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Gate-modulated thermoelectric conversion
in one-dimensional disordered nanowires: I. Low temperature coherent regime

Riccardo Bosisio, Geneviève Fleury, and Jean-Louis Pichard
Service de Physique de l’État Condensé (CNRS URA 2464),
IRAMIS/SPEC, CEA Saclay, 91191 Gif-sur-Yvette, France

We study the thermopower of a disordered nanowire in the presence of an external gate electrode
which can be used for depleting the carrier density inside the nanowire. In this first paper, we
study the low temperature regime where the electron transport remains elastic through a disor-
dered nanowire described by a one-dimensional tight-binding Anderson model. The gate voltage is
depicted by a uniform on-site potential which can be varied for shifting the impurity band of the
nanowire. The thermopower is evaluated using a Sommerfeld expansion valid below a characteristic
temperature which depends on the gate potential. In the limit where the length of the nanowire
exceeds the localization length, the typical thermopower is given by three analytical expressions
describing the cases where the electron transport takes place (i) inside the impurity band of the
nanowire, (ii) around its band edges and eventually (iii) outside its band. Notably we highlight that
the typical thermopower is strongly enhanced at the band edges, an analytical formula obtained
by Derrida and Gardner for describing the energy dependence of the localization length around the
band edges allowing us to perfectly describe the edge behavior of the thermopower. Then, we inves-
tigate the mesoscopic fluctuations of the thermopower around its typical value. Inside the impurity
band, they are given by a Lorentzian distribution, with a width proportional to the density of states
evaluated at the Fermi energy. As the band edges are approached, we find a transition towards a
Gaussian distribution. Eventually, the implications of our results for the low temperature figure of
merit and the output power of disordered nanowires are discussed.

PACS numbers: 72.20.Pa 73.63.Nm 73.23.-b

I. INTRODUCTION

Semiconductor nanowires have emerged for a few years
as promising thermoelectric devices1. In comparison to
their bulk counterparts, they provide opportunities to en-
hance the dimensionless figure of merit ZT = S2σT/κ,
which governs the efficiency of thermoelectric conversion
at a given temperature T . Indeed, they allow to re-
duce the phonon contribution κph to thermal conductiv-
ity κ, without much affecting the electrical conductivity
σ2–4. On the other hand, they offer through their highly
peaked density of states the large electron-hole asym-
metry required for the enhancement of the thermopower
S5,6. This makes them now rank, with other nanostruc-
tured materials, among the best thermoelectrics in terms
of achievable values of ZT . Yet, maximizing the figure
of merit is not the ultimate requirement on the quest
for improved thermoelectrics. The actual electric power
that can be extracted from a heat engine (or conversely
the actual cooling power that can be obtained from a
Peltier refrigerator) is also of importance when think-
ing of practical applications. From that point of view,
nanowire-based thermoelectric devices are also promis-
ing: They offer the scalability needed for increasing the
output power, insofar as they can be arranged in arrays
of nanowires in parallel.

The main issue of the present paper and the subsequent
one7 consists in optimizing the thermoelectric conversion
in a single semiconductor nanowire. From the theory
side, this question has been mainly discussed at room
temperature when the semi-classical Boltzmann theory

can be used8–10 or in the ballistic regime11 when the pres-
ence of the disorder is completely neglected. The goal was
to describe the thermoelectric properties of nanowires
at room temperature where the quantum effects become
negligible, and in particular to probe the role of their
geometry (diameter, aspect ratio, orientation, ...). From
the experimental side, investigations have been carried
out by varying the carrier density in the nanowire with
an external gate electrode6,12–15. Recently, Brovman
et al have shown in the temperature range 80 K-300 K
that the thermopower of Silicon and Silicon-Germanium
nanowires increases strongly when the nanowires become
almost depleted under the application of a gate volt-
age16. Measuring the thermopower using silicon and ger-
manium/silicon nanowires in the field effect transistor
device configuration, an increase of the thermopower by
a factor 4 have been found at room temperature near the
edge of the impurity band of the nanowire. Interestingly,
this work points out the importance of understanding
thermoelectric transport near the band edges of semi-
conductor nanowires. It also reveals a lack of theoretical
framework to this field that we aim at filling.

In that purpose, we shall first identify as a function of
the temperature T and the applied gate voltage Vg the
dominant mechanism of electronic transport through a
given nanowire. At low temperature T < Tx, transport
is dominated by elastic tunneling processes and quantum
effects must be properly handled. Due to the intrinsic
disorder characterizing doped semiconductors, the elec-
tronic transport is much affected by Anderson localiza-
tion while the phonon contribution to the thermoelectric
coefficients can be neglected. Above the activation tem-
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perature Tx, inelastic effects inside the nanowire start
to be relevant. One enters the Variable Range Hopping
(VRH) regime17 where phonons help electrons to jump
from one localized state to another, far away in space
but quite close in energy. At temperatures higher than
the Mott temperature TM , the VRH regime ceases and
one has simple thermal-activation between nearest neigh-
bor localized states. The different regimes are sketched
in Fig. 1 for a nanowire modeled by a one-dimensional
(1D) tight-binding Anderson model. Note that they are
highly dependent on the gate voltage Vg. In this work,
we focus our study to the elastic regime or more pre-
cisely, to a subregion T < Ts inside the elastic regime
in which the thermopower can be evaluated using the
Landauer-Büttiker scattering formalism and Sommerfeld
expansions. The VRH regime will be addressed in a fol-
lowing paper7.

In the following, we will mainly consider nanowires of
size N longer than their localization length ξ. Such a
limit is characterized by exponentially small values of
the electrical conductance. Obviously, these exponen-
tially small values drastically reduce the output power
associated with the thermoelectric conversion in this
regime. To avoid this exponential reduction, one should
take shorter lengths (N ≈ ξ). Nevertheless, consid-
ering N � ξ, one takes a limit where the nanowire
typical transmission at an energy E is simply given by
exp[−2N/ξ(E)]. Moreover, in the limit of weak disorder,
expansions can be made and the energy function ξ(E)
is analytically known both inside the impurity band of
the nanowire and around its band edges. This makes
possible to derive analytical expressions describing the
typical behavior of the thermopower when N � ξ. To
study thermoelectric conversion in the crossover regime
N ≈ ξ where the transmission does not behave exactly as
exp[−2N/ξ(E)] would require to use the scaling theory
discussed in Ref.18. Moreover, another reason to consider
the localized regime is that the delay time distribution
(which probes how the scattering matrix depends on en-
ergy) has been shown to have a universal form19 in this
limit. We expect that this should be also the case for the
fluctuations of the thermopower (which probes how the
transmission depends on energy). This gives the theo-
retical reasons for focusing our study to the strongly lo-
calized limit, despite the interest of the crossover regime
N ≈ ξ for optimizing the thermoelectric conversion.

