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2. Nodal forces of zero-thickness interface elements

The zero thickness finite interface elements provide a good start
ing point for introducing the new procedure proposed in this paper.
Interfaces are always located in between two standard continuum
elements, with which they share their element sides or faces. As re
sult of the analysis one obtains stress tractions along the interface
contact, here denoted as t, which by definition are at the same time
the stress tractions acting on the contiguous element side faces.
Interface elements are defined in such way [13] that the interpola
tion functions coincide with those of the adjacent continuum ele
ment specified for the corresponding element side face. Let us
consider for simplicity the 2D case, and denote with s the curvilinear
coordinate system measured along the interface domain e. The
shape functions on that domain are NðsÞ, with as many components
as nodes on the inter element face. Standard application of the Prin
ciple of Virtual Work (PVW) leads to the classical expression:
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Z
e

Nttds ð1Þ

in which in this case the vector fs gathers the collection of the inter
element forces ri ði 1;NÞ transmitted through the N nodes across
the inter element contact surface. In the context of a cohesive crack
analysis along mesh lines, the importance of the evaluation of such
inter element forces and (especially) tractions is evident, since the
cracking criterion takes in general the form of a plastic surface in
terms of the stress traction components. It seems also reasonable
that (in analogy to standard element forces obtained via PVW or
similar principles) those forces ri satisfy the equilibrium conditions
at the nodes in the strong sense.

3. Brief outline of the procedure in 2D

The original problem under study can be easily introduced in 2D
by a simple count of unknowns and equilibrium equations at a gen
eric nodal point where N element tips and N mesh (or inter element)
lines concur (see Fig. 1).

The number of unknowns N corresponds to the inter element
forces denoted as rðkÞ (k 1;N). The vectorial equilibrium equa
tions for each of the N element tips concurrent at the node may
be expressed as follows:

fð1Þ rðNÞ þ rð1Þ 0;

fð2Þ rð1Þ þ rð2Þ 0;

fð3Þ rð2Þ þ rð3Þ 0;

..

.

fðNÞ rðN 1Þ þ rðNÞ 0

8>>>>>>><
>>>>>>>:

ð2Þ

in which fðkÞ are the (known) element nodal forces transmitted by ele
ment k to the node, which may be obtained a posteriori of the FE anal
ysis using the classical weak equilibrium equation for the element:

fe
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where V e is the element volume, r the stress field in the element
and B the matrix containing the derivatives of the element shape
functions.

However, only N 1 of the vector equations in (2) are really
independent as reflected by the fact that the sum of all of them
leads to an identity, i.e.,

PN
i 1fðiÞ 0. This may be interpreted as

that any of the unknowns, for instance the force �r rð1Þ, may be ta
ken as arbitrary variables, which means that the system would ex
hibit infinite solutions, one for each given values of �r.

By considering the global to local ((x,y) to (nðkÞ; tðkÞ) as shown in
Fig. 1) rotation matrix Q ðkÞ for the inter element line k and the con
tributing area XðkÞ of the corresponding corner node along that line,
the nodal inter element forces may be converted into nodal inter
element stress tractions tðkÞ ðrðkÞ; sðkÞÞT Q ðkÞrðkÞ=XðkÞ. Please note
that the contributing area X in this case is the product of the con
tributing length along the mesh line and the unit thickness perpen
dicular to the analysed 2D plane.

The (initially unknown) stress tensor at the node T is intro
duced, and an objective function is defined equal to the sum of
the squares of the differences between the inter element tractions
and the projections of T on the same directions:

U
XN

k 1

½ðrðkÞðrÞ nðkÞTnðkÞÞ2 þ ðsðkÞðrÞ tðkÞTnðkÞÞ2�: ð4Þ

For the first minimization, the arbitrary force and therefore the
overall set of inter element tractions are assumed to be known,
and the objective function is minimized with respect to each of
the independent components Tij (three in 2D). This leads to an

Fig. 1. Element fðkÞ and inter-element rðkÞ nodal forces along the mesh lines concurring at a generic interior nodal point.



  

explicit expression of the stress tensor T in terms of all inter ele
ment tractions. It is important to observe that, if the element
stress tractions were exact, the obtained stress tensor would also
be exact.

The previous solution is then backsubstituted into the objec
tive function, which now becomes a function of the arbitrary var
iable �r exclusively, or in other words of its components �rj (j = 1,2).
This function is minimized a second time with respect to �rj, lead
ing to a 2 linear equation system. In this linear system, the coef
ficient matrix depends only on geometric factors (i.e.,
contributing areas and orientations of mesh lines concurring at
the node) while the right hand side vector contains the continu
ous element nodal forces.

The numerical solution of this two by two algebraic linear sys
tem produces the values of the arbitrary force �r and, by backsubsti
tution, the inter element forces, stress tractions, and stress tensor
at the node. More details can be found in [1].

It is important to emphasise that the inter element traction vec
tors obtained by the proposed minimization when multiplied by
their relative contributing areas become inter element forces that
are in equilibrium with the nodal forces of the continuous elements.
This is a significant attribute of the recovered stresses. The same can
not be said for the traction vectors obtained by, for instance, an aver
age recovery procedure which is less onerous from the
computational point of view but does not return nodal inter ele
ment forces equilibrated with the continuous nodal forces.

For the 2D formulation presented in [1], a comparison between
the proposed minimization procedure and an average recovery
method was presented (please, refer to Fig. 18 and 19 of [1]). The
study showed that the proposed method gives better results than
the average procedure, especially for boundary nodes. This conclu
sion can be easily extended to 3D.

One last observation on the 2D formulation regards the calcula
tion of inter element stresses around a notch. In 2D this situation is
analogous to the case of a boundary node in which, for N elements
concurrent at the node, N 1 are the independent equilibrium
equations and N 1 are the unknown inter element forces. The
proposed minimization method would therefore be not required
since the inter element forces and stresses could be recovered by
simple application of the equilibrium equations alone.

