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This article focuses on the calculation of the optimal stock-out risk for a component, which is used by alternative modules mounted on several assembly lines. The studied context is a supply chain dedicated to the mass production of highly diversified products, which is common in the automotive industry. The Material Requirement Planning (MRP) approach is adapted for the monitoring of this chain; however, the distance between the production units leads to mix between production to stock and production to order for the component of interest. To prevent stock-out propagation along the downstream part of the supply chain, use of an emergency supply is triggered prior to its occurrence. The definition of the optimal safety stock and the associated optimal stock-out risk, are based on a monoperiod model that considers the cost of a safety stock and the costs incurred by the emergency supply (transportation and production). The analytical solutions that are dependent on these costs are illustrated in this study.

INTRODUCTION

In this article, we focus on the definition of the optimal stockout risk for an order-up-to-level supply policy. We examine the particular context of the mass production of highly diversified products in which component requirements are supplied for the use of alternative and optional modules on final assembly lines; their overall production is deemed stable and predictable. Supply Chains (SCs) dedicated to the mass production of highly diversified products are characterized by a certain geographic dispersion of production facilities well known in the automotive industry. In this context, the production is driven by several assembly lines that are geographically remote and whose diversity is mainly ensured by alternative modules (engines, gearboxes, etc.) that are mounted on multiple workstations in a final assembly line. Each workstation is dedicated to a different set of alternative modules, of which one must necessarily be mounted on the finished product that passes through this workstation. An alternative module can be used by many assembly lines and belongs to several alternative sets of modules; each set is specific to an assembly line. Optional modules (sunroof, air conditioning, etc.) are considered as particular alternative modules. Periodic production levels of final assembly lines are stable in the short term or their evolutions, known.

With an established daily production for each line on a horizon of several weeks, the demand of systematically mounted components and of the components they use is certain. In the absence of uncertainty on quality, lead-times and production, the management of this type of flow is beyond the scope of our study.

The production monitoring of alternative modules-and the components they use-is complex. We consider the classic scenario where customer orders to suppliers are delivered simultaneously with similar periodicity. This operation mode is that of the MRP that determines periodically and consistently the production launch of various references of the Bill Of Material (BOM) to ensure compliance with the requirements of the Master Production Schedule (MPS) which derives the production of all productive units of the SC.

Recently, [START_REF] Giard | Pilotage d'une chaîne logistique par une approche de type MRP dans un environnement partiellement aléatoire[END_REF] and [START_REF] Sali | Exploitation de la demande prévisionnelle pour le pilotage des flux amont d'une chaîne logistique dédiée à la production de masse de produits fortement diversifiés[END_REF] proposed an adaptation of the MRP approach to control the production of components manufactured in remote units of an upstream SC, which is dedicated to the mass production of highly diversified products. For this type of SC, the requirements of the MPS, for pulling the production of components and alternative modules, are specified at the BOM level corresponding to the alternative modules known as the planning BOM. Over the frozen horizon, these requirements are unknown and can be represented by random variables that are used to determine the safety stocks at different levels of the SC. In this two researches, the accepted stock-out risk is not issued from an economic trade-off and no rule is given to specify its level.

We focus in this study on the economic analysis that should be used to define the optimal stock-out risk when an emergency supply is triggered systematically to prevent the propagation of the stock-out along the downstream part of the SC. In the second section, we describe how to define the problem of emergency supplies. In the third section, we present a model of the problem and the resulting analytical solutions.

PROBLEM POSITIONING

In mass production of highly diversified products, the variety of finished products is so great that the MPS has to be defined at the BOM level of alternative modules, which are limited in number.

The requirements of systematically mounted components are known in advance. Thus, these components are beyond the scope of our study as explained previously.