The outline of the manuscript is as follows. Section II
is a reminder about the Landauer-Büttiker formalism
which allows to calculate thermoelectric coefficients in
the coherent regime. In section III, we introduce the
model and outline the numerical method used in this
work, which is based on a standard recursive Green’s
function algorithm. Our results are presented in sec-
tions IV, V, VI and VII. Section IV is devoted to the
study of the typical behavior of the thermopower as the
carrier density in the nanowire is modified with the gate
voltage. We show that the thermopower is drastically
enhanced when the nanowire is being depleted and we

FIG. 1: (Color online) Typical temperature scales sepa-
rating the different regimes of electronic transport (elastic
regime (T < Tx, blue), VRH regime (Tx < T < TM , gray)
and activated regime (T > TM , red)) through a disordered
nanowire. Vg is the external gate voltage which allows to
lower the carrier density in the nanowire (it is completely de-
pleted at Vg = 2.5t). This paper is restricted to the study of
region (I) at T < Ts where the Sommerfeld expansion can be
applied for the calculation of the thermoelectric coefficients.
Region (II) of VRH will be studied in Ref.7. The temperature
scales Ts, Tx = ξ/(2νN2) and TM = 1/(ξν) are plotted for
the 1D model introduced in Sec. III with EF = 0, W = t and
N = 1000. Ts is given for ε = 0.01% (see Sec. VII).

provide an analytical description of this behavior in the
localized limit. In section V, we extend the study to
the distribution of the thermopower. We show that the
thermopower is always Lorentzian distributed, as long as
the nanowire is not completely depleted by the applied
gate voltage and provided it is long enough with respect
to the localization length. Interestingly, the mesoscopic
fluctuations appear to be basically larger and larger as
the carrier density in the nanowire is lowered and the
typical thermopower increases. As a matter of course,
this ceases to be true when the gate voltage is so large
that the nanowire, emptied of carriers, behaves eventu-
ally as a (disordered) tunnel barrier. In that case, the
thermopower distribution is found to be Gaussian with
tiny fluctuations. In section VI, we discuss the potential
of our results for thermoelectric applications by analysing
the figure of merit ZT and the maximal output power Q
of the device. The evaluation of the “crossover tempera-
ture” Ts (see Fig. 1) is the subject of section VII. Finally,
we draw our conclusions in section VIII.

II. THERMOELECTRIC TRANSPORT
COEFFICIENTS IN THE

LANDAUER-BÜTTIKER FORMALISM

We consider a conductor connected via reflectionless
leads to two reservoirs L (left) and R (right) in equilib-
rium at temperatures TL and TR, and chemical potentials
µL and µR. To describe the thermoelectric transport
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across the conductor, we use the Landauer-Büttiker for-
malism20. The heat and charge transport are supposed to
be mediated only by electrons and the phase coherence of
electrons during their propagation through the conductor
is supposed to be preserved. In this approach, the dissi-
pation of energy takes place exclusively in the reservoirs
while the electronic transport across the conductor re-
mains fully elastic. The method is valid in the mesoscopic
regime, as long as the phase-breaking length (mainly as-
sociated to electron-electron and electron-phonon inter-
actions) exceeds the sample size. From a theoretical point
of view, it can be applied to (effective) non-interacting
models. In this framework, the electric (Ie) and heat (IQ)
currents flowing through the system are given by21

Ie =
e

h

∫
dE T (E)[fL(E)− fR(E)] (1)

IQ =
1

h

∫
dE (E − µL)T (E)[fL(E)− fR(E)] (2)

where fα(E) = (1+exp[(E−µα)/(kBTα)])−1 is the Fermi
distribution of the lead α and T (E) is the transmission
probability for an electron to tunnel from the left to the
right terminal. kB is the Boltzmann constant, e < 0 the
electron charge and h the Planck constant. The above
expressions are given for spinless electrons and shall be
doubled in case of spin degeneracy.

We now assume that the differences ∆µ = µL−µR and
∆T = TL − TR to the equilibrium values EF ≈ µL ≈ µR
and T ≈ TL ≈ TR are small. Expanding the currents in
Eqs. (1, 2) to first order in ∆µ and ∆T around EF and
T , one obtains21(

Ie
IQ

)
=

(
L0 L1

L1 L2

)(
∆µ/eT
∆T/T 2

)
(3)

where the linear response coefficients Li are given by

Li =
e2

h
T

∫
dE T (E)

(
E − EF

e

)i(
− ∂f
∂E

)
. (4)

The electrical conductance G, the (electronic contribu-
tion to the) thermal conductance κe, the Seebeck coef-
ficient S (or thermopower) and the Peltier coefficient Π
can all be expressed in terms of the Onsager coefficients
Li as

G ≡ eIe
∆µ

∣∣∣∣
∆T=0

=
L0

T
(5)

κe ≡
IQ
∆T

∣∣∣∣
Ie=0

=
L0L2 − L2

1

T 2L0
(6)

S ≡ − ∆µ

e∆T

∣∣∣∣
Ie=0

=
L1

TL0
(7)

Π ≡ IQ
Ie

∣∣∣∣
∆T=0

=
L1

L0
. (8)

The Seebeck and Peltier coefficients turn out to be re-
lated by the Kelvin-Onsager relation22,23

Π = ST (9)

as a consequence of the symmetry of the Onsager matrix.
Note that, by virtue of Eq. (4), in presence of particle-
hole symmetry we have S = Π = 0. Further, the link
between the electrical and thermal conductances is quan-
tified by the Lorenz number L = κe/GT .

In the zero temperature limit T → 0, the Sommerfeld
expansion24 can be used to estimate the integrals (4).
To the lowest order in kBT/EF , the electrical conduc-

tance reduces to G ≈ e2

h T (EF ) while the thermopower
simplifies to

S ≈ π2

3

kB
e
kBT

d ln T
dE

∣∣∣∣
EF

. (10)

The Lorenz number L takes in this limit a constant value,

L ≈ L0 ≡
π2

3

(
kB
e

)2

, (11)

as long as |S| �
√
L0 ' 156µV.K−1. This reflects

the fact that the electrical and thermal conductances
are proportional and hence cannot be manipulated in-
dependently, an important although constraining prop-
erty known as the Wiedemann-Franz (WF) law. This
law is known to be valid for non-interacting systems if
the low temperature Sommerfeld expansion is valid25,
when Fermi liquid (FL) theory holds24,26 and for metals
at room temperatures24, while it could be largely violated
in interacting systems due to non FL behaviors27,28.

III. MODEL AND METHOD

The system under consideration is sketched in
Fig. 2(a). It is made of a 1D disordered nanowire coupled
via perfect leads to two reservoirs L (left) and R (right)
of non-interacting electrons, in equilibrium at temper-
ature TL = T + ∆T [TR = T ] and chemical potential
µL = EF + ∆µ [µR = EF ]. The nanowire is modeled
as a 1D Anderson chain of N sites, with lattice spacing
a = 1. Its Hamiltonian reads,

H = −t
N−1∑
i=1

(
c†i ci+1 + h.c.

