Using greediness for parameterization: the case of max and min (k, n − k)-cut - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2012

Using greediness for parameterization: the case of max and min (k, n − k)-cut

Résumé

MAX (k, n−k)-CUT (resp., MIN (k, n−k)-CUT) is a constrained version of MAX-CUT (resp.,MIN-CUT) where one has to find a bipartition of the vertex set into two subsets with respectively k and n − k vertices (n being the total number of vertices of the input graph) which maximizes (resp., minimizes) the number of edges going from one subset to the other. In this paper, we investigate the parameterized complexity of these two graph problems by considering several parameters, such as the value p of the solution, k, the size á of a minimum vertex cover and the treewidth tw of the input graph. We also give approximation schemata in FPT time for parameterizations which turn out to be W[1]-hard.
Fichier principal
Vignette du fichier
cahier_330.pdf (1.75 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00874363 , version 1 (17-10-2013)

Identifiants

  • HAL Id : hal-00874363 , version 1

Citer

Edouard Bonnet, Bruno Escoffier, Vangelis Paschos, Emeric Tourniaire. Using greediness for parameterization: the case of max and min (k, n − k)-cut. 2012. ⟨hal-00874363⟩
398 Consultations
245 Téléchargements

Partager

More