The requirements of alternative modules for periods that are covered by the frozen horizon l F H of an assembly line l are known. The frozen horizon delimits what can be produced to order in the upstream SC. The remoteness of the production units in global SCs and the heterogeneity of the frozen horizons associated with the assembly lines lead to an adaption of the MRP approach; this allows mixed make-toorder (MTO) and make-to-stock (MTS) productions. Such adaptation of the MRP is developed by [START_REF] Giard | Pilotage d'une chaîne logistique par une approche de type MRP dans un environnement partiellement aléatoire[END_REF]. We summarize the analytical results presented in their article ( § 2.1). In that study, the order-up-to-level, which is used to address the uncertain part of the demand, is defined using an arbitrarily defined stock-out risk. The determination of the stock-out risk may be an economic trade-off between the cost of emergency supplies and the cost of holding a safety stock. The data used for this arbitrage are detailed ( § 2.2). In section 3, the construction of a general model for decision making is discussed.

Procurements in a revisited MRP by mixing MTO and MTS

We refer to the results obtained in [START_REF] Giard | Pilotage d'une chaîne logistique par une approche de type MRP dans un environnement partiellement aléatoire[END_REF] and generalized in [START_REF] Sali | Exploitation de la demande prévisionnelle pour le pilotage des flux amont d'une chaîne logistique dédiée à la production de masse de produits fortement diversifiés[END_REF] to consider the potential use of a single component by several alternative modules. The application in cascade of the BOM explosion leads to find ik a units of the component i , which belong to the level n of the BOM, included in one alternative module k belonging to the set

l i E . l i
E is the set of exclusive alternative modules used in the assembly line l that requires the component i .

Moreover, in the MPS, the application in cascade of the leadtime offset mechanism leads to a lag ik between the period t of production launch of a reference unit i and the period ik t of the requirements of the module k in the MPS. This causes binding of the Gross Requirements ( it GR ) of a reference i (level n of the BOM) at time t to the requirements ' l kt MPS of the module k (level 1 of the BOM) mounted on the assembly line l at time t t . This link is different from the classical link that binds the gross requirements of a component i with the planned orders of the references i j (of level 1 n of the BOM) that use that component.

When the demand is certain, the stocks are useless and it GR is equal to the Net Requirements ( it NR ) and the Planned Order (

, i i t L PO
), where i L is the lead time of the component i . These values are related to the MPS requirements of the final assembly lines by equation (1).

, , ,
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Beyond the frozen horizon l F H of the assembly line l, we only know the demand structure recorded in the planning BOMs. In this case, the coefficients of the planning BOMs, which are related to the alternative modules mounted on a workstation of the assembly line, are considered probabilities of use for these modules.

The requirements of the MPS of the assembly line l for the alternative module 1 k in the period

l F t H becomes a random variable , l k t X
. This variable follows a binomial distribution where the number of events corresponds to the number of units of finished products that are assembled on the line l during a review period, and the probability of occurrence of the event is the coefficient l k c of the planning BOM associated with the alternative module k mounted on the line l .

, , | [ i ik l l i ik F l i t L ik k t l H GR a MPS E , | ] ik l l i ik F l ik k t H a X E (2)
This generalization is essential if one wants to plan the production of remote assembly lines dedicated to the mass production of diversified products with an MRP approach. The Planned Order it PO calculated at the beginning of the period t and delivered at the beginning of the period i t L is equal to the certain requirements generated by the part of the MPS covered by the frozen horizon (

, ik l i l ik k t l k a MPS E ) plus the difference between the order-up-to level , i i t L R
and the stock position when making decision. We note it OHB the One-Hand Balance, which is the stock physically held in period t .

