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Abstract

The paper presents a novel formulation for the isogeometric analysis of as-
semblies of Kirchhoff-Love space rod elements, introducing a multi-patch
implicit G1 formulation, so that an automatic non-singular stiffness operator
is obtained without the need of adding continuity conditions. The goal is
achieved using a polar decomposition of the deformation of the first and last
segments of the control polygon, that allows to introduce directly the end ro-
tations as degrees of freedom. Both parametric and geometric continuity can
be obtained in this way. We use Bezier and B-spline interpolations and we
show that they are able to attain very good accuracy for developing a 3D ex-
act curve element with geometric torsion (pre-twisted rod). In the paper the
performance of the multi-patch elements is examined comparing the rates of
convergence of the L2 error norm for the multi-patch and single-patch formu-
lations. It is shown that the rate of convergence remains the same, although
in certain cases the accuracy is lower for the multi-patch solutions.

Keywords: Isogeometric analysis, B-splines, geometric continuity, multi
patch analysis, Kirchhoff Love rod, curve rod element, pre-twisted rod
element

1. Introduction

Structural theories for general curved and twisted space rods have been
developed for polar and for non polar models (introducing the Kirchhoff-
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Love hypotheses). Among the former essential contributions were given by
Simo and Vu-Quoc 1 , Simo 2 , Crisfield 3 ; in Luo 4 an essential bibliography
on the subject can be found. A general model of non homogeneous com-
posite and functionally graded curved space rods was contributed by Birsan
et al. 5 . Kirchhoff-Love rods were extensively studied by Antman 6 , and im-
portant contributions in the exact geometrical description of the motion were
given by Langer and Singer 7 , Ibrahimbegovic 8 , among others. Shear unde-
formable rods with twist were used by Luongo et al. 9 to model the dynamics
of flexible cables. We recall that in Kirchhoff theory a rod is considered as
a space curve together with a rigid adaptive frame attached to it, to which
is assigned a deformation energy accounting for axial, bending and torsional
deformation (see, for instance, Bergou et al. 10 , Jurdjevic 11). Finite Element
implementations of these models require special attention for the interpola-
tion of the geometry, in order to guarantee the continuity of the intrinsic
axes. In general, they exhibit jumps at the boundaries of the elements, that
have to be smoothed in some way. In the context of standard polynomial
interpolations many elements have been proposed for effectively treating this
kind of structures, generally based on mixed or enhanced formulations (Simo
and Vu-Quoc 1 ,Crisfield 3). In Armero and Valverde 12 has been developed
a C1-continuous finite element based on Hermitian shape functions for the
2D plane case that has been successively extended to the 3D case in Armero
and Valverde 13 . More recently, formulations that employ piecewise continu-
ous interpolations on the elements and enforce inter-element continuity in a
weak sense using the Discontinuous Galerkin approach have been proposed
(Noels and Radovitzky 14).

As opposite to the C0 continuity obtained with the standard FEM discrete
interpolations, isogeometric analysis, that employs B-splines (or NURBS),
guarantees Cp−1 continuity, (by means of the blending of the ”shape func-
tions” at the joints of the sections), p being the degree of the spline interpola-
tion. Although B-spline functions are not shape functions in the usual sense,
and they are not interpolatory they do verify the partition of unity, so in this
work we shall refer to interpolation also for the B-spline discretization.

Thanks to the continuity property, isogeometric analysis represents a very
appealing strategy for the numerical formulation of thin structural curved
elements as rods and shells, since they can incorporate in the analysis the
exact initial geometric curvatures without discontinuities. Indeed, isogeo-
metric analysis allows a Galerkin’s approach on exact geometry invariant
under refinements. Isogeometric formulations of shell models have been an-
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alyzed in Benson et al. 15 for polar and in Benson et al. 16 , Kiendl et al. 17

and Kiendl et al. 18 for non polar shells. The application of B-spline interpo-
lation to beams was investigated since the works of Gontier and Vollmer 19 ,
who faced the large deformation problem, and Ganapathi et al. 20 , who used
cubic splines for eliminating locking. Application of isogeometric analysis
to rods is more recent. Nagy et al. 21 used isogeometric analysis for the
shape optimization of plane beams; Lu and Zhou 22 used Cosserat theory of
rod allowing for cross sectional deformations of space curved rods, Bouclier
et al. 23 and da Veiga et al. 24 proposed formulations for avoiding locking
in curved plane Timoshenko beams. The high inter element continuity has
been shown to be very effective for frequency analysis in Reali 25 and Cottrell
et al. 26 . Recently, Greco and Cuomo 27 proposed a general non linear model
for curved and twisted space rods based on Kirchhoff-Love hypotheses, and
described its numerical implementation in an isogeometric framework. In
it a parametrization of the cross section’s directors independent from the
Frenet ’s triad was introduced by means of a decomposition of the rotation
operator. Only the single patch case was examined.

Although B-spline interpolation presents Cp−1 continuity in the interior,
two adjacent patches can be joined only with C0 continuity. In this way, in a
Kirchhoff-Love approach that uses only displacements and torsional rotations
as degrees of freedom, the global stiffness operator turns out to be singular.
In order to avoid the singularity several strategies for enforcing the continuity
conditions at the joints of the patches have been proposed by many authors,
both for rods and non polar shells. In general, continuity conditions on the
rotations are added to the formulation, that are equivalent to enforce the
continuity of the unit tangent at the joints. This condition is known as
geometric G1 continuity, weaker than the parametric C1 continuity. These
continuity conditions in the CAD literature are known as the β-constraints
and consist in constraint conditions for the positions of the control points
(see Piegl and Tiller 28). By means of the β-constraints geometric continuity
of any degree may be imposed. In general this strategy is difficult for an
automatic implementation.

On this line Bletzinger and Ramm 29 and successively Kiendl et al. 17

developed a strategy for an isogeometricG1 multi-patch approach considering
additional constraints for enforcing the alignment of the control points at
the joints of the different patches. The same approach is adopted in Fisher
et al. 30 for the analysis of 2D plane second gradient elasticity problems.
A similar approach was presented by Greco 31 in which the constraints are
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imposed directly on the unitary end tangents, i.e. on the rotations at the
ends of the elements. Cottrell et al. 32 , starting from consideration on the
knots refinements, proposed a strategy for generating additional continuity
conditions between patches with different number of control points at the
boundary for 2D analyses.

Kiendl et al. 18 , in order to overcome the necessity of the additional con-
straints and to obtain an easier automatic procedure for the assemblage of the
global stiffness matrix introduce a relaxed G1 constraint via the bending strip
methods ; this strategy is equivalent to a penalty methods. Similarly, Benson
et al. 33 propose the concept of blended isogeometric shells for multi-patch
analysis of polar and non polar shell elements.

