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Hydrodynamic Coefficients and Wave Loads
for a WEC Device in Heaving Mode

Sébastien Olaya

EA 4325 LBMS
Email : olaya@enib.fr

Abstract—This paper deals with the hydrodynamic parameter
computation of a Wave Energy Converter (WEC) that con-
sists of a cylindrical buoy sliding along a partially submerged
platform made up of a plate and a column. The computed
parameters are particularly needed for the development of
a simple hydrodynamic time-dependant model based on the
Cummins formulation. This model is intended to be used for
WEC control purposes. A semi-analytical approach is therefore
proposed for the computation of the hydrodynamic coefficients
and the excitation forces. The boundary value problem is solved
using variable separation and matched eigenfunction expansion
methods. Analytical expressions for the velocity potential are then
obtained for each subdomain. Using afterwards these expressions
enables the hydrodynamic coefficients and the excitation force to
be computed. Numerical results are given for different radiuses
of the buoy, column and plate and are compared with previously
published models.

Index Terms—Wave Energy Converter, potential theory, eigen-
function expansion, wave-loads, heaving mode, scattering and
radiation problem.

I. INTRODUCTION

This work was motivated from the need to provide a set
of hydrodynamic parameters for the development of a simple
hydrodynamic time-dependant model based on the Cummins
formulation for a Wave Energy Converter (WEC) [1]. This
time domain model is needed to analyse the WEC behavior in
irregular waves. The WEC device schematically depicted on
Fig. 1 consists of a cylindrical buoy riding in waves and sliding
along a partially submerged platform made up of a plate and
a column. Energy resulting from the relative motion between
the two concentric bodies is extracted from the incoming
wave by a gearbox and an electric generator. The present
paper focuses on the determination of the excitation forces
and hydrodynamic coefficients (i.e. added mass and radiation
damping) for heaving mode in water of finite depth. Due to the
simplicity of the geometry and in view of the model purpose
(i.e. optimisation and control) these parameters are evaluated
using a semi-analytical approach which is propably the fastest
and most reliable way to get them. From the literature review,
it has been noticed that in [2], Berggren and Johansson
(1992) have treated the radiation problem of a wave energy
device consisting of a buoy connected to a submerged plate
by an elastometric hose. The buoy and plate have the same
radius. They presented results for added mass and potential
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Fig. 1. Definition sketch of the Wave Energy Converter.

damping for the two bodies and included cross terms only
for the heaving mode. Under the assumption of linear wave
theory, the radiation problem is solved by using the method
of eigenfunction expansions. A comparison is made between
their solution and a solution proposed by Yeung R.W. (1981)
[3] who studied the whole radiation problem of a floating
vertical cylinder. A similar study was performed in [4] where
the buoy is rigidly connected to a submerged vertical tube in
which a plate acts as a piston. In addition to the radiation
problem, the author has presented results for the excitation
forces obtained through the Haskind’s theorem. Wu et al.
investigated in [5] hydrodynamic properties of a similar WEC
where the buoy riding in waves is directly connected to a
caisson fixed on the seabed by a rigid rope. Wave energy is
harnessed by a liquid pump in the caisson through the rope. In
this paper the radius of the caisson is greater than or equal to
that of the buoy. In [6], the same authors extended the solution
to the case where the caisson radius is smaller than that of
the buoy. They presented analytical results for the response
amplitudes and hydrodynamic forces for different radius sizes
of the submerged structure and the gap between them. It is
shown that the buoy hydrodynamic behaviour becomes more
complex when the caisson radius is large and only at relatively
low frequency. Also it seems that the resonance period does
not vary regardless of the increase or decrease of the radius
ratio and/or the gap. In [7] a similar study was performed
with a two-body moving structure but their analysis where
restricted to the case where the radius of the submerged
cylinder is larger than or equal to that of the floating one.



A set of theoretical hydrodynamic parameters is presented
and a similar behavior was found as the previous study for
the buoy over the caisson. More recently some hydrodynamic
results have been reported in [8] and [9] for the UC Berkeley
wave energy device. The main idea is to extract energy due to
the relative heaving motion between two concentric surface-
piercing truncated circular cylinders. A similar study was
first performed by Mavrakos (2004) in [10]. Throughout the
literature review, it is worth noting that there are no analytical
results for the particular WEC configuration given in Fig. 1.