4. Procedure in 3D

For a generic 3D FE simulation, the nodes of an inter element
surface can be distinguished into corner, mid edge and center face
nodes, as shown in Fig. 2 (the latter 2 are only in the case of qua
dratic elements). The calculation of the inter element nodal forces
at interior center face nodes and at boundary mid edge nodes is
trivial because (similarly to the mid edge nodes in 2D) it is possible
by equilibrium equations alone. In this section the evaluation pro
cedure for inter element forces and stress tractions is presented for
the case of interior corner nodes, interior mid edge nodes and
boundary corner nodes.

4.1. Formulation for interior corner nodes

4.1.1. Count of unknowns
In contrast to the 2D case, in which the count of unknowns and

arbitrary variables was simple, in 3D it depends on the type of ele
ments (prisms, hexahedra, etc.) and their arrangement around the
analysed node. In particular, denoting by:

� N the total number of elements around the node, and
� pi the number of faces for each element i (i = 1,N) at the node,

one can define:

� the total number of scalar unknowns: 3v 3
PN

i 1pi=2
� the number of scalar independent equilibrium equations:

3ðN 1Þ
� the number of scalar arbitrary variables: 3s 3v 3ðN 1Þ

3
PN

i 1pi=2 N þ 1
� �

The above formulas can be verified in the following examples. Fig. 3
represents six tetrahedra around a node for which N 6 and pi 3
(for i 1;6). This leads to:

� total number of unknowns: 3v 3
P6

i 1ðpiÞ=2 3 � 9 27
� number of independent equilibrium equations:

3ðN 1Þ 3 � 5 15
� number of arbitrary variables: 3s 3v 3ðN 1Þ 3ð9 5Þ

12

The example in Fig. 4 shows four tetrahedra and three pyramids
around a node. In this case N 7, p1 p2 p3 p4 3 and
p5 p6 p7 4, which leads to:

� total number of unknowns: 3v 3
P7

i 1ðpiÞ=2 3 � 12 36
� number of independent equilibrium equations: 3ðN 1Þ

3 � 6 18
� number of arbitrary variables: 3s 3v 3ðN 1Þ

3ð12 6Þ 18

Fig. 2. Characterization of corner nodes, mid-edge nodes and center-face nodes.

Fig. 3. Example of 6 tetrahedra around an interior corner node.



  

4.1.2. Formulation
Fig. 5 shows the element nodal forces (on the left side) and the

inter element forces (on the right side) around a node. The con
cepts and equations reported in the following refer to this particu
lar example (six tetrahedra) but may be also extended to any
number N of solid elements concurrent at the node.

The inter element stress traction evaluation method is a post
processing procedure, and this implies that the FE mesh has been
solved previously under certain boundary conditions, that all the
nodal displacements have been computed and from them the

strains and stresses at the Gauss points, and finally the force vectors
for each element have been recovered using the weak equilibrium
equation in (3). Let us call T the (initially unknown) stress tensor
at the node. Similarly to the approach used in the 2D formulation,
on the basis of the well known ‘‘engineering’’ or Voigt notation
[14], T is presented here as a column vector which only includes
the six independent components in the global reference system
(x,y,z). The vectorial notation adopted here leads to manageable
expressions for the proposed procedure. An analogous approach
in tensor notation is also possible. However, it leads to a complex
system [19] that makes impractical to obtain simple closed form
solutions and it is not presented in this paper.

For the example in Fig. 5, the set of equilibrium equations at the
tip of each element around the interior corner node (similar to Eq.
(2) in 2D), can be written in matrix form as:

ð5Þ

The partition lines in the previous equation are meant to separate
the total number of inter element forces (v 9) in two subsets: a
first group including a number of forces equal to the number of lin
ear independent vectorial equations N 1 ð6 1Þ 5, and a sec
ond group with the remaining v ðN 1Þ 9 5 4 forces, which

Fig. 4. Example of four tetrahedra and three pyramids around a node.

Fig. 5. Element nodal forces (left) and inter-element nodal forces (right) for a set of six tetrahedral elements surrounding a node.



  

may be considered as arbitrary forces. Note that, all the components
of the previous expression are themselves 3� 3 matrices (for the
case of I and 0) or 3 component vectors (for fðiÞ and rðiÞ).

Expression (5) may be rewritten in compact form as:

Hr f or H0 H1½ �
r0

r1

� �
f½ �; ð6Þ

where H0 and H1 are matrices with dimensions
½3ðN 1Þ � 3ðN 1Þ� and ½3ðN 1Þ � 3s� respectively, r0 and r1 are
vectors with 3(N 1) and 3s components, and f is another vector with
3(N 1) components. In Eq. (6) one can easily isolate r0 in terms of
the arbitrary forces r1:

r0 H 1
0 ðf H1r1Þ: ð7Þ

Note that, while in 2D any inter element force rðiÞ could be selected
as arbitrary force r (as explained in Section 3), in 3D this choice is
not arbitrary at the risk of obtaining a singular matrix H0. This
can be avoided if the following two conditions are satisfied:

� the N 1 forces in r0 continuously ‘‘connect’’ all the continuum
elements around the node, and
� there are no more than pi 1 forces selected for each element i

(pi= number of faces of element i at the node).

This is illustrated with the examples of Fig. 6, which depicts a cor
rect choice on the left image, and an incorrect choice on the right
one. Note that the above conditions can be easily implemented in
the form of a simple automatic algorithm.

In a general case other than the example in Fig. 5, one can as
sume that r is a ½3v � vector containing all the inter element forces
which, by taking into account (7) can be written as:

r0

r1

� �
H 1

0

03s�3ðN 1Þ

" #
f½ � H 1

0 H1

I3s�3s

" #
r1½ � or r Bf Ar1: ð8Þ

As it was done in 2D, the following step in the procedure is to con
vert the inter element forces rðiÞ into inter element stress tractions
tðiÞ which are needed in the objective function for the minimization
procedure. This is easily done by means of the contributing area XðiÞ

(Fig. 7). Further details and fine points on the contributing area con
cept are discussed in Section 5. Note that, in contrast to the 2D for
mulation, no rotation matrix is considered here because the
objective function will be expressed directly in terms of global
cartesian components of the stress tractions (instead of the local
normal and tangential components).

