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weight, wind and snow loads. In most of the available computer
codes, in the case of complex cable nets, the single element is mod
elled by a non linear truss, especially in the case that the thrust is
high.

In the paper is presented an enhancement of the FDM, that is
particularly useful when slack cables or very heavy elements are
present. In this case, indeed, the initial configuration determined
with the equivalent truss element can be very far from the effective
catenary configuration. This goal is reached using the exact equi
librium equations of the heavy cable. It is shown that the use of
the exact equilibrium conditions leads to a form finding method
that is very similar to the standard FDM, although it requires the
solution of a non linear system of equations.

The proposed method uses as degrees of freedom for the form a
dimensionless parameter g (see Eq. (40)), analogous to the force
density, but that includes also the weight of the cable. The initial
form is sought within the class of the configurations having the
prescribed value for the parameter g that, as will be shown in
the paper, can be related to the form of the cable. The proposed
procedure is different from using the standard FDM for truss struc
tures, followed by a non linear analysis that accounts for the self
weight. In the latter case, as a matter of fact, during the non linear
analysis the degrees of freedom of the form (i.e., the force densi
ties), are not kept constant. In our case, on the contrary, the de
grees of freedom for the form retain their prescribed values in
the final exact equilibrated configuration. In the paper are used
the exact expressions of the vertical nodal forces and of the length
of the cable, see Peyrot and Goulois (1979) and Jayaraman and
Knudson (1981). It is shown that the proposed method yields sig
nificant differences in the initial form when the weight of the
cables is not negligible compared to other methods.

In the paper we first present the basic equations of the heavy
cable and we obtain the exact expressions for the length of the
cable and its end forces (Sections 2 through 4). Then we present
the standard FDM and its improvements for obtaining an exactly
equilibrated configuration (Section 5). Section 6 illustrates the
use of the method with some examples, comparing the results with
those obtained using standard FDM.

2. Equilibrium equations for cable elements

2.1. Variational principle of a cable element

Let p pðsÞ be the parametric configuration of the cable at a
generic instant, with s the arc length. The tangent space TpBt at
point p is generated by the unitary triad constituted by the tangent

vector t̂ @sp, the unit n̂ @s t̂
k@stk and the unit bi normal vector

n̂ t̂ � n̂. We denote with s the resultant of the component along
t̂ of the stress vectors associated to t̂, defined by s st̂. Indicating
with L the current length of the cable for any virtual displacement
v the principle of virtual work is given byZ L

0
s � @sðvÞds

Z L

0
q � v dsþ F0 � v0 þ FL � vL ð1Þ

integrating the first term of Eq. (1) we have

½s � v �L0
Z L

0
@sðsÞ � v ds

Z L

0
q � v dsþ F0 � v0 þ FL � vL: ð2Þ

The field equations in [0,L] is

@sðsÞ q ð3Þ

and the boundary conditions are

sð0Þ F0 or vð0Þ v0

sðLÞ FL or vðLÞ vL:
ð4Þ

From the last condition the boundary forces must be tangent to the
configuration of the cable.

2.2. Intrinsic representation of the equilibrium equations

Projecting the equilibrium Eq. (3) in the intrinsic tangent space
we have

@ss � t̂ q � t̂ qt̂; @ss � n̂ q � n̂ qn̂; @ss � n̂ q � n̂
qb̂: ð5Þ

Using Frenet’s formula and considering that s st̂ the component
of gradkðsÞ are

@ss � t̂ @ss; @ss � n̂ sv; @ss � n̂ 0; ð6Þ

where v k@s t̂k is the curvature of the funicular curve.
Finally the intrinsic representation of the equilibrium equations

(3) is

@ssðsÞ qt̂ðsÞ;
sðsÞvðsÞ qn̂ðsÞ;

qb̂ðsÞ 0;
ð7Þ

with the boundary conditions

sð0Þ F0 or vð0Þ v0;

sðLÞ FL or vðLÞ vL:
ð8Þ

2.3. Cartesian representation of the equilibrium equations

Projecting the equilibrium Eq. (3) on the Euclidean spatial frame
we obtain, (noting that @ss ei @sðs eiÞ 8i 1;2;3.)

@sðst̂ � exÞ q � ex; @sðst̂ � eyÞ q � ey; @sðst̂ � ezÞ q � ez

ð9Þ

and remembering the definition of the tangent vector t̂ @x
@s exþ

@y
@s ey þ @z

@s ez we obtain

@
@s sðsÞ @x

@s ðsÞ
� �

qxðsÞ;
@
@s sðsÞ @y

@s ðsÞ
� �

qyðsÞ;
@
@s sðsÞ @z

@s ðsÞ
� �

qzðsÞ:

ð10Þ

The projections of the internal traction stress resultant s along the
Cartesian directions are usually called thrust and shears

HðsÞ sðsÞ � ex sðsÞ @x
@s ðsÞ;

KðsÞ sðsÞ � ey sðsÞ @y
@s ðsÞ;

VðsÞ sðsÞ � ez sðsÞ @z
@s ðsÞ:

ð11Þ

Using the definitions (11) the Cartesian equilibrium equations (10)
assume the compact form

@sHðsÞ qxðsÞ; @sKðsÞ qyðsÞ; @sVðsÞ qzðsÞ: ð12Þ

By a first integration along s we have

HðsÞ H0

Z s

0
qxðsÞds;

KðsÞ K0

Z s

0
qyðsÞds;

VðsÞ V0

Z s

0
qzðsÞds;

ð13Þ

where we have indicated H0 Hð0Þ; V0 Vð0Þ; K0 Kð0Þ. A new
integration along s yields the parametric representation of the
funicular configuration