)
+

N∑
i=1

εic
†
i ci , (12)

where c†i and ci are the creation and annihilation op-
erators of one electron on site i and t is the hopping
energy. The disorder potentials εi are (uncorrelated)
random numbers uniformly distributed in the interval
[−W/2,W/2]. The two sites at the ends of the nanowire
are connected with hopping term t to the leads which
can be 1D semi-infinite chains or 2D semi-infinite square
lattices, with zero on-site potentials and the same hop-
ping term t. The simpler case of the Wide Band Limit
(WBL) approximation, where the energy dependence of
the self-energies of the leads is neglected, is also consid-

ered. Finally, an extra term
∑
i Vgc

†
i ci is added in the

Hamiltonian (12) to mimic the presence of an external
metallic gate. It allows to shift the whole energy spec-
trum of the nanowire.
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(a)

(b)

FIG. 2: (Color online) (a) Sketch of the system: a 1D
nanowire made of N sites is connected to two leads at its
extremities. An external gate voltage Vg is applied. (b) Band
diagram. The energy spectrum of the nanowire (in blue) can
be shifted by the application of Vg in order to probe either the
bulk, the edges or the outside of the nanowire spectrum (con-
duction band of the nanowire when N →∞) at Fermi energy
EF . Here, the leads are bidimensional (conduction band of
the leads in red) and hence, EF ∈ [−4t, 4t].

A. Recursive Green’s function calculation
of the transport coefficients

In the Green’s function formalism, the transmission
T (E) of the system at an energy E is given by the Fisher-
Lee formula20

T (E) = Tr[ΓL(E)G(E)ΓR(E)G†(E)] (13)

in terms of the retarded single particle Green’s function
G(E) = [E −H − ΣL − ΣR]−1 and of the retarded self-
energies ΣL and ΣR of the left and right leads. The op-
erators Γα = i(Σα − Σ†α) describe the coupling between
the conductor and the lead α = L or R. A standard
recursive Green’s function algorithm29 allows us to com-
pute the transmission T (E). The logarithmic derivative
d ln T /dE can be calculated as well with the recursive
procedure, without need for a discrete evaluation of the
derivative. It yields the thermopower S in the Mott-
Sommerfeld approximation (10). Let us precise, to settle
the notations, that in the following we will refer to a
dimensionless thermopower

S = −t d ln T
dE

∣∣∣∣
EF

(14)

which is related, in the Mott-Sommerfeld approximation,
to the thermopower S in physical units as

S =
π2

3

(
kB
|e|

)(
kBT

t

)
S . (15)

We now discuss the expressions of the self-energies ΣL(E)
and ΣR(E) of the left and right leads which are to be

given as input parameters in the recursive Green’s func-
tion algorithm. The nanowire of length N sites is sup-
posed to be connected on one site at its extremities to two
identical leads, which are taken 1D, 2D or in the WBL
approximation. Hence, the self-energies Σα (as well as
the operator Γα) are N ×N matrices with only one non-
zero component (identical for both leads) that we denote
with Σ (or Γ). When the wide-band limit is assumed for
the leads, Σ is taken equal to a small constant imaginary
number independent of the energy E. When the leads are
two 1D semi-infinite chains or two 2D semi-infinite square
lattices, Σ is given by the retarded Green’s function Glead

of the lead under consideration evaluated at the siteX (in
the lead) coupled to the nanowire, Σ = t2〈X|Glead|X〉.
Knowing the expressions of the retarded Green’s func-
tions of the infinite 1D chain and the infinite 2D square
lattice30, it is easy to deduce Glead for the semi-infinite
counterparts by using the method of mirror images. For
1D leads, one finds Σ(E) = −teik(E) where E = −2t cos k
and k is the electron wavevector20. For 2D leads, the ex-
pression of Σ(E) is more complicated (see Appendix A).
As far as the Fermi energy EF is not taken near the edges
of the conduction band of the leads, the dimensionality
of the leads becomes irrelevant and the thermopower be-
haviors coincide with those obtained using the WBL ap-
proximation (see Sec. IV).

B. Scanning the impurity band of the Anderson
model

The density of states per site ν(E) of the Ander-
son model, obtained by numerical diagonalisation of the
Hamiltonian (12), is plotted in Fig. 3(a) in the limit of
large N . It is non-zero in the interval [E−c , E

+
c ] where

E±c = ±(2t + W/2) are the edges of the impurity band.
In the bulk of the impurity band (i.e. for energies
|E| . 1.5t), the density of states is given with a good
precision by the formula derived for a clean 1D chain
(red dashed line in Fig. 3(a)),

νb(E) =
1

2πt
√

1− (E/2t)2
. (16)

As one approaches the edges E±c , the disorder effect can-
not be neglected anymore. The density of states is then
well described by the analytical formula obtained by Der-
rida and Gardner around E±c , in the limit of weak disor-
der and large N (see Ref.31),

νe(E) =

√
2

π

(
12

tW 2

)1/3 I1(X)

[I−1(X)]2
(17)

where X = (|E| − 2t)t1/3(12/W 2)2/3 and

In(X) =

∫ ∞
0

yn/2 e−
1
6y

3+2Xy dy . (18)

In Fig. 3(a), the small discrepancy between the numer-
ical data (circles) and the analytical formula (17) (blue
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FIG. 3: (a) Density of states per site ν as a function of energy
E for the 1D Anderson model (12) with disorder amplitude
W/t = 1, in the limit N →∞. The circles correspond to nu-
merical data (obtained with N = 1600). The red dashed line
and the blue line are the theoretical predictions (16) and (17),
expected in the bulk and at the edges of the manowire con-
duction band. (b) Localization length ξ of the 1D Anderson
model (12) (with W/t = 1) as a function of energy E. The
circles correspond to numerical data (obtained with Eq. (19)).
The red dashed line and the blue line are the theoretical pre-
dictions (20) and (21).

line) is attributed to the relatively large value of disorder
W = t considered in the figure; it fades out for smaller
disorder values. In a tiny energy interval only, very close
to the band edges E±c , may be identified Lifshitz tails.
They correspond to the exponential cancellation of the
density of states in the close neighborhood of E±c . They
are not highlighted in Fig. 3(a).

In this paper, we study the behavior of the thermo-
electric coefficients as one probes at the Fermi energy EF
electron transport either inside or outside the impurity
band, and more particularly in the vicinity of the band
edges. Such a scan of the impurity band can be done in
two ways. One possibility is to vary the position of the
Fermi energy EF in the leads. Doing so, we modify the
distance between EF and the band edges E±c but also the
one between EF and the band edges of the leads. This
can complicate the analysis of the data, the dimensional-
ity of the leads becoming relevant when |E±c −EF | → 0.
To avoid this complication, we can keep EF fixed far from
E±c and vary the gate voltage Vg (see Fig. 2(b)).

