weight, wind and snow loads. In most of the available computer codes, in the case of complex cable nets, the single element is mod elled by a non linear truss, especially in the case that the thrust is high.

In the paper is presented an enhancement of the FDM, that is particularly useful when slack cables or very heavy elements are present. In this case, indeed, the initial configuration determined with the equivalent truss element can be very far from the effective catenary configuration. This goal is reached using the exact equi librium equations of the heavy cable. It is shown that the use of the exact equilibrium conditions leads to a form finding method that is very similar to the standard FDM, although it requires the solution of a non linear system of equations.

The proposed method uses as degrees of freedom for the form a dimensionless parameter g (see Eq. ( 40)), analogous to the force density, but that includes also the weight of the cable. The initial form is sought within the class of the configurations having the prescribed value for the parameter g that, as will be shown in the paper, can be related to the form of the cable. The proposed procedure is different from using the standard FDM for truss struc tures, followed by a non linear analysis that accounts for the self weight. In the latter case, as a matter of fact, during the non linear analysis the degrees of freedom of the form (i.e., the force densi ties), are not kept constant. In our case, on the contrary, the de grees of freedom for the form retain their prescribed values in the final exact equilibrated configuration. In the paper are used the exact expressions of the vertical nodal forces and of the length of the cable, see [START_REF] Peyrot | Analysis of cable structures[END_REF] and [START_REF] Jayaraman | A curved element for the analysis of cable structures[END_REF]. It is shown that the proposed method yields sig nificant differences in the initial form when the weight of the cables is not negligible compared to other methods.

In the paper we first present the basic equations of the heavy cable and we obtain the exact expressions for the length of the cable and its end forces (Sections 2 through 4). Then we present the standard FDM and its improvements for obtaining an exactly equilibrated configuration (Section 5). Section 6 illustrates the use of the method with some examples, comparing the results with those obtained using standard FDM.

Equilibrium equations for cable elements

Variational principle of a cable element

Let p pðsÞ be the parametric configuration of the cable at a generic instant, with s the arc length. The tangent space T p B t at point p is generated by the unitary triad constituted by the tangent vector t @ s p, the unit n @s t k@stk and the unit bi normal vector n t  n. We denote with s the resultant of the component along t of the stress vectors associated to t, defined by s s t. Indicating with L the current length of the cable for any virtual displacement v the principle of virtual work is given by Z L 0 s Á @ s ðvÞ ds

Z L 0 q Á v ds þ F 0 Á v 0 þ F L Á v L ð1Þ 
integrating the first term of Eq. (1) we have

½s Á v L 0 Z L 0 @ s ðsÞ Á v ds Z L 0 q Á v ds þ F 0 Á v 0 þ F L Á v L : ð2Þ 
The field equations in [0, L] is @ s ðsÞ q ð3Þ

and the boundary conditions are sð0Þ F 0 or vð0Þ v 0 sðLÞ F L or vðLÞ v L : ð4Þ

From the last condition the boundary forces must be tangent to the configuration of the cable.

Intrinsic representation of the equilibrium equations

Projecting the equilibrium Eq. (3) in the intrinsic tangent space we have @ s s Á t q Á t q^t; @ s s Á n q Á n q n; @ s s Á n q Á n qb: ð5Þ

Using Frenet's formula and considering that s s t the component of grad k ðsÞ are @ s s Á t @ s s; @ s s Á n sv; @ s s Á n 0; ð6Þ where v k@ s tk is the curvature of the funicular curve.

Finally the intrinsic representation of the equilibrium equations (3) is @ s sðsÞ q^tðsÞ; sðsÞvðsÞ q nðsÞ; qbðsÞ 0; ð7Þ with the boundary conditions sð0Þ F 0 or vð0Þ v 0 ; sðLÞ F L or vðLÞ v L : ð8Þ

Cartesian representation of the equilibrium equations

Projecting the equilibrium Eq. ( 3) on the Euclidean spatial frame we obtain, (noting that @ s s e i @ s ðs e i Þ 8i 1; 2; 3.)

@ s ðs t Á e x Þ q Á e x ; @ s ðs t Á e y Þ q Á e y ; @ s ðs t Á e z Þ q Á e z ð9Þ 
and remembering the definition of the tangent vector t @x @s e x þ @y @s e y þ @z @s e z we obtain @ @s sðsÞ @x @s ðsÞ À Á q x ðsÞ; @ @s sðsÞ @y @s ðsÞ À Á q y ðsÞ; @ @s sðsÞ @z @s ðsÞ

À Á q z ðsÞ: ð10Þ 
The projections of the internal traction stress resultant s along the Cartesian directions are usually called thrust and shears

HðsÞ sðsÞ Á e x sðsÞ @x @s ðsÞ;

KðsÞ sðsÞ Á e y sðsÞ @y @s ðsÞ;

VðsÞ sðsÞ Á e z sðsÞ @z @s ðsÞ: ð11Þ

Using the definitions (11) the Cartesian equilibrium equations (10) assume the compact form @ s HðsÞ q x ðsÞ; @ s KðsÞ q y ðsÞ; @ s VðsÞ q z ðsÞ: ð12Þ

