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Abstract: This article focuses on the calculation of the optimal stock-out risk for a component, which is

used by alternative modules mounted on several assembly lines. The studied context is a supply chain 

dedicated to the mass production of highly diversified products, which is common in the automotive 

industry. The Material Requirement Planning (MRP) approach is adapted for the monitoring of this 

chain; however, the distance between the production units leads to mix between production to stock and

production to order for the component of interest. To prevent stock-out propagation along the 

downstream part of the supply chain, use of an emergency supply is triggered prior to its occurrence. The 

definition of the optimal safety stock and the associated optimal stock-out risk, are based on a mono-

period model that considers the cost of a safety stock and the costs incurred by the emergency supply 

(transportation and production). The analytical solutions that are dependent on these costs are 

illustrated in this study.

Keywords: Stock-out risk, Emergency supplies, Safety stock, Supply Chain, Customized mass 

production.

1. INTRODUCTION

In this article, we focus on the definition of the optimal stock-

out risk for an order-up-to-level supply policy. We examine

the particular context of the mass production of highly 

diversified products in which component requirements are 

supplied for the use of alternative and optional modules on 

final assembly lines; their overall production is deemed stable

and predictable.

Supply Chains (SCs) dedicated to the mass production of 

highly diversified products are characterized by a certain 

geographic dispersion of production facilities well known in 

the automotive industry. In this context, the production is 

driven by several assembly lines that are geographically 

remote and whose diversity is mainly ensured by alternative 

modules (engines, gearboxes, etc.) that are mounted on

multiple workstations in a final assembly line. Each 

workstation is dedicated to a different set of alternative 

modules, of which one must necessarily be mounted on the 

finished product that passes through this workstation. An 

alternative module can be used by many assembly lines and

belongs to several alternative sets of modules; each set is

specific to an assembly line. Optional modules (sunroof, air 

conditioning, etc.) are considered as particular alternative 

modules. Periodic production levels of final assembly lines 

are stable in the short term or their evolutions, known.

With an established daily production for each line on a 

horizon of several weeks, the demand of systematically 

mounted components and of the components they use is 

certain. In the absence of uncertainty on quality, lead-times 

and production, the management of this type of flow is 

beyond the scope of our study.

The production monitoring of alternative modules—and the 

components they use—is complex. We consider the classic 

scenario where customer orders to suppliers are delivered

simultaneously with similar periodicity. This operation mode 

is that of the MRP that determines periodically and 

consistently the production launch of various references of 

the Bill Of Material (BOM) to ensure compliance with the 

requirements of the Master Production Schedule (MPS) 

which derives the production of all productive units of the 

SC.

Recently, Giard and Sali (2012) and Sali (2012) proposed an 

adaptation of the MRP approach to control the production of 

components manufactured in remote units of an upstream SC,

which is dedicated to the mass production of highly 

diversified products. For this type of SC, the requirements of 

the MPS, for pulling the production of components and 

alternative modules, are specified at the BOM level 

corresponding to the alternative modules known as the

planning BOM. Over the frozen horizon, these requirements 

are unknown and can be represented by random variables that

are used to determine the safety stocks at different levels of 

the SC. In this two researches, the accepted stock-out risk is 

not issued from an economic trade-off and no rule is given to 

specify its level.

We focus in this study on the economic analysis that should

be used to define the optimal stock-out risk when an 

emergency supply is triggered systematically to prevent the 



propagation of the stock-out along the downstream part of the 

SC. In the second section, we describe how to define the 

problem of emergency supplies. In the third section, we

present a model of the problem and the resulting analytical 

solutions.

2. PROBLEM POSITIONING

In mass production of highly diversified products, the variety 

of finished products is so great that the MPS has to be 

defined at the BOM level of alternative modules, which are 

limited in number.

The requirements of systematically mounted components are 

known in advance. Thus, these components are beyond the 

scope of our study as explained previously.

The requirements of alternative modules for periods that are 

covered by the frozen horizon l
FH of an assembly line l are

known. The frozen horizon delimits what can be produced to 

order in the upstream SC. The remoteness of the production 

units in global SCs and the heterogeneity of the frozen 

horizons associated with the assembly lines lead to an 

adaption of the MRP approach; this allows mixed make-to-

order (MTO) and make-to-stock (MTS) productions. Such 

adaptation of the MRP is developed by Giard and Sali 

(2012). We summarize the analytical results presented in 

their article (§ 2.1). In that study, the order-up-to-level, which 

is used to address the uncertain part of the demand, is defined 

using an arbitrarily defined stock-out risk. The determination 

of the stock-out risk may be an economic trade-off between 

the cost of emergency supplies and the cost of holding a

safety stock. The data used for this arbitrage are detailed (§ 

2.2). In section 3, the construction of a general model for 

decision making is discussed.