Contrarily to the previous formulations, in the paper it is presented an
implicit G1 continuous Kirchhoff-Love rod element for the analysis of multi-
patch assemblies of space rods; only clamped -B-splines interpolations are
considered, see Piegl and Tiller 28 , Farin 34 and Cottrell et al. 35 . Although in
general a single patch can be used for modelling single beams, and degrees
of freedom can be added increasing the number of internal knots, there are
cases when it is necessary to discretise the rod element with more than one
patch. Important examples are framed structures, composed by rods that are
connected at the ends by rigid links requiring that the tangents keep their
relative orientation during the deformation. Also in the cases of beams with
sharply varying cross sections or in presence of point loads it may be useful
the use of multiple patch interpolations. The strong (implicit) G1 continuity
is imposed by means of a re-parametrization of the second and second last
control points of the centroid curve. By observing that for a clamped B-
spline the direction of the tangent to the curve at the ends coincides with the
directions of the first and last segments of the control polygon, the motion of
these two segments is re-parametrized as a composition of a rigid rotation and
a stretch (in this way a polar decomposition is obtained). Finally, adopting
a spatial description for the rigid motions of the end directors, an automatic
G1 assemblage for the global stiffness is obtained.

The strong G1 continuity conditions proposed in this work represents
an extension of the Hermite interpolation to the isogeometric multi patch
analyses. In the paper it is shown that in the case of a 3rd order Bezier in-
terpolation, Hermite functions are exactly recovered. More general B-splines
interpolations are also illustrated and are used in the applications.

The paper is organized as follows. In section 2 and 3 the Kirchhoff-Love
space rod model already presented in Greco and Cuomo 27 is briefly revised.
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With respect to the previous paper the formulation has been simplified and
some additional information has been added on the rotation operators. In
section 4 the proposed G1 multi-patch interpolation is described in detail.
Several applications are then discussed, aimed to compare the performance
of the multi-patch approach with respect to the single patch model. It is
shown that in general the rate of convergence of the L2 error norm is the
same for both approaches, although the accuracy is lower for the multi-
patch case, but there are cases, specifically when discontinuous loads are
present, for which the multi-patch model is more accurate. The application
of the proposed methodology to two engineering applications of space grids
complete the paper.

2. Space rod model

In this section it is given a short summary of the Kirchhoff-Love space
rod model described in Greco and Cuomo 27 . The rod is defined by its axis
and by the director vector lying in a plane orthogonal to it. The axis is a
curve p(S) : A → R3, where A = ]0, L0[ is an open set of R and S is the
arc-length of the Lagrangian configuration of the centroid axis. It is referred
to a parametric abscissa λ defined in a certain interval [0, a] The tangent
vector to the rod axis is the vector field

t =
dp

dS
(1)

The director vector is a unit vector field everywhere normal to the axis,
n(S) : A → R3.

2.1. Reference configuration

The original configuration is denoted by the index ”0”, so that in the un-
strained configuration the unit tangent vector is (a hat denotes unit vectors)

t̂0 =
dp0

dS
=

1

∥t0∥
dp0

dλ
; ∥t0∥ =

dS

dλ
=

∥∥∥∥dp0

dλ

∥∥∥∥ (2)

Using (1) it results

t̂ =
1

∥t∥
dp

dS
=

1

∥t∥
1

∥t0∥
dp

dλ
(3)
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The description of the reference configuration of the rod is completed
by the normal vector n̂0. The orientation of the normal vector n̂0(S) is
arbitrarily chosen (in the following it will be taken coincident with one of the
principal inertia axes of the cross section). The unit local triad is completed
by the unit vector

ν̂0(S) = t̂0(S)× n̂0(S) (4)

The (bending) curvature and torsion of the beam axis on the reference
configuration are defined as:

χν0 = −dn̂0

dS
· t̂0, χn0 =

dν̂0

dS
· t̂0, χt0 =

dn̂0

dS
· ν̂0. (5)

Introducing the abscissas θn, θν along the normal vectors, the initial po-
sition of a generic point of the beam is:

∗
p0 = p0 + θnn̂0 + θνν̂0 (6)

2.2. Kinematics of the Kirchhoff Love rod

The current position of the centroid curve is given by

p(S) = p0(S) + u(S), (7)

Differently from what is done in Langer and Singer 7 , the rotation of
the cross section is given by two isometric operators, Λ(t̂0(S), t̂(S)), a ro-
tation without drilling rotation that rotates the vector t̂0(S) on t̂(S), and
R(t̂(S), ϕ(S)) that gives the drilling rotation ϕ(S) : [0, L0] → R around t̂(S).
This rotation will be also referred to as correction angle. The two operators
are obtained particularizing Euler-Rodrigues formula

R = ê⊗ ê+ cos[φ](I − ê⊗ ê) + sin[φ]ê× I. (8)

where ê is the axis of rotation, while φ is the angle of rotation.
The unitary axial vector of the first rotation is ê = t̂0×t̂

∥t̂0×t̂∥ while cos[φ] =

t̂0 · t̂ and sin[φ] = ∥t̂0× t̂∥, therefore the formula (8) gives the representation

Λ(t̂0, t̂) = (t̂0 · t̂)I +
(
t̂0 × t̂

)
× I +

1

1 + t̂0 · t̂
(t̂0 × t̂)⊗ (t̂0 × t̂) (9)

.
The axial vector of the second rotation operator is ê = t̂, and indicating

the correction angle by ϕ, equation (8) gives
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R(t̂, ϕ) = I + sin[ϕ] t̂× I + (1− cos[ϕ]) t̂×
(
t̂× I

)
. (10)

.
The normal axes of the local triad are then

n̂(S) = Qn̂0(S), ν̂(S) = Qν̂0(S), Q = R(t̂, ϕ)Λ(t̂0, t̂). (11)

The construction described satisfies Kirchhoff-Love hypotheses t̂ · n̂ =
t̂ · ν̂ = 0. We observe that the (Lagrangian) description of the deformed
configuration of the rod is defined by means of the two fields {u(S), ϕ(S)},
so that it has four degrees of freedom.

It is possible to give a matrix representation of the operators R,Λ, that
are elements of the group SO3. In the material frame the operator Λ assumes
the form

Λ =


t̂ · t̂0 −t̂ · n̂0 −t̂ · ν̂0

t̂ · n̂0 t̂ · t̂0 +
(t̂·ν̂0)

2

1+t̂·t̂0
+
(t̂·n̂0)(t̂·ν̂0)

1+t̂·t̂0

t̂ · ν̂0 −(t̂·n̂0)(t̂·ν̂0)
1+t̂·t̂0

t̂ · t̂0 +
(t̂·n̂0)

2

1+t̂·t̂0

 (12)

while the isometry R is more effectively represented in the intermediate spa-
tial frame {t̂, n̂♭ = Λn̂0, ν̂

♭ = Λν̂0},

R =

 1 0 0
0 cos(ϕ) − sin(ϕ)
0 sin(ϕ) cos(ϕ)

 (13)

The position of a generic point in the cross section is identified by the
vector

∗
p(S, ϑn, ϑν) = p(S) + ξ = p(S) + ϑnn̂(S) + ϑνν̂(S). (14)

The tangent vectors at the generic fibre of the rod are obtained differen-
tiating equation (14)

∗
t :=

∂
∗
p

∂S
=
∂p

∂S
+ ϑν ∂ν̂

∂S
+ ϑn∂n̂

∂S
,

∗
n :=

∂
∗
p

∂ϑn
= n̂,

∗
ν :=

∂
∗
p

∂ϑν
= ν̂ (15)

Indicating with the apex ♮ the contravariant basis, the metric of the spa-
tial configuration is
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Figure 1: Tangent spaces and relate tangent operators.

