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Dans cet article, nous présentons un modeéle dynamique pour un récupérateur d'énergie des vagues ou houlogénérateur
dans le domaine temporel. Le mouvement relatif entre deux corps oscillant dans la houle, l'un flottant et l'autre
immergé, est exploité afin d'extraire la puissance incidente de la vague. Un systéme mécanique direct de type pignon-
crémaillere convertis le mouvement linéaire en un mouvement de rotation permettant ainsi d'entrainer une génératrice
synchrone a aimants permanents. Sous ['hypothése de la théorie potentielle, le probleme de tenue a la mer est résolu
dans le domaine fréquentiel par une méthode dite semi-analytique et les paramétres hydrodynamiques (i.e. les masses
ajoutées, les amortissements de radiation et les efforts d'excitation) sont ainsi déterminés. Une fois ces paramétres
obtenus, nous pouvons utiliser la formulation de Cummins pour décrire le mouvement de la structure en houle
irréguliere. Le principal inconvénient de cette forme intégro-différentielle est le traitement numérique des termes de
convolution décrivant les efforts de radiation et les efforts d'excitation. Un algorithme d'indentification est donc mis en
place dans le domaine fréquentiel afin d'indentifier un modeéle équivalent du noyau de convolution sous forme de
représentation d'état.

Mots-clefs : Houlogénérateur, théorie potentielle, formulation de Cummins, représentation d'état, identification
fréquentielle.

In this paper, we presente a time-dependant model based on the Cummins formulation for a two body wave energy
converter that consists of a cylindrical buoy sliding along a partially submerged platform made up of a plate and a
column. This model is intended to be used for WEC control purposes in irregular wave conditions. Linear potential is
assumed and a semi-analytical approach is proposed for the computation of the hydrodynamic coefficients and the
excitation forces due to heave motion in finite depth water. Given a frequency response for both radiation and
excitation force, one can use a frequency domain identification algorithm to obtain a parametric model in the form of
state-space representation which is more commonly used in control field.

Key-words: WEC, potential theory, Cummins formulation, state-space model, frequency domain identification.

I INTRODUCTION

This work was motivated from the need to provide a time-dependant model for a wave energy converter
(WEQ) in order to analyse its behavior in irregular waves. The WEC device schematically depicted in Figure
1 consists of a cylindrical buoy riding in waves and sliding along a partially submerged platform made up of
a plate and a column. Energy resulting from the relative motion between the two concentric bodies is
extracted from the incoming wave by a gearbox and a permanent magnet synchronous generator.

According to [Yu and Falnes, 1995] and more recently to [Taghipour et al., 2008] and [Perez and Fossen,
2011], linear models based on the Cummins formulation [Cummins, 1962] are a good starting point for
modelling the response of a marine structure in waves. Not only that, but in the context of wave energy
converter, authors in [Perez and Fossen, 2011] defined this model as a basis for initial design and prediction
of power capture. Cummins equation is an integro-differential equation which relates the motion of the
marine structure to the incoming wave. Moreover once this model is obtained, nonlinear terms as viscous
damping or mooring line, can be easily introduced to correct and improve the quality of the model. However
the main drawback of this formulation comes from the two convolution terms, one representing fluid
memory effects associated with the radiation forces and the other representing the wave excitation force due
to an incomming wave [Taghipour et al., 2008].
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Figure 1. Definition sketch of the WEC.

Direct computation based on a discrete time approximation of the convolution terms requires to save enough
past data to evaluate the integral at each step of simulation. This approach can be time consuming in
simulations and may require significant amounts of computer memory. An approach to overcome this
problem is the use of a parametric models that approximate the convolution terms in the Cummins equation.
From the literrature review severals identification schemes have been investigated either in frequency
domain or in time domain. Authors in [Taghipour et al., 2008] and [Perez and Fossen, 2008] provide a
review of different methods in both domains but most attention have been reported on radiation force model
estimation. Taghipour shows that it is better to use frequency domain identification because we can reinforce
the identification algorithm by adding prior knowledges. In the next sections will give an overview of the
whole process to achieve this time-domain modelling.

II MATHEMATICAL MODELLING BACKGROUND

Under the assumption of linear wave potential theory, equations of motion for the six degrees of freedom
are given in an earthbound reference frame coordinating system with its origin O located at the intersection
of the undisturbed free surface level with cylinders axes and the z-axis is positive upward. From the
Newton's second law and using matrix notations we have

M £(t) = F(t) )
where
* M is the rigid-body generalised inertia matrix .
« &= [x yzeb ¢]T is the generalized position vector of the body-fixed frame with respect to the
equilibrium frame with the three translations (i.e. x-surge, y -sway, z -heave) and the three rotations
expressed in terms of Euler's angle (i.e. @-roll, 8-pitch, and y -yaw). & and & denote respectively the
generalized velocity and acceleration vectors.
» [F'is the generalised force vector .
The generalised force vector can be expressed in term of several components such as