By a first integration along s we have

HðsÞ H 0 Z s 0 q x ðsÞds; KðsÞ K 0 Z s 0 q y ðsÞds; VðsÞ V 0 Z s 0 q z ðsÞds; ð13Þ 
where we have indicated H 0 Hð0Þ; V 0 Vð0Þ; K 0 Kð0Þ. A new integration along s yields the parametric representation of the funicular configuration xðsÞ

Z s 0 H 0 R s 0 q x ðsÞds sðsÞ ds þ xð0Þ; yðsÞ Z s 0 K 0 R s 0 q y ðsÞds sðsÞ ds þ yð0Þ; zðsÞ Z s 0 V 0 R s 0 q z ðsÞds sðsÞ ds þ zð0Þ; ð14Þ 
where the tangent component of the resultant stress traction is defined by

sðsÞ H 0 Z s 0 q x ds 2 þ K 0 Z s 0 q y ds 2 þ V 0 Z s 0 q z ds 2 s : ð15Þ 

Formulation of the elastic catenary element

In this section, the simplification of the equilibrium equation to the case of an elastic catenary obeying Hooke's law is shown, sus pended at its ends and subjected only to its self weight. A discus sion on a wide variety of elastic catenaries can be found in Ahmadi [START_REF] Ahmadi-Kashani | The analysis of cables subject to uniformly distributed loads[END_REF], [START_REF] Tibert | Numerical analyses of cable roof structures[END_REF], [START_REF] Jayaraman | A curved element for the analysis of cable structures[END_REF], [START_REF] Peyrot | Analysis of cable structures[END_REF] and [START_REF] Irvine | Cable Structures[END_REF].

Assumptions

The basic hypotheses of the present formulation are:

1. Small strains only are considered (but large displacements). 2. Linear elastic constitutive behaviour only is considered (s EA 0 e).

3. Conservation of mass of the cable element during the deforma tion process is assumed, i.e. the value of the weight per unit length varies in agreement with the mass conservation (the associated catenary model Ahmadi [START_REF] Ahmadi-Kashani | The analysis of cables subject to uniformly distributed loads[END_REF] is considered). 4. Bending stiffness is neglected. 5. Only the distributed vertical load (along the z direction) due to self weight is considered, so that the geometry of the configura tion of the cable is plane. These hypotheses define the elastic catenary element.

Equations of the elastic cable element

A total Lagrangian approach is used. As reference configuration we adopt the inextensible catenary configuration of the cable and we denote with s 0 2 ½0; L 0 the arc length coordinate, referred to the length L 0 of the non deformed cable.

Since we consider that the only external action is the self weight q s , along the z direction, we have from Eq. ( 13) HðsÞ H 0 ; KðsÞ K 0 ; @ s VðsÞ q z ðsÞ: ð16Þ

Eq. ( 12) reduce to sðsÞ @x @s ðsÞ H 0 ; sðsÞ @y @s ðsÞ K 0 ; @ @s sðsÞ @z @s q z ðsÞ; ð17Þ

with sðs 0 Þ H 2 0 þ K 2 0 þ V 0 Z s 0 0 q z ds ds 0 ds 0 2 s H 2 0 þ K 2 0 þ V 0 W L 0 s 0 2 s K 1 þ V 0 W L 0 s 0 K ! 2 v u u t ; ð18Þ 
where K

H 2 0 þ K 2 0 q
and W is the total weight of the cable, that by virtue of the mass conservation can be represented W R L 0 q z ds R L 0 0 q z ds ds 0 ds 0 R L 0 0 q z;0 ds 0 . Integrating the previous equations on the Lagrangian configuration we have 

xðs 0 Þ Z s 0 0 H 0 sðs 0 Þ ds ds 0 ds 0 þ x 0 ; yðs 0 Þ Z s 0 0 K 0 sðs 0 Þ ds ds 0 ds 0 þ y 0 ; zðs 0 Þ Z s 0 0 V 0 W L 0 s 0 sðs 0 Þ ds ds 0 ds 0 þ z 0 : ð19Þ 
xðs 0 Þ H 0 Z s 0 0 1 EA 0 þ 1 sðs 0 Þ ds 0 þ x 0 ; yðs 0 Þ K 0 Z s 0 0 1 EA 0 þ 1 sðs 0 Þ ds 0 þ y 0 ; zðs 0 Þ Z s 0 0 V 0 W L 0 s 0 sðs 0 Þ sðs 0 Þ EA 0 þ 1 ds 0 þ z 0 ð20Þ 
and integrating we have

xðs 0 Þ x 0 H 0 s 0 EA 0 þ H 0 L 0 W Sinh 1 V 0 K ! Sinh 1 V 0 W L 0 s 0 K " # ! ; ð21Þ 
yðs 0 Þ y 0 K 0 s 0 EA 0 þ K 0 L 0 W Sinh 1 V 0 K ! Sinh 1 V 0 W L 0 s 0 K " # ! ð22Þ 
and

zðs 0 Þ z 0 s 0 EA 0 V 0 1 2 W L 0 s 0 þ K L 0 W V 0 K 2 þ 1 s V 0 W L 0 s 0 K ! 2 þ 1 v u u t 2 6 4 3 7 5: ð23Þ 
The components of the vector joining the ends of the elastic cate nary element are described by Eqs. (21) (23), which are summa rized as