2.1. Procurements in a revisited MRP by mixing MTO and 

MTS

We refer to the results obtained in (Giard and Sali, 2012) and 

generalized in (Sali, 2012) to consider the potential use of a 

single component by several alternative modules. The 

application in cascade of the BOM explosion leads to find 

ika units of the component i , which belong to the level n of 

the BOM, included in one alternative module k belonging to

the set
l

iE .
l

iE is the set of exclusive alternative modules 

used in the assembly line l that requires the component i .

Moreover, in the MPS, the application in cascade of the lead-

time offset mechanism leads to a lag ik between the period 

t of production launch of a reference unit i and the period 

ikt of the requirements of the module k in the MPS. This 

causes binding of the Gross Requirements ( itGR ) of a 

reference i (level n of the BOM) at time t to the 

requirements '
l
ktMPS of the module k (level 1 of the BOM) 

mounted on the assembly line l at time t t . This link is 

different from the classical link that binds the gross 

requirements of a component i with the planned orders of 

the references ij (of level 1n of the BOM) that use that 

component.

When the demand is certain, the stocks are useless and itGR

is equal to the Net Requirements ( itNR ) and the Planned

Order ( , ii t LPO ), where iL is the lead time of the 

component i . These values are related to the MPS 

requirements of the final assembly lines by equation (1).

, , ,i i ik
l

i

l
it i t L i t L ik k t

l k

PO NR GR a MPS

E

(1)

Beyond the frozen horizon l
F

H of the assembly line l, we 

only know the demand structure recorded in the planning 

BOMs. In this case, the coefficients of the planning BOMs,

which are related to the alternative modules mounted on a 

workstation of the assembly line, are considered probabilities 

of use for these modules.

The requirements of the MPS of the assembly line l for the 

alternative module
1 k in the period l

F
t H becomes a 

random variable 
,

l
k t

X . This variable follows a binomial 

distribution where the number of events corresponds to the 

number of units of finished products that are assembled on 

the line l during a review period, and the probability of 

occurrence of the event is the coefficient l
k

c of the planning 

BOM associated with the alternative module k mounted on 

the line l .

, ,
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(2)

This generalization is essential if one wants to plan the 

production of remote assembly lines dedicated to the mass 

production of diversified products with an MRP approach. 

The Planned Order itPO calculated at the beginning of the 

period t and delivered at the beginning of the period it L is

equal to the certain requirements generated by the part of the 

MPS covered by the frozen horizon (

, ikl
i

l
ik k t

l k

a MPS

E

) plus the difference between the 

order-up-to level , ii t LR and the stock position when making

decision. We note itOHB the One-Hand Balance, which is

the stock physically held in period t .

1
If a component i is required by several alternative modules on the 

workstation with the same coefficient ika and for the same period, it is 

necessary to work with a fictitious module k which regroups that subset of 

alternative modules. The coefficient of planning BOM for this fictitious 

module is the sum of the coefficients of modules included in this subset. This 

allows us to generalize the approach of considering the commonality of 
components used by several alternative modules in the same assembly line.
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The order-up-to-level , ii t LR is the fractile associated with a

predefined stock-out risk of the random variable , ii t LY .
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In the steady state, characterized by the stability of the 

planning BOMs, this variable becomes iY and , ii t LR is 

replaced by iR .

1

0 |
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l h H h
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E

(5)

Subsequently, we will work under steady state conditions to 

simplify the formulation; nevertheless, the adaptation to the 

general case is immediate. In both cases, this random 

variable, which serves as a reference to determine the order-

up-to-level, is a weighted sum of binomial random variables 

whose distribution function is easy to determine by the 

Monte Carlo method. Formula (6) offers a generic 

formulation
2

of the random variable iY .

( , )i j j j
j

Y w n pB (6)

When the conditions of approximation by a normal 

distribution are met for each binomial distribution, the 

random variable iY can be approximated by a normal 

distribution.

, (1 )i i j j j i j j j j

j j

Y n p n p pw wN (7)

2.2. Costs to consider the determination of a stock-out risk in 

the context of emergency supplies

In the studied context, a stock-out at any level of the SC

triggers an emergency procedure that prevents production

stoppages. The emergency procedure assumes that the 

supplier is able to mobilize additional resources to promptly 

produce the missing units and that it is possible to shorten the 

lead time through rapid delivery of the missing quantities. 