∗
G =

∗
t ⊗

∗
t
♮

+ n̂⊗ ∗
n

♮
+ ν̂ ⊗ ∗

ν
♮

(16)

and the metric of the reference configuration is

∗
G0 =

∗
t0 ⊗

∗
t
♮

0 + n̂0 ⊗
∗
n

♮

0 + ν̂0 ⊗
∗
ν
♮

0 (17)

All the state variables are referred to the centroid line, using the pull back
operators of the maps ψ0, ψ from the centroid line of the rod to the generic
fibre, defined in fig. 1.

z =
∗
gα ⊗ gα,

∗
gα = {

∗
t, n̂, ν̂}, gα = {t♮, n̂, ν̂}

z0 =
∗
g0α ⊗ gα

0 ,
∗
g0α = {

∗
t0, n̂0, ν̂0}, gα

0 = {t̂0, n̂0, ν̂0}
(18)

Denoting with F the gradient of deformation from the reference con-
figuration of the axis to its current configuration i.e. F = gα ⊗ gα

0 =
t ⊗ t̂0 + n̂ ⊗ n̂0 + ν̂ ⊗ ν̂0 the strain tensor is the difference between the

pull back of
∗
G on the tangent space to the reference configuration of the rod

axis, ϕ∗
(
ψ∗(

∗
G)
)

= F TzT
∗
GzF , and the pull back on the same tangent space

of the material metric, zT
0

∗
G0z0, i.e.,
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E =
1

2

(
ϕ∗
(
ψ∗(

∗
G)
)
− ψ∗

0(
∗
G0)

)
(19)

The components of the first tensor on the triad {t̂0, n̂0, ν̂0} are, after
enforcing the Kirchhoff-Love constraints,

ϕ∗
(
ψ∗(

∗
G)
)

=


∗
t ·

∗
t −ϑν

(
dn̂
dS

· ν̂
)

ϑn
(
dn̂
dS

· ν̂
)

−ϑν
(
dn̂
dS

· ν̂
)

1 0
ϑn
(
dn̂
dS

· ν̂
)

0 1

 (20)

The pull back of the material metric is, analogously,

ψ∗
0(

∗
G) =


∗
t0 ·

∗
t0 −ϑν

(
dn̂0

dS
· ν̂0

)
ϑn
(
dn̂0

dS
· ν̂0

)
−ϑν

(
dn̂0

dS
· ν̂0

)
1 0

ϑn
(
dn̂0

dS
· ν̂0

)
0 1

 (21)

In the expressions (20) (21) it is possible to recognize the initial curvatures
and torsion, defined in (5) and the spatial curvatures and torsion, similarly
defined as

χν = −dn̂
dS

· t, χn =
dν̂

dS
· t, χt =

dn̂

dS
· ν̂. (22)

The strain tensor is then written as

E =
1

2


∗
t ·

∗
t − t̂0 · t̂0 −ϑν (χt − χt0) ϑn (χt − χt0)

−ϑν (χt − χt0) 0 0
ϑn (χt − χt0) 0 0

 (23)

with

∗
t ·

∗
t − t̂0 · t̂0 =∥t∥2 − 1− 2ϑn (χν − χν0) + 2ϑν (χn − χn0)

+ . . .
(24)

having disregarded quadratic terms in ϑn, ϑν .
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2.3. Tangent operator

The velocity of a generic point of the beam is

∗̇
p = u̇+ ϑn ˙̂n+ ϑν ˙̂ν (25)

The velocity of the intrinsic triad is given by

{t̂, n̂, ν̂} = Q{t̂0, n̂0, ν̂0} ⇒ { ˙̂t, ˙̂n, ˙̂ν} = Q̇{t̂0, n̂0, ν̂0} = Q̇Q−1{t̂, n̂, ν̂}
(26)

We get:

˙̂n = lim
dτ→0

n̂(τ + dτ)− n̂(τ)

dτ
= lim

dτ→0

(
Qτ+dτ

τ − I
)
n̂(τ)

dτ
(27)

where Qτ+dτ
τ is the rotation operator from the configuration at time τ to the

configuration at time τ+dτ , given byQτ+dτ
τ = R

(
t̂(τ + dτ), ϕ(τ + dτ)

)
Λ (t(τ), t(τ + dτ)),

that can be evaluated using formulas (9), (10). By direct evaluation it is
found that

Q̇QT = RΛ̇ΛTRT + ṘRT =
(
˙̂t⊗ t̂− t̂⊗ ˙̂t

)
+ ϕ̇ t̂× I. (28)

The axial vector ω(S) : [0, L0] → R3 associated to Q̇QT is:

ω = ϕ̇t̂+ ωnn̂+ ωνν̂ (29)

with

ωn = ˙̂ν · t̂ = − 1

∥t∥
du̇

dS
· ν̂; ων = − ˙̂n · t̂ = 1

∥t∥
du̇

dS
· n̂. (30)

where the identities ˙̂ν · t̂ = −ν̂ · ˙̂t and ˙̂n · t̂ = −n̂ · ˙̂t, consequences of
Kirchhoff-Love constraints, have been used.

With the aid of the axial vector ω, the velocity of the intrinsic triad takes
the form

˙̂t = ω × t̂ = ωνn̂− ωnν̂

˙̂n = ω × n̂ = −ων t̂+ ϕ̇ν̂

˙̂ν = ω × ν̂ = ωnt̂− ϕ̇n̂.

(31)
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We observe, for later use, that the continuity of the beam is guaranteed if
the velocities of the torsional rotation ϕ̇ and of the bending rotations ωn, ων

are continuous.

2.4. The velocity of deformation operator for a Kirchhoff-Love rod

In this section we derive the velocity of deformation tensor. Its form is
the same as the infinitesimal deformation tensor that will be used in the
applications.

The pull-back of the velocity of deformation on the reference configuration

Ė = Ėαβ g
α
0⊗gβ

0 = sym
(
(zF )T ˙zF

)
has the components (see equation (23))

Ė =
1

2

 2
∗̇
t ·

∗
t −ϑνχ̇t ϑnχ̇t

−ϑνχ̇t 0 0
ϑnχ̇t 0 0

 (32)

The components of the tensor Ė are readily found performing the deriva-
tives in (32). The axial component of the velocity of deformation of the
generic fibre is

∗̇
t ·

∗
t = ε̇+ t̂× χ̇ · ξ (33)

with

ε̇ = ṫ · t (34)

t̂× χ̇ = −χ̇νn̂+ χ̇nν̂ (35)

ξ = ϑnn̂+ ϑνν̂ (36)

having disregarded terms of order higher than 1 in ϑn, ϑν . The velocities of
the curvatures are evaluated as follows:

χ̇t =
d ˙̂n

dS
· ν̂ +

dn̂

dS
· ˙̂ν =

dω

dS
· t̂ (37)

χ̇n =
d ˙̂ν

dS
· t+ dν̂

dS
· ṫ = dω

dS
· n̂∥t∥+ ṫ · t 1

∥t∥2
χn (38)

χ̇ν = −

(
d ˙̂n

dS
· t+ dn̂

dS
· ṫ

)
=
dω

dS
· ν̂∥t∥+ ṫ · t 1

∥t∥2
χν (39)
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The generalized deformation (34), (37), (38), (39) can be related to the
degrees of freedom of the rod accounting for Kirchhoff-Love constraints. Re-
calling from (29) that ω = ϕ̇t̂+ 1