  

xðsÞ
Z s

0

H0
R s

0 qxðsÞds
sðsÞ dsþ xð0Þ;

yðsÞ
Z s

0

K0
R s

0 qyðsÞds
sðsÞ dsþ yð0Þ;

zðsÞ
Z s

0

V0
R s

0 qzðsÞds
sðsÞ dsþ zð0Þ; ð14Þ

where the tangent component of the resultant stress traction is
defined by

sðsÞ H0

Z s

0
qxds

� �2

þ K0

Z s

0
qyds

� �2

þ V0

Z s

0
qzds

� �2
s

:

ð15Þ

3. Formulation of the elastic catenary element

In this section, the simplification of the equilibrium equation to
the case of an elastic catenary obeying Hooke’s law is shown, sus
pended at its ends and subjected only to its self weight. A discus
sion on a wide variety of elastic catenaries can be found in
Ahmadi Kashani and Bell (1981), Tibert (1998), Jayaraman and
Knudson (1981), Peyrot and Goulois (1979) and Irvine (1982).

3.1. Assumptions

The basic hypotheses of the present formulation are:

1. Small strains only are considered (but large displacements).
2. Linear elastic constitutive behaviour only is considered

(s EA0 e).
3. Conservation of mass of the cable element during the deforma

tion process is assumed, i.e. the value of the weight per unit
length varies in agreement with the mass conservation (the
associated catenary model Ahmadi Kashani and Bell (1981) is
considered).

4. Bending stiffness is neglected.
5. Only the distributed vertical load (along the z direction) due to

self weight is considered, so that the geometry of the configura
tion of the cable is plane. These hypotheses define the elastic
catenary element.

3.2. Equations of the elastic cable element

A total Lagrangian approach is used. As reference configuration
we adopt the inextensible catenary configuration of the cable and
we denote with s0 2 ½0; L0� the arc length coordinate, referred to
the length L0 of the non deformed cable.

Since we consider that the only external action is the self
weight qs, along the z direction, we have from Eq. (13)

HðsÞ H0; KðsÞ K0; @sVðsÞ qzðsÞ: ð16Þ

Eq. (12) reduce to

sðsÞ @x
@s
ðsÞ H0; sðsÞ @y

@s
ðsÞ K0;

@

@s
sðsÞ @z

@s

� �
qzðsÞ; ð17Þ

with

sðs0Þ H2
0 þK

2
0 þ V0

Z s0

0
qz

ds
ds0

ds0

� �2
s

H2
0 þK

2
0 þ V0

W
L0

s0

� �2
s

K 1þ
V0

W
L0

s0

K

 !2
vuut ; ð18Þ

where K H2
0 þK

2
0

q
and W is the total weight of the cable, that by

virtue of the mass conservation can be represented
W

R L
0 qzds

R L0
0 qz

ds
ds0

ds0
R L0

0 qz;0ds0. Integrating the previous
equations on the Lagrangian configuration we have

xðs0Þ
Z s0

0

H0

sðs0Þ
ds
ds0

ds0 þ x0;

yðs0Þ
Z s0

0

K0

sðs0Þ
ds
ds0

ds0 þ y0;

zðs0Þ
Z s0

0

V0
W
L0

s0

sðs0Þ
ds
ds0

ds0 þ z0:

ð19Þ

Considering that e ð ds
ds0

1Þ and assuming a linear constitutive
relation s EA0

ds
ds0

1
� �

we have ds
ds0

s
EA0
þ 1, then equations (19)

become

xðs0Þ H0

Z s0

0

1
EA0
þ 1

sðs0Þ

� �
ds0 þ x0;

yðs0Þ K0

Z s0

0

1
EA0
þ 1

sðs0Þ

� �
ds0 þ y0;

zðs0Þ
Z s0

0

V0
W
L0

s0

sðs0Þ
sðs0Þ
EA0

þ 1
� �

ds0 þ z0

ð20Þ

and integrating we have

xðs0Þ x0
H0s0

EA0
þH0L0

W
Sinh 1 V0

K

	 

Sinh 1 V0

W
L0

s0

K

" # !
;

ð21Þ

yðs0Þ y0
K0s0

EA0
þK0L0

W
Sinh 1 V0

K

	 

Sinh 1 V0

W
L0

s0

K

" # !
ð22Þ

and

zðs0Þ z0
s0

EA0
V0

1
2

W
L0

s0

� �

þKL0

W
V0

K

� �2

þ 1

s
V0

W
L0

s0

K

 !2

þ 1

vuut
2
64

3
75: ð23Þ

The components of the vector joining the ends of the elastic cate
nary element are described by Eqs. (21) (23), which are summa
rized as

ðP P0Þ � ex lx xðL0Þ x0 fxðH0;K0;V0; L0Þ;
ðP P0Þ � ey ly yðL0Þ y0 fyðH0;K0;V0; L0Þ;
ðP P0Þ � ez h zðL0Þ z0 gðH0;K0;V0; L0Þ:

ð24Þ

Fig. 1 shows the nodal forces in the plane of the catenary.
The total length of the deformed catenary is given by the sum of

the undeformed length L0 and the total elongation DL

LðK;V0; L0Þ L0 þ DLðK;V0; L0Þ L0 þ
Z L0

0

s
EA0

� �
ds0: ð25Þ

Using the relation (18) and integrating we obtain the expression for
the global elongation of the cable that can be formulated in either
one of the following equivalent expressions:

DLðK;V0;L0Þ
1

2EAqz

2
64V0 K2þV2

0

q
ðV0 qzL0Þ K2þðV0 qzL0Þ2

q

þK2Log
ðV0 qzL0Þþ K2þðV0 qzL0Þ2

q
V0þ K2þV2

0

q
0
B@

1
CA
3
75; ð26Þ



  