II. MATHEMATICAL FORMULATION OF THE PROBLEM

Following the well-known procedure for that kind of reso-
lution, we divided the whole fluid domain into three or four
subdomains depending on the plate radius size as indicated
in Fig. 1. Considering a cylindrical coordinate system (r, 0, z)
with its origin O located at the intersection of the undisturbed
free surface level with cylinders axes and the z-axis is positive
upward it follows

e region Q1 : 7> Ry —h<2<0

where R, = max(Ry, R))
o region {)y
— For R, >Ry : Ry <r<Ry;—e1 <250
— For R, = Ry, : does not exist
- ForR,<Rp:R,<r<Ry;—h<z<-b
o region 23: R, <r < R,;—e; <2< -b
where R, = min(Ry, R,)

o region Uy 1 r < Ry —h <2< —ey

Ry is the radius of the buoy, R, is the radius of the plate,
R, is the radius of the column and h is the water depth not
necessarily infinite. Others geometrical parameters are given
in Fig. 1.
Assuming linear wave theory and supposing that the fluid is
inviscid, incompressible, and its motion is irrotational, fluid
flow can be described, using a complex representation, by the
velocity potential

O(r,0,2,1) = Re{¢(r, 0, z)e '} (D

where Re{ } denotes the real part of the complex expression,
w is the angular frequency, ¢ is the time dependency. Also lets
defined the free surface elevation as

n(r,0,z,t) = Re{Aj(r,0,z)e "} )

which is related to the velocity potential by the linearised Free
Surface Kinematic Boundary Condition (FSKBC) (3)
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9z ot
and the linearised Free Surface Dynamic Boundary Condition
(FSDBC) (4)
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The spatial part of the velocity potential ¢(r, 8, z) has to satisfy

the following boundary value problem

onz=20 3

onz=20 (@)

o Governing equation

A¢p =0, in the whole fluid domain  (5)
o Free surface boundary condition from (3) and (4)
0
Wi — gaﬁ =0 ©6)
Z z=0
¢ Seabed boundary condition
o¢
— =0 7
0z|,__, @
o Body surface boundary condition
Vo -ii = Uy -1, on Sy, k=1,2 (8

where ¢ is the acceleration of gravity, 7 the unit normal vector
on wet body surfaces S}, directed into the fluid domain, and
Uy is the body velocity. k = {1,2} stands respectively for the
buoy and for the plate. Finally the velocity potentials ¢ must
satisfy conditions specifying that the wave propagates away
from the structure. This is given by the so-called Sommerfeld
radiation condition expressed in 2; as

tim V(22— ikg) = 0 ©)

r—+00 or
where k. is the wave number.
From the linear water wave theory and according to [1], the
velocity potential can be decomposed as

2 6
(;5(7’, 97 Z) = ¢O(T7 07 Z)+¢7(Ta 0; Z)+Z Z (ﬁ’;(T, 97 Z) (10)
k=1q=1
where ¢g is the incident waves potential, ¢ is the diffracted
potentiel, and qS’; is the radiated potential due to the motion
of the body % in the direction ¢, with ¢ = {1,3,5} standing
respectively for the surge, heave, and pitch mode of motion.
In the solution procedure, analytical expressions for velocity
potentials are obtained using the variables separation method
Assuming angular independency due to the axysymmetric
configuration, velocity potentials are expressed as infinite
series of orthogonal functions into each subdomain fulfilling
all boundary conditions. More details can be found on math-
ematical formulations in [1], [11], [12]. In the following, a
solution to the boundary value problem will be presented, but
for the sake of simplicity only for the case where the plate
and buoy have the same radius.

A. Radiated Potential for Each Subdomain in Heaving Mode

The radiation problem corresponds to the case where the
structure is forced to oscillate in the absence of incident waves.
Following a procedure similar to the one presented in [10],
we can decompose the velocity potential in each subdomain,
qﬁf]’k(r,ﬁ, z) as follows

oo

¢lq’k(r,9,z) = Z —iwnglq”';l(r, z)cos(mdb)

m=0

(1)

where [ denotes the fluid domain and (; is the complex ampli-
tude corresponding to the mode of motion. For heaving mode



(¢ = 3) only expressions for m = 0 gave a contribution [13]
and then we are looking for solutions that can be expressed
as

P (r 2) = O3k (r,2) + ot (r, 2)

where cpé”’;(n z) represents a particular solution of the velocity
potential in heaving mode that fulfills the inhomogeneous
boundary conditions and @fgﬁl(r, z) is the homogeneous part
of the solution to the boundary value problem.

