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Modeling and optimal force control of a nonlinear

electrostatic microgripper
Mokrane Boudaoud, Yassine Haddab, IEEE Member, and Yann Le Gorrec

Abstract—Microgrippers with integrated force sensors are
very efficient tools for dexterous manipulation of objects in the
microworld (size less than 100µm). In this paper, we first propose
a modeling approach of a nonlinear electrostatic microgripper
with integrated force sensor while handling calibrated micro-glass
balls of 80µm diameter. Limit of the linear operating range of the
microgripper is investigated and a nonlinear model is proposed
and validated experimentally for large displacements. We then
propose the design of an optimal force feedback controller to
ensure reliable handling operations with appropriate gripping
forces. To overcome the limitation caused by the low signal
to noise ratio provided by the sensor, a Kalman filter is used
to estimate the states of the process from noise measurements.
The control law is implemented and validated using real time
experiments for 10µN gripping force reference with a noise
level (peak-to-peak magnitude of the noise) reaching 8µN in
the worst case. The effectiveness of the optimal filter is proven
by comparison with external interferometric measurements.

Index Terms—Electrostatic microgripper, Nonlinear modeling,
Noise analysis, Kalman filtering, LQG force control, Micro-glass
balls manipulation.

I. INTRODUCTION

Designing and controlling systems able to perform dexter-

ous manipulation tasks on small components (i.e. between

1µm and 1mm) is still a great scientific and technological

challenge due to the influence of the surrounding environ-

ment and the difficulty of performing experiments in the mi-

croworld. The dexterous manipulation of micro-objects is often

needed in microassembly [1], minimally invasive surgery,

genetics and cell mechanical characterization [2] [3]. Such

applications require the use of miniaturized grippers endowed

with actuators compatible with the microworld specifications

(small dimensions and large displacements) [4] [5] and force

sensors for the measurement of gripping forces [6] [7].

To control the gripping force, a reliable modeling of the

microgripper and the manipulated object is required. Knowl-

edge based models are in this case relevant and give a physical

significance to some phenomena such as nonlinear behaviors.

Such models are nevertheless quite difficult to validate exper-

imentally due to many problems commonly encountered in

microrobotics such as: complex architectures and parameters

uncertainties [8] due to the microfabrication process. To avoid

such constraints, empirical models (black box models) are
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often used [9] with no information about internal properties of

the modeled system. Advantages of empirical models is that

they are simple and they can be easily obtained. However, with

such models, the physical meaning of the system is lost.

In addition to the modeling part, the gripping force con-

trol requires dealing with the low signal to noise ratio of

measurements commonly found at these scales. Indeed, it is

very difficult to achieve controlled gripping forces when the

magnitude of the desired force is close to the noise level (peak-

to-peak magnitude of the noise). Some successful attempts

of gripping force control using microgrippers are obtained at

the MilliNewton [10] [11], the MicroNewton [12] and the

NanoNewton [13] force levels. In most cases, the modeling

of the microgrippers is performed using linear empirical

approaches and the limitation due to the weak signal to noise

ratio is bypassed by working well above the noise level.

In this paper, we focus our attention on the modeling and

the control of an electrostatic microgripper (FT-G100) (Fig1)

designed by FemtoTools GmbH company. This microgripper

integrates an electrostatic comb drive actuator characterized

by a nonlinear behavior when performing large displacements

[14] and a capacitive force sensor (50nN resolution) providing

a noise signal with a peak-to-peak magnitude reaching 2.35µN

in static mode. The motivation of the work reported in this

paper is then twofold: 1) from a modeling point of view,

we propose a knowledge based model able to capture the

nonlinear behavior of a complex suspension system leading to

the description of the dynamic behavior of the microgripper

in a wide range of operating conditions. The accuracy of the

nonlinear model is discussed based on experimentations. 2)

from a control point of view, we propose a strategy able to deal

with real time constraints and significant noises at such scale.

Noises are characterized and the effectiveness of a Kalman

filter for the estimation of the gripping force despite significant

measurement noises is proven. The paper shows that a standard

control strategy with a Kalman filter can be efficiently applied

for accurate manipulation at the micro-scale.