1 If a component i is required by several alternative modules on the workstation with the same coefficient ik a and for the same period, it is necessary to work with a fictitious module k which regroups that subset of alternative modules. The coefficient of planning BOM for this fictitious module is the sum of the coefficients of modules included in this subset. This allows us to generalize the approach of considering the commonality of components used by several alternative modules in the same assembly line. , ,
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The order-up-to-level , i i t L R is the fractile associated with a predefined stock-out risk of the random variable ,

i i t L Y . 1 , , 0 | i i ik l l i ik F h L l i t L ik k t h l h H h Y a X E (4) 
In the steady state, characterized by the stability of the planning BOMs, this variable becomes i Y and

, i i t L R is replaced by i R . 1 0 | i l l i ik F h L l i ik k l h H h Y a X E (5)
Subsequently, we will work under steady state conditions to simplify the formulation; nevertheless, the adaptation to the general case is immediate. In both cases, this random variable, which serves as a reference to determine the orderup-to-level, is a weighted sum of binomial random variables whose distribution function is easy to determine by the Monte Carlo method. Formula (6) offers a generic formulation 2 of the random variable i Y . ( , )

i j j j j Y w n p B (6)
When the conditions of approximation by a normal distribution are met for each binomial distribution, the random variable i Y can be approximated by a normal distribution.

,
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Costs to consider the determination of a stock-out risk in the context of emergency supplies

In the studied context, a stock-out at any level of the SC triggers an emergency procedure that prevents production stoppages. The emergency procedure assumes that the supplier is able to mobilize additional resources to promptly produce the missing units and that it is possible to shorten the lead time through rapid delivery of the missing quantities.

Mobilizing an emergency procedure at a given level on the SC level prevents stock-out propagation along the downstream part of the SC.

The interval i T between two customer orders to its supplier for a component i , is always the same when the manufacturing calendar uses only the working days. The time interval between two successive deliveries is also i T when the lead-time i L is constant. For organizational reasons, i L

2 The notations used in (6) have no physical significance. They are used to obtain a generic mathematical expression of i Y .

normally corresponds to a multiple of the reference period T also called the review period in the MRP ( i T T ). The orders placed at the end of day t , which is equal to the difference between i R and the projected available inventory, arrives at the beginning of the periods i t L . This schedule is intended to meet the needs of periods

i t L to 1 i t L T .
Emergency supplies of the missing units can be analyzed in the context of an order-up-to-level policy that is characterized by an order-up-to-level i R designed to cope with random demand according to a stock-out probability i . This policy generates two types of costs: costs directly incurred by the emergency supply to avoid stoppages and costs incurred by the unused units when the order is delivered, which is a consequence of using a safety stock.

First, an emergency supply may or may not generate a fixed cost i F c that is independent of the number of missing units. This cost may correspond to the payment of a special transport (charter a plane, for example) and/or the launch of exceptional production (set-up cost). An emergency supply can also generate additional variable cost i V c per missing unit. This cost can be the unit transportation cost of a logistics provider that is specialized in rapid transit and/or an increase in the direct variable production cost of a missing unit (due to overtime, for example).

In contrast, if there is no stock-out at the end of the review period and prior to receipt of a new delivery, a residual stock generates a certain cost. Each component unit i held during the review interval T generates a periodic holding cost i p , which is calculated as the product of an annual unitary holding cost i and the duration T (in years).

The amount of these charges depends on the order-up-to level i R . The minimization of the global cost of the procurement policy allows one to independently define, for each component i , the optimal order-up-to level * i R associated with the optimal stock-out probability * * P( ) i i X R . The optimal stock-out risk has no reason to be the same for all the components. This type of inventory problem can be viewed as a variant of the newsboy problem, which introduces a lump-sum cost to pay in case of stock-out. This problem was approached by [START_REF] Wagner | Principles of Operations Research[END_REF]. [START_REF] Noori | A one-period stochastic inventory problem with a lump-sum penalty cost[END_REF] use an approximate formulation to resolve the periodic problem of supply of foreign currencies in a banking agency. [START_REF] Hill | A decision Support System for determining optimal retention stocks for service parts inventories[END_REF] were interested in the management of spare parts for equipment that reach the end of their life cycle. Aneja and Noori (1887) proposed a , S s supply model that introduces a fixed cost of support in case of shortage. Apparently, there is no existing model that addresses the emergency supply of a supply chain; the formulations in the listed bibliography are not identical to the formulations presented here.

