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Averaging lemmas with a force term in the transport equation

Laboratoire J.A. Dieudonné, CNRS UMR 6621, Université de Nice Sophia-Antipolis, Parc Valrose, 06108 Nice, France 

Abstract

We obtain several averaging lemmas for transport operator with a force term. These lemmas improve the regularity yet known
by not considering the force term as part of an arbitrary right-hand side. Two methods are used: local variable changes or stationary
phase. These new results are subjected to two non-degeneracy assumptions. We characterize the optimal conditions of these
assumptions to compare the obtained regularities according to the space and velocity variables. Our results are mainly in L2,
and for constant force, in Lp for 1 < p  � 2.

Résumé

  Nous obtenons plusieurs lemmes de moyenne pour des équations de transport avec un terme de force. Ces résultats améliorent 
la régularité connue en ne considérant pas le terme de force comme terme source arbitraire. Deux techniques sont utilisées : des 
changements de variables locaux ou des phases stationnaires. Ces résultats sont quantifiées par deux hypothèses de non dégéné-
rescence. Nous caractérisons les conditions optimales de ces hypothèses pour comparer les régularités obtenues, par rapport aux

variables d’espace et de vitesse. Les résultats sont principalement dans L2, et pour le cas constant, dans Lp pour 1 < p  � 2. 

MSC: 35B65; 42B20; 82C40
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1. Introduction

Averaging lemma is a major tool to get compactness from a kinetic equation ([7], etc.). Such results have been used
in a lot of papers during these last years. Among this literature, an important result using an averaging lemma as a key
argument is the proof of the hydrodynamic limits of the Boltzmann or BGK equations to the incompressible Euler or
Navier–Stokes equations [16]. Another major application consists in obtaining the compactness for nonlinear scalar
conservation laws (in [25]) which allows, for instance, to study the propagation of high frequency waves [6].

Basically, averaging lemma is a result which says that the macroscopic quantities
∫

f (t, x, v)ψ(v)dv have a better
regularity with respect to (t, x) than the microscopic quantity f (t, x, v) where f is solution of a kinetic equation.

F. Berthelin, S.Junca
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For example, in [9] and [2], the following result is established.

Theorem (DiPerna, Lions, Meyer–Bézard). Let f , gk ∈ Lp(Rt × R
N
x × R

M
v ) with 1 < p � 2 such that

∂tf + divx

[
a(v)f

] =
∑

|k|�m

∂k
v gk, (1.1)

with a ∈ Wm,∞(RM,RN) for m ∈ N. Let ψ ∈ Wm,∞(RM) with compact support. Let A > 0 such that the support of
ψ is included in [−A,A]M . We assume the following non-degeneracy for a(.): there exists 0 < α � 1 and C > 0 such
that for any (u,σ ) ∈ SN and ε > 0,

meas
({

v ∈ [−A,A]M ; u − ε < a(v) · σ < u + ε
})

� Cεα.

Then

ρψ(t, x) =
∫

RM

f (t, x, v)ψ(v)dv

is in Ws,p(Rt × R
N
x ) where s = α

(m+1)p′ , p′ being the conjugated exponent for p.

Regarding Eq. (1.1), the obtained regularity is proved to be optimal, see [23] and [24]. In [11], the gain of a
half-derivative in L2 context was proved as optimal. A study in the case of a full derivative with respect to x in the
second member is done in [21]. We also refer to [10] and [4] for other results about averaging lemmas. Regularity of f

itself is also challenging, for example by assuming some regularity with respect to v, see [3,18] and [1] for such results.
Theorem here above says for example with m = 1 that for the equation,

∂tf + a(v) · ∇xf = g − F(t, x, v) · ∇vg̃, (1.2)

the obtained regularity is Ws,p(Rt × R
N
x ) with s = α

2p′ . When we consider equation,

∂tf + a(v) · ∇xf + F(t, x, v) · ∇vf = g, (1.3)

that is to say that g̃ = f , it is classical to consider the term F(t, x, v) · ∇vf being part of the right-hand side and to
obtain the regularity Ws,p(Rt × R

N
x ) with s = α

2p′ . But for (1.3), the derivation with respect to v is only on f through
the transport equation and not on an arbitrary term g̃. That is to say, the conventional method is losing information
because this term is part of characteristics and the right-hand side terms are in L2, i.e. for m = 0, and the obtained
regularity should be Ws,p(Rt × R

N
x ) with s = α

p′ .
This is the first motivation of this paper and one of the result we get.
Few other papers deal with averaging lemma avoiding to consider the acceleration term as a source, namely [12,14].

But they are based on a transversality assumption on a(.) restricting the generality to the case α = 1.
Notations for (1.3) are f (t, x, v) ∈ R with t ∈ R, x ∈ R

N , v ∈ R
M , a : R

M → R
N , F : R × R

N × R
M → R

M , and

a(v) · ∇xf =
N∑

i=1

ai(v)∂xi
f, F (t, x, v) · ∇vf =

M∑
i=1

Fi(t, x, v)∂vi
f.

In this paper, we will prove the following averaging lemmas on Eq. (1.3).

Theorem 1 (L2 result). Let a ∈ CN+3(RM
v ,R

N
x ), F ∈ CN+3(Rt × R

N
x × R

M
v ,R

M
v ), f,g ∈ L2(Rt × R

N
x × R

M
v ),

satisfying (1.3). Let A > 0 and ψ ∈ CN+2
c (RM

v ) be such that the support of ψ is included in [−A,A]M . We assume
that there exists 0 < α � 1 and C > 0 such that for any (u,σ ) ∈ SN and ε > 0,

meas
({

v ∈ [−A,A]M ; u − ε < a(v) · σ < u + ε
})

� Cεα. (1.4)

Then the averaging,

ρψ(t, x) =
∫

RM

f (t, x, v)ψ(v)dv,

is in H
α/2

(Rt × R
N
x ).
loc
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Remark 1.1. We notice that we obtain α/2 instead of the well known α/4 when the acceleration term F · ∇xf is
considered as a right-hand side with no particular relation to f .

Remark 1.2. For Vlasov equation, the classical application of averaging lemma is the DiPerna, Lions, Meyer
Theorem which gives the compactness for ρψ with an operator of the kind (1.3) applying the result with g1 = −F · f
when F ∈ L∞

loc. More precisely, if f n, gn
0 and gn

1 = −Fn ·f n are solutions of (1.1) with some bounds in Lp , then ρn
ψ is

bounded in Ws,p(Rt ×R
N
x ) with s = α

2p′ , and thus is compact in Ws′,p(Rt ×R
N
x ) with s′ < s. For p = 2, it is compact

in Hs′
(Rt × R

N
x ) with s′ < α

4 . By this way, paper [8] proves the existence of weak solutions for Vlasov–Maxwell.

With Theorem 1, the obtained compactness is in Hs′
loc(Rt × R

N
x ) with s′ < α

2 .

When the force is constant, we obtain a global regularity result with a less smooth test function.

Theorem 2 (L2 result with F constant). Let a ∈ Cγ (RM
v ,R

N
x ), F(t, x, v) = F ∈ R

M , F �= 0, f ,
g ∈ L2(Rt × R

N
x × R

M
v ) satisfying (1.3) where we assume that function a(·) satisfies the following condition

with γ , which is a positive integer, such that ∀(v, σ ) ∈ R
M × SN , σ = (σ0, σ1, . . . , σN), σ̃ = (σ1, . . . , σN),

∣∣σ0 + a(v) · σ̃ ∣∣ +
γ−1∑
k=1

∣∣(F · ∇v)
ka(v) · σ̃ ∣∣ > 0. (γ ND) (1.5)

Let ψ ∈ C1
c (RM

v ), then the averaging,

ρψ(t, x) =
∫

RM

f (t, x, v)ψ(v)dv,

is in H 1/γ (Rt × R
N
x ).