The paper is organized as follow: first, the global architec-

ture and the basic features of the FT-G100 microgripper are

presented. After that, a modeling approach of the actuation

system is proposed. Limit of the linear displacement range is

investigated and a nonlinear model is derived and validated

experimentally. Thirdly, in order to achieve a gripping force

control, a coupled model of the microgripper is proposed when

the end effectors are closed around a glass ball of 80µm

diameter. In the fifth part, a discrete Kalman filter is computed

using the coupled model and is tuned taking into account

measurement and process noises which are beforehand char-

acterized. Gripping force control is achieved in the sixth part
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TABLE I
DIMENSIONS OF THE ACTUATION AND SENSING SYTEMS

actuated and sensing arms clamped clamped suspension mechanism (actuator) clamped clamped suspension mechanism (sensor)

Length L = 5150µm Ls = 915µm (half length) Lsb = 435µm (half length)

Width l = 150µm ls = 50µm lsb = 50µm
Thickness e = 50µm es = 8µm esb = 8µm

using LQG (Linear Quadratic Gaussian) synthesis in which

the gripping force is estimated in dynamic and static modes

despite the noise. Results show successful force control with

10µN gripping force reference with a noise level reaching

8µN in the worst case. The effectiveness of the Kalman filter

is proved using a high performance laser interferometer sensor.

II. PRESENTATION AND WORKING PRINCIPLE OF THE

FT-G100 MICROGRIPPER

The FT-G100 microgripper is designed to handle objects

ranging from 1µm to 100µm. To pick up an object, an actuated

arm is pushed toward closure thanks to a comb drive actuator.

The base of the actuated arm is fixed to a flexure joint (Fig1)

and a suspension mechanism including two pairs of clamped-

clamped beams holds the movable part of the actuator. While

the gripper arms are closed around an object, the deflection of

the sensing arm is detected by a capacitive sensor. The sensor

consists of a transverse comb-drive with a differential capacity

proportional to the displacement of the movable fingers. This

displacement (due to the gripping force) is translated into

analog voltage Vout throughout a MS3110 readout chip (Irvine

Sensors) [15]. Two pairs of clamped-clamped beams and a

flexure joint are also attached to the sensor and the base of

the sensing arm respectively. Dimensions of the actuated and

sensing arms and those of each clamped-clamped suspension

are described in TABLE I. Benefits and shortages of the FT-

G100 microgripper can be found in [16].

III. ACTUATION SYSTEM MODELING

The actuation system (comb drive actuator + actuated arm)

is considered to be made up of a linear and a nonlinear part.

The nonlinear behavior of the clamped clamped suspensions

is derived analytically and validated experimentally. Then a

dynamic model is computed in a large working range.

A. Derivation of the nonlinear behavior of the actuation

system

When applying an actuation voltage Vin to the comb drive

actuator, an electrostatic force Felec is generated and is applied

at the middle of the clamped-clamped suspensions (Fig2a).

The general formulation of such a force is [17]:

Felec =
Na.ε.hz

2.g
.V 2

in (1)

Where Na = 1300 is the total number of fingers (movable and

fixed) in the actuator, ε = 8.85pF/m is the permittivity of the

dielectric material (air), hz = 50µm is the thickness of comb

fingers, and g = 6µm is the gap spacing between two fingers.

Unlike conventional linear approaches, in nonlinear theory,

when an external force is applied at the middle of a clamped-

clamped beam, axial forces
→

N are developed in clamped parts

Fig. 1. Structure of the FT-G100 microgripper (FemtoTools GmbH). In
the close-up view (part encircled by the ellipse with a solid line), the green
color and the white color show the hollow areas and the body parts of the
microgripper respectively.

of suspensions (Fig2a). Axial forces become significant in the

case of large deflections of the beam. In the microgripper, let

us consider the two clamped clamped suspensions of thickness

es on which the displacement ya(xea) in the direction of y axis

is governed by the nonlinear expression [18]:

ya(xea) = es

√

2

3
.(u− tanh(u)).Q(u) (2)

Q(u) = (
3

2
−

1

2
.(tanh(u))2 −

3

2
.
tanh(u)

u
)−

1/2 (3)

u =

√

N

E.Is
.(
Ls

2
) (4)

Where E = 190GPa is the Young’s modulus of silicon type

material and Is = 2.13× 10−21m4 is the area moment of inertia

of the suspension’s cross section.