Mobilizing an emergency procedure at a given level on the 

SC level prevents stock-out propagation along the 

downstream part of the SC.

The interval iT between two customer orders to its supplier 

for a component i , is always the same when the

manufacturing calendar uses only the working days. The time 

interval between two successive deliveries is also iT when 

the lead-time iL is constant. For organizational reasons, iL

2
The notations used in (6) have no physical significance. They are 

used to obtain a generic mathematical expression of iY .

normally corresponds to a multiple of the reference period T

also called the review period in the MRP ( iT T ). The orders

placed at the end of day t , which is equal to the difference 

between iR and the projected available inventory, arrives at 

the beginning of the periods it L . This schedule is intended 

to meet the needs of periods it L to 1it L T .

Emergency supplies of the missing units can be analyzed in 

the context of an order-up-to-level policy that is characterized 

by an order-up-to-level iR designed to cope with random 

demand according to a stock-out probability i . This policy 

generates two types of costs: costs directly incurred by the 

emergency supply to avoid stoppages and costs incurred by 

the unused units when the order is delivered, which is a 

consequence of using a safety stock.

First, an emergency supply may or may not generate a fixed 

cost 
iFc that is independent of the number of missing units. 

This cost may correspond to the payment of a special 

transport (charter a plane, for example) and/or the launch of 

exceptional production (set-up cost). An emergency supply 

can also generate additional variable cost 
iVc per missing 

unit. This cost can be the unit transportation cost of a 

logistics provider that is specialized in rapid transit and/or an

increase in the direct variable production cost of a missing 

unit (due to overtime, for example).

In contrast, if there is no stock-out at the end of the review

period and prior to receipt of a new delivery, a residual stock 

generates a certain cost. Each component unit i held during 

the review interval T generates a periodic holding cost ip ,

which is calculated as the product of an annual unitary 

holding cost i and the duration T (in years).

The amount of these charges depends on the order-up-to level

iR . The minimization of the global cost of the procurement 

policy allows one to independently define, for each 

component i , the optimal order-up-to level
*
iR associated 

with the optimal stock-out probability 
* *P( )i iX R . The 

optimal stock-out risk has no reason to be the same for all the 

components.

This type of inventory problem can be viewed as a variant of 

the newsboy problem, which introduces a lump-sum cost to 

pay in case of stock-out. This problem was approached by 

Wagner et al. (1975). Noori and Bell (1982) use an

approximate formulation to resolve the periodic problem of 

supply of foreign currencies in a banking agency. Hill and al.

(1989) were interested in the management of spare parts for

equipment that reach the end of their life cycle. Aneja and

Noori (1887) proposed a ,S s supply model that introduces a 

fixed cost of support in case of shortage. Apparently, there is 

no existing model that addresses the emergency supply of a

supply chain; the formulations in the listed bibliography are 

not identical to the formulations presented here.



3. DETERMINATION AND IMPLEMENTATION OF THE 

OPTIMAL EMERGENCY SUPPLY POLICY

After reviewing the analytical formulation of the problem and 

highlighting the relationship that characterizes the optimal 

policy (§ 3.1), we examine the decision rule for selecting the 

more interesting policy for emergency supply (§ 3.2). We

illustrate its application with a simple numerical example (§

3.3).

3.1. Emergency supply model and optimal solution

The cost function for minimizing C( )iR , defined over the 

review period T , is the sum of a mathematical expectation of 

the holding cost CP( )iR and a mathematical expectation of a 

stock-out cost CS( )iR . We use a discrete formulation of the 

problem, followed by a continuous formulation.

C( ) CP( ) CS( )i i iR R R (8)

1

CP( ) ( ) P( )

i i

i i i i i i
y R

R p R y Y y (9)

CS( ) P( 1)
ii F i iR c Y R

1

( ) P( )
i

i i

V i i i i
y R

c y R Y y (10)

In the continuous case, (9) becomes (11) and (10) becomes 

(11).

CS( ) P( ) ( ) ( )
i i

i

i F i i V i i i i

R

R c Y R c y R f y dy (11)

0

CP( ) ( ) ( )
iR

i i i i i iR p R y f y dy (12)

The first term CP( )iR is the product of the periodic holding

cost of one unit of a component i that is held during one 

review period and the mathematical expectation of the 

remaining stock at the end of the review period. The 

remaining stock level depends on the order-up-to level iR and 

random demand iY of the component i .