C. Localization length of the Anderson model

In the disordered 1D model (12) we consider, all eigen-
states are exponentially localized, with a localization
length ξ. As a consequence, the typical transmission of
the nanowire drops off exponentially with its length N .
More precisely, when N � ξ (localized limit), the distri-
bution of ln T is a Gaussian centered around the value

[ln T ]0(E) = − 2N

ξ(E)
, (19)

as long as the energy E of the incoming electron is inside
the impurity band of the nanowire. The inverse localiza-
tion length 1/ξ can be analytically obtained as a series of

integer powers of W when W → 0. To the leading order
(see e.g.32), this gives

ξb(E) =
24

W 2

(
4t2 − E2

)
. (20)

The formula is known to be valid in the weak disorder
limit inside the bulk of the impurity band (hence the
index b). Strictly speaking, it fails in the vicinity of
the band center E = 0 where the perturbation theory
does not converge33 but it gives nevertheless a good ap-
proximation. As one approaches one edge of the impu-
rity band, the coefficients characterizing the expansion
of 1/ξ in integer powers of W diverge and the series has
to be reordered. As shown by Derrida and Gardner31,
this gives (to leading order in W ) the non analytical be-
havior 1/ξ ∝ W 2/3 as one edge is approached instead
the analytical behavior 1/ξ ∝ W 2 valid in the bulk of
the impurity band. More precisely, one find in the limit
W → 0 that

ξe(E) = 2

(
12t2

W 2

)1/3 I−1(X)

I1(X)
(21)

as E approaches the band edges ±2t. Ii are integrals
defined in Eq. (18) and X a parameter introduced just
above this equation. As shown in Fig. 3(b), both for-
mula (20) and (21) are found to be in very good agree-
ment with our numerical evaluation of ξ(E), in the re-
spective range of energy that they describe, even outside
a strictly weak disorder limit (W = t in Fig. 3(b)).

IV. TYPICAL THERMOPOWER

We compute numerically the thermopower S for many
realizations of the disorder potentials εi in Eq. (12), and
we define the typical value S0 as the median of the result-
ing distribution P (S). As it will be shown in Sec. V, P (S)
is typically a smooth symmetric function (Lorentzian or
Gaussian), and thus its median coincides with its most
probable value. We study the behavior of S0 as one scans
the energy spectrum of the nanowire by varying the po-
sition of the Fermi energy EF in the leads or the gate
voltage Vg.

In Fig. 4(a), the typical thermopower S0 of a long
nanowire in the localized regime is plotted as a function of
EF and at Vg = 0. Since S0 → −S0 when EF → −EF ,
data are shown for positive values of EF only. In the
figure, three different kinds of leads are considered: 1D
leads, 2D leads or leads in the WBL approximation. In all
cases, as expected, we find that S0 = 0 at the center of the
conduction band of the leads (EF = 0). Indeed, the ran-
dom potentials being symmetrically distributed around a
zero value, one has a statistical particle-hole symmetry at
the band center and the thermopower can only be a sta-
tistical fluctuation around a zero typical value. As EF is
increased, the statistical particle-hole symmetry breaks
down and S0 gets finite. Here S0 > 0 because charge
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transport is dominated by holes for EF > 0. When the
wide band limit is assumed for both leads (triangles in
Fig. 4(a)), we find that the typical thermopower S0 in-
creases with EF and reaches a maximum just before the
edge E+

c = 2t + W/2 (E+
c = 2.5 t in Fig. 4(a) where

W = t) before decreasing. The same curve is obtained
with 1D [2D] leads as long as the Fermi energy EF re-
mains far enough below the upper band edge of the D-
dimensional leads. When EF approaches 2t [4t], the typ-
ical thermopower S0 of the nanowire is found to increase
drastically, contrary to the WBL case (of course, no data
are available for |EF | ≥ 2t [4t], charge transfer being im-
possible outside the conduction band of the leads). This
singularity at the band edge of the leads can be easily un-
derstood using Eqs. (13) and (14) and noticing that for
1D [2D] leads, Γ′/Γ→ −∞ as E → 2t [4t]. This is obvi-

ous in the case of 1D leads where Γ(E) = 2t
√

1− (E/2t)2

and it can also be shown for 2D leads. We will see
in Sec. VII that this apparent divergence of the ther-
mopower is actually only valid in an infinitesimally small
range of temperatures above 0 K.

With the gate voltage Vg, we can explore the impu-
rity band of the nanowire while keeping EF fixed. The
behavior of S0 as a function of Vg is shown in Fig. 4(b)
for EF = 0 and 1D leads. It is found to be identical
to the behavior of S0 as a function of EF obtained at
Vg = 0 in the WBL approximation. This remains true
if 2D leads are used in Fig. 4(b) and we have no doubt
that it also remains true with 3D leads. Moreover, the
results are unchanged if EF is fixed to any other value,
as long as it does not approach too closely one edge of
the conduction band of the leads (but it can be chosen
close enough to one band edge to recover the continuum
limit of the leads). Our main observation is that the
typical thermopower S0 increases importantly when the
Fermi energy probes the region around the edges of the
impurity band of the nanowire. Qualitatively, this is due
to the fact that the typical transmission of the nanowire
drops down when the spectrum edges are approached:
this huge decrease results in a enhancement of the typical
thermopower, the thermopower being somehow a mea-
sure of the energy dependence of the transmission. A
quantitative description of this behavior can also be ob-
tained. Indeed, since the distribution of the transmission
T is log-normal in the localized regime32 and the ther-
mopower S is calculated for each disorder configuration
with the Mott approximation (14), one expects to have

S0 = −t d[ln T ]0
dE

∣∣∣∣
EF

(22)

where [ln T ]0 is the median of the ln T Gaussian distribu-
tion (which in this case coincides with the average value
and the most probable value). Moreover, according to
Eq. (19), the energy dependence of [ln T ]0 is given by
the energy dependence of the localisation length, i.e. by
Eqs. (20) and (21). This allows us to derive the following
expressions for the typical thermopower in the bulk and
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FIG. 4: (Color online) Typical value of the dimensionless
thermopower per unit length, S0/N , as a function of the Fermi
energy EF at Vg = 0 (a) and as a function of the gate voltage
Vg at EF = 0 (b). In panel (a), the data were obtained at
fixed N = 500, by using either 1D leads (◦), 2D leads (�) or
the wide-band limit approximation (N). With 1D [2D] leads,
the typical thermopower shows a divergent behavior at the
band edge of the leads (black [red] vertical dashed line). In
panel (b), 1D leads are used. The symbols stand for different
lengths of the nanowire (N = 200 (◦), 800 (�) and 1600 (�)).
The full black line, the full red line and the dashed black
line correspond respectively to the theoretical fits (23), (24)
and (26) expected when EF probes the bulk, the edge and
the outside of the impurity band. In both panels, W/t = 1.
The arrows indicate the position of the edge of the impurity
band of the nanowire.

at the edges:

Sb0 = N
(EF − Vg)W 2

96t3[1− ((EF − Vg)/2t)2]2
, (23)

Se0 = 2N

(
12t2

W 2

)1/3
{
I3(X)

I−1(X)
−
[
I1(X)

I−1(X)

]2
}
, (24)

where now X is modified to

X = (|EF − Vg| − 2t)t1/3(12/W 2)2/3 (25)

in order to take into account the effect of the gate volt-
age Vg. When the outside of the impurity band, rather
than the inside, is probed at EF (i.e. when the wire is
completely depleted), no more states are available in the
nanowire to tunnel through. Electrons coming from one
lead have to tunnel directly to the other lead through
the disordered barrier of length N . We have also calcu-
lated the typical thermopower of the nanowire in that
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case, assuming that the disorder effect is negligible (see
Appendix B). We find

STB0

N
≈

N→∞
− 1

N

2t

Γ(EF )

dΓ

dE

∣∣∣∣
EF

∓ 1√(
EF−Vg

2t

)2

− 1

(26)

with a + sign when EF ≤ Vg − 2t and a − sign when
EF ≥ Vg+2t. Fig. 4(b) shows a very good agreement be-
tween the numerical results (symbols) and the expected
behaviors (Eqs. (23), (24) and (26)). One consequence
of these analytical predictions is that the peak in the
thermopower curves gets higher and narrower as the dis-
order amplitude is decreased (and vice-versa). We note
incidentally that our findings look in qualitative agree-
ment with the recent experimental observation reported
in Ref16. We stress out however that those measurements
were carried out outside the low temperature coherent
regime which consider, at room temperatures. To de-
scribe them, inelastic effects must be included. It will be
the purpose of our next paper7.