DLðK;V0;L0Þ
1

2EAqz
V0 V2

0þK2
q

ðV0 qzL0Þ ðV0 qzL0Þ2þK2
q	

þK2ArcSinh
V0

K

� �
K2ArcSinh

V0 qzL0

K

� �

: ð27Þ

In the case of non extensible cable in the equations (19) the ratio
ds

ds0
1 so that the parametric equations of the undeformable

catenary element are obtained for Eqs. (21) (23) in the limit
EA0 !1

xðs0Þ x0
H0L0

W
Sinh 1 V0

K

	 

Sinh 1 V0

W
L0

s0

K

" # !
; ð28Þ

yðs0Þ y0
K0L0

W
Sinh 1 V0

K

	 

Sinh 1 V0

W
L0

s0

K

" # !
ð29Þ

and

zðs0Þ z0
KL0

W
V0

K

� �2

þ 1

s
V0

W
L0

s0

K

 !2

þ 1

vuut
2
64

3
75: ð30Þ

4. Vertical forces at the ends of the cable

In this section, explicit formulas for the vertical forces transmit
ted by the cable to the end nodes are derived. In addition to the ex
act expressions, approximated ones will also be proposed. These
results will be used in the formulations proposed in Section 5.

4.1. Exact catenary element

Squaring and adding the first two of the catenary equilibrium
relations (17), we have

dk
ds

K
s

H2
0 þ K2

0

q
s

;
dV
ds

qz; ð31Þ

where ds dk2 þ dz2
p

, with dk dx2 þ dy2
q

. Manipulating we
have

ds
dk

1þ dz
dk

� �2
s

; K
s

1þ dz
dk

� �2
q : ð32Þ

Similarly dV
dk qz 1þ dz

dk

� �2
q

and remembering the definition of

V s dz
dk

dk
ds, we have

d
dk

dz
dk

s

1þ dz
dk

� �2
q

0
B@

1
CA qz 1þ dz

dk

� �2
s

: ð33Þ

Using Eq. (32), considering that K is constant, we have an alterna
tive cartesian representation of the equilibrium equation along
the z direction

K
d2z

dk2 qz 1þ dz
dk

� �2
s

; ð34Þ

where k 2 ½0; l�, with l l2
x þ l2

y

q
. Letting dz

dk f ðkÞ the previous

equation assumes the form df
dk

qz
K 1þ f ðkÞ2
q

that has the solution

dz
dk

Sinh
qzk
K

c1

	 

ð35Þ

and observing that dz
dk

V
K

VðkÞ KSinh
qzk
K

c1

	 

ð36Þ

so it is found that

V0 KSinh½c1�: ð37Þ

Integrating Eq. (35) we obtain the Cartesian representation of the
catenary

zðkÞ K
qz

Cosh
qzk
K

c1

	 

þ c2; ð38Þ

with boundary conditions, for k 0 and for k l

z0
K
qz

Cosh c1½ � þ c2 or Vð0Þ K
dz
dk

����
k 0

V0;

zðlÞ K
qz

Cosh
qzl
K

c1

	 

þ c2 or VðlÞ K

dz
dk

����
k l

VL:
ð39Þ

In the case of fixed supports, subtracting the first from the second
equation and introducing the dimensionless parameter

g
qzl
2K

; ð40Þ

we have

h zðlÞ z0
K
qz

Cosh
qzl
K

c1

	 

Cosh c1½ �

	 


l
2K
qzl

� �
Sinh c1

qzl
2K

	 

Sinh

qzl
2K

	 

l
g

Sinh c1 g½ �Sinh½g� ð41Þ

From the last relation and the first of Eq. (39) the constants c1 and c2

are obtained

c1 Sinh 1 g
Sinh½g�

h
l

	 

þ g ð42Þ

and

c2 z0 þ
l

2g
Cosh½g� 1þ g

Sinh½g�
h
l

� �2
s

þ gh
l

2
4

3
5: ð43Þ

Note that, since g > 0, for any value of g;h and l, c1 is a positive con
stant. Therefore the equation of the catenary is

zðkÞ z0þ
1
qz

2KSinh
gk
l

	 

Sinh g 1

k
l

� �
þArcSinh

gh
l

Csch½g�
	 
	 
� �

:

ð44Þ

The length of the catenary, (for the deformable and the unde

formable case), is given by the relation L
R l

0 1þ dz
dk

� �2
q

dk, where
l is the horizontal span of the catenary. From the equality
dz
dk

VðkÞ
K Sinh qzk

K c1
� 

and using the expression (42), after some
manipulation we have

Fig. 1. Representation of the nodal forces in the catenary plane z-k.



  

L2 ðL0 þ DLÞ2 l2

g2 Sinh2½g� þ h2
: ð45Þ

In the case of the undeformable cable DL 0 then we have

L2
0

l2

g2 Sinh2½g� þ h2
: ð46Þ

The vertical forces at the extremities of the cable are obtained
from Eq. (37), that, inserting the expression (46) for the length,
can be written as

V0
qzL0

2
þ qzh

2
Cosh½g�
Sinh½g� ð47Þ

and the shear at the second extremity is given by

VðL0Þ
qzL0

2
þ qzh

2
Cosh½g�
Sinh½g� : ð48Þ

Similar relations can be found in Tibert (1998), Jayaraman and
Knudson (1981), Peyrot and Goulois (1979), Ahmadi Kashani and
Bell (1981) and Ahmadi Kashani (1988).

The dimensionless parameter g is related to the sag of the cable,
that can be defined as the ratio f=l between the sag related to the
chord and the horizontal span of the cable (see Fig. 2(a)). Since
f zðk2Þ h

2 from Eq. (44) it is readily found

f
l

1
g

sinh
g
2

sinh
g
2
þ ArcSinh

gh
l

Cschg
	 
	 
� �

1
2

h
l
: ð49Þ

In Fig. 3 is plotted the sag ratio against g, for some values of h
l .