The second term CS( )iR depends on the order-up-to level iR

and random demand iY covered by iR . It involves the fixed 

and variable costs identified previously. One of these two 

costs—but not both simultaneously—may be null:

- the first part of this cost, P( 1)
iF i ic Y R , is the 

mathematical expectation of a fixed expense that is 

independent of the number of missing units;

- the second part of this cost,

1

( ) P( )
i

i i

V i i i i
y R

c y R Y y , corresponds to the 

mathematical expectation of the variable additional 

expenses generated by the expected stock-out amount.

We seek to determine the stock-out risk 
*
i associated with

the order-up-to level
*
iR that minimizes the global cost 

C( )iR . In the discrete case, the two cost functions are 

monotone (increasing for CP( )iR and decreasing for 

CS( )iR ) with
*
iR satisfying the system of inequalities (13).

* *

* *

C( ) C( 1) 0

C( ) C( 1) 0

i i

i i

R R

R R

(13)

The determination of 
*
iR , and thus of 

*
i , is achieved

through the study of the function C( ) C( 1)i iR R .

Depending on the values of 
iFc and 

iVc , evaluating this

function is more or less easy to achieve. After development 

and replacement of CP( )iR and CS( )iR by (9) and (10), 

respectively, we obtain (14).

C( ) C( 1)i iR R

P( 1) ( ) P( 1)
i iF i i i V i i ic Y R p c p Y R (14)

In the continuous case, the optimum is defined by 

C( ) / 0i id R dR . In both cases, we distinguish three cases

according to the values assumed by
iFc and

iVc .

3.1.1  Case 1: no fixed cost in emergency supply ( 0)
iFc

Under these conditions, we find the classical formulation of 

the newsvendor problem where the optimal stock-out risk 

value is given by (15).

P 1 P
ii i i V i i iY R p c p Y R (15)

In the continuous case, we obtain (16).

* 1 1
i ii i V i V ip c p c p (16)

The optimal stock-out probability 
*
i depends directly on the 

relative cost structure /
iV ic p . The order-up-to level

*
iR is

the fractile associated with
*
i .

The inverse functions of the major probability distributions 

are available in spreadsheet applications for continuous and 

discrete distributions. As specified in (4), the demand 

distribution of iY is a weighted sum of binomial variables. 

When the daily production consists of several hundreds of 

units, this sum is generally well approximated by a normal 

distribution, unless the utilized probabilities of the alternative 

modules that require the component i are very low. 

Nevertheless, the exact optimal solution can be obtained after 

the reconstitution of the distribution function of iY by the 

Monte Carlo method.

3.1.2  Case 2: no variable cost in emergency supply ( 0)
iVc

In this case (14) is replaced by (17).

C( ) C( 1) P( 1) P( 1)
ii i F i i i i iR R c Y R p Y R (17)

The optimality is reached when the relation (18) is satisfied.



* *

* *

P( 1) P( )

P( ) P( 1)i

i i i i i

Fi i i i

Y R p Y R

cY R Y R
(18)

In the continuous case, we obtain the relation (19) in which 

f is the probability density function of the random variable 

representing the demand
3
.

* *( ) P( )
ii i i i Ff R Y R p c (19)

Whether we are in a discrete case or in a continuous case of a 

normal distribution, the numerical determination of the 

optimal solution and the creation of an abacus linking *
i to 

ii Fp c is relatively simple.

When the demand iY is a weighted sum of binomial 

distributions, the solution can be obtained through the Monte 

Carlo simulation to obtain the probability distribution of the 

demand. When the normal approximation of iY can be 

realized, the resolution is much easier because it is possible to 

construct an abacus using a standardized normal distribution.

With ( , )
i ii Y YY N and ( )

i ii Y YU Y ( u is the 

realization of the standardized normal random variable U ), 

the relation (19) can be replaced by (20) where 
* *( )

i ii i Y Yu R and is the cumulative distribution 

function of the standardized normal distribution.

* *( ) ( )
i ii i i F Yf u u p c (20)

The function ( ) ( ) ( )g u f u u can be tabulated to construct 

a chart that gives *
i for different values of

ii Fp c and 
iY .

3.1.3. General case: 0 0
i iV Fc and c

This is the general case, as given by (10), where the stock-out

cost is the sum of a fixed cost and a variable cost. As in the 

previous case, an approximation of the demand iY by a 

normal distribution can be considered to numerically attain 

the optimal value of the stock-out risk according to the 

following equation: * *( ) ( ) P( ).
i iF i i V i i ic f R p c p Y R

This relation is equivalent to (21), obtained after 

standardization.