V. THERMOPOWER DISTRIBUTIONS

In the coherent elastic regime we consider, the sample-
to-sample fluctuations of the thermopower around its
typical value are expected to be large. The most striking
illustration occurs at EF = Vg, when the typical ther-
mopower is zero due to statistical particle-hole symme-
try but the mesoscopic fluctuations allow for large ther-
mopower anyway. Van Langen et al showed in Ref.34

that in the localized regime N � ξ and for EF = Vg,
the distribution of the low-temperature thermopower is
a Lorentzian,

P (S) =
1

π

Λ

Λ2 + (S − S0)2
, (27)

with a center S0 = 0 in that case and a width

Λ =
2πt

∆F
(28)

given by ∆F = 1/(NνF ), the average mean level spac-
ing at EF . This result was derived under the assump-
tion that the energy levels in the nanowire are uniformly
distributed within a certain band centered at EF , an as-
sumption which becomes exact only if EF = Vg. Numer-
ical calculations performed in Ref.34 with a model very
similar to ours were found to be in good agreement with
the analytical result (27,28).

We propose here to investigate how the thermopower
distribution P (S) is modified when this is not only the
center, but the bulk outside its center, the edges (or even
the outside) of the impurity band which is probed at the
Fermi energy EF . To fix the ideas, we set the Fermi en-
ergy to EF = 0 and the disorder amplitude to W = t
(so that the spectrum edges are Vg + E±c = Vg ± 2.5t).
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FIG. 5: (Color online) Top panels: probability distributions
of the rescaled thermopower (S − S0)/N at Vg = 0 (a) and
Vg = 2t (b), with W = t, EF = 0 and 1D leads. In each
panel, the different symbols correspond to various lengths of
the chain (N ≈ ξ (4), N ≈ 10 ξ (◦), N ≈ 50 ξ (�) and
N ≈ 100 ξ (�), respectively N = 100, 1000, 5000 and 10000 in
(a) and N = 10, 100, 500 and 1000 in (b). The distributions
obtained for N ≥ 50 ξ collapse on a single curve which is
well fitted by a Lorentzian distribution function (thick blue
lines). The widths Λ/N of the Lorentzian fits are plotted as
a function of Vg in panel (c), for N = 200 (�), 1000 (�), 5000
(◦) and 10000 (•), together with the density of states per site
at EF , tνF , of the closed chain (red line). The probability
distributions of the rescaled thermopower (∆F /2πt)(S −S0),
obtained in the large N limit (N ≈ 100 ξ) and for various
sets of parameters (W = 0.5t and Vg = 2t (�), W = t and
Vg = 0 (◦), W = t and Vg = 2t (�), W = 2t and Vg = 0 (×),
and W = 2t and Vg = 2.3t (H), with EF = 0 in all cases), are
shown in panel (d). They all collapse on the blue line which
is the Lorentzian function y = 1/[π(1 + x2)].

First, we check in Fig. 5(a) that at Vg = 0 and in the
localized regime, the thermopower distribution is indeed
a Lorentzian with a width Λ ∝ N . We note that very
long chains of length N ≈ 50ξ (ξ ≈ 100 here) are neces-
sary to converge to the Lorentzian (27). Moreover, we
have checked that this is also in this limit that the delay
time distribution converges towards the universal form
predicted in Ref19.

Then we increase the gate potential up to Vg = 2t
to approach the edge E−c of the impurity band and find
that the thermopower distribution remains a Lorentzian
in the localized regime (N & 50ξ) with a width Λ ∝ N ,
as shown in Fig. 5(b). It turns out actually that the
fit of the thermopower distribution with a lorentzian (in
the large N limit) is satisfactory in a broad range of
gate potentials |Vg| . 2.25t, as long as the Fermi en-
ergy EF = 0 probes the inside of the spectrum without
approaching too closely its edges Vg + E±c . In Fig. 5(c),
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we show in addition that in this regime, the widths Λ
of the Lorentzian fits to the thermopower distributions
P (S) obey Λ/(2πNt) = νF , i.e. Eq. (28). Therefore
(Fig. 5(d)), we can use this parameter to rescale all the
distributions obtained in a broad range of parameters, on
the same Lorentzian function y = 1/[π(1 +x2)]. A direct
consequence of Eq. (28) is that the mesoscopic fluctua-
tions of the thermopower are maximal for |EF −Vg| ≈ 2t.

When the gate voltage |Vg| is increased further, the
number of states available at EF in the nanowire de-
creases exponentially and eventually vanishes: one ap-
proaches eventually a regime where the nanowire be-
comes a long tunnel barrier and where the thermopower
fluctuations are expected to be smaller and smaller. In
this limit, we find that the thermopower distribution is
no more a Lorentzian but becomes a Gaussian,

P (S) =
1√
2πλ

exp

[
− (S − S0)2

2λ2

]
, (29)

provided the chain is long enough. This result is illus-
trated in Figs. 6(a) and 6(b) for two values of Vg. The
Gaussian thermopower distribution is centered around a
typical value S0 given by Eq. (26) and its width λ is

found with great precision to increase linearly with
√
N

and W . To be more precise, we find that the dependency
of λ on the various parameters is mainly captured by the
following formula

λ ≈ 0.6
Wt
√
N

(EF − Vg)2 − (2t+W/4)
2 , (30)

at least for 0.5t . W . 4t, 2.35t . |EF − Vg| . 6t and
N & 100 (see Fig. 6(c)). We stress out that Eq. (30)
is merely a compact way of describing our numerical
data. In particular, the apparent divergence of λ when
|EF−Vg| → 2t+W/4 is meaningless and in fact, it occurs
outside the range of validity of the fit. To double-check
the validity of Eq. (30), we have rescaled with the pa-
rameter λ given by Eq. (30), a set of thermopower distri-
butions obtained in the disordered tunnel barrier regime,
for various W and Vg. All the resulting curves (plotted
in Fig. 6(d)) are superimposed on the unit gaussian dis-
tribution, except the one for the smallest disorder value
W = 0.5t for which the fit (30) to λ is satisfactory but
not perfect.