The lateral stiffness (in the direction of y axis) of the pseudo

rigid body (i.e. actuated arm + flexure joint) is calculated in

APPENDIX A. Due to the relatively low value of this stiffness

(0.8N/m), it is assumed that the flexure joint behaves as a

hinge joint. Thus, the actuated arm tip displacement ya(L) in

the direction of y axis can be deduced from ya(xea) such as:

ya(L) =
L

xea

.ya(xea) (5)

With xea = 1100µm (see Fig2a)

The relation between an applied force at the middle of

a clamped-clamped beam and the axial force N can be

derived from equilibrium of moments [19]. In the case of the
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electrostatic force Felec applied on the suspension mechanism,

we have used the following formulation:

Felec =
16.E.Is

L3
s

.es

√

2

3
.u3.Q(u) (6)

Using equations (2) and (6), the nonlinear stiffness gov-

erning the relationship between the electrostatic force and the

deflection ya(xea) can be derived as:

Knl =
16.E.Is

L3
s

.
u3

u− tanh(u)
(7)

Then, the stiffness Knl depends on the variable u. The latter

also depends on the supply voltage Vin through equations (6)

and (1). Let us recall that the aim of this modeling is to provide
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Fig. 2. Simplified scheme of the FT-G100 actuation system (a) and equivalent
scheme of suspension mechanism (b).

models for control in which the input is Vin and the output

relates to ya(L) . For this purpose, it is necessary to express

Knl in terms of Vin. Then, in order to obtain the function

u = f(Vin), the following equation has to be solved:

Vin =

(

2.g

Na.ε.hz

.
16.E.Is

L3
s

.es.

√

2

3
.u3.Q(u)

)
1/2

(8)

Instead of analytically expressing u = f(Vin), we numeri-

cally solve equation (8). Starting from a data vector containing

values of Vin from 0 to 200V with 0.1V steps, equation (8) has

been solved using the Matlab fsolve function, and a vector

of solutions containing values of u has been obtained. Thus,

based on Lagrange polynomials, an interpolation of the curve

describing u in terms of Vin led to:

u = −(11.8324× 10−14.V 6
in) + (5.7677× 10−11.V 5

in) (9)

− (6.0704× 10−9.V 4
in)− (11.4396× 10−7.V 3

in)

+ (0.0002722.V 2
in)− (0.0018.Vin) + 0.0071

Substituting equation (9) in (7), the nonlinear stiffness-supply

voltage relation is obtained and shown in (Fig3).

Moreover, using equation (9) in (2) and (5), the tip

displacement-supply voltage relation is derived and shown in

(Fig4). On the same figures are presented the stiffness of the

suspensions and the actuated arm tip displacement according

to the linear theory (i.e. the stiffness does not depend on the

supply voltage). The linear stiffness of the suspensions is [20]:

Kl = 48.E.Is
L3

s

. This stiffness can be deduced from (7) when

u → 0.

Experimental measurements of the actuated arm tip dis-

placements have been performed using a high resolution (0.01

nm) laser interferometer (SP-120 SIOS Metechnik GmbH), when

actuation voltages varying from 0 to 200V (40 measurements)

are applied to the actuator. Results are presented in (Fig4)

illustrating a good accordance between experimental and the-

oretical approaches when using the nonlinear formulation.

However, the linear stiffness theory is valid only for actuation

voltages lower than 30V which corresponds to ya(L) = 7.86µm.
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Fig. 3. Linear and nonlinear stiffness/supply voltage characteristic according
to the suspension mechanism. The dashed line corresponds to Knl = 1%.Kl

The mean error of the nonlinear static characteristic in the

whole operating range (0 < Vin < 200V ) is equal to 10.96%. A

variation of 1% of the expression Na.ε.hz

2.g
leads to an increase

of 1.11% of the mean error of the static characteristic. The

latter is increased by 1.13% when the variation of the nonlinear

stiffness Knl at each operating point is about 1%.
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Fig. 4. Linear and nonlinear tip displacement/supply voltage characteristic
of the actuation system

According to (Fig4), the nonlinear formulation is needed

to describe the position of the tip of the actuated in a large

operating range during its approach toward and object. Indeed,

if the size of the object is ranging from 92µm to 100µm, the

stiffness of the actuation system can be described using the

linear theory. However, for an object with a size lower than

92µm, the nonlinear theory must be used. Here, we refer just to

the stiffness of the actuation system before its contact with an

object. The effect of the gripping force on the overall stiffness

of the actuation system is taken into account in section IV.C.

B. Dynamic modeling

Let us consider the displacement ya(x, t) in the direction of

y axis, of a point of coordinate x (0 < x < L) on the actuated
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arm. The partial differential equation describing the dynamic

behavior ya(x, t) is given as:

E.I.
∂4ya(x, t)

∂x4
+ σ.

