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Abstract

The vehicle routing problem with stochastic demands (VRPSD) consists in designing transporta-
tion routes of minimal expected cost to satisfy a set of customers with random demands of known
probability distributions. In this research we present two strategies to deal with route duration con-
straints in the VRPSD. To solve the resulting problem, we proposed a greedy randomized adaptive
search procedure (GRASP) with a post optimization procedure. The GRASP component uses a set of
randomized route-first, cluster-second heuristics to generate starting solutions and a variable neigh-
borhood descent (VND) procedure to carry on the local search phase. The post optimizer selects the
best possible routes to assemble the final solution from the set of all routes found in the local optima
reached by the GRASP. We discuss extensive computational experiments analysing the cost of con-
sidering route duration constraints on the VRPSD. In addition, we report state-of-the-art solutions
for a established set of benchmarks for the classical VRPSD.

1 Introduction

The vehicle routing problem with stochastic demands (VRPSD) can be defined on a complete and undi-
rected graph G = (V, E), where V = {0, . . . , n} is the vertex set and E = {(v, u) : v, u ∈ V , v ̸= u}
is the edge set. Vertices v = 1, . . . , n represent the customers and vertex v = 0 represents the depot.
A weight te is associated with edge e = (v, u) = (u, v) ∈ E , and it represents the travel time between
vertices v and u. Each customer v has a random demand ξv for a given product. Customer demands are
met using an unlimited fleet of homogeneous vehicles with capacity Q located at the depot. The exact
quantity demanded by each customer is not known until the vehicle arrives at the customer location. It
is assumed, however, that each customer’s demand follows an independent and known probability distri-
bution and that all demand realizations (actual quantities) are nonnegative and less than the capacity of
the vehicle.

The VRPSD is classically formulated as a two-stage stochastic program. In the first stage, a set R of
planned routes is designed. Each route r ∈ R is a sequence of vertices r = (0, v1, . . . , vi, . . . , vnr , 0),
where vi ∈ V \ {0} and nr is the number of customers serviced by the route. During the planning
phase, each route is designed so that the total expected load does not exceed the capacity of the vehicle
(i.e.,

∑
v∈r\0E[ξv] ≤ Q ∀ r ∈ R) and every customer is visited by exactly one route. In the second

stage, each route is executed until a route failure occurs, that is, the capacity of the vehicle is exceeded.
A recourse action is then applied to recover the feasibility of the failing route. The recourse action is
defined as a return to the depot to reload the vehicle, followed by a trip back to the customer location to
complete the service. The route is then resumed from that point as originally planned. The second-stage
solution is then the actual set of routes traveled by the vehicles. The problem consists in determining
during the first stage the set of planned routes R that minimizes the total expected travel time of the
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routes in the second-stage solution E
[
T̃ (R)

]
=

∑
r∈RE

[
T̃r

]
, were T̃r is the (random) duration of

route r, and E[·] denotes the expected value.
The VRPSD with duration constraints (VRPSDDC) extends the problem to include a maximum route

duration T for each planned route r ∈ R. Different strategies can be applied to deal with duration con-
straints. For instance, [5] enforces the duration constraint on the expected duration of each planned route
(i.e., E

[
T̃r

]
≤ T ∀r ∈ R); [1] imposes a hard constraint on the second-stage duration of the route,

meaning that planned routes should verify the constraint for any possible vector of demand realizations;
and [4] penalizes violations of the duration constraint in an additional objective function, driver remu-
neration, and solve the problem as a multiobjective optimization problem with posterior articulation of
preferences. In this research we introduce two alternative strategies.

Note that since all demand realizations are less than the capacity of the vehicle, the maximum number
of failures in a route is nr−1. Consequently, the total duration of a route T̃r follows a discrete distribution
with 2nr−1 possible outcomes. Let us refer to each possible outcome for T̃r as a duration profile. Let
us also denote as Pr the set of all duration profiles for route r and as T p

r the total duration of the route
if profile p ∈ Pr is observed. Note also that if demands follow additive probability functions, as it
is classically assumed in the VRPSD literature, the probability of having a route failure while visiting
each customer of a given route can be analytically computed (see for instance [3] for details on how to
calculate such probability). Knowing these failure probabilities, allows us to compute the probability
Pr(p) of observing each duration profile p ∈ Pr. We propose a tractable algorithm to compute Pr and
Pr(p) ∀p ∈ Pr.

