conditions (4.1)–
(4.7). In particular, if q is known on some open set O and takes value q|O = Q, we can further
impose qh = r̃h(Q) in Oh.

Proof of Theorem 1.6. Taking the discrete sequence (y0h, y
1
h, fh, f∂,h) given by Lemma 4.3, the se-

quence qah = r̃h(q) satisfies the assumption of Theorem 4.1, or Theorem 4.2 if q is known in some
open set O, which corresponds to the first item of Theorem 1.6. The second item of Theorem 1.6 thus
follows immediately from Theorems 4.1 and 4.2.
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Proof of Lemma 4.3. We split it in two steps. First, we will construct (y0h, y
1
h, fh, f∂,h) and qh; Second,

we will explain why our construction is suitable for conditions (4.1)–(4.7).

Let us choose q̃ ∈ H1 ∩ L∞(Ω) with q̃|∂Ω = q∂ (note that such q̃ exists since q∂ is the trace of
q ∈ H1 ∩ L∞(Ω) by assumption). We define ỹ = y[q̃] the solution of (1.1) with potential q̃. Then,
setting z = y[q]− ỹ, it satisfies





∂ttz −∆z + q̃z = (q̃ − q)y[q], in (0, T )× Ω,
z = 0, on (0, T )× ∂Ω,
z(0, ·) = 0, ∂tz(0, ·) = 0. in Ω,

(4.8)

Hence z2 = ∂ttz solves




∂ttz2 −∆z2 + q̃z2 = (q̃ − q)∂tty[q], in (0, T )× Ω,
z2 = 0, on (0, T )× ∂Ω,
z2(0, ·) = (q̃ − q)y0, ∂tz2(0, ·) = (q̃ − q)y1. in Ω.

(4.9)

Since (1.40) implies y0 ∈ H1 ∩ L∞(Ω), y1 ∈ L2(Ω) and ∂tty[q] ∈ L1(0, T ;L2(Ω)), and since q − q̃ ∈
H1

0 ∩ L∞(Ω), we have that z2 = ∂ttz belongs to C([0, T ];H1
0 (Ω)) ∩ C1([0, T ];L2(Ω)). In particular,

since z(0, ·) = ∂tz(0, ·) = 0, we have z ∈ H2(0, T ;H1
0(Ω)).

Besides, by differentiating (4.8) once with respect to time, we get that ∂tz solves

(−∆+ q̃)∂tz = (q̃ − q)∂ty[q]− ∂tttz ∈ C([0, T ];L2(Ω)), with ∂tz = 0 for (t, x) ∈ (0, T )× ∂Ω.

Therefore, by elliptic regularity estimates, see [18, Theorem 3.2.1.2], ∂tz ∈ C([0, T ];H2(Ω)), thus
z ∈ H1(0, T ;H2(Ω)).
Recalling that ỹ = y[q]− z and y[q] satisfies (1.40), ỹ belongs to H2(0, T ;H1(Ω)) ∩H1(0, T ;H2(Ω)).
We then define ỹh = r̃h(ỹ) and, for q̃h = r̃h(q̃), we set

y0h = ỹh(0) = r̃h(y
0), y1h = ∂tỹh(0) = r̃h(y

1), (4.10)

fh = ∂ttỹh −∆ỹh + q̃hỹh, f∂,h(t) = ỹh(t)|∂Ωh
. (4.11)

Note that this choice immediately implies that conditions (4.1), (4.3) and (4.7) (thus also (4.5)) are
satisfied.

We now prove that this construction yields condition (4.6). This is based on the remark that by
construction, for qh = r̃h(q) we have yh[qh] = ỹh + zh, where zh solves





∂ttzh −∆hzh + qhzh = (q̃h − qh)ỹh, in (0, T )× Ωh,
zh = 0, on (0, T )× ∂Ωh,
(zh(0), ∂tzh(0)) = (0, 0), in Ωh.

(4.12)

Then z2,h = ∂ttzh solves




∂ttz2,h −∆hz2,h + qhz2,h = (q̃h − qh)∂ttỹh, in (0, T )× Ωh,
z2,h = 0, on (0, T )× ∂Ωh,
(z2,h(0), ∂tz2,h(0)) = ((q̃h − qh)y0h, (q̃h − qh)y1h), in Ωh.

(4.13)

One easily checks that with our construction

q̃h − qh ∈ H1
0,h(Ωh) ∩ L∞

h (Ωh),

ỹh ∈ H2(0, T ;H1
h(Ωh)) ∩H1(0, T ;H2

h(Ωh)),

y0h ∈ H1
h(Ωh) ∩ L∞

h (Ωh), y1h ∈ L2
h(Ωh),
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where all these estimates stand with bounds uniform with respect to h > 0. Hence z2,h is uni-
formly bounded in C([0, T ];H1

0,h(Ωh)) ∩ C1([0, T ];L2
h(Ωh)) by energy estimates, so that ∂tttzh ∈

C([0, T ];L2
h(Ωh)) and thus ∂tzh solves

−∆h∂tzh + qh∂tzh = (q̃h − qh)∂tỹh − ∂tttzh ∈ C([0, T ];L2
h(Ωh)) with ∂tzh = 0 on ∂Ωh.

We use the following lemma, whose proof is postponed to Appendix C.

Lemma 4.4. Let wh ∈ L2
h(Ωh) be a solution of

−∆hwh + qhwh = gh in Ωh and wh = 0 on ∂Ωh (4.14)

with gh ∈ L2
h(Ωh) and qh ∈ L∞

h (Ωh). Let m > 0 and assume ‖qh‖L∞
h (Ωh)

≤ m. Then, wh ∈
H2
h ∩H1

0,h(Ωh) and there exists a constant C = C(m) > 0 independent of h > 0 such that

‖wh‖H2
h∩H

1
0,h(Ωh)

≤ C ‖gh‖L2
h(Ωh)

. (4.15)

Accordingly, ∂tzh is uniformly bounded in C([0, T ];H2
h ∩ H1

0,h(Ωh)). Thus, yh[qh] = ỹh + zh is

uniformly bounded in H2(0, T ;H1
h(Ωh)) ∩H1(0, T ;L∞

h (Ωh)), yielding (4.6) (and (4.4)).