The force traction relation for an individual inter element sur
face can therefore be expressed as:

tðiÞ
1

XðiÞ
rðiÞ: ð9Þ

Fig. 6. Choice of independent inter-element nodal forces rðkÞ: correct choice (left) and incorrect choice (right).

Fig. 7. Inter-element force rðiÞ , stress traction tðiÞ and contributing area XðiÞ .



  

The collection of all similar equations for each of the inter element
faces surrounding a node leads to the expression:

s X 1r ð10Þ

in which s is a vector containing all the ½3v � components of the
stress tractions, and X is a ½3v � 3v � diagonal matrix containing
the contributing areas. By substituting (8) into (10) the inter ele
ment tractions s in terms of the arbitrary forces r1 become:

s X 1ðBf Ar1Þ: ð11Þ

Similarly to the 2D case, the procedure now implies the minimiza
tion of an objective function U, representing the square of the sum
of the differences between the projection of the (initially unknown)
stress tensor T on the element faces, and the stress traction vectors
tðiÞ transmitted across these same faces. Each inter element face is
characterized by a unit vector nðiÞ normal to the face. Thus, the
above mentioned difference between inter element stress traction
and nodal stress projection can be expressed as:

tðiÞx

tðiÞy

tðiÞz

2
64

3
75

nðiÞx 0 0 nðiÞy 0 nðiÞz

0 nðiÞy 0 nðiÞx nðiÞz 0

0 0 nðiÞz 0 nðiÞy nðiÞx

2
664

3
775

rx

ry

rz

sxy

sxz

syz

2
666666664

3
777777775

tðiÞ PðiÞT:

ð12Þ

The objective function that for the 2D case was formulated in terms
of local (normal, tangential) components (Section 3 of [1]), in this
case is directly expressed in terms of global (x,y,z) components,
yielding to:

U
Xv

i 1

ktðiÞ PðiÞTk2 tr½ðs PTÞðs PTÞT �; ð13Þ

where matrix P with dimensions ½3v � 6� is the column collection
of all submatrices PðiÞ.

The minimization of U with respect to the components of T
leads in this case to the following linear equation:

@U
@T

NT c 0; ð14Þ

where

N PT P and c PT s: ð15Þ

Note that the result of the minimization is a simple linear matrix
equation. This gives the following solution for the stress tensor in
terms of the inter element tractions:

T N 1c: ð16Þ

The availability of the simple closed form solution (16) makes it
possible to complete the formulation in a way similar to the 2D case
(Section 2 of [1]). According to that, the expression of T just ob
tained, together with those of N and c (15) may be backsubstituted
into the objective function (13), leading to:

U tr Psð Þ2; ð17Þ

where P is the following ½3v � 3v � square symmetric matrix:

P I3v�3v PðPT PÞ 1PT : ð18Þ

The inter element tractions s in (17) may now be replaced by (11)
to obtain a new expression of the objective function in terms of
arbitrary inter element forces. The objective function U may then
be minimized with respect to the arbitrary inter element forces

r1. By doing that, and taking into account that PP P, one obtains
a linear equation system for r1:

@U
@r1

Kr1 Lf 0 ð19Þ

in which matrices K ½3s� 3s� and L ½3s� 3ðN 1Þ� have expressions:

K ATX 1PX 1A and L ATX 1PX 1B: ð20Þ

Eq. (19) may be solved by simple inversion of K to obtain the final
expression:

r1 K 1Lf: ð21Þ

Eq. (21) constitute the missing equations to solve the overall prob
lem under study, that is, to obtain the nodal inter element stress
tractions (and forces) at the interior node of a FE mesh representing
an intact (uncracked) material. Once the system (21) is solved, one
can obtain the inter element stress traction vectors tðiÞ (which form
vector s) using Eq. (11), and the equilibrated inter element forces
from Eq. (8). Note that, rather than 2 different minimizations, the
same Eqs. (21) and (16) could have been obtained by first substitut
ing (8) into (10), then (10) into (13) and finally simultaneously min
imizing U with respect to T and r1.

Note also that, similar to the 2D case, the nodal stress tensor T
that can also be obtained using Eq. (16). However, the nodal stress
tensor evaluation is not the main objective of the procedure, but
only a by product of the calculation (which is primarily focused
on the evaluation of equilibrated inter element stress tractions).

4.2. Formulation for interior mid edge nodes

4.2.1. Count of unknowns
In Fig. 8, point A represents a generic interior mid edge node,

and Y1;Y2; . . . ;YN represent the inter element surfaces of the N ele
ments sharing node A. The global reference system is (x; y; z). The
direction of the mesh line to which node A belongs is indicated
as m. The plane perpendicular to m is indicated as C. A cartesian
local reference system on this plane is defined so that two direc
tions (x�; y�) are contained in C, and the third one z� is normal to
the plane (or parallel to m).

Looking at the right side of Fig. 8, it is easy to note that all the
nðiÞ normal vectors to the inter element surfaces Yi are contained
in the plane C. The case of the mid edge node shows many similar
ities with the case of a corner node in 2D (see Fig. 1). In fact if N is
the number of elements sharing node A, then N is also the number
of inter element surfaces and the number of unknown inter ele
ment forces, and N 1 is the number of linear independent equi
librium equations.