ðP P 0 Þ Á e x l x xðL 0 Þ x 0 f x ðH 0 ; K 0 ; V 0 ; L 0 Þ; ðP P 0 Þ Á e y l y yðL 0 Þ y 0 f y ðH 0 ; K 0 ; V 0 ; L 0 Þ; ðP P 0 Þ Á e z h zðL 0 Þ z 0 gðH 0 ; K 0 ; V 0 ; L 0 Þ: ð24Þ 
Fig. 1 shows the nodal forces in the plane of the catenary. The total length of the deformed catenary is given by the sum of the undeformed length L 0 and the total elongation DL

LðK; V 0 ; L 0 Þ L 0 þ DLðK; V 0 ; L 0 Þ L 0 þ Z L 0 0 s EA 0 ds 0 : ð25Þ 
Using the relation ( 18) and integrating we obtain the expression for the global elongation of the cable that can be formulated in either one of the following equivalent expressions:

DLðK; V 0 ; L 0 Þ 1 2EAq z 2 6 4V0 K 2 þ V 2 0 q ðV 0 q z L 0 Þ K 2 þ ðV 0 q z L 0 Þ 2 q þ K 2 Log ðV 0 q z L 0 Þ þ K 2 þ ðV 0 q z L 0 Þ 2 q V 0 þ K 2 þ V 2 0 q 0 B @ 1 C A 3 7 5; ð26Þ 
DLðK; V 0 ; L 0 Þ 1 2EAq z V 0 V 2 0 þ K 2 q ðV 0 q z L 0 Þ ðV 0 q z L 0 Þ 2 þ K 2 q þ K 2 ArcSinh V 0 K K 2 ArcSinh V 0 q z L 0 K ! : ð27Þ 
In the case of non extensible cable in the equations ( 19) the ratio ds ds 0 1 so that the parametric equations of the undeformable catenary element are obtained for Eqs. ( 21) (23) in the limit

EA 0 ! 1 xðs 0 Þ x 0 H 0 L 0 W Sinh 1 V 0 K ! Sinh 1 V 0 W L 0 s 0 K " # ! ; ð28Þ 
yðs 0 Þ y 0 K 0 L 0 W Sinh 1 V 0 K ! Sinh 1 V 0 W L 0 s 0 K " # ! ð29Þ 
and

zðs 0 Þ z 0 KL 0 W V 0 K 2 þ 1 s V 0 W L 0 s 0 K ! 2 þ 1 v u u t 2 6 4 3 7 5: ð30Þ 
4. Vertical forces at the ends of the cable

In this section, explicit formulas for the vertical forces transmit ted by the cable to the end nodes are derived. In addition to the ex act expressions, approximated ones will also be proposed. These results will be used in the formulations proposed in Section 5.

Exact catenary element

Squaring and adding the first two of the catenary equilibrium relations (17), we have

dk ds K s H 2 0 þ K 2 0 q s ; dV ds q z ; ð31Þ 
where ds dk 2 þ dz 2 p , with dk dx 2 þ dy 2 q . Manipulating we have ds dk 1 þ dz dk 2 s ; K s 1 þ dz dk À Á 2 q : ð32Þ 
Similarly dV dk q z 1 þ dz dk À Á 2 q
and remembering the definition of V s dz dk dk ds , we have

d dk dz dk s 1 þ dz dk À Á 2 q 0 B @ 1 C A q z 1 þ dz dk 2 s : ð33Þ 
Using Eq. ( 32), considering that K is constant, we have an alterna tive cartesian representation of the equilibrium equation along the z direction

K d 2 z dk 2 q z 1 þ dz dk 2 s ; ð34Þ 
where k 2 ½0; l, with l l

2 x þ l 2 y q . Letting dz dk f ðkÞ the previous equation assumes the form df dk q z K 1 þ f ðkÞ 2 q that has the solution dz dk Sinh q z k K c 1 ! ð35Þ 
and observing that dz dk

V K VðkÞ KSinh q z k K c 1 ! ð36Þ 
so it is found that

V 0 K Sinh½c 1 : ð37Þ 
Integrating Eq. ( 35) we obtain the Cartesian representation of the catenary

zðkÞ K q z Cosh q z k K c 1 ! þ c 2 ; ð38Þ 
with boundary conditions, for k 0 and for k l

z 0 K q z Cosh c 1 ½ þ c 2 or Vð0Þ K dz dk k 0 V 0 ; zðlÞ K q z Cosh q z l K c 1 ! þ c 2 or VðlÞ K dz dk k l V L : ð39Þ 
In the case of fixed supports, subtracting the first from the second equation and introducing the dimensionless parameter

g q z l 2K ; ð40Þ 
we have

h zðlÞ z 0 K q z Cosh q z l K c 1 ! Cosh c 1 ½ ! l 2K q z l Sinh c 1 q z l 2K ! Sinh q z l 2K ! l g Sinh c 1 g ½ Sinh½g ð41Þ 
From the last relation and the first of Eq. ( 39) the constants c 1 and c 2 are obtained

c 1 Sinh 1 g Sinh½g h l ! þ g ð42Þ and c 2 z 0 þ l 2g Cosh½g 1 þ g Sinh½g h l 2 s þ gh l 2 4 3 5 : ð43Þ 
Note that, since g > 0, for any value of g; h and l, c 1 is a positive con stant. Therefore the equation of the catenary is

zðkÞ z 0 þ 1 q z 2KSinh gk l ! Sinh g 1 k l þ ArcSinh gh l Csch½g ! ! : ð44Þ 
The length of the catenary, (for the deformable and the unde formable case), is given by the relation