We finally focus on the proof of the convergence condition (4.2). As ỹ ∈ H1(0, T ;H2(Ω)), ỹh is
uniformly bounded in H1(0, T ;H2

h(Ωh)). In particular, for k ∈ {1, 2}, ∂∓h,kỹh is uniformly bounded

in H1(0, T ;H1
h(Ω

±
h,k)), so eh(∂

∓
h,kỹh) is uniformly bounded in H1(0, T ;H1(Ω)). Besides, it is easy

to check that, since ỹ ∈ H1(0, T ;H2(Ω)), eh(∂
∓
h,kỹh) strongly converges to ∂xk

ỹ in H1(0, T ;L2(Ω)).

Hence we get the strong convergence of eh(∂
∓
h,kỹh) to ∂xk

ỹ in all spaces H1(0, T ;Hs(Ω)) with s < 1.
We then remark that

∂νeh(ỹh) =

(
eh(∂

∓
h,1ỹh)

eh(∂
∓
h,2ỹh)

)
· ν on Γ±, (4.16)

where ν is the normal vector to Ω on Γ±. But the sequence eh(∂
∓
h,kỹh) strongly converges to ∂xk

ỹ

in H1(0, T ;H3/4(Ω)) and the trace operator is continuous from H3/4(Ω) to L2(∂Ω) (see [18, Thm
1.5.2.1]). Therefore, ∂νehỹh strongly converges to ∂νy in H1(0, T ;L2(∂Ω)).

One also easily checks that, since ỹ ∈ H2(0, T ;H1(Ω)), the discrete function ∂+h,k∂ttỹh (k ∈ {1, 2})
is uniformly bounded in L2(0, T ;L2

h(Ω
−
h,k)). Hence h∇eh(∂ttỹh) strongly converges to 0 as h → 0 in

L2((0, T )× Ω).
We then study the convergence of the normal derivative of zh and of h∇eh(∂ttzh). We have seen

that zh is uniformly bounded in H2(0, T ;H1
0,h(Ωh)) ∩ H1(0, T ;H2

h(Ωh)). This immediately implies

that ∂+h,k∂ttzh is uniformly bounded in L2(0, T ;L2
h(Ω

−
h,k)) for k ∈ {1, 2} and, following, h∇eh(∂ttzh)

strongly converges to 0 in L2((0, T )× Ω) as h → 0. Let us then remark that eh(qh) and eh(q̃h − qh)
respectively converges to q, q̃−q as h→ 0 strongly in L2(Ω), weakly in H1(Ω) and weakly-∗ in L∞(Ω).
Besides, as ỹ ∈ H2(0, T ;H1(Ω)), eh(ỹh) strongly converges to ỹ in H2(0, T ;Hs(Ω)) for all s ∈ [0, 1).
Following,

eh(qh) −→
h→0

q strongly in all Lp(Ω) with p <∞, (4.17)

eh((q̃h − qh)ỹh) −→
h→0

(q̃ − q)ỹ strongly in H2(0, T ;L2(Ω)), (4.18)

eh((q̃h − qh)y0h) −→
h→0

(q̃ − q)y0 strongly in L2(Ω). (4.19)

Easy computations then yields that eh(zh) and eh(∂tzh) strongly converge in H1((0, T ) × Ω) to z
and ∂tz, where z is the solution of (4.8). This can indeed be done in three steps: First show that it
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converges weakly in D′((0, T ) × Ω) toward z and ∂tz; Second, use that the energy estimates imply
that the convergence is actually weak in H1((0, T ) × Ω) and in particular strong in L2(0, T ;Lp(Ω))
for any p <∞; Third, use the energy identity to show the convergence of the H1((0, T )× Ω) norm.

Hence eh(∂
∓
h,kzh) strongly converges to ∇z in H1(0, T ;L2(Ω)). Recall that zh is also uniformly

bounded in H1(0, T ;H2
h(Ωh)), so that eh(∂

∓
h,kzh) is uniformly bounded in H1(0, T ;H1(Ω)). Thus

eh(∂
∓
h,kzh) strongly converges to ∇z in H1(0, T ;H3/4(Ω)), so that formula (4.16) and the continuity

of the trace operator from H3/4(Ω) to L2(∂Ω) show the strong convergence of ∂νeh(zh) to ∂νz in
H1(0, T ;L2(∂Ω)).

Since y[q] = ỹ + z, we have proved the convergence (4.2) for the sequence yh[qh] = ỹh + zh.

Remark 4.5. In this proof, let us emphasize that the construction of the sequence of source terms
f̃h and f̃∂,h in (4.11) is not straightforward. But we point out that this is done explicitly from the
knowledge of the trace q∂ of q on ∂Ω.

Note however that this happens because we have chosen to keep a presentation where the as-
sumptions are set on the trajectory y[q], and not directly on the data (y0, y1), f, f∂. But this other
choice would not yield any improvement as the natural space to get y[q] ∈ H1(0, T ;L∞(Ω)) in 2-d is
y[q] ∈ H1(0, T ;H2(Ω)), or H3((0, T )× Ω). According to [28], this would correspond to

y0 ∈ H3(Ω), y1 ∈ H2(Ω), f ∈ ∩k=0,1,2W
k,1(0, T ;H2−k(Ω)), f∂ ∈ H3((0, T )× ∂Ω),

with the compatibility conditions

y0
∣∣
∂Ω

= f∂(t = 0), y1
∣∣
∂Ω

= ∂tf∂(t = 0), and (f(t = 0) + ∆y0 − qy0)
∣∣
∂Ω

= ∂ttf∂(t = 0).

