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Abstract—This paper deals with the hydrodynamic parameter
computation of a Wave Energy Converter (WEC) that con-
sists of a cylindrical buoy sliding along a partially submerged
platform made up of a plate and a column. The computed
parameters are particularly needed for the development of
a simple hydrodynamic time-dependant model based on the
Cummins formulation. This model is intended to be used for
WEC control purposes. A semi-analytical approach is therefore
proposed for the computation of the hydrodynamic coefficients
and the excitation forces. The boundary value problem is solved
using variable separation and matched eigenfunction expansion
methods. Analytical expressions for the velocity potential are then
obtained for each subdomain. Using afterwards these expressions
enables the hydrodynamic coefficients and the excitation force to
be computed. Numerical results are given for different radiuses
of the buoy, column and plate and are compared with previously
published models.

Index Terms—Wave Energy Converter, potential theory, eigen-
function expansion, wave-loads, heaving mode, scattering and
radiation problem.

I. INTRODUCTION

This work was motivated from the need to provide a set

of hydrodynamic parameters for the development of a simple

hydrodynamic time-dependant model based on the Cummins

formulation for a Wave Energy Converter (WEC) [1]. This

time domain model is needed to analyse the WEC behavior in

irregular waves. The WEC device schematically depicted on

Fig. 1 consists of a cylindrical buoy riding in waves and sliding

along a partially submerged platform made up of a plate and

a column. Energy resulting from the relative motion between

the two concentric bodies is extracted from the incoming

wave by a gearbox and an electric generator. The present

paper focuses on the determination of the excitation forces

and hydrodynamic coefficients (i.e. added mass and radiation

damping) for heaving mode in water of finite depth. Due to the

simplicity of the geometry and in view of the model purpose

(i.e. optimisation and control) these parameters are evaluated

using a semi-analytical approach which is propably the fastest

and most reliable way to get them. From the literature review,

it has been noticed that in [2], Berggren and Johansson

(1992) have treated the radiation problem of a wave energy

device consisting of a buoy connected to a submerged plate

by an elastometric hose. The buoy and plate have the same

radius. They presented results for added mass and potential
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Fig. 1. Definition sketch of the Wave Energy Converter.

damping for the two bodies and included cross terms only

for the heaving mode. Under the assumption of linear wave

theory, the radiation problem is solved by using the method

of eigenfunction expansions. A comparison is made between

their solution and a solution proposed by Yeung R.W. (1981)

[3] who studied the whole radiation problem of a floating

vertical cylinder. A similar study was performed in [4] where

the buoy is rigidly connected to a submerged vertical tube in

which a plate acts as a piston. In addition to the radiation

problem, the author has presented results for the excitation

forces obtained through the Haskind’s theorem. Wu et al.

investigated in [5] hydrodynamic properties of a similar WEC

where the buoy riding in waves is directly connected to a

caisson fixed on the seabed by a rigid rope. Wave energy is

harnessed by a liquid pump in the caisson through the rope. In

this paper the radius of the caisson is greater than or equal to

that of the buoy. In [6], the same authors extended the solution

to the case where the caisson radius is smaller than that of

the buoy. They presented analytical results for the response

amplitudes and hydrodynamic forces for different radius sizes

of the submerged structure and the gap between them. It is

shown that the buoy hydrodynamic behaviour becomes more

complex when the caisson radius is large and only at relatively

low frequency. Also it seems that the resonance period does

not vary regardless of the increase or decrease of the radius

ratio and/or the gap. In [7] a similar study was performed

with a two-body moving structure but their analysis where

restricted to the case where the radius of the submerged

cylinder is larger than or equal to that of the floating one.



A set of theoretical hydrodynamic parameters is presented

and a similar behavior was found as the previous study for

the buoy over the caisson. More recently some hydrodynamic

results have been reported in [8] and [9] for the UC Berkeley

wave energy device. The main idea is to extract energy due to

the relative heaving motion between two concentric surface-

piercing truncated circular cylinders. A similar study was

first performed by Mavrakos (2004) in [10]. Throughout the

literature review, it is worth noting that there are no analytical

results for the particular WEC configuration given in Fig. 1.