L R l 0 1 þ dz dk À Á 2 q
dk, where l is the horizontal span of the catenary. From the equality dz dk

VðkÞ K Sinh q z k K c 1 Â Ã
and using the expression (42), after some manipulation we have 

g 2 Sinh 2 ½g þ h 2 : ð45Þ 
In the case of the undeformable cable DL 0 then we have

L 2 0 l 2 g 2 Sinh 2 ½g þ h 2 : ð46Þ 
The vertical forces at the extremities of the cable are obtained from Eq. ( 37), that, inserting the expression (46) for the length, can be written as

V 0 q z L 0 2 þ q z h 2 Cosh½g Sinh½g ð47Þ 
and the shear at the second extremity is given by

VðL 0 Þ q z L 0 2 þ q z h 2 Cosh½g Sinh½g : ð48Þ 
Similar relations can be found in [START_REF] Tibert | Numerical analyses of cable roof structures[END_REF], [START_REF] Jayaraman | A curved element for the analysis of cable structures[END_REF], [START_REF] Peyrot | Analysis of cable structures[END_REF], Ahmadi [START_REF] Ahmadi-Kashani | The analysis of cables subject to uniformly distributed loads[END_REF] and Ahmadi [START_REF] Ahmadi-Kashani | Representation of cables in space subjected to uniformly distributed loads[END_REF].

The dimensionless parameter g is related to the sag of the cable, that can be defined as the ratio f =l between the sag related to the chord and the horizontal span of the cable (see Fig. 2(a)). Since

f zð k 2 Þ h 2 from Eq. (44) it is readily found f l 1 g sinh g 2 sinh g 2 þ ArcSinh gh l Cschg ! ! 1 2 h l : ð49Þ 
In Fig. 3 is plotted the sag ratio against g, for some values of h l . For fixed h and l the cable can assume either of the two config urations shown in Fig. 2(b) that are characterized by having the tangents at the extremities of the same sign, or of opposite signs.

The former case occurs when the parameter g is such that cosh

2 g sinh 2 g l h 2 sinh 2 g g 2 1 > 0: ð50Þ 
In this case the maximum axial force in the cable occurs at the extremity, and is equal to

s max sð0Þ K 2 þ V 2 0 q K 1 þ g 2 L 0 l þ h l coth g 2 s : ð51Þ 
In the latter case, the maximum axial force is equal to K and it oc curs at the point of abscissa

s 0 l 1 2 L 0 l þ h l coth g : ð52Þ 

Approximated parabolic element

From expressions (44), ( 47) and ( 48) approximated forms of the relevant parameters of the cable can be obtained. The solution of the catenary equation depends on the parameter g q z l 2K , the ratio between the weight of the cable and the horizontal thrust. Then in the limit as g ! 0 we can expand expressions (44) and (36) in Taylor series at the first order in g

lin½zðkÞ z 0 þ d g ðzðkÞÞ z 0 þ h k l þ g l 2 þ h 2 q 1 k l k l ; ð53Þ 
lin½VðkÞ VðkÞj g 0 þ d g VðkÞ h l K þ l 2 þ h 2 p l K 1 2 k l g: ð54Þ 
The shears at the ends of the cable are then given by

lin½V 0 h l K þ l 2 þ h 2 p l Kg h l K þ q z l 2 þ h 2 p 2 ; ð55Þ 
lin½V L 0 h l K l 2 þ h 2 p l Kg h l K q z l 2 þ h 2 p 2 : ð56Þ 
Observation. The results (53) (56) can be obtained linearizing the catenary Eq. ( 34) for small sagging of the cable, in which case we have:

d 2 z dk 2 q z K l 2 þ h 2 l 2 s q z K k l 2g k l 2 ð57Þ 
the solution of which can be expressed in the parametric form Similarly for the length of the cable we have lin½L

zðkÞ gk k l 2 þ ðh þ gkÞ k l þ z 0 : ð58Þ 
l 2 þ h 2 q : ð59Þ 
In this work we have also used a second order approximated parabolic model developed by [START_REF] Deng | Shape finding of incomplete cable-strut assemblies containing slack and prestressed element[END_REF] in which for the length of the parabola, in place of Eq. ( 45) the current length of the parabola itself is used, i.e.

L Z l 0 1 þ dz dk 2 s dk ð60Þ 
in which zðkÞ is given by the expression (58). Performing the inte gral the length assumes the form

L l 4kg l 2 þ ðh kgÞ 2 l 2 s ðkg hÞ þ l 2 þ ðh þ kgÞ 2 l 2 s ðkg þ hÞ 2 4 þ lArcsinh h þ kg l lArcsinh h kg l ! ð61Þ 
In this approximation the shear components at the ends are gi ven by the same expressions as ( 55) and ( 56)

V 0 q z L 0 2 þ K h l ; VðL 0 Þ q z L 0 2 þ K h l : ð62Þ 
In the case of a deformable parabolic element the length becomes

L L 0 þ DL; DL 1 EA Z L 0 0 K 2 þ ðV 0 q z s 0 Þ 2 q ds 0 ; ð63Þ 
while in the case of undeformable parabola DL 0 then L L 0 , i.e. the current length is the undeformable length.