In region €2, the velocity potential can be expressed as

HY (kor)
Hé”(/ceRm

12)
where R, = max(Ry, R,). A¥ are the unknown Fourier
coefficients, Ho(l)() are Hankel functions and Kél)() are
modified Bessel functions of the second kind.

For convenience we define \g = —ik. then the dispersion

relation is given in terms of the eigenvalues \; by

K /\7‘
prk(r,2) = Af ZA’“ o) )

" Ko(MNRy)

w? = kegtanh(k.h) = —\;gtan(\;h) (13)
and the depth dependency function Z}(z) is
Z}(z) = Ny Vcos(Ni(z + h)) (14)
where .
Ny = {1 + W] (15)
fori=0,1,--- ,00

In region €23, the velocity potential can be expressed as

oo

h(r.2) = > [DETu(r) + ESTu(r)| Z3(2)

n=0

(16)

Expressions for the functions T},(r), T,,(r) are defined in
Appendix A in terms of modified Bessel functions of the
first and second kind, and Dfl, Efj are the unknown Fourier
coefficients. The depth dependency function Z3(z) is defined
as

Z?’( ) = 1, forn =20
L BV cos(a, (2 + €1)), forn >1
with
= % (17)
er — b
forn=1,2,---,0
From the body surface condition (8) we have
agp?’,k‘
3 = 01}, for R. <r < R, (18)
0z
z=—b
a(p?),k
3 :62k; for R. <r < R, (19)
0z
zZ=—€1

where R, = min(R;, R)), J;; is the Kronecker’s delta defined
as §;; = 1 if i = 4, and J;; = O otherwise.

Then the particular solution is given by

2

1 r
3,k . o~
Py ,(r,2) = 2(er —b) [(Z +e1)? 5 01k
r2
- m |:(Z + b 2:| 62k (20)
Finally for region {24, we have
To(
(pShrz = F} +ZFk o(Byr) Z}(2) (21)
=1 IO ﬂj

where [, (1)() are modified Bessel functions of the first kind

and Fk are the unknown Fourier coefficients. The depth
dependency function Zj(z) is defined as
1, for =0
74(2) =
=4 v cos(Bs(= +¢2),  forj>1
with
g
= 22
6 J h — €9 ( )

forj=1,2,--- ,00
From the body surface condition (8) we have

o
=g, for 0 <r <R, (23)
0z
zZ=—€2
and then the particular solution is expressed as

2 e el S S

rz) = ———— [(» - — ;

“3plh 2(h — €2) 9 | 72k

B. Expression of the Scattering Potential in Each Subdomain

The scattering potential represented the solution for which
the structure is considered fixed in presence of incident waves
[11] and is defined as

¢5(7”, 0, Z) = (;50(7”, 0, Z) + ¢7(T7 0, Z)

Considering a linear wave propagating in the positive direction
x in a water of constant depth h and decribed by a small
amplitude A at frequency w, incident potential ¢y can be
defined as

(25)

o0
¢o(r,0,2) = B> " T (ker) Zg (2)cos(mf)  (26)
m=0
where €™ is the Neuman symbol defined as €™ =1 form =0
and €™ = 2 otherwise, .J,,,() are Bessel functions of the first
kind and ¢ is the complex number. The coefficient B is defined
by )
A g

w Z5(0)

Following the same approach as the radiation problem, we are

looking for unknown functions expressed as

27)

#(r,0,2) = Z @i’m(n z)cos(mb) (28)
m=0



where only expressions for m = 0 have a contribution in the
vertical direction. From the gradient condition (8) we have at
all body surfaces [1]

s
on

=0 (29)

Then it follows that the scattering velocity potential in region
Q7 can be expressed as

Hy" (ker)
1 1 0 0 e 1
Ps o\l ) = BJi ker Z~(2) + A —2 = 7 2
ol 2} = BREDZ ) Aoy B0
+ ZAO KO ) 72z (30)

Ry)

where R, = max(Ryp, R)).

One can note that the expression given above has the same
form as expression (12) obtained for the radiation problem.
Then for the analytical resolution procedure purpose, let us
introduce the notation £ = 0, which means none of the body
is moving. Using notations given for radiation problem we can
write

oLo(r,z) =@y (r,2) + @3, (r, 2) 31)

where we define

(1)
1,0 o 0 (k T 0 Ko )\ ’/‘
()03’}1(7", Z) - (1)(k R 0 + § :Al KO )\ R (Z)
3p(r,2) = Bo(ker) Z3 (=)

For others regions, unknown functions have the same forms
as those developped for the homogeneous part of the radiation
problem, then

@l o(r,z) = @55 (r, 2) (32)

for [ > 1.