4.2.2. Formulation
A formulation similar to that of Section 4.1.2 is developed for

interior mid edge nodes, for which one has v N and s 1. The
stress tensor is again expressed in vector (Voigt) notation. The
equilibrium equations take an algebraic form similar to the 2D case
(Eq. 2), although in this case each force variable is a 3 component
vector. When writing only the first N 1 equilibrium equations
which are independent, the counterpart of Eq. (5) in the case, for
instance, of N = 5 becomes:

I 0 0 0 I
I I 0 0 0

0 I I 0 0
0 0 I I 0

2
6664

3
7775

rð1Þ

rð2Þ

rð3Þ

rð4Þ

rð5Þ

2
6666664

3
7777775

fð1Þ

fð2Þ

fð3Þ

fð4Þ

2
66664

3
77775 ð22Þ



  

which can be alternatively written in a more compact form as Eq.
(6). Same arguments as in Section 4.1.2 lead to the expressions of
r0, r and s in terms of r1, which are the same as in Section 4.1.2
(Eqs. (6) (11)).

However, from this point on, the formulation of the mid edge
node differs from the one of the corner node. The difference be
tween the nodal inter element traction in A along nðiÞ and the pro
jection of the stress tensor along the same direction can still be
written as done in (12). However, in this case all normal vectors
are contained in the same plane C, which would cause matrix N
as defined in (15) to become singular.

In the local reference (x�; y�; z�), the generic normal vector be
comes: n�ðiÞ ðnðiÞx� ;n

ðiÞ
y�;0Þ. In this reference system, the counterpart

of Eq. (12) is:

tðiÞx�

tðiÞy�

tðiÞz�

2
64

3
75

nðiÞx� 0 nðiÞy� 0 0

0 nðiÞy� nðiÞx� 0 0

0 0 0 nðiÞx� nðiÞy�

2
664

3
775

rx�

ry�

sx�y�

sx�z�

sy�z�

2
6666664

3
7777775

tðiÞ P�ðiÞT�: ð23Þ

Note that only five components of the stress tensor are contained in
the new vector T�. The sixth component, representing the stress
normal to the C plane (r�z), does not take part in this formulation.

From this point onwards, the method for the mid edge node
proceeds as for the corner node. An objective function (counterpart
of (13)) is defined as:

U�
Xv

i 1

ktðiÞ P�ðiÞT�k2 trðs P�T�Þ2: ð24Þ

The difference between (13) and (24) consists of the dimensions of
matrices P and P�, being ½3v � 6� for the former and ½3v � 5� for the
latter. The objective function U� is minimised first with respect to T�

and then with respect to r1 obtaining the solution:

r1 K� 1L�f ð25Þ

with

K� ATX 1P�X 1A; L� ATX 1P�X 1B and

P� I3v�3v P�ðP�T P�Þ 1P�T : ð26Þ

The solution in (25) makes it possible to obtain the values of the
arbitrary nodal inter element force r1. All the nodal inter element
stress tractions can then be obtained using (11), and the remaining
nodal inter element forces evaluated from (7). Note, however, that
in this case the proposed procedure does not lead to the recovery of
the full stress tensor at the node, since T� defined in (23) does not
include the out of plane component r�z .

4.3. Formulation for boundary corner nodes

4.3.1. Count of unknowns
For a boundary node to which N continuum elements converge,

the number of unknown vectorial inter element forces s may be
expressed as s v ðN 1Þ, same formula as for standard inner
nodes of the mesh (Section 4.1.1), except that in this case the total
number of inter element forces is v

PN
i 1p0i=2, being p0i equal to

the total number pi of faces meeting at the boundary node minus
the faces on the boundary surface. In Figs. 9 and 10 two examples
are presented which explain this count.

Fig. 9 shows four tetrahedra (i.e., N 4) around node A. Each
tetrahedron has 3 faces at A (pi 3 for i 1;4), but only 2 of them
are inter element faces (p0i 2 for i 1;4). For this example one
has:

� total number of unknowns: 3v 3
P4

i 1ðp0iÞ=2 3 � 4 12
� number of independent equilibrium equations:

3ðN 1Þ 3 � 3 9
� number of arbitrary variables: 3s 3v 3ðN 1Þ 3ð4 3Þ

3

The example in Fig. 10 shows five pyramids around node A (i.e., in
this case N 5). Note that for pyramid 1, all the faces meeting at the
boundary node A are interior, and so p01 4. For pyramids 2, 3, 4 and
5 only three of the four faces meeting at the node are interior, so
that p02 p03 p04 p05 3. This leads to

� total number of unknowns: 3v 3
P5

i 1ðp0iÞ=2 3 � 8 24
� number of independent equilibrium equations: 3ðN 1Þ

3 � 4 12
� number of arbitrary variables: 3s 3v 3ðN 1Þ 3ð8 4Þ

12

Fig. 8. Point A represents a generic interior mid-edge node, Y1;Y2; . . . ;YN represent the inter-element surfaces; on the right, the 2D view of plane C (containing the normal
vectors nðiÞ to Yi , i = 1,N) is offered.



  

4.3.2. Formulation
Let us call C0 a generic boundary plane and A the boundary node

at which the inter element forces and stress tractions are to be ob
tained. The local reference system is ðx0; y0; z0Þ, with z0 normal to the
C0 plane. The stress tensor in Voigt notation and in local compo
nents is T0. Let us assume that the z0 components of the stress ten
sor T0 (i.e., r0z, s0yz and s0xz) are known (boundary conditions). Being
Q the rotation matrix from the local to the global reference system,
the stress tensor T in global components can be written as
T Q 0T00 þ Q 1T01 with

T00

r0z
s0yz

s0xz

2
64

3
75 and T01

r0x
r0y
s0xy

2
64

3
75 ð27Þ

and Q 0 and Q 1 the appropriate sub matrices of Q .
With the previous definitions, from this point on the mini

mization procedure is very similar to the one for the standard
inner nodes presented in Section 4.1.2. That returns the
solution:

r1 K0 1ðL0f t0Þ ð28Þ

in which

K0 ATX 1P0X 1A; L0 ATX 1P0X 1B;

P0 I3v�3v PQ 1ðQ
T
1NQ 1Þ

1Q T
1PT ; ð29Þ

and

t0 ATX 1P0X 1P½I6x6 Q 1ðQ
T
1NQ 1Þ

1Q T
1N�Q 0T00: ð30Þ

Once the system (28) is solved, one can obtain all the inter element
stress vectors from (11), and the remaining nodal inter element
forces from (7). The nodal stress tensor T is again a by product in
this case, and can be recovered from:

T01 ðQ T
1NQ 1Þ

1ðQ T
1c Q T

1NQ 0T00Þ; ð31Þ

where N and c are the same as defined in (15).