The straight cable element

If q z ! 0, i.e. light cable net, the equilibrium equation becomes

d 2 z dk 2 % 0; zðkÞ h l k þ z 0 ; V 0 VðlÞ K h l ; ð64Þ 
that is, a straight truss is recovered.

The force density method

The force density method was developed by [START_REF] Schek | The force density method for form finding and computation of general networks[END_REF] who successively developed the constrained force density method. He considered weightless cables, so that they could be approximated with truss elements (approximation (64)), ad demonstrated that the form of the net could be obtained directly solving the linear equilibrium equations in the unknowns positions of the nodes, using as degrees of freedom of the form the ratios T i =k i (T i being the axial force in the truss), called force density of the element. He proved that the procedure yields a set of minimal length if the axial forces T i are taken equal in all the branches.

Later [START_REF] Haber | Initial equilibrium solution methods for cable reinforced membranes. Part i -formulations[END_REF] pointed out that the force density corresponds to the initial geometric stiffness of the truss, clarifying the interpretation of the axial force T i as prestress. [START_REF] Bletzinger | A general finite element approach to the form finding of tensile structures by the updated reference strategy[END_REF] and [START_REF] Wüchner | Stress adapted numerical form finding of prestressed surfaces by the updated reference strategy[END_REF] generalized the idea of Schek to the case of membranes, using as parameter for the form finding the second Piola Kirchhoff stresses, that are iteratively adjusted to leading the prescribed Chachy stresses. They proved that a uniform isotropic Cauchy stress state leads to mem branes of minimal surface. The method was then extended to non isotropic stress states for improving the shape of the membrane. [START_REF] Bletzinger | Computational methods for form finding and optimization of shells and membranes[END_REF] also studied the effects of self weight add ing an elastic stress to the prestress. These procedures were partic ularized to the case of cables, using the straight element approximation. In the latter case, the self weight of the cables are imposed as external loads on the form previously obtained.

In this work we propose a generalization of the form finding procedure to the case of heavy cables, that is, to the case of consid erably slack cables, using the exact solution for heavy cables (cat enary). The solution sought in this way is an exact one, so it can be used as starting point of an incremental analysis. Since the equilib rium equations become non linear in the node coordinates, the solution is sought by means of iterative techniques. At the end of the paper we will discuss how the present method can also be used for obtaining nets with uniform thrusts.

In this section, starting from the equilibrium equations of the net, first the standard FDM, will be recalled, then two non linear implementations similar to the one proposed by [START_REF] Haber | Initial equilibrium solution methods for cable reinforced membranes. Part i -formulations[END_REF] will be outlined, and finally the new proposal will be presented.

Let i be the generic free node of the net, identified by the (un known) position vector P i . Let r be the number of cable elements Table 1 Fixed node.

x [m] y [m] z [m] P 1 0 0 0 P 2 1 0 0 P 4 0 1 0 P 6 1 1 1
Table 2 Coordinates of the free nodes, case attached to the ith node and, as done previously, indicate by k j kP i P j k the length of the segment joining the element ends.

Q K 1 [daN/m]. [daN/m] Node x [m] y [m] z [m] q z 0 FDM 3 0.
The forces acting at the ith extremity of the cable have the com ponents H; K; V. Recalling that K kH 0 e x þ K 0 e y k, and using the expressions for the shear found previously (Eqs. ( 64), ( 55), (47) for the straight cable approximation, parabolic approximation, ex act catenary respectively), the cartesian projection of the equilib rium equations of the ith node are P r j 1 K j

x i x j l j p x;i ; P r j 1 K j y i y j l j p y;i ; 

P r j 1 d c ðq z L 0 Þ j 2 þ f j z i z j k j |fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl} VðL 0 Þ j p z;i ; ð65Þ 
Q K 1 [daN/m], g q z =ð2Q K Þ, see Fig. 7.
where the force f j is shown in Fig. 4 and is given for the truss, par abolic and catenary elements, respectively, by

f j t K j k j l j ; f j p K j k j l j ; f j c K j k j l j g j Cosh½g j Sinh½g j ð66Þ 
and in the truss approximation the self weight is omitted (d c 0 for the truss, d c 1 otherwise). In Eq. ( 65) there appear two force density quantities, the ratio

Q K j K j
l j and the ratio Q V j f j k j , that by means of definitions ( 66) is given for the truss, parabolic and catenary element, respectively, by

Q V j ;t K j l j ; Q V j ;p K j l j ; Q V j ;c K j l j g j Cosh½g j Sinh½g j : ð67Þ 
In this way we get three versions of the FDM. The truss approx imation is the standard FDM in which the length

L 0 k l 2 þ h 2 p
, and the self weight is neglected. In the case of small but finite self weight, we obtain the (P FDM) parabolic form of the force density method in which the length L 0 can assume any of the forms ( 60) or (61). In these two force density methods appear only one kind of force density. Finally in the case of the catenary force density method (C FDM), we have a new kind of force density, that con tains the dimensionless parameter g.