∂ya(x, t)

∂t
+ ρ.l.e.

∂2ya(x, t)

∂t2
= F (x, t).δ(x− xea)

(10)

I = 1.4×10−17m4 is the area moment of inertia of the actuated

arm, σ is the damping factor, ρ = 2330Kg/m3 is the mass

density, F (x, t) is a load per unit length applied on the actuated

and δ(x− xea) is the Dirac delta function.

Equation (10) can be solved considering the following

boundary conditions:







ya(x0) = 0

E.I.
∂2ya(x0)

∂x2
= 0















E.I.
∂2ya(xnb

)

∂x2
= 0

E.I.
∂3ya(xnb

)

∂x3
= 0

Assuming the actuated arm as a rigid body, equation (10)

can be simplified to a lumped parameter model (mass-spring-

damper) with a nonlinear stiffness (see Fig2b):

Ma.
d2ya(L, t)

dt2
+ σa.

dya(L, t)

dt
+
(xea

L

)

.Knl.ya(L, t) = Felec (11)

Where : Ma is the mass of the actuation system (shuttle

(Fig1) + suspensions + actuated arm). and σa is the generalized

damping of the system.

In equations (11), we have assumed that the slander beam

with dimension (570µm×8µm×50µm) (see Fig1) is rigid and it

is not subject to buckling. The reason is that the critical axial

load [21] beyond which the beam begins to buckle is evaluated

at 50mN . This critical load cannot be reached in the studied

microgripper. Indeed, as it will be shown in section IV.A, the

maximum gripping force that can be applied to an object by

the microgripper is about 120µN . In this case the slender beam

is subject to an axial load equal to 562µN << 50mN .
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Fig. 5. Increase of the first flexural resonant frequency of the actuation
system with increasing the supply voltage

To validate the model with the previous given assumptions,

the mass Ma and the damping σa are identified. Therefore, a

5V step excitation is applied to the actuation system and the

resulting step response is used for the identification. In the

operating range 0 < V in < 130V , the maximum error between

the experimental resonance frequency of the actuation system

and the one obtained from the model is less then 12.27%. This

error is more important when exceeding 130V . For this reason,

the nonlinear model is validated only for 0 < V in < 130V

and the difference between the experimental and theoretical

resonance frequency is compensated by applying a correction

factor to the mass Ma. Results are presented in Fig5.

IV. COUPLED MODEL OF THE MICROGRIPPER

For force control, a coupled model of the gripper is

used when the gripper arms are in contact with the micro-

object (Fig6). The coupled model includes the dynamics of

the actuation and sensing systems through the stiffness of

the manipulated object. Therefore, the nonlinear model of

the actuation system is linearized around an operating point

(Vin0
, ya0

), the dynamic model of the sensing system is derived

from experiments and the coupled model is computed.

 

Electrostatic actuator 

Capacitive sensor 

Micro object ya(L) yb(L) 

Fc

ya(xea) 

yb(xeb) 

Vin

Vout

xea
xeb

Fig. 6. Gripping system to be modeled

A. Linearization of the actuation system’s model

A linear model of the actuation system is derived around

an operating point Vin0
= 60V using a Jacobian linearization.

The linear state space equation of the actuation system is:



















˙̃Xa =

[

0 1

−
Kla

Ma
−

σa

Ma

]

.X̃a +





0
(

L

xea

)

Na.ε.hz

g.Ma

.V in0



 .Ṽin

ỹa(L, t) =
[

1 0
]

.X̃a

(12)

X̃a =
[

ỹa(L, t) ˙̃ya(L, t)
]

, Kla = Knl(ya0
) +

dKnl

dya
.ya0

X̃a, ỹa(L, t), and Ṽin are the variation of the state vector, the

free end deflection and the supply voltage respectively around

the operating point. The linearized stiffness Kla is selected

such as Knl(y0) = 28.95N/m and dKnl

dya
ya0

≈ 8.6N/m

B. Sensing system modeling and identification

The static gripping force/arm tip displacements characteris-

tic of the sensing system is extracted experimentally aiming at

determining if a nonlinear behavior occurs for gripping forces

ranging from few µN up to 120µN . A rigid beam is used to

perform displacements at the tip of the sensing arm (Fig7).

