Thermal stability of SiC JFETs in conduction mode EPE 2013

Rémy OUAIDA, Cyril BUTTAY, Raphaël RIVA, Dominique BERGOGNE, Christophe RAYNAUD, Florent MOREL, Bruno ALLARD

Laboratoire Ampère, Lyon, France

4/9/13

Introduction

JFET Characterization

Experimental study of the runaway condition

Conclusions

Introduction

JFET Characterization

Experimental study of the runaway condition

Conclusions

Maximum operating temperature – Theory

- Silicon operating temp is intrisically limited at high voltages.
- ► Wide-bandgap semiconducors (inc. SiC) go much higher

	material	max. temp.	cause
Semiconductor	SiC	2730 <i>°</i> C	sublimation
backside metal	Ag	962 <i>°</i> C	melting point
Top metallization	AI	0°066	melting point
second. passivation	polyimide	500-620 <i>°</i> C	decomposition

- Most of these limitations can be overcome by the die manufacturer (e.g topside metal)
- Other will depend on the packaging technology
 - Case material (ceramic, plastic...)
 - Solder alloys, etc.
- → $T_J > 300$ °C is possible

	material	max. temp.	cause
Semiconductor	SiC	2730 <i>°</i> C	sublimation
backside metal	Ag	962 <i>°</i> C	melting point
Top metallization	AI	0°066	melting point
second. passivation	polyimide	500-620 <i>°</i> C	decomposition

 Most of these limitations can be overcome by the die manufacturer (e.g topside metal)

- Other will depend on the packaging technology
 - Case material (ceramic, plastic...)
 - Solder alloys, etc.
- → $T_J > 300 \,^{\circ}\text{C}$ is possible

	material	max. temp.	cause
Semiconductor	SiC	2730 <i>°</i> C	sublimation
backside metal	Ag	962 <i>°</i> C	melting point
Top metallization	AI	0°066	melting point
second. passivation	polyimide	500-620 <i>°</i> C	decomposition

- Most of these limitations can be overcome by the die manufacturer (e.g topside metal)
- Other will depend on the packaging technology
 - ► Case material (ceramic, plastic...)
 - Solder alloys, etc.

→ $T_J > 300 \,^{\circ}\text{C}$ is possible

	material	max. temp.	cause
Semiconductor	SiC	2730 <i>°</i> C	sublimation
backside metal	Ag	962 <i>°</i> C	melting point
Top metallization	AI	0°066	melting point
second. passivation	polyimide	500-620 <i>°</i> C	decomposition

- Most of these limitations can be overcome by the die manufacturer (e.g topside metal)
- Other will depend on the packaging technology
 - ► Case material (ceramic, plastic...)
 - Solder alloys, etc.
- → $T_J > 300 \,^{\circ}\text{C}$ is possible

Reduced cooling

Take advantage of the high junction temp. capability of SiC devices to save on thermal management

Source: APEI [1]. Converter operating at 150 $^{\circ}\text{C}$ ambient, with 250 $^{\circ}\text{C}$ junction temperature, using passive cooling.

- Operation in milder ambient
- Reduction in
 - Volume, weight
 - Complexity (passive vs active)
- Many applications:
 - Transports
 - ► Low-maintenance, high-rel.

Reduced cooling

Take advantage of the high junction temp. capability of SiC devices to save on thermal management

Source: APEI [1]. Converter operating at 150 $^{\circ}\text{C}$ ambient, with 250 $^{\circ}\text{C}$ junction temperature, using passive cooling.

- Operation in milder ambient
- Reduction in
 - Volume, weight
 - Complexity (passive vs active)
- Many applications:
 - Transports
 - ► Low-maintenance, high-rel.

an imaginary device

- its associated cooling system
- in region A, the device dissipates more than the cooling system can extract
- in region B, the device dissipates less than the cooling system can extract
- two equilibrium points: one stable and one unstable
- above the unstable point, run-away occurs

- an imaginary device
- its associated cooling system
- in region A, the device dissipates more than the cooling system can extract
- in region B, the device dissipates less than the cooling system can extract
- two equilibrium points: one stable and one unstable
- above the unstable point, run-away occurs

- an imaginary device
- its associated cooling system
- in region A, the device dissipates more than the cooling system can extract
- in region B, the device dissipates less than the cooling system can extract
- two equilibrium points: one stable and one unstable
- above the unstable point, run-away occurs

- ► an imaginary device
- its associated cooling system
- in region A, the device dissipates more than the cooling system can extract
- in region B, the device dissipates less than the cooling system can extract
- two equilibrium points: one stable and one unstable
- above the unstable point, run-away occurs

- an imaginary device
- its associated cooling system
- in region A, the device dissipates more than the cooling system can extract
- in region B, the device dissipates less than the cooling system can extract
- two equilibrium points: one stable and one unstable
- above the unstable point, run-away occurs

Thermal Run-away mechanism – examples

Always stable

Thermal Run-away mechanism – examples

Always stable

Always unstable

Thermal Run-away mechanism – examples

Always stable

Always unstable

Becomming unstable with ambient temperature rise

JFETs can operate at high temperature

We might take advantage of this to size the cooling system down

- ► JFETs can operate at high temperature
- We might take advantage of this to size the cooling system down

- JFETs can operate at high temperature
- We might take advantage of this to size the cooling system down

Is there a risk of thermal runaway of JFETs?