Of course, this latest compatibility condition is very strong and requires in particular the knowledge
of q on the boundary, as we also assumed in the approach of Lemma 4.3. But very likely, taking
projections of all these data on the discrete mesh Ωh also yields a suitable sequence (y0h, y

1
h, fh, f∂,h)

satisfying conditions (4.2)–(4.7), even if one would have to study in that case the convergence of the
discrete wave equations with non-homogeneous boundary conditions, which to our knowledge has only
been done in 1-d so far in [16].
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A Discrete integration by parts formula in 1-d

For the sake of completeness, we mention the basic discrete integration by parts formula obtained in
[3, Lemma 2.6] in the 1-d setting as they are the main ingredients used to perform integration by
parts on 2-d (and higher dimensional) domains. To do so, we shall make precise some 1-d notations.

We assume that we consider integration by parts on discretized versions of (0, 1). For N ∈ N, we
introduce h = 1/(N + 1) and the discrete sets

(0, 1)h = {jh, j ∈ J1, NK}, [0, 1)h = {jh, j ∈ J0, NK}, (0, 1]h = {jh, j ∈ J1, N + 1K}.

Here, discrete functions fh are functions fh = (fj)j∈{0,··· ,N+1} for which we define

∫

(0,1)h

fh = h
∑

j∈{1,··· ,N}

fj,

∫

[0,1)h

fh = h
∑

j∈{0,··· ,N}

fj,

∫

(0,1]h

fh = h
∑

j∈{1,··· ,N+1}

fj.

We also introduce the discrete operators for j ∈ {1, . . . , N}:

(m+
h fh)j = (m−

h fh)j+1 =
fj+1 + fj

2
;

(∂hfh)j =
fj+1 − fj−1

2h
; (∂+h fh)j = (∂−h fh)j+1 =

fj+1 − fj
h

; (∆hfh)j =
fj+1 − 2fj + fj−1

h2
.

Lemma A.1 ([3], 1-d discrete integration by parts formulas). Let vh, fh, gh be discrete functions such
that v0 = vN+1 = 0. Then we have the following identities:

•
∫

[0,1)h

gh(∂
+
h fh) = −

∫

(0,1]h

(∂−h gh)fh + gN+1fN+1 − g0f0 ; (A.1)

•
∫

(0,1)h

gh(∂hfh) =

∫

[0,1)h

(m+
h gh)(∂

+
h fh)−

h

2
g0(∂

+
h f)0 −

h

2
gN+1(∂

−
h f)N+1 ; (A.2)

• 2

∫

(0,1)h

ghvh(∂hvh) = −
∫

(0,1)h

|vh|2 ∂hgh +
h2

2

∫

[0,1)h

|∂+h vh|2∂+h gh ; (A.3)

•
∫

(0,1)h

gh(∆hvh) = −
∫

[0,1)h

(∂+h vh) (∂
+
h gh)− (∂+h v)0g0 + (∂−h v)N+1gN+1 ; (A.4)

•
∫

(0,1)h

ghvh(∆hvh) = −
∫

[0,1)h

(∂+h vh)
2 (m+

h gh) +
1

2

∫

(0,1)h

|vh|2∆hgh ; (A.5)

•
∫

(0,1)h

gh∆hvh∂hvh = −1

2

∫

[0,1)h

|∂+h vh|2∂+h gh +
1

2

∣∣(∂−h v)N+1

∣∣2 gN+1 −
1

2

∣∣(∂+h v)0
∣∣2 g0. (A.6)

In a square in dimension 2, we will apply Lemma A.1 when doing integrations by part in each
direction. For instance, identity (A.3) easily yields, for k ∈ {1, 2}:

2

∫

Ωh

ghvh(∂h,kvh) = −
∫

Ωh

(∂h,kgh)|vh|2 +
h2

2

∫

Ω−

h,k

|∂+h,kvh|2∂+h,kgh.

For convenience, we will also use the formula
∫
[0,1)h

m+
h vhfh =

∫
(0,1]h

vhm
−
h fh, valid for vh vanishing

on the boundary, and its consequence

∫

[0,1)h

m+
h vh(∂

+
h fh)(∂

+
h gh) =

∫

(0,1)h

vh(∂hfh)(∂hgh) +
h2

4

∫

(0,1)h

vh(∆hfh)(∆hgh), (A.7)

whose proof is left to the reader.
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B Proof of a conjugate Carleman estimate

Proof of Proposition 2.4. Notations. In this proof, we will use the Landau notation Oµ(τh) to denote
discrete functions of (t, xh) depending on µ satisfying for some constant Cµ > 0 that

‖Oµ(τh)‖L∞(L∞
h ) ≤ Cµτh.

We will also use the shortcut Oµ(1) to denote bounded functions. Moreover, we will write v instead of
vh as no confusion can occur: here, v is always a discrete function defined on (−T, T )×Ωh satisfying
v(±T, xh) = ∂tv(±T, xh) = 0 for all xh ∈ Ωh and v(t, xh) = 0 for all t ∈ (−T, T ) and xh ∈ ∂Ωh.
In order to simplify the integrals, we will also set Qh = (−T, T ) × Ωh, Q

±
h,k = (−T, T ) × Ω±

h,k,

Σh = (−T, T )× Γh, Σ
±
h,k = (−T, T )× Γ±

h,k and use the notations

∫

Qh

=

∫ T

−T

∫

Ωh

,

∫

Q±

h,k

=

∫ T

−T

∫

Ω±

h,k

,

∫

Σh

=

∫ T

−T

∫

Γh

,

∫

Σ±

h,k

=

∫ T

−T

∫

Γ±

h,k

.