F(t) = Feqe(t) + Fr(t) + Fs(t) + Fen(t) )
Where
F'.,.. is the wave excitation force associated with the scattering problem which can be expressed in the
time-domain as

Feacc(t) = ffooo Hewc(t - 7)77(()7 T)dT (3)

with 77(0,75) the wave elevation at the origin and Hexc(t) is the impulse response matrix of the wave
excitation force [Yu and Falnes, 1995].

o F', is the radiation force associated with the radiation problem. In linear potential theory it is
conventional to decompose this force into two parts which are frequency dependent. One is proportional to
the acceleration of body and another is proportional to its velocity and are respectively referenced as added
mass and radiation damping matrix

F, = —AW)E(t) - Bw)é( @
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« F', is the restoring force which is proportional to the displacement of the body structure from its
equilibrium position. The coefficient of proportionality denoted and K is referenced as the buoyancy
stiffness matrix

Fs = _Ks£ )
. F gen is the force due to the generator .

Regarding the radiation force, Cummins [Cummins, 1962] shows that it can be approximated by the
following representation in the time domain for the case of zero forward speed

F.(t)= —AOOS fo (t —7)&(T)dr (6)
where A . is the infinite-frequency added mass matrix defined as
Ao = limy, 00 A(w) (7)

The second terms is referenced as the fluid memory effect and capture energy transfert from the motion of
the structure to the radiated waves. By replacing and combining terms in (1) by (5) and (6), we obtain the
Cummins equation

(M + A +f0 t_T )dT—}_Kbé(t) :Fewc(t)—"Fgen(t)‘I'FNL(t) 8

where we add a term, F'y L( ), modelling nonlinear effects such as viscous damping or mooring line
although. In the following we will not investigate this aspect. As already mentionned in introduction, one of
the main drawback of this formulation is the convolution terms which are not convenient for time-domain
analysis. In the next section we give a short introduction on how to approximate these convolution integrals.

III CUMMINS APPROXIMATED STATE-SPACE MODEL

In both cases (i.e. for the wave excitation and fluid memory terms), the main idea is to approximate the
convolution terms by a linear-time-invariant parametric model using state-space representation. For the case
of fluid memory terms we are looking for a model such as

T=Ax+B,¢&

t
b= /0 K-nérar = 10 o ©)

where matrices A,, B,, and C,. are constant and approximate the convolution kernel (or impulse response)

matrix which is the inverse Fourier transform of the frequency response function [Perez and Fossen, 2011]
defined by

K(iw) = B(w) + iw[A(w) — Ay (10)
This function depends on the radiation damping, the added mass, and the infinite-frequency added mass
matrix. The latter are not always available (depend on the theory used to solve the boundary value problem)

and then it have to be estimated together with the fluid memory term. In [Perez and Fossen, 2008], authors
suggest the used of the rational transfert matrix, which from (9), is given by

N N ~ 11 .
K(iw) ~ K(iw) = €, [iwl _ Ar} B, (11)
and for which, we have for each entry
Pi; rs"Hpp_1s" T L+
ij(s) _ i(8) _ prs"+pr_1s Po

T Qij(s) 8" +qn_15""1+...4qo

(12)

Therefore the identification problem focus on the determination of the transfert function /;;(s) and can be
formulated in term of least-square problem, in the frequency domain, as

0" = arg m@in zl: wieEp € (13)
with
€ = Kij(iwl) - Kij(i(,dl, 9) (14)

where ] means that we use a finite set of frequencies, w; are weighting coeffcients, and @ is the parameter
vector defined as

0 = [ rv"'apﬂaqn—la"-aqO]T (15)
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Figure 2. Bloc diagram representation of the Cummins formulation taking into account non-causality for wave
excitation forces.

Perez et Fossen (2009) produce a MATLAB ToolBox which is freely accessible [Perez and Fossen, 2009]
for the identification of the fluid memory term using this approach. For the case of wave excitation forces, a
similar procedure is applied. However Falnes, in [Falnes, 1995], shows that the impulse response is not
necesseraly causal and then we are looking for an approximated model such as

> & = A, + Byn(0,1)
F...(t)= Hepo(t — 0,7)dr =~ R . 16
(t / Heaelt =07 R (16)

where the main difficulties comes from the causalizing time shift t. identification. In Figure 2 we give a bloc
diagram representation of the Cummins approximated state-space model used for simulations.

Then it follows that frequency response function F'¢ .. (iw) and Kz‘j (iw) (therefore A; j (iw) and Bij (iw))
are the starting point to generate the data used in the identification problem and their determination is
discussed in the next section.