For fixed h and l the cable can assume either of the two config
urations shown in Fig. 2(b) that are characterized by having the

tangents at the extremities of the same sign, or of opposite signs.
The former case occurs when the parameter g is such that

cosh2g
sinh2g

l
h

� �2 sinh2g
g2 1 > 0: ð50Þ

In this case the maximum axial force in the cable occurs at the
extremity, and is equal to

smax sð0Þ K2 þ V2
0

q
K 1þ g2 L0

l
þ h

l
cothg

� �2
s

: ð51Þ

In the latter case, the maximum axial force is equal to K and it oc
curs at the point of abscissa

s0

l
1
2

L0

l
þ h

l
cothg

� �
: ð52Þ

4.2. Approximated parabolic element

From expressions (44), (47) and (48) approximated forms of the
relevant parameters of the cable can be obtained. The solution of
the catenary equation depends on the parameter g qzl

2K, the ratio
between the weight of the cable and the horizontal thrust. Then
in the limit as g! 0 we can expand expressions (44) and (36) in
Taylor series at the first order in g

lin½zðkÞ� z0 þ dgðzðkÞÞ z0 þ h
k
l
þ g l2 þ h2

q
1

k
l

� �
k
l
; ð53Þ

lin½VðkÞ� VðkÞjg 0 þ dgVðkÞ
h
l
Kþ l2 þ h2

p
l

K 1 2
k
l

� �
g: ð54Þ

The shears at the ends of the cable are then given by

lin½V0�
h
l
Kþ l2 þ h2

p
l

Kg
h
l
Kþ qz l2 þ h2

p
2

; ð55Þ

lin½VL0 �
h
l
K

l2 þ h2
p

l
Kg

h
l
K

qz l2 þ h2
p

2
: ð56Þ

Observation. The results (53) (56) can be obtained linearizing
the catenary Eq. (34) for small sagging of the cable, in which case
we have:

d2z

dk2

qz

K
l2 þ h2

l2

s
qz

K
k
l

2g
k

l2 ð57Þ

the solution of which can be expressed in the parametric form

zðkÞ gk
k
l

� �2

þ ðhþ gkÞ k
l
þ z0: ð58Þ

Fig. 2. Definition of the sag ratio for the catenary (a), different configurations of the catenary (b).
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Fig. 3. Sag ratio for a catenary as function of the parameter g.



  

Similarly for the length of the cable we have

lin½L� l2 þ h2
q

: ð59Þ

In this work we have also used a second order approximated
parabolic model developed by Deng et al. (2005) in which for the
length of the parabola, in place of Eq. (45) the current length of
the parabola itself is used, i.e.

L
Z l

0
1þ dz

dk

� �2
s

dk ð60Þ

in which zðkÞ is given by the expression (58). Performing the inte
gral the length assumes the form

L
l

4kg
l2 þ ðh kgÞ2

l2

s
ðkg hÞ þ l2 þ ðhþ kgÞ2

l2

s
ðkgþ hÞ

2
4

þ lArcsinh
hþ kg

l

� �
lArcsinh

h kg
l

� �

ð61Þ

In this approximation the shear components at the ends are gi
ven by the same expressions as (55) and (56)

V0
qzL0

2
þK

h
l
; VðL0Þ

qzL0

2
þK

h
l
: ð62Þ

In the case of a deformable parabolic element the length
becomes

L L0 þ DL; DL
1

EA

Z L0

0
K2 þ ðV0 qzs0Þ2

q
ds0; ð63Þ

while in the case of undeformable parabola DL 0 then L L0, i.e.
the current length is the undeformable length.

4.3. The straight cable element

If qz ! 0, i.e. light cable net, the equilibrium equation becomes

d2z

dk2 � 0; zðkÞ h
l
kþ z0; V0 VðlÞ K

h
l
; ð64Þ

that is, a straight truss is recovered.

5. The force density method

The force density method was developed by Schek (1974) who
successively developed the constrained force density method. He
considered weightless cables, so that they could be approximated
with truss elements (approximation (64)), ad demonstrated that
the form of the net could be obtained directly solving the linear
equilibrium equations in the unknowns positions of the nodes,
using as degrees of freedom of the form the ratios Ti=ki (Ti being
the axial force in the truss), called force density of the element.
He proved that the procedure yields a set of minimal length if
the axial forces Ti are taken equal in all the branches.

Later Haber and Abel (1982) pointed out that the force density
corresponds to the initial geometric stiffness of the truss, clarifying
the interpretation of the axial force Ti as prestress. Bletzinger and
Ramm (1999) and Wüchner and Bletzinger (2005) generalized
the idea of Schek to the case of membranes, using as parameter
for the form finding the second Piola Kirchhoff stresses, that are
iteratively adjusted to leading the prescribed Chachy stresses. They
proved that a uniform isotropic Cauchy stress state leads to mem
branes of minimal surface. The method was then extended to non
isotropic stress states for improving the shape of the membrane.
Bletzinger et al. (2005) also studied the effects of self weight add
ing an elastic stress to the prestress. These procedures were partic
ularized to the case of cables, using the straight element

approximation. In the latter case, the self weight of the cables
are imposed as external loads on the form previously obtained.

In this work we propose a generalization of the form finding
procedure to the case of heavy cables, that is, to the case of consid
erably slack cables, using the exact solution for heavy cables (cat
enary). The solution sought in this way is an exact one, so it can be
used as starting point of an incremental analysis. Since the equilib
rium equations become non linear in the node coordinates, the
solution is sought by means of iterative techniques. At the end of
the paper we will discuss how the present method can also be used
for obtaining nets with uniform thrusts.

