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Abstract

Given a family of subsets S = {S1, . . . , Sm} over a set of elements
X = {x1, . . . , xn} and an integer p, max k-set cover consists of finding
a set T of at most k subsets covering at least p elements. This problem,
when parameterized by k, can be easily shown to be W[2]-hard. Here, we
settle the parameterized complexity of max k-set cover under several
parameters as max{k,∆}, where ∆ = maxi{|Si|}, p and max{k, f}, where
f = maxi |{j|xi ∈ Sj}|. We also study parameterized approximability of
the problem with respect to parameters k and p. We also study parame-
terization of a satisfiability problem that is linked to max k-set cover in
a sense explained in the paper. Finally, we sketch an enhancement of the
classes of the W[·] that seems more appropriate for showing completeness
of hard W[·]-problems.

1 Introduction

In the max k-set cover problem we are given a family of subsets S =
{S1, . . . , Sm} over a set of elements X = {x1, . . . , xn} and an integer p and
ask for finding a subcollection T of at most k subsets, called solution in what
follows, that covers at least p elements.

max k-set cover is known to be NP-hard (just set p = n; then max k-set
cover becomes the seminal min set cover problem). Also, it is known to
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be approximable within a factor 1 − (1/e), but no polynomial algorithm can
approximate it within ratio 1− (1/e) + ǫ, for any ǫ > 0, unless P = NP [14].

Concerning parameterized complexity of the problem, it is immediate that
max k-set cover is W[2]-hard for parameter k, by just setting (once more)
p = n and using the fact that min set cover is W[2]-hard too (for more
about the definition of the W[·] hierarchy, as well as for everything about the
foundations of parameterized complexity, the interested reader can be referred
to [11]). But, to the best of our knowledge, no further parameterization results
exist about this problem. This is one of the main goals of this paper.

For max k-set cover, several natural parameters as p (commonly called
standard parameter), k, ∆ = maxi{|Si|} and f = maxi |{j|xi ∈ Sj}|, where the
quantity|{j|xi ∈ Sj}| is commonly called the frequency of element xi, can be
involved to any complexity study of the problem. On the other hand, instead of
some single parameter, one can use combinations of parameters. Note that in
several papers (see, for example, [3, 5]), the parameterized complexity of a lot
of problems has been studied via a multiparameterized analysis involving pairs
of parameters.

In this paper we first study multiparameterization of max k-set cover with
respect to pairs of the parameters mentioned just above (Section 2.1). For this,
we use a technique for obtaining multiparameterized results developed in [3],
called greediness-for-parameterization. Informally, if the analysis involves, for
instance, k and ∆, the basic idea behind it is the following. Perform a branching
with respect to a set chosen upon some greedy criterion. For instance, this
criterion could be to consider some set S that maximizes the number of ground
elements covered in the solution under construction. Without branching, such
a greedy criterion is not optimal. However, if at each step either the greedily
chosen set S, or some other set satisfying some other problem-specific criterion
is a good choice (i.e., it is in an optimal solution), then a branching rule on
these sets leads to a branching tree whose size is, for instance, bounded by a
function of k and ∆, and at least one leaf of which is an optimal solution. Let
us note that this technique has some common points with the so-called greedy
localization technique (see [8, 10, 16] for some applications of it). Here, one,
uses a local search approach, i.e., one starts from a greedily (or, in any case, not
optimally) computed solution and then, based on some properties of it, extends
it to an optimal one. Greedy localization technique seems, however, less general
than greediness-for-parameterization, since it is more adapted to maximization
problems.

Then, in Section 2.2, we handle parameterized approximation of max k-
set cover for parameters k and p. We say that a minimization (maximiza-
tion, respectively) problem Π, together with a parameter π, is parameterized
r-approximable if there exists an FPT-time algorithm which computes a solu-
tion of size at most (at least, respectively) rπ whenever the input instance has a
solution of size at most (at least, respectively) π; otherwise, it gives an arbitrary
results (i.e., indifferently 6 rπ, or > rπ). This line of research was initiated by
three independent works [12, 6, 9]. For an excellent overview, see [17]. For
parameter k we show a conditional result that is considered very likely to be

2



Parameter ∆+ f k k + f (k +∆) & p
Complexity /∈ XP W[2]-hard, in W[P] W[1]-hard FPT

Table 1: Our main parameterized complexity results

true, informally, a parameterized (with respect to k) approximation of max

k-set cover within ratio greater than 1 − (1/e) + ǫ, for some ǫ > 0, would
lead to a parameterized approximation of min set cover (with respect to the
standard parameter) within ratio o(log n). For parameter p, we show that max

k-set cover can be solved by an approximation schema in parameterized time
smaller than that needed for the exact solution of the problem.