Tip displacements are recorded using the laser interferome-

ter previously cited. Therefore, we have used the output volt-

age of the force sensor to evaluate each force corresponding

to known displacements of the arm tip. As a result (Fig8),

a linear characteristic can be observed in a wide working

range. Moreover, from the obtained curve, the experimental

stiffness of the sensing system (considering tip displacements)

is derived and is equal to about 6.48N/m. As such, linear
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approaches are used for the modeling. In this case, when a

gripping force Fc is applied at the tip of the sensing arm, the

dynamic equation of the system is given as follow:

Fc−

(xeb

L

)2
.σb

dyb(L)

dt
−

(xeb

L

)2
.Klb.yb(L) =

(xeb

L

)2
.Mb

d2yb(L)

dt2
(13)

σb and Mb are respectively the damping factor, and the total

mass of the sensing system, Klb is the linear stiffness of

the suspensions and xeb = 850µm (see Fig6). The analytical

expression of the stiffness is: Klb = 48.E.Isb
L3

sb

, with: Isb =
lsb.e

3

sb

12
.

Fig. 7. Sensing arm excitation using a rigid beam

This leads to the state space equation:


















Ẋb =

[

0 1

−
Klb

Mb

−
σb

Mb

]

.Xb +







0
(

L

xeb

)2

.
1

Mb






.Fc

yb(L, t) =
[

1 0
]

.Xb

(14)

Xb =
[

yb(L, t)
dyb(L,t)

dt

]T

To extract the values of the damping and the mass of

the sensing system, a parametric identification is performed

using experimental data. To this end, we have generated a

negative step force by pushing up the tip of the sensing

arm with the previous rigid beam until a desired position

and operating thereafter a fast withdrawal of the beam. The

resulting motion (step response) of the arm tip (Fig9) is

recorded using the laser interferometer. The real excitation

force from the applied sensing arm thrust is deduced from

the stiffness of the sensing system (6.48N/m). The sensing

system has been excited with 12µm displacement from the

punctual contact (i.e. 27µm − 15µm). Thus, 77µN step force

has been applied. Finally, using experimental data (Fig9) and

a least squares identification method (Levenberg- Marquardt

algorithm), unknown parameters have been identified such as:

Mb = 0.66mg, and σb = 0.71mNs2/m.

Note that, the modeling of the sensing system is performed

under the assumption that the electrostatic force generated by

the capacitive sensor is negligible. This assumption is verified

through the experimental data presented in Fig8. Indeed, the

slope of the curve is close to the theoretical value of the spring

constant
(xeb

L

)2
.Klb and hence the restoring force of the sensor

is mainly due to the clamped-clamped beams.

C. Coupled system modeling

Actuation and sensing systems are coupled under the as-

sumption that the grasped micro-object behaves as a spring

� � � � �� �� �� ��
�

��

��

��

���

���

	ABCDBEF���F�D�F�DC����A�AB�F����

�
�
��
A
F�
�
�
�

Fig. 8. Static gripping force/position characteristic of the sensing system

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18
0

5

10

15

20

25

30

35

Time (s)
S

e
n

s
in

g
 a

rm
 t

ip
 d

is
p

la
c
e

m
e

n
t 

(µ
m

)

the beginning of the rigid beam’s
withdrawal

step force response of the 
sensing arm tip

punctual contact between the rigid 
beam and the sensing arm tip

Experimental data used for
the identification

Fig. 9. Response of the sensing system at the tip of the sensing arm to a
77µN step force. The displacement at the tip of the sensing arm (measured
with the laser sensor) is in the opposite direction of y axis. The zero value
of the displacement is considered when starting the rigid beam’s withdrawal.

with a stiffness k0 as proposed in [22] [23]. The analytical

expression of the gripping force is:

Fc = k0 (ỹa(L)− yb(L)) (15)

The actuation system and the sensing system are then

coupled using the analytical expression of the gripping force

(15). The input of the coupled model is granted to the supply

voltage Vin while the output relates to Fc. The state space

equation of the coupled model is given as:






















[

˙̃Xa

Ẋb

]

= Acoup.

[

X̃a

Xb

]

+Bcoup.Ṽin

Fc = Ccoup.