In this section, starting from the equilibrium equations of the
net, first the standard FDM, will be recalled, then two non linear
implementations similar to the one proposed by Haber and Abel
(1982) will be outlined, and finally the new proposal will be
presented.

Let i be the generic free node of the net, identified by the (un
known) position vector Pi. Let r be the number of cable elements

Fig. 4. Representation of the effective traction force f j in the plane z-k in the case of
the truss, parabolic and catenary element.

Table 1
Fixed node.

x [m] y [m] z [m]

P1 0 0 0
P2 1 0 0
P4 0 1 0
P6 1 1 1

Table 2
Coordinates of the free nodes, case QK 1 [daN/m].

[daN/m] Node x [m] y [m] z [m]

qz 0 FDM 3 0.5 0.25 0.125
5 0.5 0.75 0.375

qz 1 nl-FDM 3 0.5 0.25 �0.381649
5 0.5 0.75 �0.202515

P-FDM 3 0.5 0.25 �0.402939
5 0.5 0.75 �0.223149

C-FDM 3 0.5 0.25 �0.348097
5 0.5 0.75 �0.161213

qz 1:5 nl-FDM 3 0.5 0.25 �0.983278
5 0.5 0.75 �0.868457

P-FDM 3 0.5 0.25 �1.11243
5 0.5 0.75 �0.996926

C-FDM 3 0.5 0.25 �0.693050
5 0.5 0.75 �0.542846



  

attached to the ith node and, as done previously, indicate by
kj kPi Pjk the length of the segment joining the element ends.

The forces acting at the ith extremity of the cable have the com
ponents H;K;V. Recalling that K kH0ex þK0eyk, and using the
expressions for the shear found previously (Eqs. (64), (55), (47)
for the straight cable approximation, parabolic approximation, ex
act catenary respectively), the cartesian projection of the equilib
rium equations of the ith node are
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lj
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lj
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Fig. 5. Z-coordinate respectively of node-3 (a) and of node-5 (b) for increasing self weight of the cables.
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Fig. 6. Values of fi for each cable, in the case of nl-FDM (a), P-FDM (b), ad C-FDM (c). QK 1 [daN/m], g qz=ð2QKÞ, see Fig. 7.



  

where the force fj is shown in Fig. 4 and is given for the truss, par
abolic and catenary elements, respectively, by

fjt Kj
kj

lj
; f jp

Kj
kj

lj
; f jc

Kj
kj

lj
gj

Cosh½gj�
Sinh½gj�

ð66Þ

and in the truss approximation the self weight is omitted (dc 0 for
the truss, dc 1 otherwise).

In Eq. (65) there appear two force density quantities, the ratio

QKj

Kj

lj
and the ratio QVj

fj

kj
, that by means of definitions (66) is

given for the truss, parabolic and catenary element, respectively,
by

QVj ;t
Kj

lj
; QVj ;p

Kj

lj
; QVj ;c

Kj

lj
gj

Cosh½gj�
Sinh½gj�

: ð67Þ

In this way we get three versions of the FDM. The truss approx

imation is the standard FDM in which the length L0 k l2 þ h2
p

,
and the self weight is neglected. In the case of small but finite self
weight, we obtain the (P FDM) parabolic form of the force density
method in which the length L0 can assume any of the forms (60) or
(61). In these two force density methods appear only one kind of
force density. Finally in the case of the catenary force density
method (C FDM), we have a new kind of force density, that con
tains the dimensionless parameter g.

The standard linear FDM. In the linear FDM we assign the force

densities QKj

Kj

lj
and let qzj

0 everywhere; in this manner the

Eqs. (65) reduce to a set of linear equations

Fig. 7. Graphics representation of the configuration of a 5-cables net obtained for a self weight qzj
1 ½daN=m�; j 1;2;n; in (a) is plotted the solution of the linear force

density method, (FDM), in (b) is plotted the solution of the non linear force density method, (nlFDM), in (c) is plotted the solution of the parabolic force density method, (P-
FDM) and in (d) is plotted the solution of the catenary force density method, (C-FDM).
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Note that in this case the cable reduces to a truss element, so that

QKj

Kj

lj

fj

kj

Tj

kj
: ð69Þ

Solving the Eqs. (68) we obtain for each free node j an initial po
sition fx0; y0; z0gLFDM

j , from which is possible to define the linear
length LLFDM

0 of each cables. An usual strategy adopted is to choose
QKj

constant everywhere except in the boundary cables, where it is
chosen one order of magnitude larger.

The nonlinear standard FDM. The previous solution can be used
to initialize the non linear force density method (nlFDM) defined
by the equations

Pr
j 1

Kj

lj
ðxi xjÞ px;i;

Pr
j 1

Kj

lj
ðyi yjÞ py;i;

Pr
j 1

qzj
L0j

2
þKj

lj
ðzi zjÞ pz;i;

ð70Þ

where the conditions on the lengths are defined only by the relative
positions of the free nodes by means of the relations

L2
0j

l2
j þ h2

j ð71Þ

with auxiliary conditions on the force densities

QKj

Kj

lj
: ð72Þ

We have 3jþ 2n equations in 3jþ 2n variables, the 3j equilibrium
equations, with the n conditions on the length and n conditions
on the force densities QKj

, in the 3j independent variables
fxj; yj; zjg, the n independent variables fL0 jg and the n variables
fKjg. We adopt a Newton Raphson strategy to solve these equa
tions, in which the initial solution is represented by the LFDM solu
tion. The solution of the nlFDM is represented by the set of values

fxj; yj; zjgnlFDM
; fL0 jgnlFDM and fKjgnlFDM .