II. MATHEMATICAL FORMULATION OF THE PROBLEM

Following the well-known procedure for that kind of reso-

lution, we divided the whole fluid domain into three or four

subdomains depending on the plate radius size as indicated

in Fig. 1. Considering a cylindrical coordinate system (r, θ, z)
with its origin O located at the intersection of the undisturbed

free surface level with cylinders axes and the z-axis is positive

upward it follows

• region Ω1 : r ≥ Rx;−h ≤ z ≤ 0
where Rx = max(Rb, Rp)

• region Ω2

– For Rp > Rb : Rb ≤ r ≤ Rp;−e1 ≤ z ≤ 0
– For Rp = Rb : does not exist

– For Rp < Rb : Rp ≤ r ≤ Rb;−h ≤ z ≤ −b

• region Ω3: Rc ≤ r ≤ Rx;−e1 ≤ z ≤ −b
where Rx = min(Rb, Rp)

• region Ω4 : r ≤ Rp;−h ≤ z ≤ −e2

Rb is the radius of the buoy, Rp is the radius of the plate,

Rc is the radius of the column and h is the water depth not

necessarily infinite. Others geometrical parameters are given

in Fig. 1.

Assuming linear wave theory and supposing that the fluid is

inviscid, incompressible, and its motion is irrotational, fluid

flow can be described, using a complex representation, by the

velocity potential

Φ(r, θ, z, t) = Re{φ(r, θ, z)e−iωt} (1)

where Re{ } denotes the real part of the complex expression,

ω is the angular frequency, t is the time dependency. Also lets

defined the free surface elevation as

η(r, θ, z, t) = Re{η̃(r, θ, z)e−iωt} (2)

which is related to the velocity potential by the linearised Free

Surface Kinematic Boundary Condition (FSKBC) (3)

∂φ

∂z
=

∂η

∂t
, on z = 0 (3)

and the linearised Free Surface Dynamic Boundary Condition

(FSDBC) (4)

∂φ

∂t
+ gη = 0, on z = 0 (4)

The spatial part of the velocity potential φ(r, θ, z) has to satisfy

the following boundary value problem

• Governing equation

∆φ = 0, in the whole fluid domain (5)

• Free surface boundary condition from (3) and (4)

ω2φ− g
∂φ

∂z

∣

∣

∣

∣

z=0

= 0 (6)

• Seabed boundary condition

∂φ

∂z

∣

∣

∣

∣

z=−h

= 0 (7)

• Body surface boundary condition

∇φ · ~n = ~Uk · ~n, on Sk, k = 1, 2 (8)

where g is the acceleration of gravity, ~n the unit normal vector

on wet body surfaces Sk directed into the fluid domain, and
~Uk is the body velocity. k = {1, 2} stands respectively for the

buoy and for the plate. Finally the velocity potentials φ must

satisfy conditions specifying that the wave propagates away

from the structure. This is given by the so-called Sommerfeld

radiation condition expressed in Ω1 as

lim
r→+∞

√
r(
∂φ

∂r
− ikeφ) = 0 (9)

where ke is the wave number.

From the linear water wave theory and according to [1], the

velocity potential can be decomposed as

φ(r, θ, z) = φ0(r, θ, z)+φ7(r, θ, z)+

2
∑

k=1

6
∑

q=1

φk
q (r, θ, z) (10)

where φ0 is the incident waves potential, φ7 is the diffracted

potentiel, and φk
q is the radiated potential due to the motion

of the body k in the direction q, with q = {1, 3, 5} standing

respectively for the surge, heave, and pitch mode of motion.