Our first strategy, hereafter referred to as CC, consists in enforcing the duration constraint as a chance
constraint, meaning that Pr(T̃r ≤ T ) ≥ 1−β ∀r ∈ R, where β ∈ [0, 1] is a preset threshold. Our second
strategy, henceforth DR, consists on implementing a recourse action to recover from violations of the du-
ration constraint. The considered recourse action is simply to pay the drivers overtime. Therefore, during
the first stage, we minimize E [C] =

∑
r∈R

[
E[T̃r] +

∑
p∈Pr|T p

r >T ϕ ((T p
r − T )× Pr(p))

]
, where ϕ(·)

is a function to compute the cost of the expected overtime. Note that in our approaches β and ϕ(·) may
be adapted to capture the decision maker’s aversion towards violations of the duration constraint.

2 GRASP with heuristic concentration

Algorithm 1 GRASP+HC: General structure
1: function GRASPHC(G,H,K)
2: Ω← ∅, k ← 1
3: while k ≤ K do
4: for h ∈ H do
5: tpsk ←startSolution(h,G)
6: sk ←split(G, tspk)
7: sk ←vnd(G, sk)
8: s∗ ←update(sk, s∗)
9: for r ∈ sk do

10: Ω← Ω ∪ r
11: end for
12: k ← k + 1
13: end for
14: end while
15: R← setPartitioning(G,Ω, s∗)
16: returnR
17: end function

To solve our two formulations for the VRPSDDC, namely CC and DR, we developed a greedy ran-
domized adaptive search procedure (GRASP) enhanced with heuristic concentration. Algorithm 1 de-
scribes the proposed approach. At each GRASP iteration k (lines 3–14) the algorithm selects a random-
ized TSP heuristic h from a set H and uses it to build a giant TSP tour tspk visiting all customers (line 5).
Then, the algorithm uses an adaptation of the s-split procedure for the VRPSD [3] to optimally partition
tspk into a set of feasible routes that make up a starting solution sk (line 6). Next, the algorithm uses the
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first-improvement versions of the re-locate and 2-opt neighborhoods to perform a variable neighborhood
descent (VND) from the starting solution sk (line 7). At the end of iteration k, the algorithm updates
the best solution s∗ (line 8) and adds the routes of the local optimum (i.e., sk) to a set Ω (lines 9–11).
After K iterations the GRASP stops and the heuristic concentration (HC) takes place. In this phase, our
method uses a commercial optimizer to solve a set-partitioning formulation over the set of routes Ω (line
15). To speed up the HC phase, the algorithm uses the objective function of the best solution found by
the GRASP as an initial upper bound for the set-partitioning problem. Note that the concrete implemen-
tations of split(·), vnd(·), and select(·) slightly vary depending on the formulation (i.e., CC or DR)
being solved while the implementations of startSolution(·) and setPartitioning(·) remain
unchanged.

3 Computational experiments

To the best of our knowledge, there are not publicly-available benchmarks for the VRPSDDC. To
build a set of instances, we first ran 10 times our GRASP+HC on each of the 40 Christiansen-and-
Lysgaard VRPSD benchmarks. We obtained solutions with a maximum gap of 0.03% with respect to
the best known solutions (BKSs) which are 38 optimal solutions reported in [2] and 2 heuristic solu-
tions reported in [3]. From each of the 40 VRPSD instances we built a VRPSDDC instance by setting
T = max{E[T̃r]|r ∈ R}, where R is the best solution found for the original VRPSD instance. Note that
the solutions we found for the original VRPSD instances are the same we would have found if we solve
the new VRPSDDC instances dealing with duration constraints as proposed in [5], that is, enforcing
E

[
T̃
]
≤ T ∀r ∈ R. For the sake of brevity we will henceforth refer to the latter formulation as ED.

In our first experiment, we ran GRASP+HC on CC setting β = 0.05. The results show that, as
expected, CC leads to solutions that are more robust to violation of the duration constraint than those
obtained by ED. For instance, on CC solutions, the maximum probability of failing the duration constraint
for a single route is 4.94% while the same figure is 44.63% on ED solutions. Our data also suggest that
this improvement in the robustness is obtained with only small increments on the expected cost of the
solutions (an average 3.6%). In our second experiment we analyse the behavior of ED solutions when
there are costs associated to violations of the duration constraints. We evaluated a posteriori our ED
solutions using objective function E[C] with three different ϕ(·) functions (linear, piece-wise linear, and
quadratic) and compared the results with those delivered by GRASP+HC running on DR (with the same
ϕ(·) functions). The results show that ED leads to solutions that not only have high probabilities of
violating the duration constraints (as concluded in our first experiment) but that also become expensive
when there are cost associated to the magnitude of those violations.
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