Remark 1.3. The proof of Theorem 2 is not valid when F = 0. So this theorem does not give an averaging lemma for
the kinetic equation ∂tf + a(v) · ∇xf = g.

Remark 1.4. The case of a nonzero constant force field is not without interest, as it appears for instance when consid-
ering gravity effects in the kinetic theory of neutral gases.

Remark 1.5 (M = 1, one-dimensional velocity).

1. The Sobolev estimate for ρψ comes from optimal bounds in stationary phase lemma. Then, with only f,g ∈ L2

and M = 1, we expect Theorem 2 to give the best Sobolev’s exponent.
2. Since γ � N + 1 (see Proposition 6 for this inequality), with only f,g ∈ L2, we expect ρψ to belong at most to

H 1/(N+1)(RN+1
X ) when M = 1.

3. With scalar velocity, the condition (γ ND) is similar to a non-degeneracy condition given in [13] about averaging
for operators with real principal symbols. More precisely it is the condition (5) of Theorem 4 with t = v and
ξ0 = F in [13]. But our result yields a better smoothing effect, the gain of regularity for the average is 1/γ instead
of 1/(2(γ − 1)) in [13].

Next theorem is a comparison between the two previous results. It shows that Theorem 1 does not give the best
Sobolev exponent when M = 1 and that Theorem 2 is not optimal for M > 1.

Theorem 3. For N � 2 and M = 1, Theorem 2 gives a stronger smoothing effect than Theorem 1 for the best γ = γopt

compared with the best α = αopt since

1

γopt
= 1

N + 1
>

αopt

2
= 1

2N
.

Conversely, for N = M , Theorem 1 can give one half derivative with the best α = 1.
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Remark 1.6. For scalar velocity (v ∈ R, M = 1), we characterize in Theorem 3 the best parameter α for the classical
non-degeneracy condition, namely condition (1.4). This characterization is mentioned in few works, see [25,17], but
the proof of optimality is a new result. This kind of characterization also gives new results for scalar conservation
laws, see [19].

Finally, we find out two results in Lp framework.

Theorem 4 (First Lp result with F constant). Let a ∈ CN+3(RM
v ,R

N
x ), F(t, x, v) = F ∈ R

M
v ,

f,g ∈ Lp(Rt × R
N
x × R

M
v ), satisfying (1.3). Let A > 0 and ψ ∈ CN+2

c (RM
v ) be such that the support of ψ is

included in [−A,A]M . We assume that there exists 0 < α � 1 and C > 0 such that for any (u,σ ) ∈ SN and ε > 0,

meas
({

v ∈ [−A,A]M ; u − ε < a(v) · σ < u + ε
})

� Cεα. (1.6)

Then the averaging,

ρψ(t, x) =
∫

RM

f (t, x, v)ψ(v)dv,

is in W
s,p

loc (Rt × RN
x ) with s = α

p′ .

Theorem 5 (Second Lp result with F constant). Let a ∈ Cγ (RM
v ,R

N
x ), F(t, x, v) = F ∈ R

M
v , F �= 0,

f , g ∈ Lp(Rt × R
N
x × R

M
v ) with 1 < p � 2, satisfying (1.3), where we assume that a(·) satisfies the following

condition with γ , which is a positive integer, such that

∀(v, σ ) ∈ R
M × SN, σ = (σ0, σ1, . . . , σN), σ̃ = (σ1, . . . , σN),

∣∣σ0 + a(v) · σ̃ ∣∣ +
γ−1∑
k=1

∣∣(F · ∇v)
ka(v) · σ̃ ∣∣ > 0. (γ ND)

Let ψ ∈ C1
c (RM

v ), then the averaging,

ρψ(t, x) =
∫
R

f (t, x, v)ψ(v)dv,

is in Ws,p(Rt × R
N
x ) with s = 2

γp′ .

Remark 1.7. These results are presented with time dependence because it is more useful in applications.
In the proof of next sections, we take the following notations. We set X = (t, x) and b(v) = (1, a(v)). Then (1.3)

can be rewritten as follows:

b(v) · ∇Xf + F(X,v) · ∇vf = g, (1.7)

where X ∈ R
N+1, v ∈ R

M .

Here is how the paper is structured.
In Section 2, we prove Theorem 1 for a smooth force field. In Section 3, we prove Theorem 2 for a constant and

nonzero force field. In Section 4, we compare both results (Theorem 3) and finally in Section 5, we prove the extension
to Lp spaces for constant force (Theorems 4 and 5).

2. First theorem in the L2 framework

We first recall the following classical averaging lemma (see [15,5]).

Proposition 1 (Golse, Lions, Perthame, Sentis). Let a ∈ L∞
loc(R

M,R
N), f,g ∈ L2(Rt × R

N
x × R

M
v ), such that

∂tf + a(v) · ∇xf = g. (2.1)
4



Let ψ ∈ L∞(RM
v ), with compact support in some [−A,A]M , such that there exists 0 < α � 1 and C > 0 such that

meas
({

v ∈ [−A,A]M ; u − ε < a(v) · σ < u + ε
})

� Cεα, (2.2)

for any (u,σ ) ∈ SN and ε > 0. Then the averaging,

ρψ(t, x) =
∫

RM

f (t, x, v)ψ(v)dv,

is in Hα/2(Rt × R
N
x ) with the estimate:

‖ρψ‖Hα/2 � C̃(N)
(‖ψ‖L2 + √

K‖ψ‖L∞
)(‖f ‖L2 + ‖g‖L2

)
.

We use this averaging lemma to prove an other result, which deals with test function depending on (t, x, v).

Proposition 2 (Averaging lemma with test function in (X,v)). Let a ∈ L∞
loc(R

M
v ,R

N
x ), f,g ∈ L2(Rt × R

N
x × R

M
v ),

such that

∂tf + a(v) · ∇xf = g. (2.3)

Let ψ ∈ L∞
c (RM

v ,WN+2,∞(RN+1
tx )) with compact support with respect to v in some [−A,A]M . We assume that there

exists 0 < α � 1 and C > 0 such that

meas
({

v ∈ [−A,A]M ; u − ε < a(v) · σ < u + ε
})

� Cεα, (2.4)

for any (u,σ ) ∈ SN and ε > 0.
Then, for any compact K , there exists a constant C(N,K) such that the averaging,

ρψ(t, x) =
∫
R

f (t, x, v)ψ(t, x, v) dv,

is in H
α/2
loc (Rt × RN

x ) with the bound

‖ρψ‖
H

α/2
K

� C(N,K)
(‖f ‖L2 + ‖g‖L2

)‖ψ‖
(L2∩L∞)v(W

N+2,∞
tx )

.

Proof. We fix a compact K on X. We take K̃ = [−S,S]N+1 such that K ⊂ K̃ and χ a C∞ function such that χ = 1
on K and 0 outside K̃ . Finally, we set ψ̃ = ψχ .

Since ψ̃ has a compact support with respect to X, we can extend it by periodicity in these variables. Then the
Fourier expansion with respect to X gives:

ψ̃(X,v) =
∑

β∈ZN+1

cβ(v)eiSβ·X.

We write this formula through,

ψ̃(X,v) =
∑

β∈ZN+1

((
1 + |β|r)cβ(v)

) · eiSβ·X

1 + |β|r ,

with r = N/2 + 1. We set:

φβ(X) = eiSβ·X

1 + |β|r , and ψβ(v) = (
1 + |β|r)cβ(v).