5. On the contributing area concept

In this work, the nodal inter element forces r are related to the
inter element stresses at the node t via a simple diagonal expres
sions Eqs. (9) or (10). This implies the intuitive assumption that
for a given inter element surface, each inter element nodal force
is related to the corresponding inter element stress traction at
the same node exclusively, by means of the contributing area X.
This relation, which is essential for the formulation proposed,
seems reasonable and trivial in the case of a constant stress trac
tion distribution (Fig. 7), but may deserve some further discussion
for other more general situations.

The inter element surface between two 3D finite elements con
stitutes a 2D domain A, generally non planar, with a geometry sim
ilar to a 3D shell or interface element, and parametrization in
terms of two local coordinates ðr; sÞ, i.e.,

x xðr; sÞ; x ½x; y; z�T : ð32Þ

The stress traction field transmitted across this surface is denoted as
pðr; sÞ ½px;py;pz�

Tðr; sÞ, and the displacement field as uðr; sÞ
½ux;uy;uz�Tðr; sÞ. In the current context of displacement based FEM,
the displacement field may be approximated by the nodal values
ue using the shape functions NðiÞðr; sÞ, i.e.:

Fig. 9. Four triangular prisms meet at boundary node A; each element has one face on the boundary surface (shaded areas) and two inter-element faces.

Fig. 10. Five pyramids meet at boundary node A; four of them (labelled 2, 3, 4 and 5) have one face on the boundary surface (shaded areas) and three inter-element faces,
while the remaining (labelled 1) one has zero boundary face and four inter-element faces.



  

uðr; sÞ Hðr; sÞue; ð33Þ

where H is the traditional matrix array of interpolation or shape
functions.

Application of the Principle of Virtual Work (PVW) between the
system of applied surface tractions p and the equivalent nodal
forces re, both subject to a system of virtual nodal displacements
due, and the corresponding virtual displacements at any point on
the surface duðr; sÞ obtained with (33), leads to:

duT
e re

Z
A

duTðr; sÞpðr; sÞdA
Z

A
duT

e HTðr; sÞpðr; sÞdA: ð34Þ

Eq. (34) must be satisfied for any values of the virtual nodal dis
placement due. Same as in the classical derivation of nodal forces
equivalent to external loads, this finally leads to:

re

Z
A

HTðr; sÞpðr; sÞdA: ð35Þ

If the above integral is evaluated numerically using an integration
rule with NIP points [13], one obtains:

re

XNIP

k 1

HTðrk; skÞpðrk; skÞXk; ð36Þ

where Xk would be the contributing area for integration point k, gi
ven by:

Xk Jkwk ð37Þ

in which wk is the weight at the kth integration point, and Jk is the
Jacobian obtained from the local to global transformations (32).

The former expression (36) may be rearranged in the following
matrix form:

re Gpe; ð38Þ

where

G

X1N1ðr1; s1Þ � � � XNIPN1ðrNIP; sNIPÞ
X1N2ðr1; s1Þ � � � XNIPN2ðrNIP; sNIPÞ

. . . . . . . . .

X1NNNðr1; s1Þ � � � XNIPNNNðrNIP; sNIPÞ

2
6664

3
7775 ð39Þ

and NN is the number of nodes of the surface element and pe are the
traction stresses at the integration points.

Note that, if the integration points are located exactly at the
nodes of the surface element, a double purpose is obtained: (i) ma
trix G becomes diagonal, since the shape functions are always de
fined such that their values at corresponding node are 1 and at all
other nodal points are zero, and (ii) vector pe contains the nodal
stress tractions.

In this way, as long as the integration points are located at the
nodes, Eq. (38) correlates inter element nodal forces to inter ele
ment nodal tractions through contributing areas in a decoupled
way. This is without making any assumption on the type of distri
bution of the stress tractions p on the surface (such as e.g., constant
or linear), i.e., the decoupled one to one relation would be totally
general and valid for any distribution of p.

5.1. Special case for quadratic triangular (T2) and serendipity (Q 02)
elements

Fig. 11 depicts the most usual surface elements used in a context
of standard FE codes, both linear and quadratic. On the left side ele
ments I1 and I2 represent the only linear and quadratic 1 D surface
elements to be used in 2D calculations. For 3D calculations, all ele
ments used in practice exhibit either triangular or quadrilateral
sides, which are represented in their linear and quadratic version
in the central and right columns of Fig. 11, respectively. Note that
for quadrilaterals, two versions of quadratic surface elements are
possible, the Lagrangian with center face node (denoted as Q 2 in
the figure) and the serendipity without center face node (denoted
as Q 02). Additionally, we note that all those elements are in general
defined isoparametrically, so the edges of the elements in Fig. 11
are straight and the angles for quadrilateral elements are right, just
for a matter of simplicity of the drawing.

The study of existing literature leads to the conclusion that inte
gration rules with integration points coinciding with the nodes are
available for all linear elements I1, T1 and Q 1, with weights equal for
all integration points in local coordinates (obviously, the contributing
area is also affected by the jacobian of the isoparametric transforma
tion which may be different for each point). For the quadratic ele
ments, element I2 has the Newton Cotes or Lobatto integration rule
with weights 1 4 1; element Q 2 has the corresponding 2D extension
with weights 1 4 16 for corner midside center nodes. The remaining
elements T2 and Q 02, hoverer, exhibit some peculiarities.