It remains then to determine the unknown Fourier coeffi-
cients A%, D¥ E¥ and F’“ in the infinite series of orthogonal
functions using the matchlng eigenfunction expansion method.
The coefficients can be determined by imposing conditions of
pressure continuity and normal velocity at different imaginary
interfaces (i.e. at r = R, and r = R,) as well as the body

surface boundary condition at the body vertical walls.

III. SOLUTION TO THE BOUNDARY VALUE PROBLEM

In the case where the buoy radius and plate radius are equal,
ie. R, = Ry, the requirement for pressure continuity and
normal velocity has to be fulfilled at the vertical imaginary
interface © = Ry, as well as the boundary conditions on
the body vertical surfaces. For heaving mode the latter are

expressed as

=0, for—ey; <z< —€
r=R,

(33)

=0, for—6<2<0
T:Rb

(34)

3,k
3@3

=0, for—e; <z<-b
r=R.
for k = 0,1 and 2.
At the imaginary interface r = R, velocity potential continu-
ity conditions are
o for —e; <z < b

(35)

o3 (Ry, 2) = 03" (Ry, 2) (36)
Doy 0" an
or . or -
o for —h <z < —ey
ey (Ry, 2) = 03" (Ry, 2) (38)
or Ry or Ry

Due to the orthogonal properties of the function Z;‘(z) valid
for —h < z < —eg, it follows that

1 e
B = [ k) 20 - @)+ 0 @0
where
0, for k=0
s = L AR (R 74 ()d for k= 1,2
h— ey o (PS,p( b72) g(z) = or k=1,
1 Tk 4
o= e /h ©3, (R, 2) 25 (2)dz, for k=0
j —

0, for k=1,2

Applying continuity condition (38), Fourier coefficients Ff
that describe velocity potential in {24 can be expressed in terms
of coefficients A¥ as

o0
Ff =Y AlLj — (Qf — Of) (41)
i=0
with
1 I 1
L;; = =y Z;(2)Z; (z)dz (42)

Using the same procedure for interval —e; < 2z < —b,
orthogonal properties of the function Z?2(z) lead to coefficients
Dy,

k 1 - 3k
Dy = ‘P3,h(Rb7z)

61—b —e1

3(2)dz — P*, + OF,  (43)



0, for k=0
Pk — 1 —-b
n3 / wg’i(Rb, 2)Z3(2)dz, for k=1,2
er — b —e; ’
1 ok 3
“(Rp,2)Z5(2)d for k=0
On3 — el —b . 903,;0( b?’z) n(z) 2, or
0, for k=1,2

Applying continuity condition (36), Fourier coefficients D¥
that describe velocity potential in {23 can be expressed in terms
of coefficients A¥ as

= Z Af My — (Pps — Ops) (44)

with

—b
M= —— [ 2z (45)

1—0/ ¢,
Now by multiplying both sides of equations (33), 34), (37)
and (39) by ZX(z)/h (for 7 = 0,1,--- ,i,---), integrating
over the corresponding interval of validity and adding resulting
expressions, we get a complete set of equations. Replacing
coefficients /¥ and D by their respective definition (41) and
(44) we obtain

= dAf + ) denE) (46)
1=0 n=0
with
h— eg o
— €3
K = B | YTodor — Jo(keRy) - jz::oerjOLjT
Rb nOMnT ) (47)
n=0
pL— B oy, + S b iT’ (Ry)PL M, (48)
T 2h T h — n n3+"tnt
Rb 62
hi = o (Lo — Mor) + Zr Q33 Ljr
+61_b§: T (R,) P2 (49)
h o] b n'r
h— () >
dri = Aibir + e ZFijiLjT
§=0
Rb ni nT (50)
€1 — b ~
d'rn = T, MnT 51
- 2220 W (Ry) (51)
where we defined
Il(ﬁij)
I'o=0 52
0 ﬁj IO(ﬂJRb) ( )
Ay g KB KR o
HV kR, Ko(AiRp)

for 7,7 > 1 and

Yo = —keJy (ke Ry) (54)

Finally, multiplying the body surface condition (35), expressed
on the column, by Z3(z)/(ey — b) (for v =0,1,--+ ,n,---),
integrating with respect to z, i.e. —e; < z < —b, and using
the definition of Dﬁ, we obtained the last set of equations at
the vertical boundary r = R..