We use the decreasing of Fourier coefficients for WN+2,∞(RN+1
X ) function, that is to say,

∣∣cβ(v)
∣∣ � C1

(S|β|)N+2

∥∥ψ̃(·,v)
∥∥

W
N+2,∞
X

.
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Thus we have: ∫
RM

∑
β∈(ZN+1)∗

∣∣ψβ(v)
∣∣2

dv �
∫

RM

∑
β∈(ZN+1)∗

(
1 + |β|r)2∣∣cβ(v)

∣∣2
dv

� C2

S2N+4

∫
RM

∑
β∈(ZN+1)∗

4|β|2r

|β|2N+4

∥∥ψ̃(·,v)
∥∥2

W
N+2,∞
X

dv

� 4C2

S2N+4

∑
β∈(ZN+1)∗

1

|β|N+2
‖ψ‖2

L2
v(W

N+2,∞
X )

< +∞. (2.5)

On K , we notice that

ρψ(X) =
∫
R

f (X,v)ψ(X,v)dv χ(X) =
∫
R

f (X,v)ψ̃(X,v) dv

=
∫

RM

f (X,v)
∑

β∈ZN+1

φβ(X)ψβ(v) dv.

To apply Fubini’s Theorem, we need that, for a.e. X,∫
RM

∑
β∈(ZN+1)∗

∣∣f (X,v)φβ(X)ψβ(v)
∣∣dv < +∞.

It comes from, ∫
RM

∑
β∈(ZN+1)∗

∣∣f (X,v)φβ(X)ψβ(v)
∣∣dv

�
∫

RM

∣∣f (X,v)
∣∣ ∑
β∈(ZN+1)∗

∣∣φβ(X)ψβ(v)
∣∣dv

�
√√√√∫

RM

∣∣f (X,v)
∣∣2

dv

√√√√√
∫

RM

( ∑
β∈(ZN+1)∗

∣∣φβ(X)ψβ(v)
∣∣)2

dv

�
∥∥f (X,·)∥∥

L2
v

√√√√ ∑
β∈(ZN+1)∗

∣∣φβ(X)
∣∣2

∫
RM

∑
β∈(ZN+1)∗

∣∣ψβ(v)
∣∣2

dv

�
∥∥f (X,·)∥∥

L2
v

√√√√ ∑
β∈(ZN+1)∗

1

(1 + |β|r )2

∫
RM

∑
β∈(ZN+1)∗

∣∣ψβ(v)
∣∣2

dv

< +∞,

since 2r > N + 1 and from (2.5). Thus we can write, on K ,

ρψ(X) =
∑

β∈ZN+1

φβ(X)ρψβ (X),

ρψβ (X) =
∫
R

f (X,v)ψβ(v) dv.

The classical averaging lemma (Proposition 1) gives that

‖ρψβ ‖ α/2 � C̃(N)
(‖ψβ‖L2 + √

C‖ψβ‖L∞
)(‖f ‖L2 + ‖g‖L2

)
.

HK
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We now use the following property: For u1 ∈ Cs(Ω), u2 ∈ Hs(Ω), with s ∈ ]0,1[, with Ω a bounded open set of
RN+1, we have u1u2 ∈ Hs(Ω) with

‖u1u2‖Hs � C3‖u1‖Cs ‖u2‖Hs .

This result gives, for s = α/2,

‖ρψ‖
H

α/2
K

� C3

∑
β∈ZN+1

‖φβ‖
C

α/2
K

‖ρψβ ‖
H

α/2
K

� C4

∑
β∈(ZN+1)∗

‖φβ‖
C

α/2
K

(‖ψβ‖L2 + ‖ψβ‖L∞
)(‖f ‖L2 + ‖g‖L2

) + C3‖ρψ0‖H
α/2
K

� C5

( ∑
β∈(ZN+1)∗

1

|β|r−α/2

‖ψ‖
(L2∩L∞)v(W

N+2,∞
X )

|β|N+2−r

(‖f ‖L2 + ‖g‖L2

) + ‖ψ̃‖C1
K

)

� C5

( ∑
β∈(ZN+1)∗

1

|β|N+2−α/2

(‖f ‖L2 + ‖g‖L2

)‖ψ‖
(L2∩L∞)v(W

N+2,∞
X )

+ ‖ψ‖
CN+2

c

)
.

Since N + 2 − α/2 > N + 1, the proof is completed. �
With this proposition now stated, we can go into the proof of our first theorem.

Proof of Theorem 1. Let K be a compact in R
N+1
X . We set K = K × [−A,A]M . We perform locally a change

in variables in order to rewrite Eq. (1.7) without the term ∇vf and to apply previous result. For any (X0, v0) ∈ K,
using the characteristics since b(v) = (1, a(v)) �= 0, there exists B0 ⊂ K a neighborhood of (X0, v0) and a CN+3

diffeomorphism:

Φ0 : B0 → B0,

(X,w) �→ Φ0(X,w) = (
X,V0(X,w)

)
,

such that on B0 we have

b
(
V0(X,w)

) · ∇XV0(X,w) = F
(
X,V0(X,w)

)
. (2.6)

Let us explain more precisely how to define the diffeomorphism Φ0 from Eq. (2.6). Since b(v) = (1, a(v)), X = (t, x)

and X0 = (t0, x0), Eq. (2.6) can be reformulated as a nonlinear hyperbolic system (where w is a parameter):

∂tV0(t, x;w) + a
(
V0(t, x;w)

) · ∇xV0(t, x;w) = F
(
t, x,V0(t, x;w)

)
, (2.7)

completed by the initial data,

V0(t0, x;w) = w. (2.8)

By the classical method of characteristics, for each w, there exists a neighborhood of (t0, x0) where V0 is well
defined and smooth. The characteristics are smooth with respect to the parameter w, thus V0(t, x,w) is well
defined on a neighborhood of (t0, x0;v0). Notice that ∂wV0(t0, x;w) = idRM , with idRM the identity operator on
R

M
v , and det(DΦ0) = det(∂wV0), so reducing if necessary the previous neighborhood, Φ0 is a diffeomorphism on B0.
Denoting by f̃0(X,w) = f (X,V0(X,w)), g̃0(X,w) = g(X,V0(X,w)), b̃0(w) = b(V0(X,w)), Eq. (1.7) rewrites,

b̃0(w) · ∇Xf̃0 = g̃0. (2.9)

Now, there exists a finite number of Bl to recover this compact, i.e. there exists {(Xl, vl)}l=1,...,L, with the associated
diffeomorphism Φl : Bl → Bl , Φl(X,w) = (X,Vl(X,w)), such that K ⊂ ⋃

l=1,...,L Bl . For this recovering, we use a
partition of unity, we have:

f (X,v) = f (X,v)1K(X,v) =
L∑

l=1

f (X,v)χl(X,v),

where function χl are C∞ and have a compact support in Bl .
7



Denoting again by f̃l(X,w) = f (X,Vl(X,w)), g̃l(X,w) = g(X,Vl(X,w)), b̃l(w) = b(Vl(X,w)) on Bl , and

I l[X] = {
v ∈ R

M such that (X,v) ∈ Bl
}
,

Il[X] = {
w ∈ R

M such that (X,w) ∈ Bl

}
,

we have the following decomposition. It is,

ρψ(X) =
L∑

l=1

∫
RM

fl(X,v)χl(X,v)ψ(v)dv

=
L∑

l=1

∫
I l [X]

f (X,v)χl(X,v)ψ(v)dv

=
L∑

l=1

∫
Il [X]

f̃ (X,w)χl

(
X,Vl(X,w)

)
ψ

(
Vl(X,w)

)
Jl(X,w)dw,

where we can perform the variable change v �→ w = V (X,v) on every neighborhood Bl corresponding to l and
denoting by Jl(X,w) the associated Jacobian, i.e. Jl = |detDΦl | = |det∂wVl |.