∥t∥ t̂×
du̇
dS

and evaluating its gradient:

dω

dS
=
dϕ̇

dS
+ ϕ̇

dt̂

dS
+

1

∥t∥
dt̂

dS
× du̇

dS
+ t̂× d

dS

(
1

∥t∥
du̇

dS

)
, (40)

noting that

t̂× dt̂

dS
=

1

∥t∥
(χnn̂+ χνν̂) =

1

∥t∥
χb (41)

where χb =
(
I − t̂⊗ t̂

)
χ and introducing the second line covariant deriva-

tive of u̇ that is defined as

u̇|S|S = ∥t∥ d

dS

(
1

∥t∥
du̇

dS

)
(42)

we have the results:

χ̇t =
dω

dS
· t̂ = dϕ̇

dS
+

1

∥t∥2
χb ·

du̇

dS
(43)

t̂× χ̇ = ϕ̇χb −
(
I − t̂⊗ t̂

)
u̇∥S∥S (44)

3. Equilibrium operator for Kirchhoff-Love rod

3.1. Virtual Power Identity

Let’s denote by S = Sαβg0αg0β the second Piola Kirchhoff stress tensor,

given by the pull back of the Cauchy stress tensor at the generic fiber
∗
Σ as

follows

S = det(zF )(zF )−1
∗
Σ(zF )−T (45)

Introducing the hypotheses of plane stress, its components on the refer-
ence unitary centroid triads are

S =

 Stt Stn Stν

Snt 0 0
Sνt 0 0

 . (46)
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The Lagrangian form of the internal virtual power is

Pint =

∫
L0

∫
A

[
Stt(ε̇− ϑnχ̇ν + ϑνχ̇n) + (Stνϑn − Stnϑν)χ̇t

]
dA dS (47)

Substituting the components of the velocity of deformation, expressions
(34), (37), (38), (39) and assembling the terms, it becomes

Pint =

∫
L0

(
N +Mn

χn

∥t∥3
+Mν

χν

∥t∥3

)
t · ṫ+M · dω

dS
dS (48)

having introduced the definitions:

N =

∫
A
SttdA

Mt =

∫
A
(Stνϑn − Stnϑν) dA

Mn =

∫
A
Sttϑν∥t∥ dA

Mν = −
∫
A
Sttϑn∥t∥ dA

M = (Mt,Mn,Mν) .

(49)

The internal stress resultant dual to the axial deformation is the effective
axial force

Neff = N +Mn
χn

∥t∥3
+Mν

χν

∥t∥3
(50)

In the computation, however, it is more convenient to use the expres-
sions (43), (44) for computing the internal power, since the velocities are
normally referred to an external cartesian frame. The relevant expression is
straightforward and is not reported here.

3.2. Constitutive operator of the rod

We assume that the rod remains elastic, and denote by

Ṡ = Ct : Ė (51)
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the tangent constitutive relationship between the increment of the second
Piola-Kirchhoff stress tensor and the convective velocity of deformation. In
this work we employ the approximation that the tangent elastic coefficients
be constant, and according to Simo 2 , Kiendl et al. 18 , we assume that

Ṡtt = E (
∗̇
t ·

∗
t ) = E (ε̇− ϑnχ̇ν + ϑνχ̇n)

Ṡtn = −Gϑν χ̇t Ṡtν = Gϑn χ̇t.
(52)

Proceeding as in Greco and Cuomo 27 , Cuomo and Greco 36 the mate-
rial stiffness matrix can be obtained. It is the sum of four contributions
(membrane, torsional, and two bending contributions), and strong coupling
is present between the displacement degrees of freedom and the torsional
rotation.

4. Interpolation

A B-spline interpolation is used for the rod configuration (p, ϕ)(S). For
the sake of completeness we recall that a B-spline curve of degree p is defined
as

C(λ) =
n∑

i=1

bpi (λ)Pi (53)

where Pi = {Pix, Piy, Piz} are the cartesian components of n control points,
and bpi (λ) are n B-spline basis functions of degree p defined on a non periodic
knot vector. The knot vector is a non decreasing sequence ofm real numbers,
corresponding to the parametric coordinates λj, j = 1, ...,m, with m = n +
p+ 1,

Ξ = {a, ..., a︸ ︷︷ ︸
p+1

, λp+2, ..., λm−(p+2)︸ ︷︷ ︸
m−2(p+1)

, b, ..., b︸ ︷︷ ︸
p+1

}

The global interval [a, b] is called the patch. In this work non periodic
open knot vectors are considered, with multiplicity equal to 1 for each internal
knot, that ensures a Cp−1 parametric continuity at each knot. Increasing the
multiplicity of a knot corresponds to reducing by one the continuity degree.
Open b-splines are such that the first and last knots in Ξ have multiplicity
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p+ 1, so that continuity is lost at the ends of the patch. Since B-splines are
interpolatory for the first and last control points, two patches can be joined
matching the coordinates of the control point at the common end, but only
C0 continuity is obtained.

If in the knot vector there is no internal knot the basis functions reduce
to the Bernstein polynomials, so that the B-spline interpolation is a gener-
alization of the Bezier’s interpolation. In this work both Bezier and general
B-spline interpolation will be used. An interesting property of the B-spline
interpolation of a curve with an open knot vector is that the interpolated
curve is tangential to the control polygon at the ends.

4.1. Single patch interpolation

We adopt for the representation of the rod configuration of the centroid
axis of the rod an open B-spline description given by

p(λ) = Σn
i=1b

p
i (λ)Pi (54)

with λ ∈ [0, 1].
Similarly,

ϕ(λ) = Σn
i=1b

p
i (λ)ϕi (55)

being ϕi the values of the correction angle at the control points.
Collecting the degrees of freedom in the vector q as follows

q = {P 1, ϕ1,P 2, ϕ2, ...,P n, ϕn} (56)

the configuration of the rod is given by the interpolation

{p(λ), ϕ(λ)} = Mq (57)

with (I4 is the 4× 4 identity matrix)

M = {diagI4 bpi }. (58)

As it is evident, in the single patch case the degrees of freedom are the
displacements of the control point, and their torsional rotations. Rotations
about the normal axes are not included in the model, and are calculated
according to equations (30). From their construction, it can be seen that
only the first two B-spline basis functions have non vanishing derivative at
the first end (resp. only the last two at the second end), so that a boundary
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condition on the rotation only affects the position of the first two control
points. In particular, since the control polygon is tangent to the interpolated
curve, the normal components of the velocity of the second and second last
control points determine the velocity of the end bending rotations.

4.2. Geometric continuity for a curve

According to Barsky and DeRose 37 and Hohmeyer and Barsky 38 two
curves meet with parametric continuity, C1, if the parametric tangents, t =
dp
dλ
, are the same at the joint. Parametric continuity is dependent on the

specific parametrization of the curve, thus the first derivative of the position
vector is not an intrinsic property of an oriented curve.

Contrarily, two curves meet with geometric continuity, G1, if their unit
tangents are the same at the joint. The geometric continuity, as highlighted
in Barsky and DeRose 37 , is an intrinsic property, in the sense that it is
independent under a generic re-parametrization of the curves.