[

X̃a

Xb

]
(16)

Acoup =















0 1 0 0

−
Kla+

(

L

xea

)

2

.k0

Ma
−

σa

Ma

(

L

xea

)

2

.k0

Ma
0

0 0 0 1
(

L

xeb

)

2

.k0

Mb

0 −
Klb+

(

L

xeb

)

2

.k0

Mb

−
σb

Mb















Bcoup =
[

0
(

L
xea

)

.Na.ε.hz

g.Ma
.Vin0 0 0

]T

Ccoup =
[

k0 0 −k0 0
]

To identify the parameter k0, a 10V step voltage is applied to

the gripper while handling the microball. Then, k0 is identified

using the least square identification method. Consequently,

11µN gripping force is obtained in steady state and the

algorithm found k0 = 174.5N/m. Therefore, for 20 Khz sampling
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frequency, the discrete canonical state space model of the

coupled system is:
{

X(k + 1) = A.X(k) +B.Vin(k)

Fc(k) = C.X(k).
(17)

A =







0.8334 0.5196 0 0

- 0.5196 0.8334 0 0

0 0 0.8348 0.5325

0 0 - 0.5325 0.8348






B =







- 0.1935

0.3787

0.1540

0.5294







C =
(

0.3779 0.4192 0.6764 0.0229
)

× 10
−6

Experiments shows that the noise at the output of the

force sensor reaches 2.35µN . An optimal filter is required for

increasing the force control performances when reaching the

noise level. Indeed, low pass filtering allows improving the

resolution of static and slowly varying forces but fast forces

are filtered which is a real problem in our study. For this reason

and in order to filter the measurement noise without loss of

the system dynamics, we propose to use a Kalman filter.
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Fig. 10. Measurement noise: time evolution (a), distribution (b) and frequency
spectrum (c)

V. KALMAN FILTERING

A discrete Kalman filter is designed and implemented in

order to increase the signal to noise ratio of the measurement

provided by the force sensor. The filter is tuned taking into

account the covariance of measurement and process noises.

A. Kalman filter

The Kalman filter is based on a stochastic state space rep-

resentation including a process noise w(k) and a measurement

noise v(k). Noises are assumed to be independents, white, and

with normal probability distributions. Considering the coupled

system (17), the filter estimates the state X ∈ ℜ4×1 using the

noisy measurement Voutnoise
and the input Vin according to:

{

Xnoise(k + 1) = A.Xnoise(k) +B.Vin(k) + w(k)

Voutnoise
(k) = S−1

n .C.Xnoise(k) + v(k)
(18)

Xnoise is the noisy state vector of the coupled system and

Sn = 50µN/volts is the sensitivity of the force sensor.

The Kalman filter recursively estimates the process state

vector (and therefore the output) taking into account process

and measurement noises in a way of minimizing the estimation

error variance [24]. This is conducted following the repetition

of two steps: time update and measurement update. In the

time update, the a priori state (denoted X̂−) of the process is

estimated according to the current state and error covariance.

In the measurement update, the measurement is taken into

account in order to obtain an improved state estimate leading

to the a posteriori state (denoted X̂ ). In practice, we assume

that the covariance of the process noise and that of the

measurement noise (required to compute the filter) remain

constant during the manipulation task.

B. Noise characterisation

Noise characterization is done under the assumption that the

process noise is mainly due to the input noise vinput from the

gripper supply in which a case w(k) = B.vinput(k) (see [25]).

The measurement noise is recorded (using a dSPACE control

board) from the output of the force sensor when no mechanical

input is applied on the tip of the sensing arm. Experiments

are done under different environmental conditions. Here we

only present the obtained results for ambient conditions (i.e.

23 degrees temperature and 1.013 bar pressure).

As a result of measurement noise analysis, a Gaussian

distribution with a mean of zero is observed (Fig10b) and

the covariance is estimated at 6.33 × 10−5V 2. Moreover, this

noise is considered as white due to its frequency spectrum

(Fig10c). Also, the input noise is measured at the output of

the gripper supply when 0V olts is applied. It has been shown

that the input noise is also white, centered and has a normal

distribution with a covariance of 9.62× 10−5V 2.
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Fig. 11. Comparison between the noisy measurement and the filtered one
(a): dynamic (b) and static (c) modes

Process and measurement noises are considered in our study

as independent from each other because they are generated by

different devices. Therefore, from the obtained measurement

and input noises convariances, the Kalman gain Ke has been

calculated offline and its steady state has been implemented in

real time for filtering. We have then implemented the folowing

gain: Ke =
[

- 0.11 0.06 0 - 0.008
]T

C. Results

The Kalman filter has been implemented in real time with

a 20KHz sampling frequency using the Matlab/Simulink soft-

ware (r2007b) and a dSPACE control board, while handling the

micro-glass ball. Noisy and filtered measurements in response

to a 10V step voltage (around 60V ) are presented in (Fig11a).
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A significant decrease of the measurement noise is observed

(Fig11c) without loss of dynamic behaviour measurement

(Fig11b). The Kalman filter allows a reduction of about 97%

of the measurement noise. In order to verify the effectiveness

of obtained results, a comparison between the real gripping

force and the one estimated by the Kalman filter is done later.