In the following we will use the estimates of Proposition 2.3, in particular (2.15), and the discrete
integration by parts formula in Lemma A.1 and Lemma 2.5. Finally, let us emphasize that all the
constants below are independent of h ∈ (0, 1) and τ ≥ 1.

• Step 1. Explicit computations of the cross product. The proof of estimate (2.20) relies first of all on
the computation of the multiplication of each term of Lh,1v by each term of Lh,2v:

∫

Qh

Lh,1vLh,2v dt =

3∑

n,m=1

Inm,

where Inm denotes the product between the n-th term of Lh,1 in (2.16) and the m-th term of Lh,2

in (2.17). We now perform the computation of each Inm term.
Computation of I11. As in [3], we integrate by parts in time:

I11 = (α1 − 1)τµ

∫

Qh

∂ttv (ϕ∂ttψ −A4) v

= (1 − α1)τµ

∫

Qh

|∂tv|2ϕ(∂ttψ −∆ψ) + τ

∫

Qh

Oµ(1)|v|2 + τ

∫

Qh

Oµ(τh)|∂tv|2.

Here, we used A4 = ϕ∆ψ +Oµ(τh) and ∂ttA4 = ∂tt(ϕ∆ψ) +Oµ(τh).
Computation of I12. Similarly,

I12 = − τµ2

∫

Qh

∂ttv
(
ϕ|∂tψ|2 −A3

)
v

= τµ2

∫

Qh

|∂tv|2ϕ(|∂tψ|2 − |∇ψ|2) + τ

∫

Qh

Oµ(1)|v|2 + τ

∫

Qh

Oµ(τh)|∂tv|2,

where we used A3 = ϕ|∇ψ|2 +Oµ(τh) and ∂ttA3 = ∂tt
(
ϕ|∇ψ|2

)
+Oµ(τh).

Computation of I13. Using
∑
k∂h,kA1,k = µϕ|∇ψ|2 +ϕ∆ψ+Oµ(τh), ∂tA1,k = µϕ∂xk

ψ∂tψ+Oµ(τh),
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and (A.3), we obtain:

I13 = − 2τµ

∫

Qh

∂ttv (ϕ∂tψ∂tv −
∑
kA1,k∂h,kv)

= τµ

∫

Qh

|∂tv|2ϕ(∂ttψ +∆ψ) + τµ2

∫

Qh

|∂tv|2ϕ(|∂tψ|2 + |∇ψ|2)

− 2τµ2

∫

Qh

∂tv ∂tψ ϕ ∇hv · ∇ψ −
τµ

2

∑
k

∫

Q−

h,k

|h∂+h,k∂tv|2∂+h,kA1,k

+ τ

∫

Qh

Oµ(τh)|∂tv|2 + τ

∫

Qh

∂tv (
∑

kOµ(τh)∂h,kv) .

Computation of I21. Since A4 = ϕ∆ψ +Oµ(τh) and A0,k = Oµ(τh), we get:

I21 = (1− α1)τµ

∫

Qh

∑
k(1 +A0,k)∆h,kv (ϕ∂ttψ −A4) v

= (α1 − 1)τµ
∑

k

∫

Q−

h,k

|∂+h,kv|2ϕ(∂ttψ −∆ψ) + τ

∫

Qh

Oµ(1)|v|2 + τ
∑

k

∫

Q−

h,k

Oµ(τh)|∂+h,kv|2.

Computation of I22. Using A3 = ϕ|∇ψ|2 +Oµ(τh) and (A.5), we obtain

I22 = τµ2

∫

Qh

∑
k(1 +A0,k)∆h,kv

(
ϕ|∂tψ|2 −A3

)
v

= − τµ2∑
k

∫

Q−

h,k

|∂+h,kv|2ϕ(|∂tψ|2 − |∇ψ|2) + τ

∫

Qh

Oµ(τh)|v|2 + τ
∑

k

∫

Q−

h,k

Oµ(τh)|∂+h,kv|2.

Computation of I23. We can split this term in two parts as follows

I23 = 2τµ

∫

Qh

∑
k(1 +A0,k)∆h,kv ϕ ∂tψ ∂tv

︸ ︷︷ ︸
I23a

−2τµ
∫

Qh

∑
k(1 +A0,k)∆h,kv (

∑
ℓA1,ℓ∂h,ℓv) .

︸ ︷︷ ︸
I23b

For I23a we use ∆h,k = ∂−h,k∂
+
h,k and the zero boundary conditions on v. Setting g0,k = (1 +

A0,k)ϕ∂tψ and using (A.1), we get:

I23a = − 2τµ
∑

k

∫

Q−

h,k

∂+h,kv ∂
+
h,k(g0,k∂tv)

= − 2τµ
∑

k

∫

Q−

h,k

∂+h,kv ∂
+
h,k(∂tv)m

+
h,kg0,k − 2τµ

∑
k

∫

Q−

h,k

∂+h,kvm
+
h,k(∂tv)∂

+
h,kg0,k

Noticing that, on the one hand,

−2τµ∑k

∫

Q−

h,k

∂+h,kv ∂
+
h,k(∂tv)m

+
h,kg0,k = τµ

∑
k

∫

Q−

h,k

|∂+h,kv|2∂t(m+
h,kg0,k)

= τµ
∑

k

∫

Q−

h,k

|∂+h,kv|2(µϕ|∂tψ|2 + ϕ∂ttψ +Oµ(τh)),
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and on the other hand (using (A.7)),

−2τµ
∑
k

∫

Q−

h,k

∂+h,kvm
+
h,k(∂tv)∂

+
h,kg0,k

= − 2τµ
∑

k

∫

Qh

∂h,kv ∂tv ∂h,kg0,k −
τµh2

2

∑

k

∫

Qh

∆h,kv ∂tv∆h,kg0,k

= − 2τµ2

∫

Qh

∂tv ∂tψ ϕ∇hv · (∇ψ +Oµ(τh)) − τh2
∑

k

∫

Qh

Oµ(1)∆h,kv ∂tv,

the term I23a takes the form

I23a = τµ2∑
k

∫

Q−

h,k

|∂+h,kv|2ϕ|∂tψ|2 + τµ
∑

k

∫

Q−

h,k

|∂+h,kv|2(ϕ∂ttψ +Oµ(τh))

− 2τµ2

∫

Qh

∂tv ∂tψ ϕ∇hv · (∇ψ +Oµ(τh)) − τh2
∑

k

∫

Qh

Oµ(1)∆h,kv ∂tv.