In this work it is proposed a G1 parametrization for a curve based on the
concept of the end rotations, similar to the Hermitian interpolation for the
Euler-Bernoulli beam model.

4.3. A G1 multipatch interpolation of the centroid curve

Let’s examine the simplest case of a single beam that we wish to divide in
many patches. Concentrated loads may be applied at the joints. The general
case of beams matching with different orientation at the joints can be treated
in a similar way.

We assume that the initial positioning of the patches satisfy geometric
G1 continuity at the joints, that guarantees that the tangent vector t̂0 is
everywhere continuous. This can be obtained in several ways, and will not
be discussed here.

The scheme discussed in the previous sections can not be applied directly
to the case of a multipatch beam. Indeed, since, as has been observed,
only the displacements are used as degrees of freedom, rotations around
the normal axes at the joints are not constrained, so that a kinematically
undetermined structure is obtained, leading to a singular stiffness matrix
after assemblage. Additional constraints have to be enforced, specifically, the
continuity of the rotations. The twist angle is interpolated by a continuous
function, so that in order to guarantee the continuity of the rotations it is
sufficient to enforce the continuity of the tangent vector direction. In this way
a G1 continuity is achieved. On the contrary, the norm of the tangent vector
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is not constrained, since it is determined by the equilibrium equations, and
may present a jump in the case a point force is applied at the node joining
two patches.

In order to reach the required continuity the displacement degrees of
freedom of the the second and second last control points are re-parametrized
introducing the end rotations as degrees of freedom. A generalization of the
Hermite interpolation to general open B-spline interpolation is so obtained,
as will be described in detail.

A coordinate transformation is performed mapping the second, P2, and
the second-last, Pn−1, control points by means of the spatial rotations and
the elongation of the end control segments tangent vectors t̃0,1 and t̃0,2 as
follows (see fig. 2)

P2 = P1 + ρ1R̃1t̃0,1, Pn−1 = Pn + ρ2R̃2t̃0,2, (59)

where R̃1 and R̃2 are the spatial rotation operators, the initial non unit
tangent vectors are defined by the difference of the control points

t̃0,1 = P0,2 −P0,1, t̃0,2 = P0,n−1 −P0,n, (60)

and the scalars ρ1 and ρ2 are the relative changes in the lengths of these
vectors, given by

ρ1 =
∥P2 −P1∥

∥P0,2 −P0,1∥
=

∥t̃1∥
∥t̃0,1∥

, ρ2 =
∥Pn−1 −Pn∥

∥P0,n−1 −P0,n∥
=

∥t̃2∥
∥t̃0,2∥

. (61)

The configuration of the centroid curve is thus interpolated as

p(λ) =bp1(λ)P1+

+bp2(λ)
(
P1 + ρ1R̃1t̃0,1

)
+

+bp3(λ)P3 + ...+ bpn−2(λ)Pn−2+

+bpn−1(λ)
(
Pn + ρ2R̃2t̃0,2

)
+

+bpn(λ)Pn.

(62)

The G1 parametric continuity is thus obtained equating the unit director
ˆ̃tk+1
1 at the first end of the k + 1 patch with the unit director ˆ̃tk2 at the last
end of the previous patch, i.e.
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Figure 2: Geometric representation of the G1 continuity as implicit constraint on the
rotations at the joints of the elements.

t̃
k+1

1

∥t̃k+1

1 ∥
= − t̃

k

2

∥t̃k2∥
(63)

Recalling that ˆ̃tki = R̃
k

i t̂
k

0,i, equation (63) means that R̃
k+1

1
ˆ̃tk+1
0,1 = −R̃

k

2
ˆ̃tk0,2,

and, since ˆ̃tk0,2 = −ˆ̃tk+1
0,1 theG1 parametric continuity implies that R̃

k+1

1 = R̃
k

2.
In terms of velocity equality (63) leads to

˙̃̂
tk2 = − ˙̃̂

tk+1
1 (64)

and, observing that
˙̃̂
tki = ˙̃Rk

i
ˆ̃tk0,i =

(
˙̃Rk
i R̃

k−1

i

)
R̃

k

i
ˆ̃tk0,i = ω̇k

i × ˆ̃tki , we obtain

that

ωk+1
1 × ˆ̃tk+1

1 = −ωk
2 × ˆ̃tk2 (65)

Therefore, the G1 continuity requirement is satisfied if the velocities ωi are
the same at adjacent patch ends.

Accounting for the new parametrization given by equation (59), and for
the result

˙̃tki = ρ̇ki
t̃
k

i

ρki
+ ωk

i × t̃
k

i (66)

the velocity of the centroid curve is given by
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ṗ(λ) = (bp1(λ) + bp2(λ)) Ṗ1+

+bp2(λ)

(
ρ̇1

t̃1
ρ1

− t̃1 × ω1

)
+bp3(λ)Ṗ3 + ...+ bpn−2(λ)Ṗn−2+

+bpn−1(λ)

(
ρ̇2

t̃2
ρ2

− t̃2 × ω2

)
+
(
bpn(λ) + bpn−1

)
Ṗn.

(67)

The velocity of the torsional angle is given by

ϕ̇(λ) = Σn
i=1b

p
i (λ)ϕ̇i (68)

In (68) the first and the last values must be represented in terms of the end

rotation vectors as ϕ̇ = ω · t̂ so that, observing that t̂|0 = ˆ̃t1, t̂|L = −ˆ̃t2, the
interpolation of the velocity of rotation around the centroid curve, is

ϕ̇(λ) =bp1(λ)ω1 · ˆ̃t1+
+bp1(λ)ϕ̇2...+ bpn−1(λ)ϕ̇n−1

+bpn(λ)ω2 · (−ˆ̃t2).

(69)

The newly defined degrees of freedom of the velocities are collected in the
vector ẏ defined as

ẏ = {Ṗ1,ω1, ρ̇1, ϕ̇2; Ṗ3, ϕ̇3, ..., Ṗn−2, ϕ̇n−2; ϕ̇n−1, ρ̇2, Ṗn,ω2} (70)

The coordinates y and q are related through a linear transformation, that
actually involves only the first two and the last two control points. With the
notation 03 = {0, 0, 0} it is:
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q̇1,2 =E1ẏ1,2, q̇n−1,n = E2ẏn−1,n

E1 =−


I3 03 0 0

0T
3

ˆ̃t1· 0 0

I3 −t̃1× t̃1
ρ1

0

0T
3 0T

3 0 1

 ,

E2 =−


0T
3

t̃2
ρ2

I3 −t̃2×
1 0 03 03

0T
3 0T

3 I3 03

0 0 03
ˆ̃t2·

 .

(71)

Figures 3(a) and 3(b) show the interpolation functions for the velocities
in the case of Bernstein’s polynomials of degree 3. In this case the proposed
transformation yields exactly the Hermite shape functions. Figures 3(c) and
3(d) are related to Bernstein’s polynomials of degree 4 and corresponding
transformed G1-functions; Figures 3(e) and 3(f) are related to a B-spline of
degree 3 with internal knots and corresponding transformed G1-B-spline. As
observed previously, only the first and last two interpolation functions are
modified.

20



0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Standard Bezier's Polynoms - p=3

b1
3

b2
3 b3

3

b4
3

(a) C0 Bernstein interpolation functions
(polynomial degree p=3).