IV HYDRODYNAMIC PARAMETERS DETERMINATION

Hydrodynamic parameters (i.e. added mass, radiation damping, and wave excitation force) are usually
determinated using numerical software such as WAMIT which is based on the boundary integral equation
method or more recently using a CFD program. However, in both cases this can take amount of time for
numerical computations. Due to the simplicity of the model geometry an alternative to these approaches is
the use of a semi-analytical method which is propably the fastest and most reliable way to get them. More
explanations about mathematical theory will be found in [Molin, 2002], [Linton and Mclver, 2001], [Falnes,
2002]. Regarding the specific structure depicted in Figure 1 details will be found in [Olaya et al., 2013] for
the heaving mode. In the following we give an overview of the method.

Considering a cylindrical coordinate system (7‘, 0, Z) with its origin () located at the intersection of the
undisturbed free surface level with cylinders axes and the z-axis is positive upward. Assuming linear wave
theory and supposing that the fluid is inviscid, incompressible, and its motion is irrotational, fluid flow can
be described, using a complex representation, by the velocity potential

®(r,0,2,t) = Re{o(r, 0, 2)e 't} (17)

where Re{ } denotes the real part of the complex expression, ( is the angular frequency, ¢ is the time
dependency. The spatial part of the velocity potentia | (b(?”, 0,z ) has to satisfy the following boundary value
problem

» Governing equation in the whole fluid

Ap =0 (18)
» Free surface boundary condition
2 0
wio—g%e| =0 (19)
z=0
» Seabed boundary condition
0
2l =0 (20)
z=—h
» Body surface boundary condition
Vo-it=Up it 21)
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+ Sommerfeld radiation condition
. 9 .
lim, 1 o0 \/7_“(—8? — ike) =0 (22)

In the solution procedure, analytical expressions for velocity potentials are obtained using the variable
separation method. Assuming angular independency due to the axysymmetric configuration, velocity
potentials are expressed as infinite series of orthogonal functions into each subdomain (see Figure. 1)
fulfilling all boundary conditions. The infinite series are expressed in terms of unknown Fourier coefficients
and it remains to determine those coefficients. We have therefore used the matching eigenfunction expansion
method which impose conditions of pressure and normal velocity continuity at different imaginary interfaces
as well as the body surface boundary condition (21) at each body vertical walls.

V CONCLUSION

When studying the response of an offshore structure in irregular waves, for example to a wave energy
converter to predict its power capture, time-domain modelling appears to be necessary. This paper gives an
overview of the whole process to model the case of a two body wave energy converter including the
determination of the hydrodynamic parameters using a semi- analytical approach.

VI ACKNOWLEDGMENT

This work was supported in part by the Fonds Unique Interministériel (France) - Project “EM Bilboquet”,
in part by Région Bretagne, and in part by Conseil Général du Finistére.

VII REFERENCES

Cummins, W. (1962). The impulse response function and ship motion. Technical report.

Falnes, J. (1995). On non-causal impulse response functions related to propagating water waves. Applied
Ocean Research 17, 379-389.

Falnes, J. (2002). Ocean Waves and Oscillating Systems - Linear Interactions Including Wave-Energy
Extraction. Cambridge University Press.

Linton, C. and Mclver, P. (2001). Handbook of Mathematical Techniques for Wave/Structure Interactions. 1
edition, Chapman and Hall/CRC.

Molin, B. (2002). Hydrodynamique des structures offshore - Guides pratiques sur les ouvrages en mer.
Technip.

Olaya, S., Bourgeot, J.-M. and Benbouzid, M. (2013). Hydrodynamic Coeffcients and Wave Loads for a
WEC Device in Heaving Mode. In Proceedings of the 2013 MTS/IEEE OCEANS pp. 1-6, Bergen
(Norway).

Perez, T. and Fossen, T. 1. (2008). Time vs. Frequency-domain Identification of Parametric Radiation Force
Models for Marine Structures at Zero Speed. Modeling, Identification and Control: A Norwegian
Research Bulletin 29, 1-19.

Perez, T. and Fossen, T. I. (2009). A Matlab Toolbox for Parametric Identification of Radiation-Force
Models of Ships and Offshore Structures. Modeling, Identification and Control: A Norwegian Research
Bulletin 30, 1-15.

Perez, T. and Fossen, T. I. (2011). Practical aspects of frequency-domain identification of dynamic models of
marine structures from hydrodynamic data. Ocean Engineering 38, 426-435.

Taghipour, R., Perez, T. and Moan, T. (2008). Hybrid frequency-time domain models for dynamic response
analysis of marine structures. Ocean Engineering 35, 685-705.

Yu, Z. and Falnes, J. (1995). State-space modelling of a vertical cylinder in heave. Applied Ocean Research
17, 265-275.



	I Introduction
	II Mathematical Modelling Background
	III Cummins Approximated State-Space Model
	IV Hydrodynamic Parameters Determination
	V Conclusion
	VI Acknowledgment
	VII REFERENCES