Fig. 11. Finite inter-element surfaces (or interface elements).



  

As for element T2, when using a numerical integration rule
with integral points coincident with the mid edge and corner
nodes [15], the contributing areas turn out to be equal to zero
at the corner nodes. This means that the relationship in (9) be
tween inter element forces and stresses becomes indeterminate
and the proposed method cannot be applied at corner nodes of
T2 elements. Nevertheless, matrix G still gives the values of the
contributing areas for the mid edge nodes (equal to A=3, being A
the total triangular surface area), and the stress recovery proce
dure presented in this paper is still valid for those nodes, as
shown by the numerical application presented in Section 6.4.1.
The calculation of inter element forces and stresses at corner
nodes is still under investigation and it is not presented in this pa
per. A possible solution could be found in the extrapolation by lin
ear or quadratic functions of the inter element stresses from the
mid edge nodes, but this approach is still an on going research
topic.

Another special case is element Q 02, for which the standard
Newton Cotes 3 � 3 integration rule contains a central integration
point that does not coincide with any node, leading therefore to the
loss of the diagonal character of matrix G. In this particular situa
tion, Eq. (38) becomes:

r1

r2

r3

r4

r5

r6

r7

r8

2
66666666666666664

3
77777777777777775

X1I 0 . . . 0 X9N1ðr9; s9Þ
0 X2I . . . 0 X9N2ðr9; s9Þ

. . . . . . . . . . . . . . .

0 0 . . . X8I X9N8ðr9; s9Þ

2
66664

3
77775:

p1

p2

p3

p4

p5

p6

p7

p8

p9

2
6666666666666666664

3
7777777777777777775

ð40Þ
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Fig. 12. Mohr’s circle representation of the stress state at the interior node of four hexahedron meshes on the right hand side. Mesh (a): the inter-element planes coincide
with the principal directions and the mesh is totally symmetric. Mesh (b): the inter-element planes coincide with the principal directions, but the areas are different. Mesh
(c): inter-element planes coincide with the principal directions,except one. Mesh (d): only one of the planes coincides with the principal directions.



  

in which 1, 2, 3, 4 indicate corner nodes, 5, 6, 7, 8 mid edge nodes
and 9 the integration point at the center of the face. For the general
isoparametrical Q 02 element of unit area of Fig. 11, (40) turns into:

r1

r2

r3

r4

r5

r6

r7

r8

2
66666666666664

3
77777777777775

1
36I 0 0 0 0 0 0 0
0 1

36I 0 0 0 0 0 0
0 0 1

36I 0 0 0 0 0
0 0 0 1

36I 0 0 0 0
0 0 0 0 4

36I 0 0 0
0 0 0 0 0 4

36I 0 0
0 0 0 0 0 0 4

36I 0
0 0 0 0 0 0 0 4

36I

2
666666666666664

3
777777777777775

:

p1

p2

p3

p4

p5

p6

p7

p8

2
66666666666664

3
77777777777775
þ16

36

1
4 I
1
4 I
1
4 I
1
4 I

1
2 I
1
2 I
1
2 I
1
2 I

2
666666666666664

3
777777777777775

: p9½ �:

ð41Þ

Under the assumption of constant stress distribution (i.e.,
pðr; sÞ p constant), the previous equation becomes:

r1

r2

r3

r4

r5

r6

r7

r8

2
66666666666664

3
77777777777775

1
12 I
1

12 I
1

12 I
1

12 I
1
3 I
1
3 I
1
3 I
1
3 I

2
666666666666664

3
777777777777775

: p½ �: ð42Þ

With Eq. (42), the de coupled relationship between nodal inter ele
ment forces and stresses is restored, but with the limitation of being
strictly satisfied only for constant stress states on the inter element
surface. Furthermore, the tributary areas associated to the corner
nodes appear negative. An example for the calculation of inter ele
ment tractions at the mid edge nodes using a contributing area
equal to A=3 is presented in Section 6.4.2. Even in this case, the
indeterminacy of the inter element tractions at corner nodes is still
under investigation and a solution is not proposed in this paper.

6. Examples

In this section, some numerical applications are presented to
validate the accuracy of the proposed method. In all the following
examples, the material is assumed linear isotropic elastic loading is
sufficiently simple so that the exact theoretical stress state at the
node and inter element stress tractions are known.

It is important to recall here that the main purpose of this meth
od is to evaluate inter element stress tractions transmitted across
inter element planes, while a stress tensor at the node itself is ob
tained as a least square by product of the calculation. One key fea
ture of the method is that equilibrium is strictly enforced between

Fig. 13. Mohr’s circle representation of the stress state at the interior node of the tetrahedron symmetric mesh on the right hand side. None of the planes coincide with the
principal directions, but all the stress vectors are plane.

Fig. 14. Mohr’s circle representation of the stress state at the interior node of the tetrahedron irregular mesh on the right hand side. None of the planes coincide with the
principal directions; some of the stress vectors are plane and some are not.

Table 1
Exact solution and numerical error of the recovered stress tensor components for the
case of gravity load of meshes in Fig. 12.

Mesh y0

(m)
Exact solution Error in linear

analysis
Error in
quadratic
analysis

ry

(Pa)
rz rx

(Pa)
ry

(%)
rz

(%)
rx

(%)
ry

(%)
rz rx

(%)

(a) 0.5 9 4.4 0 0 0 0 0
(b) 0.3 5.4 2.6 0.3 52.0 49.8 0 0
(c) 0.5 9 4.4 4.3 4.5 10.6 0 0
(d) 0.6 10.8 5.3 8.6 12.8 2.8 0 0



  

all nodal forces (continuous element nodal forces and inter ele
ment forces). Enforcement of this condition may cause the corre
sponding stress tractions on the inter element planes (which are
equal to the corresponding inter element forces divided each of
them by the corresponding contributing area) not to be all of them
exactly equal to the projections of a unique nodal stress tensor
onto those planes, but only the best approach by least squares. This
may happen when the element order is lower than the order re
quired to reproduce the exact solution (i.e., linear elements with
non uniform load). In those cases, also the nodal stress tensor
(by product of the minimization) may turn out not exactly equal
to the theoretical one. This case is illustrated in some of the exam
ples below, and also it is shown how the differences with the the
oretical solution vanish as the mesh is refined.