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

G
1
- Bezier's Polynoms - p=3

b1
3
+b2

3

-

b2
3

3
b3

3

3

b2
3
+b4

3

(b) G1 Bernstein interpolation functions
(Hermitian f. p=3).

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Standard Berstein's Polynoms - p=5

b1
5

b2
5

b3
5 b4

5 b5
5

b6
5

(c) C0 Bernstein interpolation functions
(polynomial degree p=5).

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

G
1 Berstein's Polynoms - p=5

b1
5
+b2

5

-

b2
5

5 b3
5 b4

5

b5
5

5

b5
5
+b6

5

(d) G1 Bernstein interpolation functions
(polynomial degree p=5).

b1

b2 b3

b4 b5
b6 b7

b8

0 1

5

2

5

3

5

4

5
1

0.0

0.2

0.4

0.6

0.8

1.0

BSpline Polynoms-p=3-80,0,0,0,1�5,2�5,3�5,4�5,1,1,1,1<

(e) Standard C0 B-spline interpolation
(polynomial degree p=3).

b1 +
 b2 b7 +

 b8

b3

b4 b5
b6

-b2 � 15 b7 � 15

0 1

5

2

5

3

5

4

5
1

0.0

0.2

0.4

0.6

0.8

1.0

G
1
- BSpline Polynoms - p=3 - 80,0,0,0,1�5,2�5,3�5,4�5,1,1,1,1<

(f) G1 B-spline interpolation (polyno-
mial degree p=3).

Figure 3: Transformation of shape function from standard C0 open B-spline to G1 open
B-spline shape functions, (with or without internal knots).
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5. Numerical results

In this section the performance of the proposed G1-multi-patch method
with low inter element continuity is compared with the B-spline approach
with high inter-element continuity. In both cases the Kirchhoff-Love model
is used, adopting the same quadrature rule, namely a Gauss-Lobatto inte-
gration with p + 1 points for each element. Refinement is obtained using
an h−refinement scheme for the B-spline approach, that leaves the inter ele-
ment continuity invariant, while for the G1 multi patch approach refinemebt
is obtaoned increasing the number of patches.

First are presented simple academic examples aimed to analyze the influ-
ence of the continuity degree on the accuracy and on the rate of convergence
of the solution. The measure adopted for the error is the L2 error norm
defined as

eL2(•) = ∥(•)p − (•)exact∥
∥(•)exact∥

(72)

Four examples are presented. The first is a plane arch, where only bending
and axial deformations are present. Then an horizontal arch with bending-
torsional coupling is examined. The third example is similar to the second,
but an initial pre-twist of the arch has been considered, in order to evaluate
the influence of pre-twisting on the results. The fourth example concerns an
arch with discontinuity on the stresses.

Subsequently, it is considered the case of 3D assembly of Kirchhoff Love
rods, in which the elements are curved and pre-twisted; These analyses are
performed with G1 multi patch elements only.

In all the cases examined linear elastic behavior and small deformations
are considered.
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5.1. 2D cantilever arch with a point force at the free end

In this example it is considered a 2D cantilever circular arch loaded at
the tip by a vertical force F = {0,−1, 0}, [kN ]. The radius of the centroid
curve is R = 1 [m] the section is rectangular with hn = 0.1 and hν = 0.01 [m]
respectively, n̂(S) = ez, ν̂ = t̂× ez and E = 2.0 ∗ 108 [kN/m2]. See figure 4
for the geometry.

Figure 4: 2D cantilever arch with a point force at the free end.

The rate of convergence of the G1 formulation is examined for three differ-
ent polynomial degrees p = 3, 4, 5 in the plots of figures 5. On the horizontal
axis is reported the number of control points used in the approximation, pro-
portional to the number of degrees of freedom. In the graphs, dotted lines
show the rate of convergence, and a number next to them indicates its value.
The error is evaluated according to formula (72) using as reference solution
the analytical one, reported in ??.

Figure 5(a) presents the L2 norm of the error for the displacement compo-
nent uy(S), obtained with the multi-patch approach for the three polynomial
degrees adopted. The asymptotic rate of convergence for the displacement
error is in any case higher than the theoretical value p+ 1.

In figures 5(b),5(c),5(d) the error obtained with the multi-patch and the
single patch B-spline approaches are separately compared for each one of the
three polynomial degrees used. The same rate of convergence is obtained for
both the (high continuity level) B-spline and for the (low continuity level)
G1 multi patch approaches; However, the accuracy obtained with the single
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patch approximation is higher that the accuracy obtained with the multi-
patch approach.

Figure 6 shows the rate of convergence of the error for the effective axial
force and bending moment, separately reporting the error for the multipatch
approach (figures 6(a), 6(c)) and for the single patch approach (figures 6(b),
6(d)). Contrary to what was found for the displacement errors, in this case
the asymptotic rate of convergence matches the theoretical values, respec-
tively p and p− 1 for the axial and the bending stress resultants. The same
asymptotic rate of convergence is found for single patch and multi-patch ap-
proaches but the accuracy obtained with the (high continuity) B-spline ap-
proach is higher than that obtained with the (low continuity) G1-multi-patch
approach, in agreement with what was observed in Echter and Bischoff 39 .
Furthermore, as appears from figures 6(a) and 6(c), the accuracy obtained
for the bending moment is higher than the accuracy obtained for the axial
force.

The case of a multi-patch dicretization using cubic B-splines with internal
knots in each patch is considered in figure 7, where is plotted the error on the
vertical displacement obtained using the multi-patch approach with Bezier
interpolation and with B-spline interpolations with 1,2 and 3 internal knots,
and the errors obtained using the single patch B-spline approach. The first
and the last curves are the same as in figures 5(b). The errors are plotted
versus the number of control points used in the interpolation. Adding internal
knots does not modify the rate of convergence of the error, but improves the
accuracy, that tends toward the accuracy obtained with the single patch
B-spline interpolation.

Figure 8 shows the influence of the thickness ratio hν/R on the L2 error for
the displacements using different discretizations. The results presented have
been obtained with cubic B-splines. Figure 8(a) reports the error for the G1

multi-patch case, employing from 1 up to 10 patches, while figure 8(b) refer
to the single patch approach using an increasing number of blended elements.
The numbers written next to the curves indicate the number of control points
introduced by the discretization. The results relative to the single patch
interpolation (figure 8(b)) show a high sensitivity of the error to the thickness
ratio hν/R. As the ratio gets smaller and smaller, the error increases, tending
to 100%, no matter what the discretization is. This behaviour is due to
the presence of membrane locking, as usually observed in standard FEM
applications.

Also in the multi-patch case the accuracy of the solution decreases with
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increasing slenderness of the rod, indicating that also in this case some mem-
brane locking is still present. However the dependency of the accuracy on
the thickness ratio is much smaller than for the single-patch approach. Fur-
thermore, even for very small thickness ratios the error decreases as the
discretization improves, differently from what happens with the single patch
solution.
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Figure 5: Relative error in L2 norm for the uy displacement component, eL2(uy), versus
the number of control points for R

hν
= 100.

26



p=3 G1

p=4 G1

p=5 G1

3

4

5

4 5 6 10 20 30 40 50 60 100 150

1.´10 7

1.´10 6

0.00001

0.0001

0.001

0.01

0.1

1.