We set ψl(X,w) = χl(X,V (X,w))ψ(V (X,w))Jl(X,w). Since a and F have CN+3 regularity, Jl has CN+2 one.
Furthermore ψ ∈ CN+2

c , thus ψl ∈ (L2 ∩ L∞)c(R
M
v ,WN+2,∞(RN+1

X )). We apply previous result, namely Proposi-
tion 2, on the averaging,

ρψl
(X) =

∫
RM

f̃ (X,w)ψl(X,w)dw which is in H
α/2
loc

(
R

N+1
X

)
.

Finally the inequality ‖ρψ‖
H

α/2
K

�
∑L

l=1 ‖ρψl
‖
H

α/2
K

concludes the proof. �
3. Case of a constant force field

When F is a nonzero constant vector, we can obtain a different result. The way to get it is quite different and
we have to be restricted to the case of a constant force field. A key tool here is a generalized uniform version of the
classical method of the stationary phase. We work on Eq. (1.7) with F constant, F ∈ RM , F �= 0. Let us denote a
directional v-derivative along vector F by:

D = F · ∇v. (3.1)

The smoothing effect depends on (γ ND) assumption of Theorem 2. Indeed, it is exactly the following non-degeneracy
condition about D-derivatives of b(.):

∀(v, σ ) ∈ R
M × SN,

γ−1∑
k=0

∣∣Dkb(v) · σ ∣∣ > 0. (γ ND)

Before proving Theorem 2 we give some useful results about oscillatory integrals following Stein’s book [26].

Proposition 3. (See [26].) Suppose φ ∈ Ck+1(R,R) so that, for some k � 1,

dkφ

dvk
(v) � 1, ∀v ∈ ]α,β[. (3.2)

Then ∣∣∣∣∣
β∫

α

eiλφ(v) dv

∣∣∣∣∣ � ck · 1

|λ|1/k

holds when,
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1. k � 2, or
2. k = 1 and φ′ is monotonous.

Furthermore, the bound ck is independent of λ and φ.

This proposition can be found in [26, p. 332]. Elias M. Stein obtains ck � 5 · 2k−1 − 2 in his proof. Notice that ck

is independent of the length of the interval ]α,β[. For |λ| < 1, the bound for the oscillatory integral blows up. Indeed,
for k = 1, we can relax the monotonous assumption on φ by the following bounds:

∣∣φ′(v)
∣∣ � δ > 0, ∀v ∈ ]α,β[, c̃1 = 2 + δ−1

β∫
α

∣∣φ′′(v)
∣∣dv.

Indeed, integrating by parts and using the inequality:

min(a,βb) � min(1, β)max(a, b) for all non-negative a, b,β,

we get,

∣∣∣∣∣
β∫

α

eiλφ(v) dv

∣∣∣∣∣ � max
(|β − α|, c̃1

) · max

(
1,

1

δ

)
· min

(
1,

1

|λ|
)

.

Furthermore, the bound given in Proposition 3 blows up for small λ, so we replace it by the length of the interval and
get the following corollary.

Corollary 1. Let δ > 0. Suppose φ ∈ Ck+1(R,R) so that, for some k � 1,∣∣∣∣dkφ

dvk
(v)

∣∣∣∣ � δ, ∀v ∈ ]α,β[. (3.3)

Then |∫ β

α
eiλφ(v) dv| � max(|β − α|, c̃k) · max(1, 1

δ1/k )min(1, 1
|λ|1/k ), where c̃k is independent of λ, φ and ]α,β[ for

k � 2 and c̃1 = 2 + δ−1
∫ β

α
|φ′′(v)|dv.

Notice that, for k � 2, c̃k = ck is given in Proposition 3.
Following Stein’s book (Corollary, p. 334), we obtain the following proposition.

Proposition 4. (See [26].) Let ψ ∈ W 1,1(]α,β[), φ ∈ Ck+1(R,R) such that, for some δ > 0 and k � 1,∣∣∣∣dkφ

dvk
(v)

∣∣∣∣ � δ, ∀v ∈ ]α,β[.

Then ∣∣∣∣∣
β∫

α

ψ(v)eiλφ(v) dv

∣∣∣∣∣ � max(|β − α|, c̃k)

min(1, δ1/k)max(1, |λ|1/k)

(‖ψ‖L∞(]α,β[) + ∥∥ψ ′∥∥
L1(]α,β[)

)
,

where c̃k is independent of λ, φ, ψ and ]α,β[ for k � 2, and c̃1 = 2 + δ−1
∫ β

α
|φ′′(v)|dv.

Proof. This is classically proved in writing the integral
∫ β

α
ψ(v)eiλφ(v) dv as

∫ β

α
ψ(v)I ′(v) dv, with I (v) =∫ v

α
eiλφ(u) du, integrating by parts and using the uniform estimate for |I (v)| from previous corollary. �
Now we generalize Proposition 4 in the case with parameters and a (γ ND) like assumption.
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Proposition 5. Suppose P is a compact set of parameter p, A > 0, ψ(u;p) belongs to L∞
p (P,W

1,1
u (]−A,A[)) and

φ(u;p) ∈ Cγ+1(Ru × Pp,R), such that for all (u,p) in K = [−A,A] × P ,

γ∑
k=1

∣∣∣∣∂kφ

∂uk

∣∣∣∣(u;p) > 0. (3.4)

Then, for any ]α,β[ ⊂ ]−A,A[,
∣∣∣∣∣

β∫
α

ψ(u;p)eiλφ(u;p) du

∣∣∣∣∣ � dγ · min

(
1,

1

|λ|1/γ

)
·
(

‖ψ‖L∞(K) +
∥∥∥∥∂ψ

∂u

∥∥∥∥
L∞(P,L1(]−A,A[))

)
,

where constant dγ is independent of λ and only depends on A, supK | ∂2φ

∂u2 |, infK 1
γ

∑γ

k=1 | ∂kφ

∂uk |.

Proof. Since K is a compact set, we can choose 0 < δ � 1 such that everywhere on K :

0 < δ <
1

γ

γ∑
k=1

∣∣∣∣∂kφ

∂uk

∣∣∣∣(u;p).

Let us define the open set Zk = {(u;p), |∂k
uφ(u;p)| > δ}, for k = 1, . . . , γ . Necessarily K ⊂ ⋃γ

k=1 Zk , and then there
exists a partition of unity such that

∑γ

k=1 ρk ≡ 1 on K and such that the support of ρk is included in Zk . Let us define

ψk = ρkψ and I = I1 + · · · + Iγ where Ik(p) = ∫ b

a
ψk(u;p)eiλφ(u;p) du. We apply Proposition 4 on each Ik where

the exponent “ ′ ” denotes ∂u:

|Ik| � max(2A, c̃k)

δ1/k max(1, |λ|1/k)
sup
P

(∥∥ψk(·,p)
∥∥

L∞(]−A,A[) + ∥∥ψ ′
k(·,p)

∥∥
L1(]−A,A[)

)
.

Since for any fixed p and J = ]−A,A[, we have:(∥∥ψk(·,p)
∥∥

L∞(J )
+ ∥∥ψ ′

k(·,p)
∥∥

L1(J )

)
�

(‖ρk‖L∞(J ) + ∥∥ρ′
k

∥∥
L1(J )

)(∥∥ψ(·,p)
∥∥

L∞(J )
+ ∥∥ψ ′(·,p)

∥∥
L1(J )

)
,

it is enough to take,

dγ =
∑

k

max(2A, c̃k)

δ1/k

(‖ρk‖L∞(K) + ‖∂uρk‖L∞(P,L1(J ))

)
,

to conclude the proof. �
We are now able to prove the second theorem.