6.1. Inter element tractions at interior corner nodes of linear
hexahedra and tetrahedra under uniform stress state

6.1.1. Linear hexahedra
In this first set of examples, four different meshes of a cubical

domain are subject to a uniform stress state with principal axes x,
y, z. The external loads applied correspond to a uniform stress state
of rx 1 Pa, ry 3 Pa, rz 0 Pa and sxy syz sxz 0 The
discretization is made with eight linear hexahedral elements
(Fig. 12) introducing progressively higher degree of irregularity
in the mesh.

In the first case (mesh a in Fig. 12) the subdivision of the cube is
made along planes parallel to the coordinate axes with uniform
element size (i.e., constant contributing areas); in the second case
(mesh b) the contributing areas of the elements concurrent to the
internal corner node are different; in the third and fourth cases
(mesh c and d) some of the mesh subdivisions are not aligned with
the coordinate axes. In all cases, the exact stress tractions at the in
ter element planes around the interior corner node are obtained,
as shown on the left column of Fig. 12. Note that due to the orien
tation of the inter element planes, tractions in meshes a and b have

no shear component, and tractions in meshes c and d exhibit shear
components as expected.

The solution in (11) gives the iter element tractions in global
coordinates. The representation in the Mohr’s plane implies the
transformation from global ½tx; ty; tz� to local ½r; s1; s2� coordinates.
For a matter of simplicity in this and the following examples the
shear components ½s1; s2� are represented in their absolute values.
This does not mean that the method is not able to recover the trac
tions with their correct sign.

6.1.2. Linear tetrahedra
In this second set of examples a cubical domain is discretized

with linear tetrahedral elements, first using a regular symmetric
mesh shown in Fig. 13, and then using an irregular mesh (Fig. 14).
The external load applied corresponds to a uniform stress state of
rx 3 Pa, ry 5 Pa, rz 0 Pa and sxy syz sxz 0. In both cases
the correct nodal stress tractions are recovered, as well as the no
dal stress tensor as shown on the left of Figs. 13 and 14. Note that
in the regular case (Fig. 13) the resulting stress tractions lie on the
maximum shear point of each of the three circles of the 3D Mohr
diagram; in contrast, in the irregular mesh (Fig. 14) some of the in
ter element planes do not correspond to such specific orientations
and therefore the corresponding points on the Mohr diagram are
spread over the three circles and the region between them.

6.2. Inter element tractions at interior corner nodes of linear and
quadratic hexahedra under non uniform stress state

The aim of these applications is to show that the accuracy of the
recovered tractions depends on the accuracy of the pre processed
nodal forces obtained by the standard FE analysis. The meshes
are the same already used in the previous section (represented in
the central column of Fig. 12), which now are subject to the gravity
load (along y axis in the figure) with no deformation allowed along
the horizontal directions (i.e., axes x, z in the figure). Linear first
and quadratic hexahedral elements then are used for the four

Fig. 15. Refinements of meshes (c) and (d) of Fig. 12.



  

meshes. As known, linear elements and coarse refinements per
form badly when a non uniform stress state is applied. On the
other side, in case of gravity load, quadratic elements perform well
even with coarse meshes. This condition applies to the results of
the proposed method, as shown in the following example.

For all the examples, it has been assumed that the specific
density q is equal to 1.8 kg/m3, the Poisson coefficient
m 0:33 and the gravity acceleration kgk g 10 m/s2. At each
point of the continuum solid, the theoretical stress tensor is given
by:

Mesh (b)

4 5 4.0 3 5 3.0

1.0

0 5

0 5

1.0

4 5 4.0 3 3.0

1.0

0 5

0 5

1.0

4 5 4.0 3 5 3 0

1.0

0 5

0 5

1.0

Mesh (c)
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2

1

1

2

Fig. 16. In blue: the stress tractions and stress tensors at the interior node of the linear meshes shown in Fig. 15. In red: the theoretical solution.

Fig. 17. Left: Cubic domain discretized by 24 quadratic tetrahedra; center: mid-edge node A; right: detail of the mid-edge node and the inter-element surfaces around node A.



  

T
rx sxy sxz

sxy ry syz

sxz syz rz

2
64

3
75

K0ry 0 0
0 ry 0
0 0 K0ry

2
64

3
75 with K0

m
1 m

;ry qgy0

ð43Þ

being y0 the distance from the top surface.
Note that from the physical viewpoint, ry will be different for

each mesh depending on the vertical position of the interior node
under study. Also, with the boundary conditions used, rx should be
the same as rz. Table 1 summarizes, for each of the four meshes,
the vertical location of the central node (y0 coordinate), the analyt
ical exact solution of the vertical and horizontal stresses, as well as
the values of the error of the nodal stress tensor components ob
tained using the proposed method, for both linear and quadratic
elements.

It is evident that the linear elements give inaccurate results
while the quadratic elements catch the theoretical stress state, as
shown in the Table 1 (except for the totally symmetric mesh (case
a) that shows no difference between the linear and the quadratic
meshes).

It has to be noted, as previously mentioned, that the linear
analysis presented here is a classical well known case in which
the interpolation order of the elements (linear) is lower than that
required to represent the displacement field (quadratic). Therefore,
the overall results of the FE calculation using linear elements could
be expected to be clearly inaccurate in terms of stresses, especially
if only a few elements are used in the discretization, which is
exactly the case in the small academic examples presented (with
only two elements per direction). This error would be reduced

progressively as the linear mesh is refined, as it is shown in the fol
lowing section.