To identify precisely the position of the crossover be-
tween the Lorentzian regime and the Gaussian regime,
we introduce now the parameter η,

η =

∫
dS|P (S)− PG(S)|∫
dS|PL(S)− PG(S)|

, (31)

which measures, for a given thermopower distribution
P (S) obtained numerically, how closed it is from its
best Gaussian fit PG(S) and from its best Lorentzian
fit PL(S)42. If P (S) is a Lorentzian, η = 1 while η = 0
if it is a Gaussian. Considering first the case where
EF = 0 and W = t, we show in the left panel of Fig. 7
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FIG. 6: (Color online) Top panels: probability distributions

of the rescaled thermopower (S − S0)/
√
N at Vg = 2.35t (a)

and Vg = 2.6t (b), with W = t, EF = 0 and 1D leads. In
each panel, the distributions are plotted for various lengths of
the chain (N = 10 (∗), 50 (�), 200 (•), 500 (◦) and 1000 (N))
and collapse at large N on one single curve, well fitted by a
Gaussian distribution (red line). The widths λ/

√
N of the

Gaussian fits are plotted as a function of Vg in panel (c), for
various lengths (N = 50 (triangle), 200 (circle), 400 (square),
800 (diamond) and 1600 (star)) and two disorder amplitudes
(W = t (empty symbols) and W = 4t (full symbols)). The
solid and dashed lines are the fits given by Eq. (30), respec-
tively for W = t and W = 4t. Panel (d): collapse of the
thermopower distributions, obtained with N = 500 and vari-
ous parameters (W = 0.5t and Vg = 2.25t (�), W = 0.5t and
Vg = 5t (H), W = t and Vg = 2.5t (•), W = t and Vg = 5t
(∗), and W = 4t and Vg = 4t (♦)), after a rescaling by λ as
given in Eq. (30). The red line is the Gaussian distribution
y = (1/

√
2π) exp(−x2/2).

that η converges at large N for any Vg (inset). The
asymptotic values of η (given with a precision of the
order of 0.05 in the main panel) undergo a transition
from η ≈ 1 to η ≈ 0 when Vg is increased from 0 to 4t.
This reflects the crossover from the Lorentzian to the
Gaussian thermopower distribution already observed in
the top panels of Figs. 5 and 6. We see in addition that
the crossover is very sharp around the value Vg ≈ 2.3t,
indicating a crossover which remains inside the impurity
band of the nanowire, since the band is not shifted
enough when Vg ≈ 2.3t to make the Fermi energy
coincides with the band edge Vg + E−c = Vg − 2.5t.
We have reproduced the same study for other values of
the disorder amplitude. After checking the convergence
of η at large N , we observe the same behavior of the
asymptotic values of η as a function of Vg, for any W .
Only the position of the crossover is disorder-dependent.
Those results are summarized in the right panel of Fig. 7
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FIG. 7: (Color online) Left panel: in the inset, η parameter
as a function of N/ξ for various gate voltages (Vg = 1.9 t (◦),
2.35 t (�) and 2.5 t (�)), at EF = 0 and W/t = 1. The hori-
zontal lines show the convergence of η at large N . The asymp-
totic values are plotted in the main panel as a function of Vg.
Right panel: η parameter in the limit of large N as a func-
tion of Vg and W , at EF = 0. Upon shifting the spectrum
of the nanowire with Vg, the thermopower distribution moves
from a Lorentzian distribution for Vg . V c

g (η ≈ 1, blue)
to a Gaussian distribution for Vg & V c

g (η ≈ 0, red), where
V c
g = 1.92t+ 0.34W (dashed line).

where one clearly sees the crossover (in white) between
the Lorentzian regime (in blue) and the Gaussian regime
(in red). It occurs around Vg ≈ 1.92t + 0.34W , not
exactly when EF = Vg + E−c , but in a region where
the number of states available at EF in the nanowire
becomes extremely small. To be precise, we point out
that the values of η in the 2D colorplot are given with
a precision of the order of 0.1. Hence, one cannot
exclude that the white region corresponding to the
crossover actually reduces into a single line V cg (W ).
One could also conjecture the existence of a third kind
of thermopower distribution (neither Lorentzian, nor
Gaussian) associated to this critical value V cg . Our
present numerical results do not allow to favor one
scenario (sharp crossover) over the other (existence of a
critical edge distribution).

VI. FIGURE OF MERIT

Within linear response, the efficiency of steady state
heat to work conversion reads

η =
Ẇ

Q̇
=
Ie∆µ

IQ
, (32)

where IQ > 0 is the heat injected, while the numera-
tor is the output power. One could maximize this ex-
pression with respect to ∆µ to calculate the maximum
efficiency35 ηmax, or rather maximize the output power
P = Ie∆µ and look then at the efficiency at maximum
power36 η(Pmax). Both these two efficiencies turn out to
depend only on a dimensionless quantity, known as the

thermoelectric figure of merit43 ZT = (GS2/κe)T , as

ηmax = ηC

√
ZT + 1− 1√
ZT + 1 + 1

η(Pmax) =
ηC
2

ZT

ZT + 2
(33)

ηC being the Carnot efficiency. In particular, they are
both monotonous growing functions of ZT , being equal
to 0 for ZT = 0, while ηmax → ηC and η(Pmax)→ ηC/2
for ZT → ∞. Note that, for small ZT , ηmax ≈
η(Pmax) ≈ (ηC/4)ZT , the difference between the two
efficiencies becoming relevant only for ZT > 1. In any
case, by virtue of the above equations, it is clear that
maximizing the figure of merit is the necessary condi-
tion in order to achieve the largest efficiencies. In the
low-temperature regime we investigate, the Wiedemann-
Franz law is valid and thus the figure of merit can be
written as

ZT = S2GT

κe
=
S2

L0
, (34)

meaning that ZT is simply the square of the ther-
mopower, up to a constant (the Lorenz number). In
Fig. 8 we show the typical behavior of the figure of
merit as a function of the gate voltage Vg and the
size of the system N . Note that it is related to the
dimensionless thermopower S studied in this work by
ZT = S2(π2/3)(kBT/t)

2. The typical value ZT0 has
been defined by exponentiating the median of the distri-
bution of the logarithms of ZT . We have chosen to do so
because the distribution P (ZT ) exhibits a singularity44

for ZT , while P (ln(ZT )) turns out to be a symmetric,
smooth function. Not surprisingly, Fig. 8 shows that
the enhancement of the typical thermopower around the
spectrum edges reflects in a larger figure of merit. More-
over, being S0 ∝ d[ln T ]0/dE ∝ N , we expect ZT ∝ N2,
i.e. the longer the wire is, the better should be in terms
of the figure of merit. Despite this, our theory which is
only valid in a low-temperature limit cannot predict high
performances: even supposing to be at the highest tem-
perature (∼ Ts, see Sec. VII) where Sommerfeld expan-
sions can be made for describing the thermopower with
Eq.(10), the region of largest ZT0 in Fig. 8 corresponds
to values of order ZT . 0.024 at kBT/t = 5 × 10−5.
This sets only a limit of validity to the large efficien-
cies that our theory can predict, but by no mean this
sets a physical limit. If we were to look to the delivered
(electric) output power, we would find that a large size
would make it vanish, as the electrical conductance in
this regime would be exponentially small. Indeed, if we
look at the power factor Q = S2G, which is a measure
of the maximum output power36, we immediately realize
that the enhancement of S at the edge of the impurity
band would not be enough to face the exponentially small
values ofG. Obviously, the optimization of the power fac-
tor Q for a single nanowire requires to take shorter sizes
(N ≈ ξ), while the optimization of the figure of merit
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Vg in unit of t

N

FIG. 8: (Color online) Typical value of the figure of merit
ZT = S2/L0 = π2/3(kBT/t)

2S2 as a function of Vg and N ,
at EF = 0, W = t, and kBT/t = 5 × 10−5 (the temperature
was chosen as the highest temperature below which the Som-
merfeld expansion is valid, for all N ≤ 500 and Vg ≤ 2.5t,
within a tolerance of ∼ 2%, see Sec. VII). Being proportional
to S2 in the regime of validity of the Wiedemann-Franz law,
the largest typical figures of merit are obtained around the
spectrum edge and for long wires.