DETERMINATION AND IMPLEMENTATION OF THE OPTIMAL EMERGENCY SUPPLY POLICY

After reviewing the analytical formulation of the problem and highlighting the relationship that characterizes the optimal policy ( § 3.1), we examine the decision rule for selecting the more interesting policy for emergency supply ( § 3.2). We illustrate its application with a simple numerical example ( § 3.3).

Emergency supply model and optimal solution

The cost function for minimizing C( ) i R , defined over the review period T , is the sum of a mathematical expectation of the holding cost CP( ) i R and a mathematical expectation of a stock-out cost CS( ) i R . We use a discrete formulation of the problem, followed by a continuous formulation.

C( ) CP( ) CS( )

i i i R R R (8) 1 CP( ) ( ) P( ) i i i i i i i i y R R p R y Y y (9) CS( ) P( 1) i i F i i R c Y R 1 ( ) P( ) i i i V i i i i y R c y R Y y (10)
In the continuous case, ( 9) becomes ( 11) and ( 10) becomes (11).

CS( ) P( ) ( ) ( )

i i i i F i i V i i i i R R c Y R c y R f y dy (11) 0 CP( ) ( ) ( ) i R i i i i i i R p R y f y dy (12)
The first term CP( ) i R is the product of the periodic holding cost of one unit of a component i that is held during one review period and the mathematical expectation of the remaining stock at end of the review period. The remaining stock level depends on the order-up-to level i R and random demand i Y of the component i .

The second term CS( ) i R depends on the order-up-to level i R and random demand i Y covered by i R . It involves the fixed and variable costs identified previously. One of these two costs-but not both simultaneously-may be null:

-the first part of this cost, P( 1)

i F i i c Y R
, is the mathematical expectation of a fixed expense that is independent of the number of missing units;

-the second part of this cost, 1 ( ) P( )

i i i V i i i i y R c
y R Y y , corresponds to the mathematical expectation of the variable additional expenses generated by the expected stock-out amount.

We seek to determine the stock-out risk * i associated with the order-up-to level * i R that minimizes the global cost C( ) i R . In the discrete case, the two cost functions are monotone (increasing for CP( ) 

i i i i R R R R (13)
The determination of * i R , and thus of * i , is achieved through the study of the function C( ) C( 1) 9) and ( 10), respectively, we obtain ( 14).

i i R R .

Depending on the values of

C( ) C( 1)

i i R R P( 1) ( ) P( 1) i i F i i i V i i i c Y R p c p Y R (14)
In the continuous case, the optimum is defined by C( ) / 0

i i d R dR
. In both cases, we distinguish three cases according to the values assumed by i F c and i V c .

Case 1: no fixed cost in emergency supply

( 0) i F c
Under these conditions, we find the classical formulation of the newsvendor problem where the optimal stock-out risk value is given by (15).

P 1 P i i i i V i i i Y R p c p Y R (15)
In the continuous case, we obtain (16). * 1 1

i i i i V i V i p c p c p ( 16 
)
The optimal stock-out probability * i depends directly on the relative cost structure / i V i c p . The order-up-to level * i R is the fractile associated with * i . The inverse functions of the major probability distributions are available in spreadsheet applications for continuous and discrete distributions. As specified in (4), the demand distribution of i Y is a weighted sum of binomial variables. When the daily production consists of several hundreds of units, this sum is generally well approximated by a normal distribution, unless the utilized probabilities of the alternative modules that require the component i are very low. Nevertheless, the exact optimal solution can be obtained after the reconstitution of the distribution function of i Y by the Monte Carlo method.

Case 2: no variable cost in emergency supply

( 0) i V c
In this case ( 14) is replaced by (17).

C( ) C( 1) P( 1) P( 1)

i i i F i i i i i R R c Y R p Y R ( 17 
)
The optimality is reached when the relation ( 18) is satisfied. 

i i i i i i F i i i i Y R p Y R c Y R Y R (18)
In the continuous case, we obtain the relation ( 19) in which f is the probability density function of the random variable representing the demand 3 . * * ( ) P( )

i i i i i F f R Y R p c ( 19 
)
Whether we are in a discrete case or in a continuous case of a normal distribution, the numerical determination of the optimal solution and the creation of an abacus linking * i to i i F p c is relatively simple.