* *

* *

( ) ( )

1 ( ) 1 ( )

i

i

i

Yi i
i V

Fi i

f u u
p c

cu u
(21)

For different values of 
iY , curves representing

*
i function 

of 
ii Fp c and 

i iV Fc c can be drawn.

3.2. The choice between emergency supply systems

Of the three cases of emergency supply, the last one is the 

3
If the density function is symmetrical, as it is for the Normal 

Distribution, P( ) P( 2 )i i i iiY R Y Y R , ( ) 2( )i iif R Y Rf and 

( ) / P( ) (2 ) / P( 2 )i i i i i i iif R Y R f Y R Y Y R , which is the 

definition of the hazard distribution.

least common. Often, a company has to choose between the 

first two cases. In the first case ( 0)
iFc , an agreement is 

made with a company specializing in international express 

freight, with a guarantee of a short delivery time and a 

transportation cost
iVc per delivery component. In the second 

case ( 0)
iVc , a means of emergency freight transportation

(plane, truck), which is entirely dedicated to emergency 

transportation, is used; its cost
iFc does not depend on the 

number of transported units.

In this section, we propose a simple rule to help managers to 

decide which case is more interesting when they have to 

choose between an emergency supply with a variable cost 

iVc and a supply solution with a fixed cost 
iFc .

To select the more interesting solution, let us begin with the 

optimal stock-out of the case 2 
2*( )i associated with the 

order-up-to level 2*
iR . In case 1, the use of this stock-out

level yields a similar holding cost. We introduce 
iVc , the 

variable cost that offers the same mathematical expectation of 

a stock-out cost, and therefore, the same total cost for the two

cases when the stock-out risk is 
2*
i .

2* 2* 2*/ ( ) ( )
i iV F i i i ic c f u P U u u (22)

In (22) we note
2* 2*

i ii i Y Yu R and

2* 2*P( )i i iY R .

By analogy, we write
iFc , the fixed cost that offers the same 

mathematical expectation of a stock-out cost, and therefore,

the same total cost for the two cases when the stock-out risk 

is
1*
i .

A simple rule that covers the majority of the cases is 

formulated as following:

- the case 1 is better than the case 2 when
i iV Vc c ;

- the case 2 is better than the case 1 when
i iF Fc c .

3.3 Numerical example

Let us now illustrate numerically the calculation of the 

optimal stock-out risk *
i for a component i in the first two 

cases mentioned above.

In this part, we develop the numerical example presented in 

(Giard and Sali, 2012) where the procurement of piston 

crowns for automotive assembly plants is considered. 

A unit purchasing cost 100 €iUPC and a weekly holding 

rate 0,29%i are utilized to calculate a periodic holding 

cost for one piston crown 0,29 €ip .



In (Giard and Sali, 2012), the application of the MRP 

mechanism, as discussed in §2, provides a demand iY for this 

component following a weighted sum of binomial random 

variables.

4 (960,0.2) 4 (1840,0.54)iY B B

4 (960,0.2) 6 (960,0.1)B B (23)

The normal approximation of iY allows us to write (24).

(6086.4,123.84)iY N (24)

3.3.1. Case 1: no fixed cost in emergency supply ( 0)
iFc

When no fixed cost is considered, the calculation of *
i

depends on the relative cost structure /
iV ic p . Using a

multiplicative constant, this ratio is equivalent to the ratio of

the variable cost of emergency supply and the Unit 

Purchasing Cost iUPC , as shown below.

3.3.2. Case 2: no variable cost in emergency supply  

( 0)
iVc

In the second case, the use of the hazard function, after a 

normal approximation of the demand iY by (24), is required 

to link *
i to 

iF ic UPC , which yields the following curve.

3.3.3. Comparison of relative dominance in policies of 

emergency supply where 0
iFc or 0

iVc

With 10600
iFc we obtain

* 0.1%i . To attain the same

total expected cost with the alternative policy, the variable

emergency supply cost must be 309
iVc . For any 

i iV Vc c ,

the variable cost policy gives a better economic performance.

4. CONCLUSIONS

We have demonstrated how it is possible to determine the 

optimal stock-out risk in the case of emergency supply. This 

article represents the continuation of previous work on the

design of a procurement policy in the context of mass 

production of highly diversified products.

We have addressed two common cases of emergency supply 

in which the stock-out cost is the sum of a fixed cost and a 

variable cost depending on the amount of component to 

supply.

As shown by the numerical example, simple abacus can be

constructed, using a normal approximation of the demand, to 

assist operational decision makers
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