W= "dyAf + > dynE} (55)
=0 n=0
where
h) = — BJo(keRe) > Ty (Re) Moy (56)
n=0

hl = i T (R.) P}y, + La (57)

2(e1 — b)
h2 = ZT’ ) P26, — _fe 5, 9

v n 2(e; — b)
dy; = ZT,;(RaMmém (59)

n=0

In order to find a solution to Fourier coefficients we have to
truncate the infinite series to the first N terms. Thereby by
introducing matrix notation, the unknown coefficients can be
determined solving simultaneously the two sets of equations
(46) and (55) that can be expressed by the following linear
system.
dTi dTn A?l hﬁl

= 61)
dui dV’IL E k hllfl

nl

Note that the matrix on the left hand side of (61) does
not depend on the boundary value problem but only on the
geometrical parameters. This can be an advantage in terms of
numerical computation time decreasing. Finally, the remaining
Fourier coefficients F;“ and DF can be computed respectively
from equation (41) and (44).

IV. EXCITATION FORCES AND HYDRODYNAMIC
COEFFICIENTS

Once the scattering and/or radiation problem are solved
which means that we determined the unknown Fourier coeffi-
cients for the orthogonal series, we know the velocity potential
in the whole fluid domain. Then waves exciting forces and/or
hydrodynamic coefficients can be determined by integrating
the hydrodynamic pressure, given by the Bernoulli equation,
over the wet surface of the body under consideration. From
the linear wave theory the pressure is given by

p(r,0,z,t)

= iwpe(r,0,2)e” " (62)

__oe
TP



A. Added Mass and Radiation Damping Coefficients

When the structure is moving, a radiation force acts on it
and can be expressed as
Fk [

1wp/ qb r,0,z)n;dS (63)

where F ]( w) is the complex representation of the radiation
force actmg on the body ¢ in the direction j due to the
motion of the body k in the direction g (here ¢ = 3). It
is conventional to decompose this radiation force into two
components, one proportional to the acceleration of body and
the other proportional to his velocity as follows
ki 2 ki 1 ki

Fjlw) = =G [“q,; + w)‘q,;} (64)

where hydrodynamic coefficients u ' “ and )\ . are referenced

in the literature as the added mass and the radlatlon or potential
damping, respectively.

B. Waves Excitation Forces in z Direction

When the structure is considered as fixed in the presence of
an incident wave an excitation force acts on the bodies. Using
a complex representation, excitation forces in the vertical
direction can be expressed in terms of scattering potential,
see (25), as

i) =iwp [ [ 6.6, naas (65)

where k indicates which body is under consideration and ng is
the component of the generalised normal vector in z direction.

V. NUMERICAL RESULTS AND DISCUSSION

A specific code based on the above-presented formulation
has been developped in order to solve problem (61) . To
carry out numerical computations, the infinite series in the
expressions of the radiated and scattering potentials have to
be truncated to a finite number of terms. According to the
literature [2], [3], [5], it seems that considering only the first 30
terms shows good truncation characteristics. We have therefore
chosen N = 30 for potential expressions in all subdomains.

In order to validate the analytical expressions obtained
for velocity potentials, several checks are done on numerical
results and then different case-studies have to be considered.
In Table I we have summarised geometrical configurations for
each case-study where « is a variable parameter defined as

€[8 2 1 .75 .65 .51]. Geometrical parameters for
case study no.l and no.3 are taken respectively from models
developped by Wu et al. [7] and Chau and Yeung [8]. For
all numerical computations we have used h = 1 and for
the scattering problem, solutions are obtained baised on the
assumption of a unit amplitude incident wave, A = 1.