The standard linear FDM. In the linear FDM we assign the force densities Q K j K j l j and let q z j 0 everywhere; in this manner the Eqs. ( 65) reduce to a set of linear equations Fig. 7. Graphics representation of the configuration of a 5-cables net obtained for a self weight q z j 1 ½daN=m; j 1; 2; n; in (a) is plotted the solution of the linear force density method, (FDM), in (b) is plotted the solution of the non linear force density method, (nlFDM), in (c) is plotted the solution of the parabolic force density method, (P-FDM) and in (d) is plotted the solution of the catenary force density method, (C-FDM).

P r j 1 Q K j ðx i x j Þ p x;i ; P r j 1 Q K j ðy i y j Þ p y;i ; P r j 1 Q K j ðz i z j Þ p z;i : ð68Þ 
Note that in this case the cable reduces to a truss element, so that

Q K j K j l j f j k j T j k j : ð69Þ 
Solving the Eqs. ( 68) we obtain for each free node j an initial po sition fx 0 ; y 0 ; z 0 g LFDM j , from which is possible to define the linear length L LFDM 0 of each cables. An usual strategy adopted is to choose Q K j constant everywhere except in the boundary cables, where it is chosen one order of magnitude larger.

The nonlinear standard FDM. The previous solution can be used to initialize the non linear force density method (nlFDM) defined by the equations

P r j 1 K j l j ðx i x j Þ p x;i ; P r j 1 K j l j ðy i y j Þ p y;i ; P r j 1 q z j L 0 j 2 þ K j l j ðz i z j Þ p z;i ; ð70Þ 
where the conditions on the lengths are defined only by the relative positions of the free nodes by means of the relations

L 2 0 j l 2 j þ h 2 j ð71Þ 
with auxiliary conditions on the force densities

Q K j K j l j : ð72Þ 
We have 3j þ 2n equations in 3j þ 2n variables, the 3j equilibrium equations, with the n conditions on the length and n conditions on the force densities Q K j , in the 3j independent variables fx j ; y j ; z j g, the n independent variables fL 0j g and the n variables fK j g. We adopt a Newton Raphson strategy to solve these equa tions, in which the initial solution is represented by the LFDM solu tion. The solution of the nlFDM is represented by the set of values fx j ; y j ; z j g nlFDM ; fL 0j g nlFDM and fK j g nlFDM . The (non linear) parabolic FDM. The parabolic force density method is defined by the equilibrium equations ( 70) in which the length of the element coincides with the length of the parabola (61); then we have the equilibrium equations Table 3 Forces and length of the cable for q z 1 and q z 1:5 x

[daN/m], case Q V 1½daN=m. El. f [daN] H [daN] K [daN] V 0 [daN] VðL 0 Þ [daN] K [daN] L 0 [m] q z 0
[m] y [m] z [m] P 1 0 0 0 P 2 0.5 0 0 P 4 0 1 0 P 6 1 1 1 P r j 1 K j l j ðx i x j Þ p x;i ; P r j 1 K j l j ðy i y j Þ p y;i ; P r j 1 q z j L 0 j 2 þ K j l j ðz i z j Þ p z;i ; ð73Þ 
the auxiliary equations on the length (here written in an alternative form to (61))

L 0 j 4l 2 K 2 þ ðlq z L 0 2hKÞ 2 q 8q z L 0 q z L 0 K 2 h l þ 4l 2 K 2 þ ðlq z L 0 þ 2hKÞ 2 q 8q z L 0 L 0 q z K þ 2 h l lK 2q z L 0 Sinh 1 h l q z L 0 2K Sinh 1 h l þ q z L 0 2K ! ð74Þ 
and the expressions of the force densities

Q K j K j l j : ð75Þ 
We have 3j þ 2n equations in 3j þ 2n variables, the 3j equilibrium equations, with the n conditions on the force densities Q K j and n conditions on the length fL 0 j g, in the 3j independent variables fx j ; y j ; z j g, the n independent variables fK j g and n variables fL 0 j g. We adopt a Newton Raphson strategy to solve these equations.

The solution of the P FDM is represented by the set of values fx j ; y j ; x j g P FDM with fK j g P FDM and the length fL 0 j g P FDM .

The (non linear) catenary FDM. The equilibrium equations for the catenary elements are:

P r j 1 K j x i x j l j p x;i ; P r j 1
K j y i y j l j p y;i ;

P r j 1 q z j L 0 j 2 þ Q V j ðz i z j Þ ! p z;i ; ð76Þ 
where the length is given by the condition

L 2 0 l 2 j g 2 j Sinh 2 ½g j þ h 2 j ð77Þ 
and the force densities are Table 5 C-FDM and incremental analysis.

Q V j K j l j g j Cosh½g j Sinh½g j q z j 2 Cosh½g j Sinh½g j : ð78Þ 
C-FDM Incr. Anal. Coordinates of the free nodes, case q z j 1 [daN/m]. 6.

K [daN] g Q V [daN/m] K [daN] Q K [daN/m]
[daN/m] g Node x [m] y [m] z [m]
Table 7 Forces and length of the cable for q z j 1 [daN/m].

El. 

kf k [daN] H [daN] K [daN] V 0 [daN] VðL 0 Þ [daN] K [daN] L 0 [m] q z 1
; P r j 1 c j L 0 j þ Cosh½g j Sinh½g j ðz i z j Þ ! 2 p z;i q ref ; ð79Þ 
where c j q z ;j q ref is the ratio between the unit weight of each cable and a reference unit weight (for instance, the unit weight of the lightest cable adopted) and g j q z j 2 Q K j q z j l j 2 K j .