To compute I23b, we consider the integrals I23b,k,ℓ indexed by (k, ℓ) ∈ {1, 2}2 and defined by

I23b,k,ℓ = −2τµ
∫

Qh

(1 +A0,k)∆h,kv A1,ℓ ∂h,ℓv.

When k = ℓ, using formula (A.6) with gk = (1 +A0,k)A1,k = ϕ∂xk
ψ(1 +Oµ(τh)), we obtain

I23b,k,k = τµ

∫

Q−

h,k

|∂+h,kv|2∂+h,kgk − τµ
∫

Σ+
h,k

gk|∂−h,kv|2 + τµ

∫

Σ−

h,k

gk|∂+h,kv|2

= τµ

∫

Q−

h,k

|∂+h,kv|2(∂xk
(ϕ∂xk

ψ) +Oµ(τh)) − τµ
∫

Σ+
h,k

gk|∂−h,kv|2 + τµ

∫

Σ−

h,k

gk|∂+h,kv|2.

When k 6= ℓ, we use Lemma 2.5 with gk,ℓ = (1 +A0,k)A1,ℓ:

I23b,k,ℓ = − τµ
∫

Q−

h,k

|∂+h,kv|2∂h,ℓ(m+
h,kgk,ℓ) + 2τµ

∫

Q−

h,k

∂+h,kvm
+
h,k(∂h,ℓv)∂

+
h,kgk,ℓ

+
τµh2

2

∫

Q−

h

|∂+h,k∂+h,ℓv|2∂+h,ℓ(m+
h,kgk,ℓ).

Using (A.7) for vh replaced by ∂h,ℓv, which vanishes on the boundary Σh,k as k 6= ℓ, we get:

I23b,k,ℓ = − τµ
∫

Q−

h,k

|∂+h,kv|2 (∂xℓ
(ϕ∂xℓ

ψ) +Oµ(τh)) + 2τµ

∫

Qh

∂h,kv ∂h,ℓv (∂xk
(ϕ∂xℓ

ψ) +Oµ(τh))

+
τµh2

2

∫

Qh

∆h,kv ∂h,ℓv (∆xk
(ϕ∂xℓ

ψ) +Oµ(τh)) +
τµh2

2

∫

Q−

h

|∂+h,k∂+h,ℓv|2∂+h,ℓ(m+
h,kgk,ℓ).
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Hence we obtain

I23b = τµ
∑

k

∫

Q−

h,k

|∂+h,kv|2
(
∂xk

(ϕ∂xk
ψ)−∑ℓ 6=k∂xℓ

(ϕ∂xℓ
ψ) +Oµ(τh)

)

+ 2τµ

∫

Qh

∂h,1v ∂h,2v (∂x1(ϕ∂x2ψ) + ∂x2(ϕ∂x1ψ) +Oµ(τh))

+ τh2
∫

Qh

Oµ(1)(∆h,1v ∂h,2v +∆h,2v ∂h,1v) +
τµh2

2

∫

Q−

h

|∂+h,1∂+h,2v|2 (div(ϕ∇ψ) +Oµ(τh))

− τµ
∑

k

∫

Σ+
h,k

|∂−h,kv|2ϕ∂xk
ψ(1 +Oµ(τh)) + τµ

∑

k

∫

Σ−

h,k

|∂+h,kv|2ϕ∂xk
ψ(1 +Oµ(τh)).

We now remark that ∂x1(ϕ∂x2ψ) + ∂x2(ϕ∂x1ψ) = 2µϕ∂x1ψ∂x2ψ, and that we can write

4τµ2

∫

Qh

∂h,1v ∂h,2v ϕ∂x1ψ∂x2ψ = 2τµ2

∫

Qh

ϕ|∇hv · ∇ψ|2 − 2τµ2
∑

k

∫

Qh

|∂h,kv|2|∂xk
ψ|2.

Therefore,

I23b = τµ
∑

k

∫

Q−

h,k

|∂+h,kv|2 (2∂xk
(ϕ∂xk

ψ)− div(ϕ∇ψ) +Oµ(τh))

+ 2τµ2

∫

Qh

ϕ|∇hv · ∇ψ|2 − 2τµ2
∑

k

∫

Qh

|∂h,kv|2ϕ|∂xk
ψ|2 + τ

∫

Qh

Oµ(τh)∂h,1v ∂h,2v

+ τh2
∫

Qh

(Oµ(1)∆h,1v ∂h,2v +Oµ(1)∆h,2v ∂h,1v)

+
τµh2

2

∫

Q−

h

|∂+h,1∂+h,2v|2 (div(ϕ∇ψ) +Oµ(τh))

− τµ
∑

k

∫

Σ+
h,k

|∂−h,kv|2(ϕ∂xk
ψ +Oµ(τh)) + τµ

∑

k

∫

Σ−

h,k

|∂+h,kv|2(ϕ∂xk
ψ +Oµ(τh)).

Of course, this yields I23 as I23 = I23a + I23b.
Computation of I31. Using A2 = ϕ2|∇ψ|2 +Oµ(τh) and A4 = ϕ∆ψ +Oµ(τh), one easily obtains:

I31 = (α1 − 1)τ3µ3

∫

Qh

|v|2
(
ϕ2 (∂tψ)

2 −A2

)
(ϕ∂ttψ −A4)

= (α1 − 1)τ3µ3

∫

Qh

|v|2ϕ3(|∂tψ|2 − |∇ψ|2)(∂ttψ −∆ψ) + τ3
∫

Qh

Oµ(τh)|v|2.