In the solution procedure, analytical expressions for velocity

potentials are obtained using the variables separation method

Assuming angular independency due to the axysymmetric

configuration, velocity potentials are expressed as infinite

series of orthogonal functions into each subdomain fulfilling

all boundary conditions. More details can be found on math-

ematical formulations in [1], [11], [12]. In the following, a

solution to the boundary value problem will be presented, but

for the sake of simplicity only for the case where the plate

and buoy have the same radius.

A. Radiated Potential for Each Subdomain in Heaving Mode

The radiation problem corresponds to the case where the

structure is forced to oscillate in the absence of incident waves.

Following a procedure similar to the one presented in [10],

we can decompose the velocity potential in each subdomain,

φl,k
q (r, θ, z) as follows

φl,k
q (r, θ, z) =

∞
∑

m=0

−iωζqϕ
l,k
q,m(r, z)cos(mθ) (11)

where l denotes the fluid domain and ζq is the complex ampli-

tude corresponding to the mode of motion. For heaving mode



(q = 3) only expressions for m = 0 gave a contribution [13]

and then we are looking for solutions that can be expressed

as

ϕl,k
3,0(r, z) = ϕl,k

3,h(r, z) + ϕl,k
3,p(r, z)

where ϕl,k
3,p(r, z) represents a particular solution of the velocity

potential in heaving mode that fulfills the inhomogeneous

boundary conditions and ϕl,k
3,h(r, z) is the homogeneous part

of the solution to the boundary value problem.

In region Ω1, the velocity potential can be expressed as

ϕ1,k
3,h(r, z) = Ak

0

H
(1)
0 (ker)

H
(1)
0 (keRx)

Z1
0 (z)+

∞
∑

i=1

Ak
i

K0(λir)

K0(λiRx)
Z1
i (z)

(12)

where Rx = max(Rb, Rp). Ak
i are the unknown Fourier

coefficients, H
(1)
0 () are Hankel functions and K

(1)
0 () are

modified Bessel functions of the second kind.

For convenience we define λ0 = −ike then the dispersion

relation is given in terms of the eigenvalues λi by

ω2 = kegtanh(keh) = −λigtan(λih) (13)

and the depth dependency function Z1
i (z) is

Z1
i (z) = N

−1/2
λi

cos(λi(z + h)) (14)

where

Nλi
=

1

2

[

1 +
sin(2λih)

2λih

]

(15)

for i = 0, 1, · · · ,∞
In region Ω3, the velocity potential can be expressed as

ϕ3,k
3,h(r, z) =

∞
∑

n=0

[

Dk
nTn(r) + Ek

nT̃n(r)
]

Z3
n(z) (16)

Expressions for the functions Tn(r), T̃n(r) are defined in

Appendix A in terms of modified Bessel functions of the

first and second kind, and Dk
n, Ek

n are the unknown Fourier

coefficients. The depth dependency function Z3
n(z) is defined

as

Z3
n(z) =

{

1, for n = 0√
2 cos(αn(z + e1)), for n ≥ 1

with

αn =
nπ

e1 − b1
(17)

for n = 1, 2, · · · ,∞.

From the body surface condition (8) we have

∂ϕ3,k
3

∂z

∣

∣

∣

∣

∣

z=−b

= δ1k, for Rc ≤ r ≤ Rx (18)

∂ϕ3,k
3

∂z

∣

∣

∣

∣

∣

z=−e1

= δ2k, for Rc ≤ r ≤ Rx (19)

where Rx = min(Rb, Rp), δij is the Kronecker’s delta defined

as δij = 1 if i = j, and δij = 0 otherwise.

Then the particular solution is given by

ϕ3,k
3,p(r, z) =

1

2(e1 − b)

[

(z + e1)
2 − r2

2

]

δ1k

− 1

2(e1 − b)

[

(z + b)2 − r2

2

]

δ2k (20)

Finally for region Ω4 we have

ϕ4,k
3,h(r, z) = F k

0 +
∞
∑

j=1

F k
j

I0(βjr)

I0(βjRp)
Z4
j (z) (21)

where I
(1)
0 () are modified Bessel functions of the first kind

and F k
j are the unknown Fourier coefficients. The depth

dependency function Z4
j (z) is defined as

Z4
j (z) =

{

1, for j = 0√
2 cos(βj(z + e2)), for j ≥ 1

with

βj =
jπ

h− e2
(22)

for j = 1, 2, · · · ,∞.