A careful reader of the parameterized complexity literature will surely re-
mark that although there exist a lot of hardness results for several classes of
the W[·] hierarchy there clearly exist much less completeness results. For in-
stance, although as mentioned above, max k-set cover is W[2]-hard, the only
inclusion that we are able to show for it, is in W[P] (see [7, 11] for its defini-
tion). In fact (see also [7]) there exists about a dozen of problems that behave
in the same way, i.e., that are W[2]-hard, in W[P]. We give in Section 3 one
more such problem, that can be seen as a kind of canonical problem, called max

sat-k. Here, given a CNF on n variables and m clauses, one asks for setting
to true at most k variables satisfying at least p clauses. Then, we further settle
parameterized complexity of max sat-k.

Table 1 summarizes the main complexity results of the paper for both max

k-set cover and max sat-k.
The above observation about the dichotomy between hardness and complete-

ness in the W[·] world, naturally gives rise to the following questions:

• “can one extend the definition of the classes of the W[·] hierarchy, in such a
way that in the so obtained hierarchy (let us denote it by W′[·]), problems
that are, say, W[1]-, or W[2]-hard (this is the case of the most of natu-
ral problems that are not FPT) correspondingly belong to classes W′[1]
and W′[2]?”;

• “can one, using standard FPT-reducibility, or extending it, in order to
obtain a more appropriate one, prove the existence of complete problems
for this new hierarchy?”.

In Section 4, we try to give a preliminary answer to the first of the questions
above. We sketch a hierarchy of circuits, called counting weft hierarchy the
classes of which are larger than the corresponding in the weft hierarchy and
show that several problems that only belong to W[P], belong to the first two
classes of the counting weft hierarchy. Anyway, existence of complete problems
for the classes of this new hierarchy remains open.
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2 Parameterized complexity of max k-set cover

2.1 Exact parameterization

Let us first point out that max k-set cover, parameterized by max{k, f}, is
W[1]-hard. Indeed, for f = 2, i.e., when all the ground elements belong to at
most 2 sets of S, the instance of max k-set cover can be seen as a graph
whose vertices correspond to the elements of S and edges to the elements of the
ground set X. Then, max k-set cover becomes another well-known problem,
the max k-vertex cover problem where one wishes to cover at least p edges
by k vertices. In this sense, max k-vertex cover is a restricted case of max

k-set cover. It is proved in [4] that this problem is W[1]-hard with respect
to k.

Note that in the reduction above the maximum set-cardinality ∆ in an in-
stance of max k-set cover with f = 2, coincides with the maximum degree of
the derived graph. Hence, with the same argument, it can be shown that max

k-set cover XP-hard when parameterized bymax{∆, f}, since max k-vertex

cover is NP-hard even in graphs with bounded degree.
We now prove the main result of this section, namely that max k-set cover

is FPT with respect to max{k,∆}.

Proposition 1. max k-set cover parameterized by max{k,∆} is FPT.

Proof. We present a branching algorithm (Algorithm ALGORITHM1) whose par-
ticularity is to branch on two types of objects, a set T of subsets of S added to
the solution and a subset C of the elements of X which we impose that they are
covered. We call elements of C candidate elements. To understand the bound
over the number of candidate elements used in ALGORITHM1, note that if there
exists a solution T covering more than p elements, then there exists a solution
T ′ ⊆ T that covers more than p elements and less than p+∆− 1 ones. Indeed,
when no subset can be removed from a solution T0 (without going under p ele-
ments covered) then the number of covered elements can not exceed p+∆− 1
since removing a subset can uncover at most ∆ elements. For a set of subsets R,
we denote by ∪R the union of the elements of R, and by S ↓ R the set of subsets
{Si \ ∪R : Si ∈ S}. The overall specification of Algorithm ALGORITHM1 is the
following:

• set T = ∅ and C = ∅;

• if |T | < k and |C| < p+∆− 1 then:

– pick a set Si ∈ S \ T that covers the largest number of elements in
X \ C;

– branch on ALGORITHM1(T ∪ {Si}, C ∪ Si) and, for each element x ∈
Si \ C branch on ALGORITHM1(T,C ∪ {x});

• else:

– if |T | = k, then store T ;
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– else (|C| = p+∆− 1) store a solution covering C (if possible);

• output the best among the solutions stored.