The (non linear) parabolic FDM. The parabolic force density
method is defined by the equilibrium equations (70) in which
the length of the element coincides with the length of the parabola
(61); then we have the equilibrium equations

Table 3
Forces and length of the cable for qz 1 and qz 1:5 [daN/m], case QV 1½daN=m�.

El. f [daN] H [daN] K [daN] V0 [daN] VðL0Þ [daN] K [daN] L0 [m]

qz 0 ½daN=m� FDM 1 0.572822 0.5 0.25 0.125 – 0.559017 0.572822
2 0.572822 �0.5 0.25 0.125 – 0.559017 0.572822
3 0.559017 0.0 �0.50 �0.250 – 0.500000 0.559017
4 0.673146 0.5 �0.25 0.375 – 0.559017 0.673146
5 0.838525 �0.5 �0.25 �0.625 – 0.559017 0.838525

qz 1 ½daN=m� nl-FDM 1 0.676872 0.5 0.25 �0.720085 – 0.559017 0.676872
2 0.676872 �0.5 0.25 �0.720085 – 0.559017 0.676872
3 0.531121 0.0 �0.50 �0.444695 – 0.500000 0.531121
4 0.594569 0.5 �0.25 �0.499799 – 0.559017 0.594569
5 1.326100 �0.5 �0.25 �1.86556 – 0.559017 1.326100

P-FDM 1 0.689101 0.5 0.25 �0.757741 �0.036493 0.559017 0.709604
2 0.689101 �0.5 0.25 �0.757741 �0.036493 0.559017 0.709604
3 0.531342 0.0 �0.50 �0.455852 0.103040 0.500000 0.552125
4 0.601910 0.5 �0.25 �0.535596 0.097506 0.559017 0.624894
5 1.344840 �0.5 �0.25 �1.901150 �0.535086 0.559017 1.356000

C-FDM 1 0.712522 0.5 0.25 �0.715969 �0.037296 0.559017 0.678673
2 0.712522 �0.5 0.25 �0.715969 �0.037296 0.559017 0.678673
3 0.577542 0.0 �0.5 �0.479001 0.074592 0.500000 0.553594
4 0.629492 0.5 �0.25 �0.476676 0.127819 0.559017 0.604496
5 1.394410 �0.5 �0.25 �1.905990 �0.606821 0.559017 1.299170

qz 1:5 ½daN=m� nl-FDM 1 1.131080 0.5 0.25 �1.831590 – 0.559017 1.131080
2 1.131080 �0.5 0.25 �1.831590 – 0.559017 1.131080
3 0.513014 0.0 �0.5 �0.499581 – 0.500000 0.513014
4 1.032820 0.5 �0.25 �1.643070 – 0.559017 1.032820
5 1.950290 �0.5 �0.25 �3.33118 – 0.559017 1.950290

P-FDM 1 1.244987 0.5 0.25 �2.070830 �0.125399 0.559017 1.277870
2 1.244987 �0.5 0.25 �2.070830 �0.125399 0.559017 1.277870
3 0.513167 0.0 �0.5 �0.539051 0.318595 0.500000 0.564733
4 1.142962 0.5 �0.25 �1.880560 �0.083488 0.559017 1.178180
5 2.073696 �0.5 �0.25 �3.568090 �0.405560 0.559017 2.094890

C-FDM 1 1.051410 0.5 0.25 �1.512270 �0.124474 0.559017 0.921960
2 1.051410 �0.5 0.25 �1.512270 �0.124474 0.559017 0.921960
3 0.616478 0.0 �0.5 �0.603676 0.248948 0.500000 0.568410
4 0.920121 0.5 �0.25 �1.255070 �0.026944 0.559017 0.818750
5 1.937730 �0.5 �0.25 �3.066693 �0.576732 0.559017 1.660130

Table 4
Fixed node.

x [m] y [m] z [m]

P1 0 0 0
P2 0.5 0 0
P4 0 1 0
P6 1 1 1
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the auxiliary equations on the length (here written in an alternative
form to (61))
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and the expressions of the force densities

QKj

Kj

lj
: ð75Þ

We have 3jþ 2n equations in 3jþ 2n variables, the 3j equilibrium
equations, with the n conditions on the force densities QKj

and n

conditions on the length fL0j
g, in the 3j independent variables

fxj; yj; zjg, the n independent variables fKjg and n variables fL0j
g.

We adopt a Newton Raphson strategy to solve these equations.
The solution of the P FDM is represented by the set of values
fxj; yj; xjgP FDM with fKjgP FDM and the length fL0j

gP FDM .
The (non linear) catenary FDM. The equilibrium equations for the

catenary elements are:
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where the length is given by the condition
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and the force densities are
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Fig. 8. C-FDM vs l-FDM. (a): form obtained with the C-FDM; (b) form obtained with the l-FDM plus incremental analysis.

Table 5
C-FDM and incremental analysis.

C-FDM Incr. Anal.

K [daN] g QV [daN/m] K [daN] QK [daN/m]

Cable 1 0.400195 0.25 1.020750 0.957653 2.271180
Cable 2 0.312500 0.25 1.020750 0.511282 1.516510
Cable 3 0.515388 0.50 1.081980 1.149480 2.183010
Cable 4 0.503891 0.25 1.020750 1.023470 1.823050
Cable 5 0.615554 0.25 1.081980 1.509320 2.795330

Table 6
Coordinates of the free nodes, case qzj

1 [daN/m].