From the body surface condition (8) we have

∂ϕ4,k
3

∂z

∣

∣

∣

∣

∣

z=−e2

= δ2k, for 0 ≤ r ≤ Rp (23)

and then the particular solution is expressed as

ϕ4,k
3,p(r, z) =

1

2(h− e2)

[

(z + h)2 − r2

2

]

δ2k (24)

B. Expression of the Scattering Potential in Each Subdomain

The scattering potential represented the solution for which

the structure is considered fixed in presence of incident waves

[11] and is defined as

φs(r, θ, z) = φ0(r, θ, z) + φ7(r, θ, z) (25)

Considering a linear wave propagating in the positive direction

x in a water of constant depth h and decribed by a small

amplitude A at frequency ω, incident potential φ0 can be

defined as

φ0(r, θ, z) = B

∞
∑

m=0

ǫmimJm(ker)Z
1
0 (z)cos(mθ) (26)

where ǫm is the Neuman symbol defined as ǫm = 1 for m = 0
and ǫm = 2 otherwise, Jm() are Bessel functions of the first

kind and i is the complex number. The coefficient B is defined

by

B = −iA
g

ω

1

Z1
0 (0)

(27)

Following the same approach as the radiation problem, we are

looking for unknown functions expressed as

φl
s(r, θ, z) =

∞
∑

m=0

ϕl
s,m(r, z)cos(mθ) (28)



where only expressions for m = 0 have a contribution in the

vertical direction. From the gradient condition (8) we have at

all body surfaces [1]

∂ϕs

∂n
= 0 (29)

Then it follows that the scattering velocity potential in region

Ω1 can be expressed as

ϕ1
s,0(r, z) = BJ0(ker)Z

1
0 (z) +A0

0

H
(1)
0 (ker)

H
(1)
0 (keRx)

Z1
0 (z)

+

∞
∑

i=1

A0
i

K0(λir)

K0(λiRx)
Z1
i (z) (30)

where Rx = max(Rb, Rp).
One can note that the expression given above has the same

form as expression (12) obtained for the radiation problem.

Then for the analytical resolution procedure purpose, let us

introduce the notation k = 0, which means none of the body

is moving. Using notations given for radiation problem we can

write

ϕ1
s,0(r, z) = ϕ1,0

3,h(r, z) + ϕ1,0
3,p(r, z) (31)

where we define

ϕ1,0
3,h(r, z) = A0

0

H
(1)
0 (ker)

H
(1)
0 (keRx)

Z1
0 (z) +

∞
∑

i=1

A0
i

K0(λir)

K0(λiRx)
Z1
i (z)

ϕ1,0
3,p(r, z) = BJ0(ker)Z

1
0 (z)

For others regions, unknown functions have the same forms

as those developped for the homogeneous part of the radiation

problem, then

ϕl
s,0(r, z) = ϕl,0

3,h(r, z) (32)

for l > 1.

It remains then to determine the unknown Fourier coeffi-

cients Ak
i , Dk

n, Ek
n, and F k

j in the infinite series of orthogonal

functions using the matching eigenfunction expansion method.

The coefficients can be determined by imposing conditions of

pressure continuity and normal velocity at different imaginary

interfaces (i.e. at r = Rb and r = Rp) as well as the body

surface boundary condition at the body vertical walls.