First of all, we look at the matching of the velocity
potential and its first derivative in the radial direction along
the imaginary interfaces between subdomains. In Fig. 2 results
are presented for the structure depicted in Section I for the

TABLE I
GEOMETRICAL PARAMETERS FOR NUMERICAL COMPUTATION

Case no. [ b/h Rb/h el/h 62/h Rp/Rb Rc/Rb
1 0.1 0.2 025 035 a 10~3
2 0.1 0.2 0.25 0.35 o 0.5
3 0.25 1 0.4 0.5 o 0.5
O 6 [ [ [ [ ]
— r=R, /
Nﬂ 0.5 [ \)/. 7
€ 04 e-m -
& M N
0.3 M .
| | | |
-1 -08 -06 —-04 0.2 0
z
(a)
[ [
i singularity
P—
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< [ WH —
b et T
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(b)
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1A \ B
— singularities ‘
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kS ‘} 20 SN
0 . Jony il
-1 -0.8 —0.6 -0.4
z
(c)

- - - Ext. domain —«— Int. domain

Fig. 2. Matching of the velocity potential (a) and its first derivative (b) and
(e) for case no.3, @ = .75, at the imaginary interface r = Rp, and 7 = R),
for ke = 1.

case study no.3 where the plate radius is smaller than that of
the buoy, a = .75, and where the buoy is moving and the
platform is fixed. Excellent matching is achieved on velocity
potential using numerical truncation given above. However for
gradient visualisation purposes, we have used more terms in
expressions to reduce the oscillations due to Bessel functions
(N = 80 for regions 21, 29, and N = 40 for regions €23, 04).
Note the well-known singularity in Fig. 2 (b) at the corner due
to the discontinuous boundary condition (see [11] for more
details).

Also one could use asymptotic behaviours of the presented
model to compare results with existing models found in the
literature, which indirectly verify the proposed expressions
for potentials. Figures 3 to 5 show numerical results for
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Fig. 3. Dimensionless vertical forces, (a) on buoy (b) on platform.

hydrodynamic parameters when column radius tends toward
zero, case-study no.l for a = [8 2 1]. This configuration
is similar to the model presented by Wu et al. in [7] (not
shown). Same coefficients than those given in [7] have been
used to non-dimensionnalise excitation forces in Fig. 3 and
hydrodynamics coefficients in Figs. 4 and 5, and excellent
correlation is found. Also parameters are shown for the case
where the radius of the column is half of the radius of the
buoy that corresponds to case-study no.2. Looking at added
mass and radiation damping, we note that only the amplitude
of the coefficients changes with the increase and decrease of
the wet body surface but not the behaviour. Now, if we look at
the excitation forces on the buoy, the presence of the column
does not seem to have an effect on it. However, we notice
that for the platform, the behaviour is totaly different at low
frequency and we can observe a rebound which varies with
the radius of the plate except for relatively big sizes. Then,
it seems that a radius ratio between the plate and column
exists for which the column no longer influences the behaviour
of the wave excitation force on the platform. Figures 6
to 7 show numerical results for hydrodynamic parameters
when plate radius tends toward column radius (case-study no.3
for a« = .51) for two differents water depths ~ = 1 and
h = 5. This configuration is similar to the model presented
by Chau and Yeung in [8]. The same coefficients as above
have been used to non-dimensionnalised excitation forces. For
hydrodynamic coefficients, we divided by factor pmR7 for
the buoy and by factor pmR? for the platform. Here again
figures show very good correlation between our model and
the literature. Looking at the excitation forces on the platform
Fig. 6 (b), one can notice that we do not have the behaviour
described previously. Then it seems that a radius ratio between
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Fig. 4. Dimensionless added mass (a) and radiation damping (b) for the
buoy.
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N
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1 | -
0 (i L |
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the plate and column exists for which the plate radius is not
big enough to observe the rebound.

VI. CONCLUSION

Based on the potential theory, a semi-analytical method has
been presented in order to solve the radiation and scattering
problem which provides hydrodynamic parameters in heaving
mode for a specific wave energy converter. These parameters
are particularly needed for designers to analyse the WEC
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Fig. 7. Dimensionless added mass (a) and radiation damping (b) for the
buoy.

dynamics in irregular waves. A specific code has been de-
velopped based on the mathematical formulations presented
in this paper. For validation purposes, several numerical sim-
ulations have been carried out for different buoy, column, and
plate radiuses. The results obtained have been compared to
well-known and available models in the literature. The clearly
confirm the appropriateness of the proposed semi-analytical
approach.

APPENDIX A
EXPRESSION FOR T, (r), T,,(r)
forn=0
7, _ n(r/Ro) 7, _ In(Be/r)
In(R;/R.) In(R;/Re.)
forn>1
T, = To(vir) Ko(nRe) — Io(viRe) Ko(nir)

To(viRy)Ko(mRe) — Io(niRe) Ko(viRe)

= lo(uRe)Ko(nir) = To(mir) Ko(i Re)
In(viRs)Ko(viRe) — In(viRe) Ko (v Re)

where R, = min(Ry, R,).
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