Let us first establish the time complexity of ALGORITHM1. The number of chil-
dren of a node of the branching tree is at most ∆ + 1. At each step, we add
either a subset or an element, so the depth of the branching tree is, at most,
k + p +∆ − 1. Note that p 6 k∆ on non-trivial max k-set cover-instances.
So, the branching tree has size O((∆+1)(k+1)(∆+1)). On an internal node of the
branching tree, ALGORITHM1 only does polynomial computations. In a leaf of this
tree, we find in timeO∗(2p+∆−1) if at most k−|T | subsets of (S ↓ T )[C] can cover
at least p−|∪T | ground elements, where S[C] denotes the subsets in S entirely
contained in C. So, ALGORITHM1 works in time O∗(2p+∆−1(∆ + 1)(k+1)(∆+1)),
i.e., it is fixed parameter with respect to max{k,∆}.

Let us now show that ALGORITHM1 is sound. Let T0 be a solution covering
between p and p+∆− 1 elements. Recall that each node of the branching tree
has one child adding a set to T and up to ∆ children each adding one candidate
element to C. Starting from the root, move to the one child adding a set in T
while this set is indeed in the solution T0. We reach a node in the branching
tree, where we have a set of common choices Tcc between ALGORITHM1 and the
solution T0, and we want to add a set Si which is not in T0. We can suppose
that T0 covers at least one element x in Si, otherwise we substitute Si to any
subset of T0 \Tcc and, by assumption, we cover at least as many elements as T0.
So, we move to one child that takes x as a candidate element. We continue to
track T0 in the branching tree as just described until we reach a situation where
either k = |T | and T is at least as good as T0, or ∪T0 ⊆ C and T ⊆ T0. To
conclude just recall that ALGORITHM1 computes a solution Tl containing at most
k− |T | subsets of (S ↓ T )[C]. So, T ∪ Tl is as good as T0, therefore, an optimal
solution.

The result of Proposition 1, has an interesting corollary about parameter-
ization of max k-set cover by the standard parameter p. It is expressed in
the following proposition.

Proposition 2. max k-set cover parameterized by p is FPT.

Proof. Let us first notice that, on non-trivial instances of max k-set cover,
p > ∆. Otherwise, it is a YES-instance taking the subset of size ∆ in the
solution and arbitrarily completing it. Furthermore, n > p > k, since if there
exists an element which is not covered yet, adding any set containing such an
element, adds at least 1 to the solution value. To summarize, when p 6 ∆ or
p 6 k we can correctly answer in polynomial time and when p > ∆ and p > k,
the previous FPT algorithm works in O∗(4p ·pp

2

), i.e., in time FPT with respect
to p.

Another problem, very similar to max k-set cover, is the max k-domina-

ting set problem. It consists, given some graph, of determining a set V ′ of k
vertices that dominate at least p vertices from V \ V ′. Since min dominating

set is known to be W[2]-hard, one can immediately derive that so is max k-
dominating set with respect to k.
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Revisit the well-known approximability-preserving reduction from min dom-

inating set to min set cover [1]. For memory, this reduction works as follows:
for each vertex v, build a set Sv = N [v], where N [v] is the closed neighbourhood
of v. Then, covering p elements in the so-built instance of max k-set cover

is equivalent to dominating p vertices in the instance of max k-dominating

set. Finally remark that this reduction preserves values of k, p and ∆ (indeed,
it transforms ∆ to ∆ + 1). It is easy to see that this reduction is simultane-
ously an FPT reduction too and that identically works when dealing with max

k-dominating set and max k-set cover. Then, one can conclude that max

k-dominating set parameterized either by max{k,∆}, or by p is FPT, where
for the max k-dominating set instance, ∆ is the maximum graph-degree.
Note that these results about max k-dominating set have already been ob-
tained by using the random separation technique [5]. But use of our technique
(greediness-for-parameterization) is less costly in time.

As we have seen above max k-set cover is hard when parameterized by k,
max{k, f} andmax{∆, f}. But, in which class of the W[·] hierarchy belongs this
problem? We show in the next proposition that it belongs to W [P]. Inclusion
of it in some “lower” class remains open.