III. SOLUTION TO THE BOUNDARY VALUE PROBLEM

In the case where the buoy radius and plate radius are equal,

i.e. Rp = Rb, the requirement for pressure continuity and

normal velocity has to be fulfilled at the vertical imaginary

interface r = Rb, as well as the boundary conditions on

the body vertical surfaces. For heaving mode the latter are

expressed as

∂ϕ1,k
3

∂r

∣

∣

∣

∣

∣

r=Rp

= 0 , for − e2 ≤ z ≤ −e1 (33)

∂ϕ1,k
3

∂r

∣

∣

∣

∣

∣

r=Rb

= 0 , for − b ≤ z ≤ 0 (34)

∂ϕ3,k
3

∂r

∣

∣

∣

∣

∣

r=Rc

= 0 , for − e1 ≤ z ≤ −b (35)

for k = 0, 1 and 2.

At the imaginary interface r = Rb, velocity potential continu-

ity conditions are

• for −e1 ≤ z ≤ −b

ϕ1,k
3 (Rb, z) = ϕ3,k

3 (Rb, z) (36)

∂ϕ1,k
3

∂r

∣

∣

∣

∣

∣

r=Rb

=
∂ϕ3,k

3

∂r

∣

∣

∣

∣

∣

r=Rb

(37)

• for −h ≤ z ≤ −e2

ϕ1,k
3 (Rb, z) = ϕ4,k

3 (Rb, z) (38)

∂ϕ1,k
3

∂r

∣

∣

∣

∣

∣

r=Rb

=
∂ϕ4,k

3

∂r

∣

∣

∣

∣

∣

r=Rb

(39)

Due to the orthogonal properties of the function Z4
j (z) valid

for −h ≤ z ≤ −e2, it follows that

F k
j =

1

h− e2

∫

−e2

−h

ϕ4,k
3,h(Rb, z)Z

4
j (z)dz −Qk

j3 +Ok
j3 (40)

where

Qk
j3 =







0, for k = 0

1

h− e2

∫

−e2

−h

ϕ4,k
3,p(Rb, z)Z

4
j (z)dz, for k = 1, 2

Ok
j3 =







1

h− e2

∫

−e2

−h

ϕ1,k
3,p(Rb, z)Z

4
j (z)dz, for k = 0

0, for k = 1, 2

Applying continuity condition (38), Fourier coefficients F k
j

that describe velocity potential in Ω4 can be expressed in terms

of coefficients Ak
i as

F k
j =

∞
∑

i=0

Ak
i Lji −

(

Qk
j3 −Ok

j3

)

(41)

with

Lji =
1

h− e2

∫

−e2

−h

Z4
j (z)Z

1
i (z)dz (42)

Using the same procedure for interval −e1 ≤ z ≤ −b,
orthogonal properties of the function Z3

n(z) lead to coefficients

Dk
n

Dk
n =

1

e1 − b

∫

−b

−e1

ϕ3,k
3,h(Rb, z)Z

3
n(z)dz − P k

n3 +Ok
n3 (43)



where

P k
n3 =







0, for k = 0

1

e1 − b

∫

−b

−e1

ϕ3,k
3,p(Rb, z)Z

3
n(z)dz, for k = 1, 2

Ok
n3 =







1

e1 − b

∫

−b

−e1

ϕ1,k
3,p(Rb, z)Z

3
n(z)dz, for k = 0

0, for k = 1, 2

Applying continuity condition (36), Fourier coefficients Dk
n

that describe velocity potential in Ω3 can be expressed in terms

of coefficients Ak
i as

Dk
n =

∞
∑

i=0

Ak
iMni −

(

P k
n3 −Ok

n3

)

(44)

with

Mni =
1

e1 − b

∫

−b

−e1

Z3
n(z)Z

1
i (z)dz (45)