Introduction

JFET Characterization

Experimental study of the runaway condition

Conclusions

Test configuration

- High temperature test system
 - Silver-sintered interconnects
 - Ceramic substrate (DBC)
 - Copper-kapton leadframe
- DUT: 500 mΩ SiC JFET from SiCED
- characterization:
 - Tektronix 371A curve tracer
 - Thermonics T2500-E conditionner

Test configuration

- High temperature test system
 - Silver-sintered interconnects
 - Ceramic substrate (DBC)
 - Copper-kapton leadframe
- DUT: 500 mΩ SiC JFET from SiCED
- characterization:
 - Tektronix 371A curve tracer
 - Thermonics T2500-E conditionner

Test configuration

- High temperature test system
 - Silver-sintered interconnects
 - Ceramic substrate (DBC)
 - Copper-kapton leadframe
- DUT: 500 mΩ SiC JFET from SiCED
- characterization:
 - Tektronix 371A curve tracer
 - Thermonics T2500-E conditionner

Source: Thermonics T-2500SE Datasheet

Static Characterization over a wide temperature range

12/21

Conclusion on static characterization

- Conduction losses of the JFET (P) increase with the temperature
- This increase can be faster than the increase in cooling capability (Q)

Conclusion on static characterization

- Conduction losses of the JFET (P) increase with the temperature
- ► This increase can be faster than the increase in cooling capability (Q)

 $\frac{\partial P}{\partial T_j} > \frac{\partial Q}{\partial T_j}$

→ Thermal runaway seems possible

Introduction

JFET Characterization

Experimental study of the runaway condition

Conclusions

- Temperature at point T controlled using the conditionner
- Separate control of R_{Th} and T_A
- DUT in conduction mode, supplied by a current source
- ► Here, R_{Th} = 4.5 K/W, T_A = 13, 75, or 135 °C

Test Bench

- Temperature at point T controlled using the conditionner
- Separate control of R_{Th} and T_A
- DUT in conduction mode, supplied by a current source
- ► Here, R_{Th} = 4.5 K/W, T_A = 13, 75, or 135 °C

Thermal Runaway – 1

Thermal stability of SiC JFETs

17/21

Thermal Runaway – 2

Power supply limit: 100 W, $T_j \approx 135 + 4.5 \times 100 = 585^{\circ}C$ The JFET survived the test.

Introduction

JFET Characterization

Experimental study of the runaway condition

Conclusions

High temperature operation

- ► JFETs can operate at very high T_j (> 300 °C)
- Newer generations have higher current capability

Thermal runaway

- They are sensitive to thermal runaway in conduction
 - ► Their *R*_{DSon} increases strongly with temperature
- Their cooling system should be carefully designed
 - ▶ Providing *R*_{Th} is low enough, JFETs are stable
- slow phenomenon, can be avoided by driver protection
 - Much like the *desat* protection for IGBTs, to ensure graceful response to unexpected transients

Thank you for your attention,

cyril.buttay@insa-lyon.fr

Properties of some semiconductors

	"Classical"		wide-bandgap				
	Si	GaAs	3C- SiC	6H- SiC	4H- SiC	GaN	Diamond
Bandgap Energy E_g (eV)	1,12	1,4	2,3	2,9	3,2	3,39	5,6
Elec. mobility μ_n (cm ² .V ⁻¹ .s ⁻¹)	1450	8500	1000	415	950	2000	4000
Hole mobility μ_p (cm ² .V ⁻¹ .s ⁻¹)	450	400	45	90	115	350	3800
Critical elec. field E_C (V.cm ⁻¹)	3.10 ⁵	4.10 ⁵	2.10 ⁶	2,5.10 ⁶	3.10 ⁶	5.10 ⁶	10 ⁷
Saturation velocity v_{sat} (cm.s ⁻¹)	10 ⁷	2.10 ⁷	2,5.10 ⁷	2.10 ⁷	2.10 ⁷	2.10 ⁷	3.10 ⁷
Termal cond. λ (W.cm ⁻¹ .K ⁻¹)	1,3	0,54	5	5	5	1,3	20

Maximum allowed R_{Th} for 2.4×2.4 mm² JFET

J. M. Hornberger, E. Cilio, R. M. Schupbach, A. B. Lostetter, and H. A. Mantooth, "A High-Temperature Multichip Power Module (MCPM) Inverter utilizing Silicon Carbide (SiC) and Silicon on Insulator (SOI) Electronics," in *Proceedings of the 37th Power Electronics Specialists Conference (PESC)*. Jeju, Korea: IEEE, Jun. 2006, pp. 9–15.