Proof of Theorem 2. The proof is splitted in three steps. First, we choose a suitable variable associated to D.
Secondly, we use Fourier transform with respect to X and solve a linear ordinary differential equation with respect to
v1. Third, we obtain Sobolev estimates for ρψ with Proposition 5.

Step 1. Change of coordinates. With a suitable choice of orthonormal coordinates, we assume, without loss of
generality that

D = F · ∇v = |F | ∂

∂v1
,

where |F | is the Euclidean norm of vector F and v = (v1, v2, . . . , vM) ≡ (v1;w). Notice that the Jacobian for an
orthonormal change of variables is one, thus the estimates on ρψ are invariant through such choice for v1. With such
notations, Eq. (1.7) becomes:

b(v) · ∇Xf + |F | ∂f

∂v1
= g. (3.5)
10



Step 2. Linear o.d.e. Denoting by F (f ) the Fourier transform of f with respect to X, and by Y the dual variable
of X, Eq. (3.5) becomes:

|F | ∂

∂v1
F (f ) + i

(
b(v) · Y )

F (f ) = F (g). (3.6)

For almost all fixed Y , we solve an ordinary differential equation with respect to v1. For this purpose, we chose the
initial v1, namely v0

1 ∈ ]0,1[, such that∫
R

N+1
Y ×R

M−1
w

∣∣F (f )
∣∣2(

Y ;v0
1;w)

dY dw �
∫

Rv1

∫
R

N+1
Y ×R

M−1
w

∣∣F (f )
∣∣2

(Y ;v1;w)dY dw dv1. (3.7)

Existence of such v0
1 is a consequence of Fubini’s Theorem.

Indeed, let h(v1) = ∫
RN+1

∫
R

M−1
w

|F (f )|2(Y ;v1;w)dY dw � 0.

Function h is defined almost everywhere, belongs to L1(Rv1) and satisfies ‖h‖L1(Rv1 ) = ‖f ‖2
L2

X,v

. Since h function

cannot be everywhere greater than its mean value on ]0,1[, there exists v0
1 ∈ ]0,1[ such that h(v0

1) �
∫ 1

0 h(v1) dv1,

which confirms (3.7).
We finally write an explicit formula for F (f ) with B(v) being a primitive with respect to v1 of −b/|F |:

B(v) = B(v1;w) = −
v1∫

v0
1

b(u;w)

|F | du,

F (f )(Y, v1;w) = F (f )
(
Y,v0

1;w)
eiB(v)·Y + 1

|F |
v1∫

v0
1

F (g)(Y,u;w)ei(B(v1;w)−B(u;w))·Y du.

Step 3. H 1/γ estimates with oscillatory integrals. We decompose ρψ(t, x) = ∫
RM f (t, x, v)ψ(v)dv in two parts

from the explicit expression of F (f ) in Step 2: F (ρψ) = ρ̂f + ρ̂g . The first term is

ρ̂f (Y ) =
∫

R
M−1
w

F (f )
(
Y,v0

1;w)∫
Ru

ψ(u;w)eiB(u;w)·Y dudw.

In this integral, there is an oscillatory integral which is parametrized by w and Y = λσ with λ = |Y | and σ ∈ SN ; it is

Osc(Y,w) =
∫
Ru

ψ(u;w)eiλB(u;w)·σ du. (3.8)

To use Proposition 5, we set p = (σ,w) which belongs to the compact set P = SN ×[−A,A]M−1 with A > 1 > v0
1 > 0

such that suppψ ⊂ [−A,A]M . Condition (3.4) of Proposition 5 for oscillatory integral (3.8) is
γ∑

k=1

∣∣∣∣∂kB(u;w)

∂uk
· σ

∣∣∣∣ > 0

which is exactly the (γ ND) assumption for b(.). Thanks to the (γ ND) assumption and Proposition 5, there exists a
constant L such that for all (Y,w) ∈ R

d × [−A,A]M−1, and for all α,β such that −A < α < β < A, we have

max
(
1, |Y |1/γ

)∣∣∣∣∣
β∫

α

ψ(u;w)eiλB(u;w)·σ du

∣∣∣∣∣ � L. (3.9)

Using constant L and the compact support of ψ we have:

max
(
1, |Y |1/γ

)∣∣ρ̂f (Y )
∣∣ � L

∫
M−1

∣∣F (f )
(
Y,v0

1;w)∣∣dw.
[−A,A]
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By Cauchy–Schwarz inequality, we get:

max
(
1, |Y |2/γ

)∣∣ρ̂f (Y )
∣∣2 � (2A)M−1L2

∫
[−A,A]M−1

∣∣F (f )
(
Y,v0

1;w)∣∣2
dw.

Finally, since v0
1 satisfies (3.7), we obtain:∫

RN+1

max
(
1, |Y |2/γ

)∣∣ρ̂f (Y )
∣∣2

dY � (2A)M−1L2
∫

RN+1×RM

∣∣F (f )(Y, v)
∣∣2

dv dY,

which gives ρ̂f ∈ H 1/γ .
The second term ρ̂g is bounded in the same way. More precisely, we set:

ρ̂g(Y ) =
∫

RM−1

H(Y,w)dw,

with

H(Y,w) = 1

|F |
A∫

−A

v1∫
v0

1

F (g)(Y,u;w)ei(B(v1;w)−B(u;w))·Y dudv1.

Using Fubini’s Theorem and notation,

Ψ (Y,u;w) = ψ(u;w)eiB(u;w)·Y ,

we have another expression of H(Y,w):

H(Y,w) = 1

|F |
A∫

v0
1

F (g)(Y,u;w)e−iB(u;w)·Y
( A∫

u

Ψ (Y, v1;w)dv1

)
du

+ 1

|F |

v0
1∫

−A

F (g)(Y,u;w)e−iB(u;w)·Y
( u∫

−A

Ψ (Y, v1;w)dv1

)
du,

where there are two oscillatory integrals
∫ A

u
Ψ (Y, v1;w)dv1 and

∫ u

−A
Ψ (Y, v1;w)dv1 which are uniformly bounded

thanks to inequality (3.9). Then we have:

max
(
1, |Y |1/γ

)∣∣H(Y ;w)
∣∣ � L

|F |
A∫

−A

∣∣F (g)(Y,u;w)
∣∣du.

With Cauchy–Schwarz inequality, we obtain:

max
(
1, |Y |2/γ

)∣∣H(Y ;w)
∣∣2 � 2AL2

|F |2
A∫

−A

∣∣F (g)(Y,u;w)
∣∣2

du,

and finally,

max
(
1, |Y |2/γ

)∣∣ρ̂g(Y )
∣∣2 � (2A)M

L2

|F |2
∫

RM

∣∣F (g)(Y, v)
∣∣2

dv.

Then ρg ∈ H 1/γ , thus finally ρψ is also in this space, which concludes the proof of the theorem. �
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4. About non-degeneracy conditions

Theorems 1 and 2 assume two different non-degeneracy conditions on vector field a(v) ∈ R
N , v ∈ suppψ ⊂ R

M .
Those conditions involve two parameters, namely α = αa(.) ∈ ]0,1] in (1.4) and γ = γa(.),F ∈ N

∗ in (1.5), directly

linked to the smoothing effect for the averaging in H
α/2
loc or H 1/γ . In this section, we give some optimal upper bounds

for α and 1/γ to compare both results obtained by different ways. Indeed, for M = 1 and N � 2, Theorem 2 gives
a better smoothing effect than Theorem 1. Conversely, when N = M , Theorem 1 is stronger than Theorem 2. In this
part, we study these various properties and in particular, we prove Theorem 3.

More precisely, let A be positive, we obtain the optimal α and γ , namely:

αopt(N,M) = sup
a(.)∈C∞([−A,A]Mv ,RN

x )

α,

γopt(N,M) = min
a(.)∈C∞(RM

v ,RN
x ),F∈RN\{0}

γ.