The laser interferometer is used to measure the deflection

at the tip of the sensing arm while the gripper is applying

a gripping force. This experiment allows extracting the real

griping force thanks to a good knowledge of the sensing

system’s stiffness. The estimation of the real griping forces

using the gripper’s sensor and the Kalman filter will lead to get

accurate micromanipulation task through the force controller.

Fig. 12. Block diagram of force-controlled microgripping

VI. FEEDBACK CONTROL

For the manipulation of the glass ball, the gripper is manu-

ally positioned so that the tip of the sensing arm is in contact

with the ball. Thereafter, the actuated arm is supplied with a

60V voltage to come into contact with the ball. We choose

to apply a controlled griping force of 10µN . The applied

force must be very fast with no overshoot during transient

periods (fast response time) allowing an efficient gripping of

the manipulated object when performing for instance high

speed pick and place tasks. In our study, the microgripper

is not moving, however for further applications we desire a

force response time lower than 10ms. Therefore, we propose

to use a Linear Quadratic Gaussian (LQG) control algorithm

because it is well suited when trade-off between closed loop

performances and output noise reduction has to be taken into

account. The LQG control synthesis includes a Kalman filter

and allows the computation of the filter and the controller

independently thanks to the separation principle.

The LQG problem attempts to find a controller that provides

the best performances with respect to a given optimal energy

criterion. Fig12 shows the block diagram of the force control

system with a feedback vector Kc to correct the dynamic

performances and a prefilter Lc for the static performances.

Considering the following energy criterion:

J(k) =
∞
∑

i=k

XT (i).Q.X(i) + V T
in(i).R.Vin(i). (19)

Q and R are the weighting given to the state and the control

voltage in the optimal criteria. The dynamics of the closed

loop system can be adjusted by an appropriate choice of the

weighting parameters. Therefore, the linear quadratic problem

focuses on searching the optimal feedback vector Kc which

minimizes the energy criteria with respect of the Lyapunov

stability. For a discrete case, this vector is given by [26]:

Kc = (R+BT .Pc.B)−1.BT .PC .A (20)

Pc is the solution of Riccati equation. In the steady state, we

obtain:

Fc(k) = C.[eye(n)− (A−B.KC)]−1.B.Lc.Fcc(k) (21)

Moreover, in order to get the desired gripping force in the

static mode (i.e. Fcc(k) = Fc(k) ), the prefilter is chosen as:

Lc = [C.[eye(n)− (A−B.KC)]−1.B]−1. (22)

In dynamic mode, weighting parameters R and Q have

been selected to reach wanted closed loop performances using

the Bryson method [27]. This method allows defining upper

limitations of the gripping force and the supply voltage. Thus:

R = 1
sup(Ṽin)2

, Q = diag
[

1
sup(x1)2

, 1
sup(x2)2

, 1
sup(x3)2

, 1
sup(x4)2

]

[

sup(x1) sup(x2) sup(x3) sup(x4)
]T

= sup(X)

The performances needed in our study are given as follow:

sup(Vin) = 10V and sup(Fc) = 10µN (no-overshoot).

Let us recall that the discrete state space model (17) of

the coupled system is in the modal canonical form. In such a

representation, the real eigenvalues of the actuation system and

those of the sensing system appear separately on the diagonal

of the state matrix. As such, the sup functions sup(x1) and

sup(x2) can be selected independently of sup(x3) and sup(x4).