Now by multiplying both sides of equations (33), (34), (37)

and (39) by Z1
τ (z)/h (for τ = 0, 1, · · · , i, · · · ), integrating

over the corresponding interval of validity and adding resulting

expressions, we get a complete set of equations. Replacing

coefficients F k
j and Dk

n by their respective definition (41) and

(44) we obtain

hk
τ =

∞
∑

i=0

dτiA
k
i +

∞
∑

n=0

dτnE
k
n (46)

with

h0
τ = B



Υ0δ0τ − J0(keRb)





h− e2
h

∞
∑

j=0

ΓjLj0Ljτ

+
e1 − b

h

∞
∑

n=0

T ′

n(Rb)Mn0Mnτ

])

(47)

h1
τ =

Rb

2h
M0τ +

e1 − b

h

∞
∑

n=0

T ′

n(Rb)P
1
n3Mnτ (48)

h2
τ =

Rb

2h
(L0τ −M0τ ) +

h− e2
h

∞
∑

j=0

ΓjQ
2
j3Ljτ

+
e1 − b

h

∞
∑

n=0

T ′

n(Rb)P
2
n3Mnτ (49)

dτi = ∆iδiτ +
h− e2

h

∞
∑

j=0

ΓjLjiLjτ

+
e1 − b

h

∞
∑

n=0

T ′

n(Rb)MniMnτ (50)

dτn =
e1 − b

h

∞
∑

n=0

T̃ ′

n(Rb)Mnτ (51)

where we defined

Γ0 = 0 Γj = βj
I1(βjRb)

I0(βjRb)
(52)

∆0 = ke
H

(1)
1 (keRb)

H
(1)
0 (keRb)

∆i = λi
K1(λiRb)

K0(λiRb)
(53)

for i, j ≥ 1 and

Υ0 = −keJ1(keRb) (54)

Finally, multiplying the body surface condition (35), expressed

on the column, by Z3
ν (z)/(e1 − b) (for ν = 0, 1, · · · , n, · · · ),

integrating with respect to z, i.e. −e1 ≤ z ≤ −b, and using

the definition of Dk
n, we obtained the last set of equations at

the vertical boundary r = Rc.

hk
ν =

∞
∑

i=0

dνiA
k
i +

∞
∑

n=0

dνnE
k
n (55)

where

h0
ν = −BJ0(keRc)

∞
∑

n=0

T ′

n(Rc)Mn0δnν (56)

h1
ν =

∞
∑

n=0

T ′

n(Rc)P
1
n3δnν +

Rc

2(e1 − b)
δ0ν (57)

h2
ν =

∞
∑

n=0

T ′

n(Rc)P
2
n3δnν − Rc

2(e1 − b)
δ0ν (58)

dνi =

∞
∑

n=0

T ′

n(Rc)Mniδnν (59)

dνn = T̃ ′

n(Rc)δnν (60)

In order to find a solution to Fourier coefficients we have to

truncate the infinite series to the first N terms. Thereby by

introducing matrix notation, the unknown coefficients can be

determined solving simultaneously the two sets of equations

(46) and (55) that can be expressed by the following linear

system.




dτi dτn

dνi dνn









Ak
i1

Ek
n1



 =





hk
τ1

hk
ν1



 (61)

Note that the matrix on the left hand side of (61) does

not depend on the boundary value problem but only on the

geometrical parameters. This can be an advantage in terms of

numerical computation time decreasing. Finally, the remaining

Fourier coefficients F k
j and Dk

n can be computed respectively

from equation (41) and (44).

IV. EXCITATION FORCES AND HYDRODYNAMIC

COEFFICIENTS

Once the scattering and/or radiation problem are solved

which means that we determined the unknown Fourier coeffi-

cients for the orthogonal series, we know the velocity potential

in the whole fluid domain. Then waves exciting forces and/or

hydrodynamic coefficients can be determined by integrating

the hydrodynamic pressure, given by the Bernoulli equation,

over the wet surface of the body under consideration. From

the linear wave theory the pressure is given by

p(r, θ, z, t) = −ρ
∂Φ

∂t
= iωρφ(r, θ, z)e−iωt (62)