Proposition 3. max k-set cover parameterized by k belongs to W[P].

Proof. The proof is in exactly the same spirit with the proofs in [7]. We re-
duce max k-set cover to bounded non-deterministic Turing machine

computation which is a known W[P]-hard problem [11]. Let I = (S =
{S1, . . . , Sm}, p) be an instance of max k-set cover. Build a 3-tapes Turing
Machine M with tapes T1, T2 and T3. Tape T1 is dedicated to non-deterministic
guess. Write there the k sets Sa1

, . . . , Sak
. Then, the head of T1 runs through all

the elements and when a new element is found it is written down on the second
tape. The third tape counts the number of already covered elements. If this
number reaches p, then M accepts. Thus, there exist k non-deterministic steps,
and a polynomial (in |I|) number of deterministic steps (precisely, O(|I|2)).

By similar argument one can derive that max k-dominating set, parame-
terized by k is also in W[P].

2.2 Approximation issues

Let us now say some words about parameterized approximation of max k-
set cover. Recall that as mentioned in the beginning of Section 1, max k-set
cover is inapproximable in polynomial time within ratio 1−(1/e)+ǫ, for any ǫ >
0, unless NP = NP [14]. We mainly prove in the sequel that it is quite unlikely
that we are ever able to get such a ratio even in time parameterized by k. More
precisely, we prove that if such a situation was possible, then we should be able
to get, in parameterized time, an approximation ratio of o(log n) for min set

cover, fact considered as highly improbable. We also prove that approximating
max k-set cover within ratios better than 1 − (c/n) for any fixed constant
c > 1, in time parameterized by k, is W[2]-hard. Note, finally, that min set

6



cover is inapproximable in polynomial time within ratio (1 − ε) lnn, for any
ε > 0, unless NP ⊂ DTIME(nO(log logn)) [14].

Proposition 4. The following holds for max k-set cover:

1. Unless min set cover is approximable within ratio O(log(n/ log n)), in
time parameterized by the value of the optimum, max k-set cover pa-
rameterized by k is inapproximable within ratio (1 − (1/e) + ǫ), for any
ǫ > 0, ;

2. it is W[2]-hard with respect to k to approximate max k-set cover within
ratio 1− (c/n), for any constant c > 1.

Proof. The basic idea of the result is similar to the basic idea in [14] (Proposi-
tion 5.2). Its fundamental ingredient is the following. Consider some algorithm
kSCALGORITHM that solves max k-set cover . Then, it can iteratively be
used to solve min set cover as follows. Iteratively run kSCALGORITHM for
k = 1, . . .m (where m is the size of the set system in the min set cover-
instance). One of these k’s will correspond to the value of the optimal solution
for min set cover. Let us reason with respect to this value of k, denoted by k0.
Furthermore, assume Algorithm kSCALGORITHM achieves approximation ratio r
for max k-set cover. Call it with value k0, (note that now p = n, the size of
the ground set), remove the ground elements covered, store the k0 elements used
and repeatedly relaunch it with value k0, until all ground elements are removed.
Since it is assumed achieving approximation ratio r after its ℓ-th execution at
most (1− r)ℓn ground elements remain uncovered. Finally, suppose that after t
executions, all ground elements are removed (covered). Then, the tk0 subsets
stored form a t-approximate solution for the min set cover-instance, where t
satisfies (after some very simple algebra):

(1− r)tn 6 1 =⇒ t =

⌈

lnn

r

⌉

6
β

α
lnn (1)

for some rational β/α > 1. Taking r = 1− (1/e)− ǫ, (1) leads to t 6 lnn/(1−
ln(1− ǫe)), contradicting so the inapproximability bound of [14].

Moreover, observe that the complexity of the algorithm derived for min set

cover is exactly the complexity of kSCALGORITHM, since any other operation as
well as the number of its executions are polynomial in the size of the min set

cover-instance.
Assume now that kSCALGORITHM is FPT in k and that achieves approxima-

tion ratio 1− (1/e)− ǫ for some small ǫ.
Then, in order to prove item 1, fix some constant η > 1 and follow the

procedure described above until there are at most lnη n uncovered elements, stop
it and solve the remaining instance by, say, the best known exact algorithm that
works within O∗(2n) in instances with ground set-size n [2]. Since the surviving
ground set has size logη n, it is polynomial to optimally solve it. After some
easy algebra, one gets:

t 6
1

1 + ǫe
ln

( n

c lnn

)
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that concludes the proof of item 1.
For item 2, just run kSCALGORITHM only once for any k. For k0, such a run

will leave uncovered at most n − n(1 − (c/n)) = c elements. Any (non-trivial)
cover for them uses at most c sets to cover them. In this case, the procedure
above achieves an additive approximation ratio c + 1 (recall that c is fixed).
Then, in order to complete the proof, revisit the well-known reduction from
min dominating set to min set cover seen above and use the fact that, for
the former problem, achievement of any constant additive approximation ratio
is W[2]-hard [13].