We assign the dimensionless parameters g j , that can be chosen on the basis of the desired slackness of the cables as pointed out at the end of Section 4.1. Then, using either Eqs. ( 76) or (79), we have 3j þ n equations in 3j þ n variables, the 3j equilibrium equations, with the n conditions on the length fL 0 j g, in the 3j independent variables fx j ; y j ; z j g and the n independent fL 0 j g.

We adopt a Newton Raphson strategy for solving these equa tions. The initial guess is given by the solution of the linearized expressions of problem (79) obtained disregarding the weight of the cables, i.e. disregarding the term L 0 j in the third of Eq. ( 79).

P r j 1 c j x i x j g i 2 p x;i q ref ; P r j 1 c j y i y j g j 2 p y;i q ref P r j 1 c j Cosh½g j Sinh½g j ðz i z j Þ 2 p z;i q ref ; ð80Þ 
The C FDM solution yields an exact distribution of the nodal forces accounting for the geometric non linearity that can be directly used in the analysis of the net subjected to variable loads.

Numerical examples

In this section we present some simple examples in order to illustrate the form finding method proposed for slack cable nets and to compare it with the methods based on the truss approximation.

A simple 3D 5 cable net

We examine a simple 3D net composed by five undeformable cables (EA ! 1) as shown in Fig. 7(a), considering the weight of each cable varying in the range from zero to the value q z 2 [daN/m]. The free nodes are denoted by P 3 and P 5 , while the other nodes are fixed, their coordinates are reported in Table 1.

The problem has been solved using the force density methods exposed in Section 5, using Q K 1 [daN/m], and the C FDM, set ting for g the value g q z =ð2Q K Þ.

The solution for the coordinates of the free nodes in the case q z 1 and q z 1:5 [daN/m] are listed in Table 2 for the three case of the truss, parabola and catenary FDM, and the forms found for the case q z 1 [daN/m] are plotted in Fig. 7(a) and (b), Fig. 7(c) and (d) respectively.

In Fig. 5(a) and (b) the vertical coordinates of the free nodes as a function of the self weight of the cables are plotted. We observe that for nl FDM and P FDM there exists an asymptotic point in the solution associated to the value of the self weight q z 2 [daN/m]. This asymptotic trend appears also in the plot of the effective axial forces f i of the cables, see Fig. 6. This trend means that, in this case, the class of solutions having a fixed values of the force densities Q V 1 [daN/m] is unable to generate equili brated solution for self weight q z 2.

The form finding method based on the choice of the parameter g, instead, yields reasonable forms for all values of the weight exam ined. Indeed, in this case, while the force density that appears in the horizontal equilibrium equations Q K remains constant, the ver tical force density Q V adjusts according to the weight. As can be seen from Figs. 5 and6, for high values of the weight the proposed meth od leads to a less slack net with respect to the methods based on the truss approximation, and also the forces in the elements are smaller.

Table 3 reports for every cable the length and the relevant static quantities for the initial case q z 0, for the case q z 1 and q z 1:5 [daN/m]. In the first column are listed the values of the quantity f j . The results show that with the C FDM the coordinates of the nodes and the static quantities differ from the other cases the more the greater the weight of the cables. This is also true for the parabolic solution, that in [START_REF] Deng | Shape finding of incomplete cable-strut assemblies containing slack and prestressed element[END_REF] has been suggested as a valid alternative to the linear form finding method for slack structures.

A net with cables of different weight

The next example concern a 5 cables net having two free nodes and initial positions of the fixed nodes slightly different than in the previous case, as listed in Table 4.

The weight of the cables has been set to q z 0:5 [daN/m] for cables 1, 2, 4 and to q z 1 [daN/m] for cables 3 and 5. We have found an initial form with the C FDM fixing g q z =ð2Q K Þ, with Q K 1 [daN/m] for all cables. Then we have compared it with the form ob tained using a different procedure. Namely, first it has been found an initial form with the linear FDM, that is, using the truss approxima tion. Then it has been performed a non linear incremental analysis for imposing the self weight of the cables, using catenary elements with fixed lengths. They have been determined as the lengths of the catenary elements having the prescribed weight and the coordinates of the nodes obtained with the initial form finding.

The two procedures clearly yield different results (Fig. 8(a) and (b)); the C FDM, maintaining constant the parameter g, keeps con stant the geometric stiffness and respects the required sags of the cables. In the second procedure, during he incremental steps the force density increases, and the effect can be significant for very heavy cables.

In Table 5 are compared the thrusts found in the cables with both procedures. The non linear incremental procedure leads to much higher thrusts than the C FDM. Also the final value of the force densities Q K increase with respect to the initial value, while in the C FDM they remain constant. In the table also the values of the parameter Q V are reported, that represent the geometric stiffness of the catenary.

In this case either the vertical and the horizontal coordinates of the free nodes are different using the different procedures examined.

Dependency of the form from the parameter g

We consider the 5 cables net of Fig. 7, for which each cable has the same self weight, then c j 1; j 1; 2; . . . ; n, and solve the form finding problem for the cases g j 0:125; g j 0:25; g j 0:5 and g j 1. 