A. Added Mass and Radiation Damping Coefficients

When the structure is moving, a radiation force acts on it

and can be expressed as

F k,i
q,j (ω) = iωρ

∫∫

Si

φk
q (r, θ, z)njdS (63)

where F k,i
q,j (ω) is the complex representation of the radiation

force acting on the body i in the direction j due to the

motion of the body k in the direction q (here q = 3). It

is conventional to decompose this radiation force into two

components, one proportional to the acceleration of body and

the other proportional to his velocity as follows

F k,i
q,j (ω) = −ω2ζq

[

µk,i
q,j +

i

ω
λk,i
q,j

]

(64)

where hydrodynamic coefficients µk,i
q,j and λk,i

q,j are referenced

in the literature as the added mass and the radiation or potential

damping, respectively.

B. Waves Excitation Forces in z Direction

When the structure is considered as fixed in the presence of

an incident wave an excitation force acts on the bodies. Using

a complex representation, excitation forces in the vertical

direction can be expressed in terms of scattering potential,

see (25), as

fk
z (ω) = iωρ

∫∫

Sk

φs(r, θ, z)n3dS (65)

where k indicates which body is under consideration and n3 is

the component of the generalised normal vector in z direction.

V. NUMERICAL RESULTS AND DISCUSSION

A specific code based on the above-presented formulation

has been developped in order to solve problem (61) . To

carry out numerical computations, the infinite series in the

expressions of the radiated and scattering potentials have to

be truncated to a finite number of terms. According to the

literature [2], [3], [5], it seems that considering only the first 30

terms shows good truncation characteristics. We have therefore

chosen N = 30 for potential expressions in all subdomains.

In order to validate the analytical expressions obtained

for velocity potentials, several checks are done on numerical

results and then different case-studies have to be considered.

In Table I we have summarised geometrical configurations for

each case-study where α is a variable parameter defined as

α ∈
[

8 2 1 .75 .65 .51
]

. Geometrical parameters for

case study no.1 and no.3 are taken respectively from models

developped by Wu et al. [7] and Chau and Yeung [8]. For

all numerical computations we have used h = 1 and for

the scattering problem, solutions are obtained baised on the

assumption of a unit amplitude incident wave, A = 1.

First of all, we look at the matching of the velocity

potential and its first derivative in the radial direction along

the imaginary interfaces between subdomains. In Fig. 2 results

are presented for the structure depicted in Section I for the

TABLE I
GEOMETRICAL PARAMETERS FOR NUMERICAL COMPUTATION

Case no. b/h Rb/h e1/h e2/h Rp/Rb Rc/Rb

1 0.1 0.2 0.25 0.35 α 10−3

2 0.1 0.2 0.25 0.35 α 0.5
3 0.25 1 0.4 0.5 α 0.5

−1 −0.8 −0.6 −0.4 −0.2 0

0.3

0.4

0.5

0.6

r = Rb

r = Rp

z

|φ
(R

b
,z
)|

(a)

−1 −0.8 −0.6 −0.4 −0.2 0
0

2

4
singularity

z
∂
φ
(r
,z
)

∂
r

∣ ∣ ∣

r
=
R

b
(b)

−1 −0.8 −0.6 −0.4
0

2

4
singularities

z

∂
φ
(r
,z
)

∂
r

∣ ∣ ∣

r
=
R

p

(c)

Ext. domain Int. domain

Fig. 2. Matching of the velocity potential (a) and its first derivative (b) and
(c) for case no.3, α = .75, at the imaginary interface r = Rb and r = Rp

for ke = 1.

case study no.3 where the plate radius is smaller than that of

the buoy, α = .75, and where the buoy is moving and the

platform is fixed. Excellent matching is achieved on velocity

potential using numerical truncation given above. However for

gradient visualisation purposes, we have used more terms in

expressions to reduce the oscillations due to Bessel functions

(N = 80 for regions Ω1, Ω2, and N = 40 for regions Ω3, Ω4).

Note the well-known singularity in Fig. 2 (b) at the corner due

to the discontinuous boundary condition (see [11] for more

details).