ZT requires to take long sizes (N � ξ). Moreover, be-
cause of the strong variation of the localization length
as the energy varies inside the impurity band, the opti-
mization of the power factor for a given size N requires
to not be too close from the edges of the impurity band,
contrary to the optimization of the efficiency. This illus-
trates the fact that a compromise has always to be found
between efficiency and output power when thinking of
practical thermoelectric applications. One could study
for instance the best compromise for optimizing the effi-
ciency at a given output power. One could also study an
ensemble of nanowires in parallel instead of a single one.
Since the conductances in parallel add while the ther-
mopower does not scale with the number of wires, the
compromise will favor the limit of long nanowires with
applied gate voltages such that electron transport occurs
near the edges of impurity bands.

VII. TEMPERATURE RANGE OF VALIDITY
OF THE SOMMERFELD EXPANSION

All the results discussed in this paper have been ob-
tained in the low temperature limit, after expanding
the thermoelectric coefficients to the lowest order in
kBT/EF . To evaluate the temperature range of valid-
ity of this study, we have calculated the Lorenz num-
ber L = κe/GT beyond the Sommerfeld expansion,
and looked at its deviations from the WF law L = L0

(see Eq. (11)): We have computed numerically the in-
tegrals (4) enterings Eqs. (5) and (6), deduced L(T ) for

increasing values of temperature, and then recorded the
temperature Ts above which L(T ) differs from L0 by a
percentage ε, L(Ts) = L0(1 ± ε). We did it sample by
sample and deduced the temperature Ts averaged over
disorder configurations. Our results are summarized in
Fig. 9.

In panel (a), we analyze how sensitive Ts is to the preci-
sion ε on the Lorenz number L. We find that Ts increases
linearly with

√
ε, Ts(ε) = T ∗s

√
ε, at least for ε ≤ 2%. This

is not surprising since the Sommerfeld expansion leads to
L−L0 ∝ (kBT )2, when one does not stop the expansion
to the leading order in temperature (L = L0) but to the
next order.

The main result of this section is shown in Fig. 9(b)
where we have plotted the temperature Ts as a function
of the gate voltage Vg, for chains of different lengths,
at fixed EF = 0 and W = t. As long as the Fermi
energy probes the inside of the spectrum without ap-
proaching too much its edges (|Vg| ≤ 2t), Ts is found
to decrease as Vg is increased. More precisely, we find

in the large N limit (N & 10ξ) that NkBTs ∝ ν−1
F

with a proportionality factor depending on ε (solid line
in Fig. 9(b)). The temperature Ts is hence given by (a
fraction) of the mean level spacing at EF in this region
of the spectrum (kBTs ∝ ∆F ). When Vg is increased fur-
ther, Ts reaches a minimum around |Vg| ≈ 2.1t and then
increases sharply. Outside the spectrum, this increase of
Ts with Vg is well understood as follows: Since in the
tunnel barrier regime, the transmission behaves (upon
neglecting the disorder effect) as T ∝ exp(−Nκ), with
κ = cosh−1[|E − Vg|/(2t)], the temperature scale below
which the Sommerfeld expansion of integrals (4) holds is
given by kBTs ∝ [N dκ

dE

∣∣
EF

]−1, which yields NkBTs ∝
t
√

[(EF − Vg)/(2t)]2 − 1. Our numerical results are in
perfect agreement with this prediction (dashed line in
Fig. 9(b)).

In Fig. 9(c), we investigate the behavior of Ts when
the spectrum of the nanowire is either scanned by vary-
ing Vg at EF = 0 or by varying EF at Vg = 0. We
find that Ts only depends on the part of the impurity
band which is probed at EF (i.e. the curves Ts(Vg) and
Ts(EF ) are superimposed), except when EF approaches
closely one edge of the conduction band of the leads. In
that case, Ts turns out to drop fast to zero as it can be
seen in Fig. 9(c) for the case of 1D leads (Ts → 0 when
EF → 2t). This means that the divergence of the di-
mensionless thermopower S observed in Fig. 4(a) is only
valid in an infinitely small range of temperature above
0 K. It would be worth figuring out wether or not a sin-
gular behavior of the thermopower at the band edges of
the conduction band persists at larger temperature.

Let us give finally an order of magnitude in Kelvin of
the temperature scale Ts. In Fig. 9(b), the lowest Ts
reached around Vg ≈ 2.1t is about NkBT

min
s /t ∼ 0.001

for ε = 0.004%. Asking for a precision of ε = 1% on L,
we get NkBT

min
s /t ∼ 0.016. For a bismuth nanowire

of length 1µm with effective mass m∗ = 0.2me (me

electron mass) and lattice constant a = 4.7 Å, the hop-
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FIG. 9: (Color online) Temperature scale Ts above which
the WF law breaks down. (a) NkBTs/t as a function of
the desired precision ε on L. The critical temperatures were
extracted for different values of Vg (Vg = t (◦), 1.5t (�),
2.02t (4)), with EF = 0, W/t = 1, N = 500 and 1D
leads. The solid lines are fits Ts = T ∗

s

√
ε. (b) NkBTs/t

(extracted for ε = 4 × 10−5) as a function of Vg/t, for
chains of different length (N = 150 (◦), 300 (4), 500 (∗),
1500 (�) and 3000 (�)), with EF = 0, W/t = 1 and 1D
leads. The solid line is 4.04 × 10−4/(νF t), the dashed line is

4.37 × 10−3
√

(Vg/2t)2 − 1 and the arrow indicates the posi-
tion of the edge of the impurity band. (c) NkBTs/t (extracted
for ε = 4× 10−5) as a function of EF /t at Vg = 0 (�) and as
a function Vg/t at EF = 0 (◦), with N = 150, W/t = 1 and
1D leads. Dashed lines are guides to the eye.

ping term evaluates at t = ~2/(2m∗a2) ∼ 0.84 eV and
hence, Tmins ∼ 72 mK. The same calculation for a silicon
nanowire of length 1µm with m∗ = 0.2me and a =5.4
Å yields Tmins ∼ 64 mK. Those temperatures being com-
monly accessible in the laboratories, the results discussed
in this paper should be amenable to experimental checks.