For the rest of the section, we will relax the optimality requirement for the
max k-set cover-solution and will show that we can devise an approxima-
tion schema in time parameterized by p, whose (parameterized) complexity is
much lower (although depending on the accuracy) than the exact parameterized
complexity given in Proposition 2.

Let us consider the following algorithm, called PSCSCHEMA in what follows:

1. fix some ε > 0, take ǫ 6 1− (ε/0.368) and set k′ = ǫk;

2. run ALGORITHM1(∆, ǫk′), store the solution (denoted by T1) and remove
from the ground set X the set X1 of elements covered by T1;

3. set S ′ = S \ T1, X
′ = X \X1 and k = (1− ǫ)k;

4. run the polynomial approximation max k-set cover-algorithm of [14] on
the max k-set cover-instance (S ′, X ′) and store the solution T2 com-
puted;

5. output T̂ = T1 ∪ T2.

It is easy to see that solutionT̂ computed by PSCSCHEMA has cardinality k, i.e.,
it is feasible for max k-set cover. We show in the following proposition that
it is also a ε-approximation for this problem, for any ε > 0.

Proposition 5. max k-set cover can be approximated within ratio 1− ε, for
any ε > 0, in O∗(2(2−(ε/0.368))ppεp

2/0.368)-time.

Proof. Fix an optimal solution T ∗ and denote by X∗
1 the number of elements

of X covered by the “best” ǫk sets of T ∗ and by X∗ the subset of X covered
by T ∗. Observe first that, by an easy average-argument it holds that:

|X1| > |X
∗
1 | > ǫ |X∗| (2)

Fix an optimal max (1− ǫ)k-set cover-solution of (S ′, X ′) and denote by X̄∗

the set of elements of X covered by it and by X2 the subset of X covered by T2.
Obviously:

|X2| > 0.632
∣

∣X̄∗
∣

∣ (3)

where 0.632 is the third digit truncation of the quantity (e − 1)/e that is the
ratio achieved by the max k-set cover-algorithm in [14].
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Set X̃ = X∗ ∩X1 and remark that, the elements of X∗ \ X̃ are still present
in the instance (S ′, X ′) where the approximation algorithm of [14] is called, as
well as the subsets of S covering them. Hence:

∣

∣X̄∗
∣

∣ >

∣

∣

∣
X∗ \ X̃

∣

∣

∣
> |X∗ \X∗

1 | = |X
∗| − |X∗

1 | (4)

Putting together (2), (3) and (4), we get the following for the approximation
ratio of Algorithm PSCSCHEMA:

|X1|+ |X2|

|X∗|
>
|X∗

1 |+ 0.632 (|X∗| − |X∗
1 |)

|X∗|
> 0.632 + 0.368ǫ

This ratio is at least 1− ε, for ǫ 6 1− (ε/0.368).
For the overall running time, it suffices to observe that, since the algorithm

of [14] runs in polynomial time, the running time of PSCSCHEMA is dominated
by that of ALGORITHM1 called in step 2. Then, setting ǫp instead of p in the
exponent of 2 (in the complexity expression for ALGORITHM1) and ǫk instead of k
in the exponent of ∆ (in the same expression), derives the complexity claimed
and completes the proof of the proposition.

3 Satisfiability problems

As mentioned in Section 1, the status of max k-set cover to be W[2]-hard and
in W[P] is shared by some other problems. We introduce handle another quite
natural satisfiability problem, called max sat-k, and prove that it behaves like
max k-set cover, from a parameterized point of view.
Given a CNF on n variables and m clauses, max sat-k consists of setting

at most k variables to true, satisfying at least p clauses

Proposition 6. max sat-k is W[2]-hard for parameter k and in W[P].