Computation of I32. Using here A3 = ϕ|∇ψ|2 +Oµ(τh),

I32 = − τ3µ4

∫

Qh

|v|2
(
ϕ2 (∂tψ)

2 −A2

) (
ϕ|∂tψ|2 −A3

)

= − τ3µ4

∫

Qh

|v|2ϕ3(|∂tψ|2 − |∇ψ|2)2 + τ3
∫

Qh

Oµ(τh)|v|2.
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Computation of I33. Finally, using (A.3) we get

I33 = − 2τ3µ3

∫

Qh

(
ϕ2 (∂tψ)

2 −A2

)
v (ϕ∂tψ ∂tv −

∑
kA1,k∂h,kv)

= τ3µ3

∫

Qh

|v|2∂t
(
(ϕ2|∂tψ|2 −A2)ϕ∂tψ

)
− τ3µ3

∫

Qh

|v|2∑k∂h,k
(
A1,k(ϕ

2|∂tψ|2 −A2)
)

+
τ3µ3h2

2

∑
k

∫

Q−

h,k

|∂+h,kv|2∂+h,k
(
A1,k(ϕ

2|∂tψ|2 −A2)
)
.

But we have

∂t((ϕ
2|∂tψ|2 −A2)ϕ∂tψ)

= 3µϕ3|∂tψ|2
(
|∂tψ|2 − |∇ψ|2

)
+ ϕ3∂ttψ

(
|∂tψ|2 − |∇ψ|2

)
+ 2ϕ3|∂tψ|2∂ttψ +Oµ(τh),∑

k∂h,k
(
A1,k(ϕ

2|∂tψ|2 −A2)
)

= 3µϕ3|∇ψ|2
(
|∂tψ|2 − |∇ψ|2

)
+ ϕ3∆ψ

(
|∂tψ|2 − |∇ψ|2

)
− ϕ3∇ψ · ∇(|∇ψ|2) +Oµ(τh),

∂+h,k(A1,k(ϕ
2|∂tψ|2 −A2)) = ∂xk

(ϕ3 ∂xk
ψ (|∂tψ|2 − |∇ψ|2)) +Oµ(τh) = Oµ(1),

so that we obtain

I33 = 3τ3µ4

∫

Qh

|v|2ϕ3(|∂tψ|2 − |∇ψ|2)2 + τ3µ3

∫

Qh

|v|2ϕ3 (∂ttψ −∆ψ)
(
|∂tψ|2 − |∇ψ|2

)

+ τ3µ3

∫

Qh

|v|2ϕ3
(
2∂ttψ|∂tψ|2 +∇ψ · ∇(|∇ψ|2)

)
+ τ3

∫

Qh

Oµ(τh)|v|2 + τ
∑

k

∫

Q+
h,k

Oµ(τh)|∂+h,kv|2.

Final computation. Gathering all the terms, one can write
∫

Qh

Lh,1vLh,2v = Iv + I∂v + IΓ + ITych, (B.1)

where Iv =

∫

Qh

|v|2F(ψ) contains all the terms in |v|2 with

F(ψ) = α1τ
3µ3ϕ3(|∂tψ|2 − |∇ψ|2)(∂ttψ −∆ψ) + τ3µ3ϕ3

(
2∂ttψ|∇ψ|2 +∇ψ · ∇(|∇ψ|2)

)

+ 2τ3µ4ϕ3(|∂tψ|2 − |∇ψ|2)2 + τ3Oµ(τh) + τOµ(1) ;

I∂v contains all the terms involving first-order derivatives of v:

I∂v = 2τµ2

∫

Qh

|∂tv|2ϕ |∂tψ|2 + 2τµ2

∫

Qh

|∇hv · ∇ψ|2ϕ− 4τµ2

∫

Qh

∂tv ∂tψ ϕ ∇hv · ∇ψ

+ τµ

∫

Qh

|∂tv|2ϕ (2∂ttψ − α1(∂ttψ −∆ψ)) + τµ
∑

k

∫

Q−

h,k

|∂+h,kv|2ϕ (α1(∂ttψ −∆ψ) + 2∂xkxk
ψ)

+ 2τµ2
∑

k

(∫

Q−

h,k

|∂+h,kv|2ϕ|∂xk
ψ|2 −

∫

Qh

|∂h,kv|2ϕ|∂xk
ψ|2
)

+ IOµ ,

where IOµ contains all the terms involving Oµ terms (and a first-order derivative of v);
IΓ contains all the boundary terms:

IΓ = − τµ
∑

k

∫

Σ+
h,k

|∂−h,kv|2(ϕ∂xk
ψ +Oµ(τh)) + τµ

∑
k

∫

Σ−

h,k

|∂+h,kv|2(ϕ∂xk
ψ +Oµ(τh));
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ITych contains the terms corresponding to the Tychonoff regularization:

ITych =− τµ

2

∑
k

∫

Q−

h,k

|h∂+h,k∂tv|2∂+h,kA1,k

+
τµ

2

∫

Q−

h

|h∂+h,1∂+h,2v|2
(
∂+h,2m

+
h,1((1 +A0,1)A1,2) + ∂+h,1m

+
h,2((1 +A0,2)A1,1)

)
.

• Step 2. Bounding each term from below.
Step 2.1. Dealing with the 0 order terms in v. Since ∇ψ · ∇(|∇ψ|2) = 4|∇ψ|2 = 16|x− xa|2, ∆ψ = 4
and ∂ttψ = −2β and denoting X = |∂tψ|2 − |∂xψ|2, one can obtain

F(ψ) = τ3µ3ϕ3
(
2µX2 − 2α1(β + 2)X + 16(1− β)|x − xa|2

)

︸ ︷︷ ︸
G(ψ)

+τ3Oµ(τh) + τOµ(1),

Since xa /∈ Ω, inf(0,1)2 |x− xa|2 is strictly positive and we have

G(ψ) ≥ 2µX2 − 2α1(β + 2)X + c, with c = 16(1− β) inf
(0,1)2

|x− xa|2 > 0.