Thus, according to (17), we have: sup(Fc) = C.sup(X). The

latter equation has no unique solution. Many combinations

of sup(X) allow obtaining the desired sup(Fc). Therefore,

in order to simplify the determination of the sup functions

sup(xi), we have initially chosen sup(x1) equal to sup(x3) and

sup(x2) = sup(x4) = 0. In other word, we apply the same

weigh to only one state of the actuation system and one state

of the sensing system. In this case, we obtain: sup(x1) =

sup(x3) = 9.5. Then, the values of sup(x2) and sup(x4) are

refined by simulation (feedback control) and we have selected:

sup(x2)2 = 0.1×sup(x1)2 and sup(x4)2 = 0.001×sup(x3)2. Finally:

sup(X) = [ 9.5 3 9.5 0.3 ]T . So, the weighting parameters

are given as: R = 1 Q = diag [1, 10, 1, 1000] . Which leads to:

Kc =
[

-0.0132 -0.0001 -0.8921 1.5947
]

VII. SYSTEM SETUP

The micro-manipulation station (Fig13) is made up of a

3-DOF manual micro-positioning table (M-UMR 5.16, Newport)

where the FT-G100 microgripper is fixed and tilted with an angle

of 45◦ to allow gripping the samples. Due to the small size of
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the gripper, a microscope is used and all the components are

mounted on a vibration isolation table. The control algorithm

is developed using the Matlab/Simulink software (r2007b) and

is implemented in real time using a dSPACE control board with

a sampling frequency of 20Khz.

Fig. 13. Force-controlled micromanipulation setup

VIII. EXPERIMENTAL RESULTS AND DISCUSSION

The 80µm glass ball has been handled successfully with

10µN gripping force. Fig14 and Fig15 show that the desired

control performances are obtained, i.e. the response time of the

gripping force is reaching 6ms and no overshoot is detected.

The voltage doesn’t exceed 10V around the operating point. A

small peak is also observed on the actuation voltage dynamic

at approximately 1.5ms (Fig15) giving the impulse to the

gripping force and inducing a fast response time. Moreover,

we can observe the high quality of the griping force estimated

by the Kalman filter which has extracted a precise signal from

the noisy output of the sensor.
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Fig. 14. Force-controlled microgripping for 10µN force reference

Nevertheless, it is important to know whether the filtered

signal reflects the real gripping force. Thus we have recorded

the micro-motions on the tip of the sensing arm while ap-

plying the force control in order to deduce the real gripping

force dynamic through the knowledge of the sensing system

stiffness. Fig14 shows both the force estimated by the Kalman

filter and the deduced one, the error between the two signals

is less than 0.1µN . The effectiveness of the Kalman filter is

then entirely proven.
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IX. CONCLUSION

In this paper, we have presented a knowledge based mod-

eling and a gripping force control of an electrostatic micro-

gripper with integrated force sensor. A nonlinear model of the

actuation system has been proposed and validated experimen-

tally in a large working range and limit of linear behavior has

been extracted. For gripping force control, a state space model

has been developed coupling the dynamics of the actuation and

the sensing systems through the manipulated object stiffness

which has been identified using experimental measurements.

In this case, a linear model of the actuation system has been

extracted from the nonlinear modeling around 60V actuation

voltage. The control algorithm based on a LQG algorithm

has been implemented and tested for handling 80µm glass

balls. The Kalman filtering allowed increasing the gripping

force resolution that was limited by the noise level. Indeed, a

reduction of 97% of the measurement noise has been obtained.

The effectiveness of the estimated force has been proved by

comparison with results from an external interferometer. Our

future work will concern the control of the actuation system

in a wide working range taking into account dynamic changes

due to the non linear behavior.

 

ya(L) φ 

Fin 

lpr 

lpr/2 

xea –( lpr/2) 

L –( lpr/2) 

Actuated arm 
Hinge joint 

 

Fig. 16. Pseudo rigid body consisting of the actuated arm and the flexure
joint.

APPENDIX A

CALCULATION OF THE LATERAL STIFFNESS OF A PSEUDO

RIGID BODY

Consider the actuated arm of the microgripper subject to an

external force Fin applied at a distance (L − xea) from the

free end (Fig16). The pseudo rigid body consists of two beam

segments; the first one must be significantly shorter and more

flexible than the second segment. This implies that lpr ≪ L and

E.Ipr ≪ E.I. Where: I = 1.4×10−17m4 and Ipr = 7.2×10−21m4

are the area moment of inertia of the short and the large beam

segments respectively. Moreover lpr = 300µm (see Fig1).
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The torque T required to deflect the free end of the actuated

arm with an angle φ is:

T =
E.Ipr

lpr
.φ (23)

With:
T = xea.Fin (24)

Moreover, for a small angle of deflection φ

ya(L) = L.φ (25)

The lateral stiffness of the pseudo rigid body is then given as:

Kpr =
Fin

ya(L)
=

E.Ipr

lpr.xea.L
(26)

This model is more accurate when the bending is the dominant

loading in the flexure joint. For more information, refer to [28]

(page 139).
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