6.3. Refinement study

Similarly to the previous examples, the following applications
show that the accuracy of the proposed method strongly depends
on the level of accuracy of the pre processed FE analysis. Geometry
(b), (c) and (d) of Fig. 12 are re proposed in Fig. 15 with different
refinements using linear hexahedral elements under gravity load.
The stress tractions at the interior node (black point shown along
the left column of Fig. 15) are plotted in the Mohr’s plane in
Fig. 16. The results are shown in blue, together with the theoretical
solutions (43) in red. It is evident that refined linear meshes per
form better than coarse meshes, with a clear trend of convergence
towards the correct solution as long as the mesh is refined.

6.4. Inter element tractions at mid edge nodes

6.4.1. Quadratic tetrahedra
The cubic domain shown on the left side of Fig. 17 is discretized

using 24 quadratic tetrahedral elements. The nodal inter element
stresses at the mid edge node A of the four elements around A
are recovered, as well as the five components of the stress tensor
in A, when the sample is subjected to a gravity load case similar
to the one in Section 6.2 and 6.3.

Note that all the normal vectors of the inter element surfaces in
A are contained in the y z plane, i.e., the direction of the edge to
which node A belongs (indicated as m in Fig. 8) coincides with x.

Table 2
Error (in %) of the recovered stress tractions of Fig. 17.

Plane Y1 Plane Y2 Plane Y3 Plane Y4

tx 0 0 0 0
ty 0.13 0.16 0.13 0.11
tz 0.26 0.45 0.26 0.33

Fig. 18. Example of calculation of inter-element forces around a mid-edge node of a hexahedron (serendipity-type) element.

Table 3
Error (in %) of the non-zero recovered stress tractions of Fig. 18.

Plane Non-zero component Analytical exact solution Error (%)

1 tx �29.55 0
2 ty �60.0 0.016
3 tx �29.55 0
4 ty �60.0 0.016



  

Hence, the x component of all normal vectors ni to the planes Y1

(i 1;4) is equal to zero. Also for this example, the exact solution
is taken from (43). Using the proposed method, the error of the
recovered inter element stress tractions (in Pa) is presented in Ta
ble 2. The method shows accurate results also in this case.

Of the stress tensor at point A, as a by product of the proposed
formulation, only five components can be recovered in this case
while the rx component of the stress tensor T at this node remains
undetermined.

6.4.2. Quadratic hexahedra
The mesh is Fig. 18 is made of 14 serendipity elements. For

these elements, in order to maintain the relationship in (9) and
to have a diagonal matrix X the assumption that the stress field
on the surface is constant is necessary, as explained in Section
5.1. The mesh is subject to a gravity load along z, with no deforma
tion allowed along the horizontal directions (i.e., axes x and y in
Fig. 18). The inter element tractions around the mid edge node
187 have been calculated. The analytical solution of the stress trac
tions tðiÞ ½tx; ty; tz�ðiÞ on the four planes around point 187 exhibit
all zero values except for the components perpendicular to the
plane. Table 3 presents the non zero analytical solution and the er
ror of the relative recovered tractions obtained with the proposed
minimization.

It is interesting to note that the method gives accurate results
also for the inter element surfaces 1 and 3 (indicated at the bot
tom right side of Fig. 18) upon which the stress field is not con
stant, contrary to the assumptions used in this method with Q 02
type elements.

6.5. Inter element tractions at boundary nodes

In this example, a 1 m � 1 m � 1 m cubical domain is subject to
a uniform stress state of 3, 5 and 8 Pa respectively along x, y and z.
The cube is discretized with five linear pyramid elements of

quadrangular base, arranged as shown in the upper diagram in
Fig. 19, so that the tips of all them are connected at the node lo
cated at the center of the upper face of the cube. The formulation
developed in Section 6 is applied to this boundary node.

Eight inter element surfaces numbered 1 8 in the lower left
diagram of Fig. 19 are connected to the boundary node in analysis.
Due to the load configuration, the principal stresses are in this case
equal to the values of the applied loads. For symmetry with respect
to the y axis, the stress tractions on planes 5 and 8 coincide, as they
also do for planes 2 and 4, and for planes 6 and 7. The calculated
stress tractions and T tensor are presented on the lower right side
of Fig. 19. They coincide with the theoretical exact solution.

7. Concluding remarks

The formulation proposed by the authors in [1] for the evalua
tion of inter element forces and stress tensor at the nodes in 2D
FE meshes has been extended in 3D for the recovery of inter ele
ment stress tractions alone. These quantities may be evaluated at
the nodes of a standard 3D FE displacement mesh as a post pro
cessing operation involving the solution of a local linear algebraic
system of limited size for each node (in the order of 12 18 equa
tions in the examples presented). The procedure has been devel
oped for corner and mid edge nodes. For the mid edge ones, the
proposed method works with any type of element. For corner
nodes the method works with any linear element and with the
27 node (quadratic) hexahedron element. For the 13 and 14 node
pyramid, 10 node tetrahedron and 20 node hexahedron the calcu
lation of the inter element tractions at corner nodes is still under
investigation.

In the academic examples provided, the inter element tractions
obtained in this way turn out very accurate in most cases, except
perhaps in the cubical specimen discretized unsymmetrically with
two linear elements per direction and subject to gravity loads, as
discussed in the corresponding section. In those examples, the

Fig. 19. Stress recovery for boundary node: mesh and the boundary conditions (top diagram), inter-element planes numbered 1–8 (lower left diagram), and stress tractions
represented by dots on the Mohr plane with the Mohr circles on the right (lower right diagram).



  

accuracy of the method depends on the correctness of the pre pro
cessed element nodal forces. Therefore the method do not show
any superconvergent property [16 18]. However, when the nodal
forces are correctly calculated through the FE analysis, the 3D tech
nique presented in this paper may be confirmed as an accurate yet
inexpensive way to evaluate the stress tractions transmitted across
inter element surfaces throughout the mesh, which are required in
studies of crack nucleation along mesh lines.
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