Thus, there exists µ0 ≥ 1 such that for µ = µ0, G(ψ) > 0 uniformly. Therefore, we get c0 > 0
independent of h such that

Iv ≥ 2c0τ
3

∫

Qh

|v|2ϕ3 − (τ3Oµ0(τh) + τOµ0 (1))

∫

Qh

|v|2 ≥ c0τ3
∫

Qh

|v|2 − τ3Oµ0(τh)

∫

Qh

|v|2, (B.2)

where the last line is obtained by bounding ϕ from below by 1 and by taking τ ≥ τ0 to absorb the
Oµ0(1)-term. From now, we fix µ = µ0 and we simply write Oµ instead of Oµ0 .
Step 2.2. Dealing with the first-order derivatives. The first line in I∂v is positive as

∣∣∣∣
∫

Qh

∂tv ∂tψϕ∇hv · ∇ψ
∣∣∣∣ ≤

1

2

∫

Qh

|∂tv|2ϕ|∂tψ|2 +
1

2

∫

Qh

|∇hv · ∇ψ|2ϕ.

The second line of I∂v can be computed explicitly as ∂ttψ = −2β, ∂xkxk
ψ = 2 and ∆ψ = 4:

2∂tt ψ − α1(∂ttψ −∆ψ) = −4β + 2α1(2 + β); α1(∂ttψ −∆ψ) + 2∂kkψ = −2α1(2 + β) + 4.

Hence the choice α1 = (β + 1)/(β+ 2) makes each term strictly positive and equal to 2(1− β) (recall
β ∈ (0, 1)), so that

τµ

∫

Qh

|∂tv|2ϕ (2∂ttψ − α1(∂ttψ −∆ψ)) + τµ
∑

k

∫

Q−

h,k

|∂+h,kv|2ϕ (α1(∂ttψ −∆ψ) + 2∂kkψ)

= 2(1− β)τµ
(∫

Qh

|∂tv|2 +
∑

k

∫

Q−

h,k

|∂+h,kv|2
)
.

We now remark that the third line of I∂v is negligible. Indeed, writing ∂h,kv = m−
h,k(∂

+
h,kv), one easily

checks that
∫

Q−

h,k

|∂+h,kv|2ϕ|∂xk
ψ|2 −

∫

Qh

|∂h,kv|2ϕ|∂xk
ψ|2 ≥ −

∫

Q−

h,k

Oµ(τh)|∂+h,kv|2.
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Concerning the terms in IOµ , the only term that needs to be discussed are the ones coming from I23:
But using that h2∆h,k is a discrete operator with norm bounded by 8, we get

∣∣∣∣τh
2

∫

Qh

(∆h,1v (Oµ(1)∂h,2v +Oµ(1)∂tv) + τh2
∫

Qh

(∆h,2v (Oµ(1)∂h,1v +Oµ(1)∂tv)
∣∣∣∣

≤ C
(∫

Qh

|∂tv|2 +
∑

k

∫

Q−

h,k

|∂+h,kv|2 + τ2
∫

Qh

|v|2
)
.

Combining these estimates, for τ large enough, we obtain constants c1 > 0, C0 > 0 such that

I∂v ≥ c1τ

∫

Qh

|∂tv|2 + c1τ
∑

k

∫

Q−

h,k

|∂+h,kv|2

− τ
∫

Qh

Oµ(τh)|∂tv|2 − τ
∑

k

∫

Q−

h,k

Oµ(τh)|∂+h,kv|2 − C0τ
2

∫

Qh

|v|2. (B.3)

Step 2.3. The boundary terms. Since min(−T,T )×Ω{ϕ∂xk
ψ} > 0 (recall xa /∈ Ω), then there exists

ε1 > 0 such that taking τh ≤ ε1,

|Oµ(τh)| ≤ min
(t,x)∈(−T,T )×Ω

{ϕ(t, x)∂xk
ψ(t, x)} .

so there exists C > 0 independent of τ and h such that

IΓ ≥− 2τµ
∑

k

∫

Σ+
h,k

|∂−h,kv|2ϕ∂xk
ψ ≥ −Cτ

∑
k

∫

Σ+
h,k

|∂−h,kv|2. (B.4)

Step 2.4. The Tychonoff regularization. We have ∂+h,kA1,k = µϕ|∂xk
ψ|2+ϕ∂xkxk

ψ+Oµ(τh) = Oµ(1)
and ∂+h,km

+
h,ℓ((1 + A0,ℓ)A1,k) = µϕ|∂xk

ψ|2 + ϕ∂xkxk
ψ + Oµ(τh). Thus, for τh small enough, i.e.