Also one could use asymptotic behaviours of the presented

model to compare results with existing models found in the

literature, which indirectly verify the proposed expressions

for potentials. Figures 3 to 5 show numerical results for
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Fig. 3. Dimensionless vertical forces, (a) on buoy (b) on platform.

hydrodynamic parameters when column radius tends toward

zero, case-study no.1 for α =
[

8 2 1
]

. This configuration

is similar to the model presented by Wu et al. in [7] (not

shown). Same coefficients than those given in [7] have been

used to non-dimensionnalise excitation forces in Fig. 3 and

hydrodynamics coefficients in Figs. 4 and 5, and excellent

correlation is found. Also parameters are shown for the case

where the radius of the column is half of the radius of the

buoy that corresponds to case-study no.2. Looking at added

mass and radiation damping, we note that only the amplitude

of the coefficients changes with the increase and decrease of

the wet body surface but not the behaviour. Now, if we look at

the excitation forces on the buoy, the presence of the column

does not seem to have an effect on it. However, we notice

that for the platform, the behaviour is totaly different at low

frequency and we can observe a rebound which varies with

the radius of the plate except for relatively big sizes. Then,

it seems that a radius ratio between the plate and column

exists for which the column no longer influences the behaviour

of the wave excitation force on the platform. Figures 6

to 7 show numerical results for hydrodynamic parameters

when plate radius tends toward column radius (case-study no.3

for α = .51) for two differents water depths h = 1 and

h = 5. This configuration is similar to the model presented

by Chau and Yeung in [8]. The same coefficients as above

have been used to non-dimensionnalised excitation forces. For

hydrodynamic coefficients, we divided by factor ρπR2
b for

the buoy and by factor ρπR2
c for the platform. Here again

figures show very good correlation between our model and

the literature. Looking at the excitation forces on the platform

Fig. 6 (b), one can notice that we do not have the behaviour

described previously. Then it seems that a radius ratio between

0 0.5 1 1.5 2 2.5 3
0

1

2

µ̄
1
,1

3
,3

(a)

α = 8

α = 2

α = 1

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

keRb

λ̄
1
,1

3
,3

(b)

case no.1 case no.2

Fig. 4. Dimensionless added mass (a) and radiation damping (b) for the
buoy.
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Fig. 5. Dimensionless added mass (a) and radiation damping (b) for the
platform.

the plate and column exists for which the plate radius is not

big enough to observe the rebound.

VI. CONCLUSION

Based on the potential theory, a semi-analytical method has

been presented in order to solve the radiation and scattering

problem which provides hydrodynamic parameters in heaving

mode for a specific wave energy converter. These parameters

are particularly needed for designers to analyse the WEC
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Fig. 6. Dimensionless vertical forces on the buoy (a), on the platform (b).
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Fig. 7. Dimensionless added mass (a) and radiation damping (b) for the
buoy.

dynamics in irregular waves. A specific code has been de-

velopped based on the mathematical formulations presented

in this paper. For validation purposes, several numerical sim-

ulations have been carried out for different buoy, column, and

plate radiuses. The results obtained have been compared to

well-known and available models in the literature. The clearly

confirm the appropriateness of the proposed semi-analytical

approach.

APPENDIX A

EXPRESSION FOR Tn(r), T̃n(r)

for n = 0

T0 =
ln(r/Rc)

ln(Rx/Rc)
T̃0 =

ln(Rx/r)

ln(Rx/Rc)

for n ≥ 1

Tn =
I0(γlr)K0(γlRc)− I0(γlRc)K0(γlr)

I0(γlRx)K0(γlRc)− I0(γlRc)K0(γlRx)

T̃n =
I0(γlRx)K0(γlr)− I0(γlr)K0(γlRx)

I0(γlRx)K0(γlRc)− I0(γlRc)K0(γlRx)

where Rx = min(Rb, Rp).
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