Fig. 1 .

 1 Fig. 1. Representation of the nodal forces in the catenary plane z-k.

Fig. 2 .Fig. 3 .

 23 Fig. 2. Definition of the sag ratio for the catenary (a), different configurations of the catenary (b).

Fig. 4 .

 4 Fig. 4. Representation of the effective traction force f j in the plane z-k in the case of the truss, parabolic and catenary element.

Fig. 5 .Fig. 6 .

 56 Fig. 5. Z-coordinate respectively of node-3 (a) and of node-5 (b) for increasing self weight of the cables.

Fig. 8 .

 8 Fig. 8. C-FDM vs l-FDM. (a): form obtained with the C-FDM; (b) form obtained with the l-FDM plus incremental analysis.

Fig. 9 .

 9 Fig. 9. Dependency of the form from the parameter g (C-FDM for q z j 1). In (a) are plotted the coordinates z3 (box-markers) and z5 (triangle-markers) with respect to g; in (b) are plotted the different configurations of the net for the values of g considered in Table6.

Fig. 10 .

 10 Fig. 10. Initial and converged shape of the net for the example of Section 6.2.

Fig. 11 .

 11 Fig. 11. URS strategy: (a) Convergence of the thrusts to the common value. (b) Minimization of the sum of the horizontal spans of the cables.

Fig. 12 .

 12 Fig. 12. Initial form. The plan view of the initial net configuration with the fixed points is shown in (a); an axonometric view of the initial net configuration is shown in (b).

  

  

  

Table 6

 6 

	Cable 1	0.400195	0.25	1.020750	0.957653	2.271180
	Cable 2	0.312500	0.25	1.020750	0.511282	1.516510
	Cable 3	0.515388	0.50	1.081980	1.149480	2.183010
	Cable 4	0.503891	0.25	1.020750	1.023470	1.823050
	Cable 5	0.615554	0.25	1.081980	1.509320	2.795330

Table 8

 8 Fixed nodes.

		x [m]	y [m]	z [m]
	P 1	À32	À9.5	0
	P 2	À27	À16.5	À5
	P 3	À16	À24.5	10
	P 4	0	À28	5
	P 5	À8	0	0
	P 6	À19	5.5	0

Convergence, starting from the solution of system ( 80) is very fast. The results for the chosen values of the ratios g j are presented in Table 6 and graphically plotted in Fig. 9. The relevant static quan tities are reported in Table 7 with the same symbols of Table 3.

From the results reported in Tables 6 and7 it is clear that assigning the values of the self weight q z j and of the g j is equivalent

to assign the values of the trust K j for each cable.

Form finding for assigned thrusts

In this section it is shown how it is possible to implement an iterative strategy for obtaining a net with thrusts everywhere equal using the procedure based on catenary elements. The strategy is the same as the one proposed by [START_REF] Bletzinger | A general finite element approach to the form finding of tensile structures by the updated reference strategy[END_REF], that is, an initial value of g is selected for the cables, and a first form is ob tained. Then it has been evaluated the average of the thrusts,

, and the parameters g have been updated as g kþ1 j q z j l j 2Kave , and the procedure has been iterated till convergence. The method is applied to the same net used in the previous sec tion. In Fig. 10 the initial and the converged shaped of the net are reported. Fig. 11(a) shows how the thrusts K j converge for the var ious cables of the net, and in Fig. 11(b) the sum of the horizontal projections of the cables l j is reported, clearly showing that the method yields a net for which the latter sum is minimal. This geo metric property, that generalizes an analogous properties of nets with equal axial forces, can be easily proved examining the equilib rium Eq. (79).

Form finding of a complex net with the C FDM

In this case we consider a large span membrane roof having a complex form. The membrane is modelled by a catenary cable net. The initial non equilibrated starting geometry is shown in Fig. 12 where the fixed points are indicated by a circle. The coordi nates of the fixed point are listed in the Table 8.

We consider for the internal cables a mean value of q z j 0:2 [daN/m] while for the boundary cables we consider q z j 0:3 [daN/m]. We have set for each internal cable g int 0:3.

With reference to the Fig. 12(a), for the back boundary cables we adopt g 1;2 0:015; g 2;3 g 3;4 0:03, for the front central cable g 5;0 0:002 while for the up lateral front cable g 6;5 0:01, while for the lateral boundary cable g 1;6 0:02.

The final catenary form of the net is compared in the Fig. 13 with the initial starting form.

Conclusions

The paper has shown an improvement of the force density method for form finding of an heavy cable net. The method em ploys the catenary element, so that equilibrium is exactly satisfied, and it can be easily extended to deformable cables.

The proposed method leads to an initial form that preserves the value of a dimensionless parameter, that takes the place of the force density, and that is related to the sag and to the geometric stiffness of the catenary. The example proposed in Section 6 have shown the difference between the present method and the form finding procedure that uses the truss FDM followed by a non linear analysis able to account for the weight of the cables.

In the paper has also been proposed an iterative procedure for obtaining a net with uniform thrusts. Similar procedures are also possible for imposing other constraints to the equilibrium form of the net, or for assigning constraints on the axial forces acting on the cables, that can be employed for optimizing the total weight of the net.