τh ≤ ε2 for some ε2 ∈ (0, ε1),

(
∂+h,2m

+
h,1((1 +A0,1)A1,2) + ∂+h,1m

+
h,2((1 +A0,2)A1,1)

)
> 0,

and the term involving ∂+h,1∂
+
h,2v is positive, whereas the other term in ITych is negative. We bound

it directly and get a constant C > 0 independent of τ and h such that

ITych ≥ − Cτ
∑

k

∫

Q−

h,k

|h∂+h,k∂tv|2. (B.5)

• Step 3. End of the proof of Proposition 2.4. Collecting the results (B.2)–(B.5) of Step 2, we have
proved that for τ ≥ τ0 and τh ≤ ε2,

∫

Qh

Lh,1vLh,2v ≥ c0τ
3

∫

Qh

|v|2 + c1τ

∫

Qh

|∂tv|2 + c1τ
∑

k

∫

Q−

h,k

|∂+h,kv|2 − C0τ
2

∫

Qh

|v|2

−Cτ
∑

k

∫

Σ+
h,k

|∂−h,kv|2 − Cτ
∑

k

∫

Q−

h,k

|h∂+h,k∂tv|2

−τ3
∫

Qh

Oµ(τh)|v|2 − τ
∫

Qh

Oµ(τh)|∂tv|2 − τ
∑

k

∫

Q−

h,k

Oµ(τh)|∂+h,kv|2.
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Therefore, taking τ large enough so that c0τ
3 > 2C0τ

2 and τh small enough such that |Oµ(τh)| ≤
min {c0, c1, ε2} , which defines ε0 > 0, we obtain, for some constant C1 > 0,

τ

∫

Qh

|∂tv|2 + τ
∑

k

∫

Q−

h,k

|∂+h,kv|2 + τ3
∫

Qh

|v|2

≤ C1

∫

Qh

Lh,1vLh,2v + C1τ
∑

k

∫

Σ+
h,k

|∂−h,kv|2 + C1τ
∑

k

∫

Q−

h,k

|h∂+h,k∂tv|2.

From (2.19), there exists C2 > 0 such that

τ

∫

Qh

|∂tv|2 + τ
∑

k

∫

Q−

h,k

|∂+h,kv|2 + τ3
∫

Qh

|v|2 +
∫

Qh

|L1,hv|2

≤ C2

∫

Qh

|Lhv|2 + C2

∫

Qh

|Rhv|2 + C2τ
∑

k

∫

Σ+
h,k

|∂−h,kv|2 + C2τ
∑

k

∫

Q−

h,k

|h∂+h,k∂tv|2. (B.6)

But ∫

Qh

|Rhv|2 ≤ Cτ2
∫

Qh

|v|2,

which can also be absorbed by the left hand side of (B.6) by taking τ large enough, thus yielding to
(2.20).

C Proof of an elliptic regularity result

Proof of Lemma 4.4. Multiplying the equation (4.14) by wh, using the discrete Poincaré’s inequality,
one easily obtains that

wh ∈ H1
0,h(Ωh) with ‖wh‖H1

0,h(Ωh)
≤ C ‖gh‖L2

h(Ωh)
, (C.1)

for some constant C = C(m) > 0 independent of h > 0. Accordingly, replacing gh by gh − qhwh, we
are reduced to the case qh = 0, that we assume from now.

Since Ωh = (hZ)2∩(0, 1)2, we first propose to extend wh a priori defined on the discrete domain Ωh
to Ωext,h = (hZ)2 ∩ (−1, 2)2 as follows. First, for xh ∈ {(0, 0), (1, 0), (1, 1), (0, 1)}, we set w̃h(xh) = 0.
Then, for xh = (xh,1, xh,2) ∈ [0, 1] × (−1, 2) ∩ Ωext,h, we set w̃h(xh) = −wh(xh,1,−xh,2) for xh,2 ∈
(−1, 0) and w̃h(xh) = −wh(xh,1, 1− (x2,h − 1)) for xh,2 ∈ (1, 2). This defines w̃h on [0, 1]× (−1, 2) ∩
Ωext,h. We then extend it for xh = (x1,h, x2,h) ∈ Ωext,h by setting w̃h(xh) = −w̃h(−xh,1, x2,h) for
xh,1 ∈ (−1, 0) and w̃h(xh) = −w̃h(1− (xh,1 − 1), xh,2) for xh,1 ∈ (1, 2). We do a similar extension g̃h
of gh on Ωext,h taking care of choosing g̃h = 0 on ∂Ωh ∪ {(0, 0), (1, 0), (1, 1), (0, 1)}.

We thus have constructed a solution w̃h of

−∆hw̃h = g̃h in Ωext,h and w̃h = 0 on ∂Ωext,h. (C.2)

We then choose a function χ ∈ C∞
c ((−1, 2)2) such that χ = 1 on [0, 1]2 and we multiply (C.2) by

−χh∆1,hw̃h with χh = rh(χ): After some integrations by parts where all the boundary terms vanish
due to the choice of χ, we obtain:

∫

Ωext,h

χh|∆h,1w̃h|2 +
∫

Ωext,h

m+
h,1m

+
h,2χh|∂+h,1∂+h,2w̃h|2 (C.3)

= −
∫

Ωext,h

χhg̃h∆h,1w̃h +

∫

Ωext,h

∂+h,2χh∂
+
h,2w̃hm

+
h,2∆h,1wh −

∫

Ωext,h

∂+h,1m
+
h,2χhm

+
h,1∂

+
h,2wh∂

+
h,1∂

+
h,2w̃h.
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Of course, since χ = 1 on [0, 1]2, the left hand-side of (C.3) is bounded from below by

‖∆h,1wh‖2L2
h(Ωh)

+
∥∥∥∂+h,1∂+h,2wh

∥∥∥
2

L2
h(Ωh)

.

On the other hand, using that w̃h and g̃h are symmetric extensions of wh and gh, the right hand-side
of (C.3) is bounded from above by

C
(
‖gh‖L2

h(Ωh)
+ ‖wh‖H1

0,h(Ωh)

)(
‖∆h,1wh‖L2

h(Ωh)
+
∥∥∥∂+h,1∂+h,2wh

∥∥∥
L2

h(Ωh)

)
,

for some constant C independent of h > 0. We thus obtain

‖∆h,1wh‖L2
h(Ωh)

+
∥∥∥∂+h,1∂+h,2wh

∥∥∥
L2

h(Ωh)
≤ C

(
‖gh‖L2

h(Ωh)
+ ‖wh‖H1

0,h(Ωh)

)
,

which, together with (C.1) and −∆h,2wh = (gh − qhwh) + ∆h,1wh , yields (4.15).
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