[daN/m] g Node x [m] y [m] z [m]

qz 1 0.125 3 0.5 0.25 0.014154
5 0.5 0.75 0.250837

0.25 3 0.5 0.25 �0.097443
5 0.5 0.75 0.123501

0.5 3 0.5 0.25 �0.348097
5 0.5 0.75 �0.161213

1 3 0.5 0.25 �1.242040
5 0.5 0.75 �1.130390
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Fig. 9. Dependency of the form from the parameter g (C-FDM for qzj

1). In (a) are plotted the coordinates z3 (box-markers) and z5 (triangle-markers) with respect to g; in (b)
are plotted the different configurations of the net for the values of g considered in Table 6.

Table 7
Forces and length of the cable for qzj

1 [daN/m].

El. kf k [daN] H [daN] K [daN] V0 [daN] VðL0Þ [daN] K [daN] L0 [m]

qz 1 ½daN=m� g 0:125 1 2.248420 2.0 1.0 �0.223415 0.337237 2.236070 0.560653
2 2.248420 �2.0 1.0 �0.223415 0.337237 2.236070 0.560653
3 2.224270 0.0 �2.0 �1.228840 �0.674475 2.0 0.554368
4 2.463610 2.0 �1.0 0.701548 1.315590 2.236070 0.614044
5 3.758430 �2.0 �1.0 �3.480050 �2.544430 2.236070 0.935615

g 0:25 1 1.158440 1.0 0.5 �0.485530 0.087672 1.118030 0.573202
2 1.158440 �1.0 0.5 �0.485530 0.087672 1.118030 0.573202
3 1.115960 0.0 �1.0 �0.726768 �0.175344 1.0 0.551424
4 1.168750 1.0 �0.5 �0.036974 0.541228 1.118030 0.578202
5 2.122320 �1.0 �0.5 �2.310740 �1.268000 1.118030 1.042740

g 0:5 1 0.712522 0.5 0.25 �0.715969 �0.037296 0.559017 0.678673
2 0.712522 �0.5 0.25 �0.715969 �0.037296 0.559017 0.678673
3 0.577542 0.0 �0.50 �0.479001 0.0745926 0.5 0.553594
4 0.629492 0.5 �0.25 �0.476676 0.127819 0.559017 0.604496
5 1.394410 �0.5 �0.25 �1.905990 �0.606821 0.559017 1.299170

g 1 1 0.894205 0.25 0.125 �1.51796 �0.11288 0.279508 1.405080
2 0.894205 �0.25 0.125 �1.51796 �0.11288 0.279508 1.405080
3 0.336343 0.0 �0.25 �0.372354 0.225759 0.25 0.598113
4 0.827913 0.25 �0.125 �1.39584 �0.088407 0.279508 1.307430
5 1.44599 �0.25 �0.125 �2.51333 �0.283947 0.279508 2.229390



  

Eqs. (76) can be cast in the dimensionless form:
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where cj
qz ;j
qref

is the ratio between the unit weight of each cable and

a reference unit weight (for instance, the unit weight of the lightest

cable adopted) and gj
qz j

2 QKj

qzj
lj

2 Kj
.

We assign the dimensionless parameters gj, that can be chosen
on the basis of the desired slackness of the cables as pointed out at
the end of Section 4.1. Then, using either Eqs. (76) or (79), we have
3jþ n equations in 3jþ n variables, the 3j equilibrium equations,
with the n conditions on the length fL0j

g, in the 3j independent
variables fxj; yj; zjg and the n independent fL0j

g.

We adopt a Newton Raphson strategy for solving these equa
tions. The initial guess is given by the solution of the linearized
expressions of problem (79) obtained disregarding the weight of
the cables, i.e. disregarding the term L0j

in the third of Eq. (79).
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The C FDM solution yields an exact distribution of the nodal
forces accounting for the geometric non linearity that can be
directly used in the analysis of the net subjected to variable
loads.

6. Numerical examples

In this section we present some simple examples in order to
illustrate the form finding method proposed for slack cable nets
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Fig. 10. Initial and converged shape of the net for the example of Section 6.2.
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Fig. 11. URS strategy: (a) Convergence of the thrusts to the common value. (b) Minimization of the sum of the horizontal spans of the cables.



  

and to compare it with the methods based on the truss
approximation.

6.1. A simple 3D 5 cable net

We examine a simple 3D net composed by five undeformable
cables (EA!1) as shown in Fig. 7(a), considering the weight of
each cable varying in the range from zero to the value qz 2
[daN/m]. The free nodes are denoted by P3 and P5, while the other
nodes are fixed, their coordinates are reported in Table 1.

The problem has been solved using the force density methods
exposed in Section 5, using QK 1 [daN/m], and the C FDM, set
ting for g the value g qz=ð2QKÞ.

The solution for the coordinates of the free nodes in the case
qz 1 and qz 1:5 [daN/m] are listed in Table 2 for the three case
of the truss, parabola and catenary FDM, and the forms found for
the case qz 1 [daN/m] are plotted in Fig. 7(a) and (b), Fig. 7(c)
and (d) respectively.

In Fig. 5(a) and (b) the vertical coordinates of the free nodes as a
function of the self weight of the cables are plotted. We observe
that for nl FDM and P FDM there exists an asymptotic point in
the solution associated to the value of the self weight qz 2
[daN/m]. This asymptotic trend appears also in the plot of the
effective axial forces fi of the cables, see Fig. 6. This trend means
that, in this case, the class of solutions having a fixed values of
the force densities QV 1 [daN/m] is unable to generate equili
brated solution for self weight qz 2.

The form finding method based on the choice of the parameter g,
instead, yields reasonable forms for all values of the weight exam
ined. Indeed, in this case, while the force density that appears in
the horizontal equilibrium equations QK remains constant, the ver
tical force density QV adjusts according to the weight. As can be seen
from Figs. 5 and 6, for high values of the weight the proposed meth
od leads to a less slack net with respect to the methods based on the
truss approximation, and also the forces in the elements are smaller.