VIII. CONCLUSION

We have systematically investigated the low-
temperature behavior of the thermopower of a sin-
gle nanowire, gradually depleted with a gate voltage
in the field effect transistor device configuration.
Disorder-induced quantum effects, unavoidable in the
low-temperature coherent regime, were properly taken
into account. We have provided a full analytical de-
scription of the behavior of the typical thermopower as
a function of the gate voltage and have confirmed our
predictions by numerical simulations. Our results show
that the typical thermopower is maximized when the
Fermi energy lies in a small region inside the impurity
band of the nanowire, close to its edges. Moreover,
since thermoelectric conversion strongly varies from
one sample to another in the coherent regime, we have
carefully investigated the mesoscopic fluctuations of
the thermopower around its typical value. We have
shown that the thermopower is Lorentzian-distributed

inside the impurity band of the nanowire and that
its fluctuations follow the behavior of the density of
states at the Fermi energy when the gate voltage is
varied. In the vicinity of the edges of the impurity
band and outside the band, the thermopower was found
Gaussian-distributed with tiny fluctuations.

Electron-electron interactions were not included in our
study. A comprehensive description of the thermopower
of a 1D disordered nanowire should definitely consider
them. Nevertheless, we expect our results not to be
much affected by electron-electron interactions. Indeed,
drastic effects of electronic correlations in 1D leading
to the formation of a Luttinger liquid are somehow
lightened by the presence of disorder. Second, the
gate modulation of the thermopower we predict here
is mainly due to a peculiar behavior of the localisation
length close to the edges of the impurity band. And
experimentally, coherent electronic transport in gated
quasi-1D nanowires turned out to be well captured with
one-electron interference models37. Of course, one could
think of including electronic interactions numerically
with appropriate numerical 1D methods but regarding
the issue of thermoelectric conversion in nanowires, we
believe the priority rather lies in a proper treatment of
the phonon activated inelastic regime.

Finally, let us discuss the potential of our results
for future nanowire-based thermoelectric applications.
One cannot reach high values of ZT and extract much
electric power from a nanowire, when one restricts
oneself to the very low temperature regime. If one wants
to use a nanowire as a thermoelectric generator, one
should consider higher temperatures, where electronic
transport can be thermally activated38. It will be the
purpose of our next paper7. Actually, when thinking of
practical applications, the results of the present paper
are rather promising regarding Peltier refrigeration.
Indeed, our conclusions drawn here for the thermopower
at low temperature also hold for the Peltier coefficient,
the two being related by the Kelvin-Onsager relation
Π = ST . One could imagine to build up Peltier modules
with doped nanowires for cooling down a device at
sub-Kelvin temperature in a coherent way. Besides,
whether it be for energy harvesting or Peltier cooling,
it would be worth considering more complicated setups
using the nanowire as a building block (e.g. sets of
parallel nanowires in the field effect transistor device
configuration) in order to reach larger values of output
electric/cooling power.
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Appendix A: Self-energy of the 2D leads

We give here the expression of the retarded self-energy
of a 2D lead (made of a semi-infinite square lattice with
hopping term t) connected at one site (with coupling t)
to a nanowire of N sites length. It is a N × N matrix
Σ with only one non-zero component denoted σ. To cal-
culate σ, we calculate first the retarded Green’s function
of an infinite square lattice30 and then deduce with the
method of mirror images the retarded Green’s function
of the semi-infinite 2D lead39, that we evaluate at the
site in the lead coupled to the nanowire to get σ. Ana-
lytic continuations of special functions are also required,
they can be found for example in Ref.40. Introducing the
notation z = E/(4t), we find for σ = Re(σ) + i Im(σ)

Re(σ) = tz ± 2t

π

[
E(z2)− (1− z2)K(z2)

]
(A1)

Im(σ) =
2t

π

[
−E(1− z2) + z2K(1− z2)

]
(A2)

with a + sign in Eq. (A1) when −4t ≤ E ≤ 0 and a −
sign when 0 ≤ E ≤ 4t. If the energy E is outside the
conduction band of the lead (|E| > 4t), we get

σ = tz

[
1− 2

π
E
(

1

z2

)]
. (A3)

In the three above equations, K and E stand for the com-
plete elliptic integrals of the first and second kind respec-
tively. They are defined as

K(z) =

∫ π/2

0

dφ [1− z sin2 φ]−1/2 (A4)

E(z) =

∫ π/2

0

dφ [1− z sin2 φ]1/2 . (A5)

Appendix B: Thermopower of a clean tunnel barrier

In this appendix, we derive Eq. (26). We consider a
clean nanowire with on-site potentials Vg, connected via
its extreme sites 1 and N to two identical semi-infinite
leads. In order to investigate the tunnel barrier regime,
we assume that the energy E of the incoming electrons
lies outside the spectrum [−2t, 2t] of the nanowire. Let
us say that E ≥ Vg + 2t to fix the ideas. In the basis
{1, N, 2, ..., N − 2}, the retarded Green’s function G =
[E −H− ΣL − ΣR]−1 of the system reads

G =

(
A B

B̃ C

)−1

(B1)

where (i) A = (E−Vg−σ)12 (12 being the 2×2 identity
matrix and σ the non-vanishing element of ΣL and ΣR),

(ii) B [B̃] is a 2× (N − 2) [(N − 2)× 2] matrix with all
zero components except two equal to t coupling the sites
1 and N to their neighbors 2 and N − 1, and (iii) C is
a (N − 2) × (N − 2) symmetric tridiagonal matrix with
all diagonal elements equal to E−Vg and all elements on
the first diagonals below and above the main one equal
to t. Using the Fisher-Lee formula (13), we write the
transmission function T (E) as

T (E) = Tr

[(
γ 0
0 0

)
GA

(
0 0
0 γ

)
G†A

]
(B2)

= γ2|G(1N)
A |2 (B3)

where GA is the 2×2 submatrix in the top left-hand cor-

ner of G, G
(1N)
A its top right element and γ = −2Im(σ).

To calculate GA, we first notice that

GA = (A−BC−1B̃)−1 = (A− t2C−1
� )−1 (B4)

where C−1
� is a 2×2 submatrix of C−1 made up of the four

elements located at its four corners. Second, we make
use of Ref.41 for computing the inverse of the symmetric
tridiagonal matrix C. We get

C−1
� =

(
α β
β α

)
(B5)

with

α = − cosh(κ) cosh((N − 2)κ)

t sinh(κ) sinh((N − 1)κ)
(B6)

β = − cosh(2κ) + (−1)N−1

2t sinh(κ) sinh((N − 1)κ)
(B7)

and κ = cosh−1[(E − Vg)/(2t)]. Plugging Eqs. (B4-B7)
into Eq. (B3), we deduce the exact transmission function
T (E), and hence the thermopower S defined by Eq. (14).
An expansion at large N yields T ∝ exp(−2Nκ) (as ex-
pected for a tunnel barrier) and the expression (26) for
the thermopower. The same demonstration can be made
for the energy range E ≤ Vg − 2t.
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