10.

100.

1000.

10 000.

Control Points - HR=1, R�hn=10, R�h
Ν
=100L

re
la

ti
v
e

e
rr

o
r

e
L

2
HN

a
x
L

(a) L2 error norm of Neff for the

G1-multi-patch approach, with different
polynomial degrees.

p=3 C2

p=4 C3

p=5 C4

3

4

5

4 5 6 10 20 30 40 50 60 100 150

1.´10 7

1.´10 6

0.00001

0.0001

0.001

0.01

0.1

1.

10.

100.

1000.

10 000.

Control Points - HR=1, R�hn=10, R�h
Ν
=100L

re
la

ti
v
e

e
rr

o
r

e
L

2
HN

a
x
L

(b) L2 error norm of Neff for B-spline
standard k-refinement, with different
polynomial degrees.

p=3 G1

p=4 G1

p=5 G1

2

3

4

4 5 6 10 20 30 40 50 60 100 150

1.´10 8

1.´10 7

1.´10 6

0.00001

0.0001

0.001

0.01

0.1

1.

Control Points - HR=1, R�hn=10, R�h
Ν
=100L

re
la

ti
v
e

e
rr

o
r

e
L
2
HM

n
L

(c) L2 error norm of Mn for the G1-
multi-patch approach, with different
polynomial degrees.

p=3 C2

p=4 C3

p=5 C4

2

3

4

4 5 6 10 20 30 40 50 60 100 150

1.´10 8

1.´10 7

1.´10 6

0.00001

0.0001

0.001

0.01

0.1

1.

Control Points - HR=1, R�hn=10, R�h
Ν
=100L

re
la

ti
v
e

e
rr

o
r

e
L
2
HM

n
L

(d) L2 error norm of Mn for B-spline
standard k-refinement, with different
polynomial degrees.

Figure 6: Relative errors in L2 norm for the axial force and bending moment, versus the
number of control points with R

hν
= 100.
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Figure 8: Influence of the thickness ratio hν/R on the error in L2 norm of the displacement
uy for different discretizations, for the polynomial degree p = 3.
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5.2. Horizontal 3D cantilever arch with a point force at the free end

In this example it is considered a horizontal 3D cantilever circular arch
loaded at the tip by a vertical force F = {0, 0,−1}, [kN ]. Bending and
torsion are coupled in this example. The radius of the centroid curve is R =
1 [m] the section is rectangular with hn = 0.1 and hν = 0.01 [m] respectively,
n̂(S) = ez, ν̂ = t̂×ez and E = 2.0∗108 [kN/m2]; for the geometry see figure
9. The same analyses as in the previous example are presented.

Figure 9: Geometry of the 3D cantilever arch with a point force at the free end.

Figure 10 shows the rate of convergence of the errors in L2 norm for
the torsional angle ϕ. The G1-multi-patch approach is presented in figure
10(a), the single patch approach in figure 10(b). The polynomial degrees
p = 3, 4, 5 have been investigated. The asymptotic rate of convergence for
the L2 error of the torsional angle ϕ coincides with the theoretical limit,
p + 1 and also for this case the same asymptotic rate has been obtained for
the single patch and the G1-multi-patch analyses. The accuracy obtained
with single patch approach is higher than the accuracy obtained with the
multi-patch approach.

The errors obtained for the bending and torsional moments are presented
in figures 11 and 12. The asymptotic rate of convergence equals the theo-
retical rate p− 1 and p, respectively, conformingly to the previous example.
Comparing the errors with those found with the single patch approach the
same asymptotic rate of convergence is obtained, but the accuracy of the
latter solutions is better (figures 11(b), 12(b). Only in the case p = 3 the
convergence rate for the error on the torsional moment for the single patch
interpolation reduces to the value p = 2, as appears from figure 12(b), related
to the torsional moment. This phenomenon is due to the presence of locking.

Figure 13 presents the dependency of the error for the torsional angle ϕ on
the thickness ratio in the case p = 3, comparing the results for the multi-patch
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Figure 10: Relative error in L2 norm for the torsional angle ϕ versus the number of control
points with R

hν
= 100.

(figure 13(a)) and for the single-patch B-spline interpolations (figure 13(b)).
Similarly to what was found in the previous example, flexural locking clearly
occurs in the solution, as can be observed from the dependency of the error
on the thickness ratio. However, also in this case locking is much less severe
for the multi-patch discretization than for the single patch discretization,
indicating that relaxing the continuity of the solution helps in reducing the
phenomenon.
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Figure 13: Influence of the thickness ratio hν/R on the error in L2 norm of the torsion
angle ϕ for different discretizations, for the polynomial degree p = 3.
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5.3. 3D pre-twisted cantilever arch with a point force at the free end

In this section it is considered the same arch of the previous example but
with an initial twist. The unit normal is given by n̂(S) = R(ϕ0(S), t̂(S)),
where ϕ0(S) = S, with S ∈ [0, π

2
]. In figure 14 the considered geometry is

shown .

Figure 14: 3D pre-twisted cantilever arch with shear at the free end.

The error for the vertical displacement uz is examined in figure 15. Also
in this case, that presents full bending and torsional coupling, the rate of
convergence is higher than the theoretical limit p + 1 for all the polynomial
degrees considered (p = 3, 4, 5), both for the G1 and for the single-patch
approach. The same results have been obtained for the horizontal compo-
nents of the displacement, ux and uy, not reported for brevity. The rate of
convergence of the correction angle ϕ is instead close to the theoretical rate.

The errors for the bending and torsional components of the internal mo-
ment are presented in figures 16, 17. As was found in the previous example,
the asymptotic rates of convergence are p− 1 and p respectively, no matter
what kind of interpolation is used, and also for this highly coupled exam-
ple the single-patch approach with high continuity is more accurate than
the multi-patch approach with reduced continuity, except for the torsional
moment in the case p = 3.

Analysing the influence of the thickness ratio on the solution shows that
also in this case the accuracy is influenced by the thickness ratio, suggesting
that bending-torsional locking is present. Also in this case the G1 multi-patch
interpolation behaves better than the single patch interpolation.
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Figure 16: Relative error in L2 norm for the bending moment, versus the number of control
points with R
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Figure 17: Relative error in L2 norm for the twisting moment Mt versus the number of
control points with R
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5.4. A 2D arch with a point force along the span.

In this section it is considered a 2D plane circular arch loaded by a point
force at the mid arch span. Figure 18(a) shows the geometry and the load
considered. The vertical force has an intensity of 1[kN ]. The radius of the
centroid curve is R = 1 [m] the section is rectangular with hn = 0.01 and
hν = 0.1 [m] respectively, n̂0(0) = ex, ν̂ = t̂× ez and E = 2.0 ∗ 108 [kN/m2].
The problem is modeled with quintic polynomials. When a single patch
is used, at the loaded node a C4 internal continuity is present. The error
is evaluated with respect to the exact solution calculated using the Green
function reported in Cuomo and Ventura 40 .