Table 3 reports for every cable the length and the relevant static
quantities for the initial case qz 0, for the case qz 1 and qz 1:5
[daN/m]. In the first column are listed the values of the quantity fj.
The results show that with the C FDM the coordinates of the nodes
and the static quantities differ from the other cases the more the
greater the weight of the cables. This is also true for the parabolic
solution, that in Deng et al. (2005) has been suggested as a valid
alternative to the linear form finding method for slack structures.

6.2. A net with cables of different weight

The next example concern a 5 cables net having two free nodes
and initial positions of the fixed nodes slightly different than in the
previous case, as listed in Table 4.

The weight of the cables has been set to qz 0:5 [daN/m] for
cables 1, 2, 4 and to qz 1 [daN/m] for cables 3 and 5. We have found
an initial form with the C FDM fixing g qz=ð2QKÞ, with QK 1
[daN/m] for all cables. Then we have compared it with the form ob
tained using a different procedure. Namely, first it has been found an
initial form with the linear FDM, that is, using the truss approxima
tion. Then it has been performed a non linear incremental analysis
for imposing the self weight of the cables, using catenary elements
with fixed lengths. They have been determined as the lengths of
the catenary elements having the prescribed weight and the
coordinates of the nodes obtained with the initial form finding.

The two procedures clearly yield different results (Fig. 8(a) and
(b)); the C FDM, maintaining constant the parameter g, keeps con
stant the geometric stiffness and respects the required sags of the
cables. In the second procedure, during he incremental steps the
force density increases, and the effect can be significant for very
heavy cables.

In Table 5 are compared the thrusts found in the cables with
both procedures. The non linear incremental procedure leads to
much higher thrusts than the C FDM. Also the final value of the
force densities QK increase with respect to the initial value, while
in the C FDM they remain constant. In the table also the values
of the parameter QV are reported, that represent the geometric
stiffness of the catenary.

In this case either the vertical and the horizontal coordinates of
the free nodes are different using the different procedures examined.

6.3. Dependency of the form from the parameter g

We consider the 5 cables net of Fig. 7, for which each cable has
the same self weight, then cj 1; j 1;2; . . . ;n, and solve the form
finding problem for the cases gj 0:125; gj 0:25; gj 0:5 and
gj 1.

Fig. 12. Initial form. The plan view of the initial net configuration with the fixed
points is shown in (a); an axonometric view of the initial net configuration is shown
in (b).

Table 8
Fixed nodes.

x [m] y [m] z [m]

P1 �32 �9.5 0
P2 �27 �16.5 �5
P3 �16 �24.5 10
P4 0 �28 5
P5 �8 0 0
P6 �19 5.5 0



  

Convergence, starting from the solution of system (80) is very
fast. The results for the chosen values of the ratios gj are presented
in Table 6 and graphically plotted in Fig. 9. The relevant static quan
tities are reported in Table 7 with the same symbols of Table 3.

From the results reported in Tables 6 and 7 it is clear that
assigning the values of the self weight qzj

and of the gj is equivalent
to assign the values of the trust Kj for each cable.

6.4. Form finding for assigned thrusts

In this section it is shown how it is possible to implement an
iterative strategy for obtaining a net with thrusts everywhere equal
using the procedure based on catenary elements. The strategy is the
same as the one proposed by Bletzinger and Ramm (1999), that is,
an initial value of g is selected for the cables, and a first form is ob
tained. Then it has been evaluated the average of the thrusts,

Kave

P
j 1 n

Kj

n , and the parameters g have been updated as

gkþ1
j

qzj
lj

2Kave
, and the procedure has been iterated till convergence.

The method is applied to the same net used in the previous sec
tion. In Fig. 10 the initial and the converged shaped of the net are
reported. Fig. 11(a) shows how the thrusts Kj converge for the var
ious cables of the net, and in Fig. 11(b) the sum of the horizontal
projections of the cables lj is reported, clearly showing that the
method yields a net for which the latter sum is minimal. This geo
metric property, that generalizes an analogous properties of nets
with equal axial forces, can be easily proved examining the equilib
rium Eq. (79).

6.5. Form finding of a complex net with the C FDM

In this case we consider a large span membrane roof having a
complex form. The membrane is modelled by a catenary cable
net. The initial non equilibrated starting geometry is shown in
Fig. 12 where the fixed points are indicated by a circle. The coordi
nates of the fixed point are listed in the Table 8.

We consider for the internal cables a mean value of qzj
0:2

[daN/m] while for the boundary cables we consider qzj
0:3

[daN/m]. We have set for each internal cable gint 0:3.
With reference to the Fig. 12(a), for the back boundary cables

we adopt g1;2 0:015; g2;3 g3;4 0:03, for the front central cable
g5;0 0:002 while for the up lateral front cable g6;5 0:01, while
for the lateral boundary cable g1;6 0:02.

The final catenary form of the net is compared in the Fig. 13
with the initial starting form.

7. Conclusions

The paper has shown an improvement of the force density
method for form finding of an heavy cable net. The method em
ploys the catenary element, so that equilibrium is exactly satisfied,
and it can be easily extended to deformable cables.

The proposed method leads to an initial form that preserves the
value of a dimensionless parameter, that takes the place of the
force density, and that is related to the sag and to the geometric
stiffness of the catenary. The example proposed in Section 6 have
shown the difference between the present method and the form
finding procedure that uses the truss FDM followed by a non linear
analysis able to account for the weight of the cables.

In the paper has also been proposed an iterative procedure for
obtaining a net with uniform thrusts. Similar procedures are also
possible for imposing other constraints to the equilibrium form
of the net, or for assigning constraints on the axial forces acting
on the cables, that can be employed for optimizing the total weight
of the net.
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