We start by obtaining the easiest estimate which is a lower bound for γ .

Proposition 6. For all N,M , we have γ � γopt(N,M) = N + 1.

Proof. We use notations from Section 3. Following this section, the (γ ND) condition can be rewritten and means
that we cannot find σ ∈ SN such that σ ⊥ b(v), σ ⊥ Db(v), . . . , σ ⊥ Dγ−1b(v). There are γ conditions to satisfy.
Since b(v) belongs to R

N+1, we necessarily have γ � N + 1. Indeed N + 1 is the minimal possible value for γ .
For instance, if D = ∂

∂v1
, b(v) = (1, v1, v

2
1, . . . , vN

1 ), with v = (v1, v2, . . . , vM), we have γopt = N + 1. �
The optimal α is more difficult to get and it is obtained in the following subsections, see also [19]. The evaluation

of exponent α also implies new asymptotic expansions involving piecewise smooth functions in [20].

4.1. M = 1, one-dimensional velocity

Proposition 7. For M = 1, we have α � αopt(N,1) = 1
N

.

To obtain this optimal α for M = 1, we need some other notations and the following results. The proof of
Proposition 7 is achieved at the end of Section 4.1.

Let ϕ ∈ C∞([a, b],R) and v ∈ [a, b], the multiplicity of ϕ on v is defined by:

mϕ[v] = inf
{
k ∈ N, ϕ(k)(v) �= 0

} ∈ N = N ∪ {+∞}.
It means that if k = mϕ then ϕ(k)(v) �= 0 and ϕ(j)(v) = 0 for j = 0,1, . . . , k − 1. For instance mϕ[v] = 0 means
ϕ(v) �= 0; mϕ[v] = 1 means ϕ(v) = 0, ϕ′(v) �= 0 and mϕ[v] = +∞ means ϕ(j)(v) = 0 for all j ∈ N.

Set the multiplicity of ϕ on [a, b] by:

mϕ = sup
v∈[a,b]

mϕ[v] ∈ N.

Notice that the case where ϕ only belongs to Ck , mϕ is well defined only if mϕ[v] � k for all v ∈ [a, b].

Lemma 1. Let ϕ ∈ Ck([a, b],R) with a < b, and

Z(ϕ, ε) = {
v ∈ [a, b], ∣∣ϕ(v)

∣∣ � ε
}
.

If mϕ is well defined (mϕ � k) then there exists C > 0 such that, for all ε > 0,

meas
(
Z(ϕ, ε)

)
� Cεα with α = 1

mϕ

. (4.1)

Furthermore, if mϕ is positive, for all β > α, we have limε→0
meas(Z(ϕ,ε))

β = +∞ (Optimality).

ε
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Proof. The case mϕ = 0 is clear enough since there is no zero in this situation. Quantity mϕ is positive simply means
that the set Z(ϕ,0) of roots of ϕ is not empty. Since any root of ϕ has a finite multiplicity, the compact set Z(ϕ,0) is
discrete and then finite: Z(ϕ,0) = {z1, . . . , zν}. For each zi and h > 0, let Vi(h) be ]zi − h, zi + h[ ∩ [a, b]. For any
0 < h < |b − a|, we have:

h � meas
(
Vi(h)

)
� 2h.

For any root zi , there exists hi ∈ ]0, |b − a|[, Ai > 0 and δi > 0 such that

δi |h|ki �
∣∣ϕ(zi + h)

∣∣ � Ai |h|ki for all h ∈ Vi(hi), (4.2)

with ki = mϕ[zi]. This is a direct consequence of Taylor–Lagrange formula. Let V be
⋃

i Vi(hi) and
ε0 = min(1,minv∈[a,b]\V |ϕ(v)|). By the continuity of ϕ on the compact set [a, b] \ V , ε0 is positive. Then for all
0 < ε < ε0, we have Z(ϕ, ε) ⊂ V . If ε � |ϕ(zi + h)| for |h| < hi , then from (4.2), we have (ε/δi)

1/ki � |h|. This last
inequality implies for 0 < ε < ε0 � 1 that Z(ϕ, ε) is a subset of

⋃
i Vi((ε/δi)

1/ki ) and then

meas
(
Z(ϕ, ε)

)
� 2

ν∑
i=1

(ε/δi)
1/ki �

(
2

ν∑
i=1

δ
−1/ki

i

)
ε1/mϕ .

It gives inequality (4.1). To obtain the optimality of α, let zj be a root of ϕ with maximal multiplicity
i.e. mϕ[zj ] = mϕ = k. Again from (4.2), Vj ((ε/Aj )

1/k) is a subset of Z(ϕ, ε) for all ε ∈ ]0, ε0[. Then we have
(ε/Aj )

1/k � meas(Z(ϕ, ε)), which is enough to get the optimality of α = 1/k and concludes the proof. �
An upper bound of αopt(N,1) is a consequence of previous lemma.

Lemma 2. For all N , we have αopt(N,1) � 1/N .

Proof. For any a(.) ∈ C∞(Rv,R
N
x ) and A > 0, we set:

ϕ(v;u,σ ) = a(v) · σ − u = b(v) · (−u,σ ),

defined for v ∈ [−A,A], with u ∈ R, (−u,σ ) ∈ SN , b(v) = (1, a(v)) ∈ RN+1, and m = sup(−u,σ )∈SN mϕ(·;u,σ ).
Let v be fixed, we choose (−u,σ ) such that mϕ[v] � N in order to obtain a lower bound for m.
Since rank{b(v), b′(v), . . . , b(N−1)(v)} � N , there exists (−u,σ ) such that u2 + |σ |2 = 1, and

(−u,σ ) ⊥ {b(v), b′(v), . . . , b(N−1)(v)}. Then with such u and σ , mϕ(·;u,σ )[v] � N which implies m � N and
consequently, from the optimality obtained in Lemma 1, we get α � αopt(N,1) � 1

N
. �

When function v → ϕ(v;p) depends on a parameter p, some results are obtained in the two following lemmas to
bound quantity C of Lemma 1 independently of p parameter.

Lemma 3. Let k � 1, I an interval of R, φ ∈ Ck(I,R) and δ > 0.
If |φ(k)(v)| � δ > 0 for all x ∈ I then there exists a constant c̄k independent of φ, I, δ such that

meas
(
Z(φ, ε)

)
� c̄k(ε/δ)

1/k, where Z(φ, ε) = {
v ∈ I,

∣∣φ(v)
∣∣ � ε

}
.

Proof. Since the result is independent of interval I and of φ(k−1)(0) sign, let us suppose that I = R with
|φ(k)(v)| � δ > 0 on R, and φ(k−1)(0) � 0.

We first treat the case k = 1. If φ′(v) stays positive, we have φ(0) + δv � φ(v) for 0 � v and since φ(0) � 0, there
exists a unique c � 0 such that φ(c) = 0. In the other case, φ′(v) stays negative, and we find a unique c � 0 such that
φ(c) = 0. Then |φ(v)| � δ|v − c| for all v, and |φ(v)| � ε implies |v − c| � ε/δ i.e. Z(φ, ε) ⊂ [c − ε/δ, c + ε/δ].
So the lemma is proved for k = 1 with c̄1 = 2.