A convergence analysis of the solution is presented in figures 18(b) and
18(c), in which are plotted the L2-error for the stress resultants obtained with
the two approximations. Figure 18(b) refers to the error for the effective axial
force Neff , and figure 18(c) to the error for the bending momentMn. In both
cases, for this example, the error measured on the single patch solution is
larger than the error obtained with the multi patch approach. Especially for
the axial force the single patch solution shows a very slow convergence rate.
The rate of convergence of the multi patch solution, on the contrary, is close
to the theoretical rate, as was found in the other applications.

The reasons of this behaviour can be understood from the plots of the
bending moment and of the axial force, reported in figure 19, for the two
strategies considered. The comparison is performed with the same number of
control points. (In the multi patch model 8 patches are considered equivalent
to 41 control points, while in the case of the single patch model 36 (non
null) sections are considered, that correspond to the same number of control
points). Significative errors appear in the axial force distribution in the single
patch case (figure 19(d)), due to the high internal continuity that prevents
from accurately detect the jump in the value of the axial force.

The G1 solution is far more accurate, thanks to the fact that different
stretch ratios ρ were introduced as degree of freedom at the joints of the
patches.
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(a) Geometry and constraints
of the 2D circular arch.
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Figure 18: Problem’s geometry and convergence analyzes for the error in L2 norm of stress
resultants.
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Figure 19: Comparison for the stress resultants obtained with the two strategies, for the
same number of degrees of freedom.
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5.5. Grid assemblies of Kirchhoff-Love rods

As conclusive examples, some structures of engineering interest are pre-
sented. The two grids represented in figure 20 have been analyzed. The first
realizes an hypar surface by means of pre-twisted rods; the second is a grid
used for sustaining a cylindrical light roof, and in this case the rods are curved
and pre-twisted. These structures are commonly made out of laminated tim-
ber elements, that are twisted prior to gluing. The grids have been modeled
by Kirchhoff-Love rods lying along a double family of curves generated on
the surface. The normal n̂ to each rod has been taken coincident with the
normal to the surface, in this manner the initial rod geometry is affected by
bending curvatures and torsion. The use of the proposed parametrization
related to the multi-patch approach allows to simply model the complex ge-
ometry of the structure, avoiding the introduction of additional kinematic
constraints.
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Figure 20: Geometry of the grids considered in section 5.5.
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5.5.1. The hyperboloid grid

The hyperboloid is a lined surface, defined by two families of non geode-
tic lines. All the vertices have a quota z = 0 [m] except one highest ver-
tex that has a quota H = 2.5 [m]. The data used were L = 5 [m] and
p = 1 [m], see figure 20(a). The three corner points at the same quota
are fixed, while on the highest point is applied a unit vertical force F =
{0, 0,−1} [kN ], represented in figure 21. Quintic G1 multi-patch elements
are used for the interpolation. All the rods have rectangular cross section
with hn = 0.4 [m] and hν = 0.2 [m], and the material has Young’s modulus
E = 1 ∗ 107 [kN/m2] and shear modulus G = 5 ∗ 105 [kN/m2]. A magnified
sketch of the deformed configuration under the action of the considered load
is shown in Figure 21. The evaluated displacement of the loaded corner is
uF = {0.000695642, 0.000695642,−0.00142854} [m]. The bending moment
Mν for the five beams of the element group b− 6 is represented in figure 22.
The different elements are indicated with different colors. The moment is
not continuous at the joints, as expected.

Figure 21: Initial and Magnified (MF=2000) deformed configurations for the hypar-grid.
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Figure 22: Bending moment Mν for the element group b− 6 laying along the x-direction.

44



5.5.2. Cylindrical grid

The rod axes have been generated considering two families of non geodetic
helices on a semi-cylindrical surface, with radius R = 2.5 [m], with relative
distance along the X-direction p = Rπ

4
, see figure 20(b). The initial normal

vector n̂ is normal to the surface, so that the intrinsic triad of the of rods
is affected by an initial torsion. The dimensions of the rectangular cross
section are hn = 0.5 [m] and hν = 0.2 [m], the Young’s modulus is E =
1. ∗ 107, [kN/m2] and shear modulus G = 5 ∗ 105 [kN/m2], the point force
is F = {0, 0,−1}, kN . Quintic G1 Bezier multi-patch elements have been
employed. Figure 20(b) shows the initial geometry. Figures 23 shows the
deformed configuration obtained. The evaluated vertical displacement at
the loaded point is Uz = −0.0000121782 [m]. Figure 24 plots the bending
moment Mν for the helicoidal element group b− 1 indicated in figure 20(b).
Also in this case there are discontinuities at the patch joints, that are present
also in the plots of the axial force and of the torsional moment, not presented
here.

Figure 23: Initial and magnified (MF=20000) deformed configurations for the cylindrical
grid.
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6. Conclusions

In the paper has been presented a method for implicitly enforcing G1

continuity between rod elements discretized using B-splines. The G1 conti-
nuity guarantees the continuity of the bending rotations, while the torsional
rotation retains its C0 continuity introduced by construction of the interpo-
lation. The goal has been reached modifying the degrees of freedom for the
control points at the ends of the patch, rather than enforcing the continuity
requirements by means of additional constraints. It has been shown that
the new parametrization represents a generalization of the Hermite interpo-
lation. Indeed, in the case Bernstein’s polynomials of degree 3 are used for
the interpolation, the Hermite functions are recovered.

The model of Kirchhoff-Love space curved rods already presented in Greco
and Cuomo 27 has been revised, in order to show how the parametrization
introduced in the method naturally enforces the required conditions for the
rotations at the ends of the element.

Convergence analyses have been presented for different examples, char-
acterized by different types of geometrical coupling between axial, bending
and torsional deformation. It is possible to conclude that the G1 multi-patch
approach has the same asymptotic rate of convergence as the single-patch
highly continuous B-spline interpolation with k−refinement. However the
accuracy is lower in the case of the multi-patch approach implemented us-
ing Bezier’s interpolation in each patch. Adding internal knots in the patch
interpolation improves also the accuracy, that tends toward the accuracy of
the k−refinement, leaving invariant the rate of convergence.

It has also been shown that multi-patch analysis has great benefit in the
case concentrated loads (or other types of discontinuities) are present in the
structure analysed. In this case highly continuous interpolations produce
significant errors, while the multi patch analysis is able to model discontinu-
ities of the required degree. The approach presented in the paper naturally
reproduces the physical continuity conditions.

The method proposed has great advantages for modelling complex rod
structures like the grids presented in section 5.5, allowing an approach similar
to the familiar one used in standard FEM for straight elements.

A promising significant advantage of the proposed formulation has been
found examining the behaviour of the error related to the solution as function
of the slenderness of the rod. It has been found that, contrarily to what
happens for the highly continuous single patch B-spline interpolations, the
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multi-patch approach with reduced level of continuity significantly reduces
the presence of locking phenomena. This is due to the release of the high
continuity constraints present at the rod ends, that are relaxed from Cp−1 to
C1. These results are illustrated in Greco et al. 41 , and a deeper analysis of
locking, and of the related phenomena of oscillating solutions, as well as a
general strategy for its reduction, will be presented in a forthcoming paper.

As future perspectives, the authors think that the method proposed can
be usefully applied to more complex mechanical problems, like models of
shells and plates with microstructure, where the continuity of the directors
is critical (Neff 42), or in homogenized models of composite beams with large
elongation rigidity and weak bending stiffness, as the one described in Ferretti
et al. 43 .
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