When the demand i Y is a weighted sum of binomial distributions, the solution can be obtained through the Monte Carlo simulation to obtain the probability distribution of the demand. When the normal approximation of i Y can be realized, the resolution is much easier because it is possible to construct an abacus using a standardized normal distribution. 

With ( , )

i i i Y Y Y N and ( ) i i i Y Y U Y ( u
i i i Y i i i V F i i f u u p c c u u (21) For different values of i Y , curves representing * i function of i i F p c and i i V F
c c can be drawn.

The choice between emergency supply systems

Of the three cases of emergency supply, the last one is the 3 If the density function is symmetrical, as it is for the Normal Distribution, P( ) P( 2)

i i i i i Y R Y Y R , ( ) 2 ( 
)

i i i f R Y R f and ( ) / P( ) (2 ) / P( 2 ) i i i i i i i i f R Y R f Y R Y Y R
, which is the definition of the hazard distribution. least common. Often, a company has to choose between the first two cases. In the first case ( 0

) i F c
, an agreement is made with a company specializing in international express freight, with a guarantee of a short delivery time and a transportation cost i V c per delivery component. In the second case ( 0

) i V c
, a means of emergency freight transportation (plane, truck), which is entirely dedicated to emergency transportation, is used; its cost i F c does not depend on the number of transported units.

In this section, we propose a simple rule to help managers to decide which case is more interesting when they have to choose between an emergency supply with a variable cost i V c and a supply solution with a fixed cost i F c .

To select the more interesting solution, let us begin with the optimal stock-out of the case 2 2* ( ) i associated with the order-up-to level 2* i R . In case 1, the use of this stock-out level yields a similar holding cost. We introduce i V c , the variable cost that offers the same mathematical expectation of a stock-out cost, and therefore, the same total cost for the two cases when the stock-out risk is 2* i .

2* 2* 2* / ( ) ( ) i i V F i i i i c c f u P U u u (22) In (22) we note 2* 2* i i i i Y Y u R and 2* 2* P( ) i i i Y R .
By analogy, we write i F c , the fixed cost that offers the same mathematical expectation of a stock-out cost, and therefore, the same total cost for the two cases when the stock-out risk is 1* i .

A simple rule that covers the majority of the cases is formulated as following:

-the case 1 is better than the case 2 when

i i V V c c ;
-the case 2 is better than the case 1 when

i i F F c c .

Numerical example

Let us now illustrate numerically the calculation of the optimal stock-out risk * i for a component i in the first two cases mentioned above.

In this part, we develop the numerical example presented in [START_REF] Giard | Pilotage d'une chaîne logistique par une approche de type MRP dans un environnement partiellement aléatoire[END_REF] where the procurement of piston crowns for automotive assembly plants is considered.

A unit purchasing cost 100 € i UPC and a weekly holding rate 0, 29% i are utilized to calculate a periodic holding cost for one piston crown 0, 29 € i p .

In [START_REF] Giard | Pilotage d'une chaîne logistique par une approche de type MRP dans un environnement partiellement aléatoire[END_REF] In the second case, the use of the hazard function, after a normal approximation of the demand i Y by (24), is required to link * i to i F i c UPC , which yields the following curve. the variable cost policy gives a better economic performance.

Comparison of relative dominance in policies of

CONCLUSIONS

We have demonstrated how it is possible to determine the optimal stock-out risk in the case of emergency supply. This article represents the continuation of previous work on the design of a procurement policy in the context of mass production of highly diversified products.

We have addressed two common cases of emergency supply in which the stock-out cost is the sum of a fixed cost and a variable cost depending on the amount of component to supply.

As shown by the numerical example, simple abacus can be constructed, using a normal approximation of the demand, to assist operational decision makers 

.

  To attain the same total expected cost with the alternative policy, the variable emergency supply cost must be 309