We now prove the lemma by induction on k. Let us suppose that the case k is known. As for k = 1,
there exists a unique c such that φ(k)(c) = 0. Thus for all v we have |φ(k)(v)| � δ|v − c|. Let η > 0 and set
W = Z(φ, ε) ∩ [c − η, c + η], U = Z(φ, ε) ∩ (]−∞, c − η[ ∪ ]c + η,+∞[). We have meas(W) � 2η and by
our inductive hypothesis, since |φ(k)(v)| � δ|v − c| � δη on U , meas(U) � c̄k(ε/(δη))1/k . Now the relation
14



Z(φ, ε) = W ∪ U gives meas(Z(φ, ε)) � infη>0(2η + c̄k(ε/(δη))1/k) which implies by a simple computation

of the minimum that meas(Z(φ, ε)) � c̄k+1(ε/δ)
1/(k+1), where c̄k+1 = 21/(k+1)(k + 1)k1/(k+1)−1c̄

1−1/(k+1)
k which

concludes the proof. �
Lemma 4. Let P be a compact set of parameters, k a positive integer, A > 0, V = [−A,A], K = V × P ,
φ(v;p) ∈ C0(P,Ck(V,R)), such that, for all (v,p) in the compact K , we have:

k∑
j=1

∣∣∣∣∂jφ

∂vj

∣∣∣∣(v;p) > 0.

Let Z(φ(·;p), ε) = {v ∈ V, |φ(v;p)| � ε}, then there exists a constant C such that

sup
p∈P

meas
(
Z

(
φ(·;p), ε

))
� Cε1/k.

Proof. Since K is a compact set, we can choose 0 < δ � 1 such that, everywhere on K , we have

0 < 2δ < 1
k

∑k
i=1 | ∂iφ

∂vi |(v;p).

For each (v;p) ∈ K , there exists an integer i ∈ {1, . . . , k}, a number r > 0 and an open set Op with p ∈ Op ⊂ P

such that |∂i
vφ| > δ on U(v,p) = ]v − r, v + r[ × Op . Therefore, we have

meas
(
Z

(
φ(·;p), ε

) ∩ ]v − r, v + r[) � c̄i (ε/δ)
1/i � c̄ε1/k/δ

using Lemma 3, where c̄ = maxi=1,...,k c̄i .
By compactness of K , there exists a finite number of such sets Uj = U(vj ,pj ) such that K ⊂ ⋃ν

j=1 Uj . Thus, for
each p, Z(φ(·;p), ε) intersects at most ν intervals ]vj − rj , vj + rj [ where Lemma 3 is applied. This allows to write
meas(Z(φ(·;p), ε)) � νcε1/k/δ for all p and to conclude the proof. �
Lemma 5. Let a(v) be the field (v1, v2, . . . , vN) then αa(.) = 1/N.

Proof. From Lemma 2, we have yet αa(.) � 1/N. So, we just have to prove that α = 1/N satisfies (1.4) to conclude.
For all v, rank{a′(v), . . . , a(N)(v)} = N , thus it is impossible to find σ ∈ SN−1 such that σ ⊥ {a′(v), . . . , a(N)(v)}.

Let ϕ(v;u,σ ) be a(v)·σ −u. Since ∂
j
v ϕ(v;u,σ ) = a(j)(v)·σ for j �1, we have everywhere

∑N
j=1 |∂j

v ϕ(v;u,σ )|>0.

Furthermore, for |u| > 1 + amax, where amax = sup|v|�A |a(v)|, we have |ϕ(v;u,σ )| > 1 for any v ∈ [−A,A] and
σ ∈ SN−1. Thus we can apply Lemma 4 with 0 < ε � 1 on the compact set [−A,A]v ×[−amax −1, amax +1]u ×SN−1

σ

which concludes the proof with αa(.) = 1/N . �
Proof of Proposition 7. With Lemma 2, we have αopt(N,1) � 1/N . From Lemma 5, necessarily αopt(N,1) = 1/N

which concludes the proof. �
4.2. M = N

The case when space dimension is equal to velocity dimension is the most physical one and then is very important.
In this case, we can get the best smoothing effect with α = 1.

Proposition 8. For N = M , we have αopt(N,N) = 1.

Proof. Since α � 1, it is enough to find a(.) such that α = 1.
Let a(.) : R

N
v → R

N
x be a global diffeomorphism, A > 0, (u,σ ) ∈ SN and ϕ(v) = a(v) · σ − u. Let

Z(ϕ, ε) = {|v| � A, |ϕ(v)| � ε}. Since Da(v) ∈ GLN(R), and σ �= 0, then ∇vϕ �= 0 and the set Z(ϕ,0) is empty
or a manifold of dimension N − 1.

Notice that for any v, there exists (u,σ ) ∈ SN such that a(v) · σ − u = 0, i.e. Z(ϕ,0) �= ∅. For instance, let σ̃

belong to SN−1 and set ũ = a(v) · σ̃ , then (u,σ ) = 1√
ũ2+1

(ũ, σ̃ ) satisfies the conditions.

We thus consider that Z(ϕ,0) is not empty.
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There exists δ such that 0 < δ < |∇vϕ(v)| < 1/δ for all |v| � A, u2 + |σ |2 = 1.
Using the mean inequality, we obtain δ|v − v′| � |ϕ(v) − ϕ(v′)| � |v−v′|

δ
, which implies for all ε < 1, with

B(x, r) = {y, |x − y| � r} ⊂ R
N , that⋃

z∈Z(ϕ,0)

B(z, δε) ⊂ Z(ϕ, ε) ⊂
⋃

z∈Z(ϕ,0)

B(z, ε/δ),

and Z(ϕ,0) is diffeomorph to a piece of a hyperplane, so meas(Z(ϕ, ε)) is of order ε. More precisely, there exists a
constant C > 0, only dependent on A, δ and ‖Da(.)‖B(0,A) such that 0 < C <

meas(Z(ϕ,ε))
ε

< C−1.

Notice that if a(.) is a local diffeomorphism, α is still 1. �
Incidentally, we also have αopt(N,M) = 1 for all M � N .

5. Theorem in the Lp framework

Let us now deal with Lp case. It will be an interpolation result of the L2 obtained bound and an estimate in L1

using some operators in Hardy spaces. We note H1(RN+1) the Hardy space and H1(RN ×R) the product Hardy space
as done in [2] (see [26] for more details about such spaces).

We will use the two following propositions. The first one is an interpolation result (see [22,2] and [5]) and the
second one is about multiplier [2].

Proposition 9 (Bézard, Interpolation). Let T be a C-linear operator, bounded in,

L2(
Rt × R

N
x × R

M
v

) → Wβ,2(
Rt × R

N
x

)
,

and in

L1(
R

M
v , H1(

R
N × R

)) → H1(
R

N+1
t,x

)
,

for some γ � 0. Then T is bounded,

Lp
(
Rt × R

N
x × R

N
v

) → Ws,p
(
Rt × R

N
x

)
,

for 1 < p � 2, with s = 2β/p′.

Proposition 10 (Bézard, Multiplier on H1). Let m(y,yN+1) be a function of (y, yn+1) ∈ R
N × R which is C∞ out of

[y = 0 or yN+1 = 0], and verifying for all α, β ,∣∣∂α
y ∂β

yN+1
m(y,yN+1)

∣∣ � Cαβ

|y|α|yN+1|β ,

then m defines a bounded Fourier multiplier on H1(RN × R).

Proof of Theorems 4 and 5. For Theorem 4 (respectively Theorem 5), we use the averaging lemma of Theorem 1
(respectively Theorem 2) which gives that T (f,g) = ρψ is bounded from L2 to H

α/2
loc (respectively H 1/γ ).

We now focus on estimate in L1. We denote by F the Fourier transform with respect to X. Taking this Fourier
transform in b(v) · ∇Xf + F(X) · ∇vf = g, we have:

F (f ) = F (g) − F (F · ∇vf )

i(b(v) · Y)
.

Let χ ∈ C∞
c (R), χ(0) = 1, χ ′(0) = 0 and χ ′′(0) �= 0 be an even, non-increasing function in [0,+∞[. We set L such

that suppχ ⊂ [−L,L]. We have:

f (Y, v) = F −1[χ(
b(v) · Y )

F (f )(Y, v) + (
1 − χ

(
b(v) · Y ))

F (f )(Y, v)
]

= F −1[χ(
b(v) · Y )

F (f )(Y, v)
] + F −1

[(
1 − χ

(
b(v) · Y )) F (g) − F (F · ∇vf )

]
,

i(b(v) · Y)

16



and then, in order to bound operator f �→ ∫
RM f (Y, v)ψ(v)dv, we have to bound the three following operators:

Q : f �→
∫

RM

F −1[χ(
b(v) · Y )

F (f )(Y, v)
]
ψ(v)dv, (5.1)

W : g �→
∫

RM

F −1
[

1 − χ(b(v) · Y)

i(b(v) · Y)
F (g)(Y, v)

]
ψ(v)dv, (5.2)

and

R : f �→ −
∫

RM

F −1
[

1 − χ(b(v) · Y)

i(b(v) · Y)
F (F · ∇vf )(Y, v)

]
ψ(v)dv. (5.3)

As in the classical case (by this we refer to [2,5]), we transform the operators in order for them to involve only one
direction in X. Indeed, the manipulation of product structure for Hardy space which depends on a moving direction is
difficult to deal with. Thus, for any v, we take Rv an orthogonal transform in R

N+1 such that

Rv

(
b(v)

|b(v)|
)

= eN+1,

where eN+1 is the very last vector of the canonical base, and we set:

f∗(X,v) = f
(
R−1

v (X), v
)
,

and

Q∗f∗ = Qf.

Since f �→ f∗ is an isometry on L
p
Xv , we have now to study Q∗ instead of Q. We perform similar transformations for

the two other operators and we get W∗ and R∗.
For the two first operators, as in the classical proof, we have:

‖Qf ‖H1(RN+1) � C‖f ‖L1(RM
v ,H1(RN×R)),

and

‖Wg‖H1(RN+1) � C‖g‖L1(RM
v ,H1(RN×R)).

The new term is the third one (operator R). We use the following rewrite of R(f ) in order to bound it. This is

(Rf )(Y ) = −F −1
∫

RM

[
1 − χ(b(v) · Y)

i(b(v) · Y)
F · ∇v F (f )(Y, v)

]
ψ(v)dv

= F −1
(

F ·
∫

RM

F (f )(Y, v)∇v

[
1 − χ(b(v) · Y)

i(b(v) · Y)
ψ(v)

]
dv

)

= F −1
(

F ·
∫

RM

F (f )(Y, v)
1 − χ(b(v) · Y)

i(b(v) · Y)
∇vψ(v)dv

)

+ F −1
(

F ·
∫

RM

F (f )(Y, v)m0
(
b(v) · Y )∇v

(
b(v) · Y )

ψ(v)dv

)
, (5.4)

with

m0(y) = −yχ ′(y) − 1 + χ(y)

iy2
. (5.5)

We denote by F (R1f ) and F (R2f ) the two terms of this decomposition. We perform as previously orthogonal
transformations and we have to study the obtained (R1)∗ and (R2)∗.
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The term (R1)∗ is the same than W∗ but with ∇vψ instead of ψ . Thus we have the same result thanks to the
regularity assumption on ψ .

Now, setting T = m0∇v , we have:

(R2)∗(f∗)(Y ) = F ·
∫

RM

F −1(F (f∗)
(
Rv(Y ), v

)
T

(
b(v) · Y ))

ψ(v)dv

= F ·
∫

RM

F −1(F (f∗)
(
Rv(Y ), v

)
T

(
Rv

(
b(v)

) · Rv(Y )
))

ψ(v)dv

= F ·
∫

RM

F −1(F (f∗)
(
Rv(Y ), v

)
T

(∣∣b(v)
∣∣eN+1 · Rv(Y )

))
ψ(v)dv,

thus, setting Tj = m0∂vj
, we get,

∥∥(R2)∗(f∗)
∥∥

H1(RN+1)
�

∑
j

|Fj |
∫

RM

∥∥F −1(F (f∗)
(
Rv(Y ), v

)
Tj

(∣∣b(v)
∣∣eN+1 · Rv(Y )

))∥∥
H1(RN+1)

∣∣ψ(v)
∣∣dv

�
∑
j

|Fj |
∫

RM

∥∥F −1(F (f∗)(Y, v)Tj

(∣∣b(v)
∣∣eN+1 · Y ))∥∥

H1(RN+1)

∣∣ψ(v)
∣∣dv

� C1

∑
j

|Fj |
∫

RM

∥∥F −1(F (f∗)(Y, v)Tj

(∣∣b(v)
∣∣eN+1 · Y ))∥∥

H1(RN×R)

∣∣ψ(v)
∣∣dv,

using the invariance under orthogonal transformation in H1(RN+1) and thanks to the continuous injection of
H1(RN × R) in H1(RN+1).

We use now Proposition 10 with the term:

mj(y, yN+1) = Tj

(∣∣b(v)
∣∣eN+1 · Y ) = m0

(∣∣b(v)
∣∣yN+1

)
∂vj

(∣∣b(v)
∣∣)yN+1, for j = 1, . . . ,M.

Those terms rewrite

mj(y, yN+1) = m0
(∣∣b(v)

∣∣yN+1
)a(v) · ∂vj

a(v)

|b(v)| yN+1.

Now m0(z) →z→0 − 1
2i

χ ′′(0), therefore m0 is C∞. The terms in (5.5) with χ have a compact support and the other
term is 1/y2, then every derivatives of m0 is bounded at infinity.

We differentiate mj with respect to yN+1, it gives:

∂k
yN+1

mj(y, yN+1) = a(v) · ∂vj
a(v)

|b(v)|
(
m

(k)
0

(∣∣b(v)
∣∣yN+1

)∣∣b(v)
∣∣kyN+1 + km

(k−1)
0

(∣∣b(v)
∣∣yN+1

)∣∣b(v)
∣∣k−1)

.

There exists some constants C and Ck such that∣∣b(v)
∣∣ � C,

∣∣b(v)
∣∣k−2∣∣a(v) · ∂vj

a(v)
∣∣ � Ck

for v in the compact support of ψ . Thus∣∣∂k
yN+1

mj(y, yN+1)
∣∣|yN+1|k � Ck

(
Cm

(k)
0

(∣∣b(v)
∣∣yN+1

)
yN+1 + km

(k−1)
0

(∣∣b(v)
∣∣yN+1

))
.

For |yN+1| � (R + 1)/C, we have m
(j)

0 (|b(v)|yN+1) = 0 for any j , and then

m
(k)
0

(∣∣b(v)
∣∣yN+1

)
yN+1 + km

(k−1)
0

(∣∣b(v)
∣∣yN+1

) = 0 for |yN+1| � (R + 1)/C.

Furthermore |m(k)
0 (|b(v)|yN+1)yN+1 +km

(k−1)
0 (|b(v)|yN+1)| � ‖m(k)

0 ‖∞ R+1
C

+k‖m(k−1)
0 ‖∞ for |yN+1|<(R+1)/C.

Finally, for any (y, yN+1), we get:∣∣∂k
yN+1

mj(y, yN+1)
∣∣|yN+1|k � Ck

(∥∥m
(k)
0

∥∥∞(R + 1) + k
∥∥m

(k−1)
0

∥∥∞
)

uniformly with respect to v in the support of ψ . Then, we can apply Proposition 10 to get the boundary of (R2)∗.
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The interpolation result concludes, since β = α/2 (respectively β = 1/γ ), that the obtained regularity is s = α/p′
(respectively s = 2/(γp′)). �
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