Proof. In order to prove hardness, we give an FPT reduction from max k-set
cover to max sat-k that works as follows. Let (S = {S1, . . . , Sm}, X) be an
instance of max k-set cover. The instance of max sat-k is built in such a
way that set Si is encoded by a variable Xi, and each element xj ∈ X is encoded
by a clause Xi1 ∨ . . . ∨ Xih where Si1 , . . ., and Sih are the sets containing xj .
Then, one can see immediately that inclusion of max sat-k in a lower W-class,
would imply the same for max k-set cover.
Proof of membership of max sat-k in W[P] can be done by an easy re-

duction of this problem to bounded non-deterministic Turing machine

computation. One can guess within k non deterministic steps the variables
to put to true and then one can check in polynomial time whether, or not, at
least p clauses are satisfied.
In what follows, C denotes the set of clauses of an instance and C ′ any subset

of this set. We denote by occ+(Xi, C
′) the number of positive occurrences of

the variable Xi in the instance, and by occ
−(Xi, C

′) the number of its negative
occurrences. We set f(Xi) = occ+(Xi, C) + occ−(Xi, C) ; so, the frequency of
the formula is f = maxi{occ

+(Xi, C) + occ−(Xi, C)}.
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Proposition 7. max sat-k parameterized by p is FPT.

Proof. Note first that instances such that p < f
2 are always YES-instances,

since one can set one variable Xi with frequency f to true if occ+(Xi, C) >

occ−(Xi, C), and to false otherwise. and complete the solution arbitrarily. Note
also that instances such that p < k are all YES-instances, too. Indeed, itera-
tively one can set to true k variables such that at each step one satisfies at least
one more clause. If, at some point this is no longer possible, then setting all
the remaining variables to false will satisfy all the clauses. We may now assume
that p >

f
2 and p > k, so our parameter might as well be p+ f + k.

Once again, we construct a branching algorithm which operates accordingly
to a greedy criterion. A solution is given as a set S, of size up to k, containing all
the variables set to true. Additionally, we maintain a list Cs of clauses that we
satisfy or commit to satisfy. Set di(C

′) = occ+(Xi, C
′) and let C+(Xi, C

′) be the
set of clauses in C ′ whereXi appears positively and C−(Xi, C

′) the set of clauses
where Xi appears negatively. Set, finally, C(Xi, C

′) = C+(Xi, C
′)∪C−(Xi, C

′)
and consider the following algorithm (ALGORITHM2):

• set S = ∅ and Cs = ∅;

• if |S| < k and |Cs| < p then:

– set Cu = C \ Cs and let Xi be a variable maximizing di(Cu);

– branch on ALGORITHM2(S ∪ {Xi}, Cs ∪ C+(Xi, Cu)), and for each
clause c ∈ C(Xi, Cu), branch on ALGORITHM2(S,Cs ∪ {c});

• else:

– if |S| = k, then store S as solution;

– if |Cs| > p, then check if the solution can be extended to satisfy each
clause of Cs;

• output the best among the solutions stored in the two previous steps.

The branching tree has depth at most k+p and width at most f+1, so the run-
ning time of ALGORITHM2 is O∗(2pfk+p) that is FPT with respect to p, since com-
pleting a solution to satisfy all the clauses of Cs can be done in time O∗(2|Cs|),
by simply solving a min hitting set, considering Cs as the ground set of the
min hitting set-instance.

Let now S0 be an optimal solution. From the root of the branching tree,
follow a maximal branch where the variables set to true are all in S0, and the
clauses in Cs are satisfied by S0. Let Sc be the set of variables set to true along
this branch (by definition, Sc ⊆ S0), and set Sn = S0 \ Sc. By maximality
of the branch, at its extremity, ALGORITHM2 deviates from S0, i.e., no child of
the branching tree is conform to S0. Let Xi be the variable chosen at this
point by ALGORITHM2 and consider Cd = C(Xi, Cu) that is the set of clauses
not yet in Cs and where Xi appears positively or negatively. We know that no
clause in Cd is satisfied by S0. Let Xj be any variable in Sn. We claim that
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Sh = (S0 \{Xj})∪{Xi} is also optimal and, by a straightforward induction, one
solution at the leaves of the branching tree is as good as S0. Indeed, setting Xj

to false can lose at most occ+(Xj , Cu) − occ−(Xj , Cu) 6 dj(Cu) clauses and
setting Xi to true gains di(Cu) clauses and, by construction, di(Cu) > dj(Cu).

We now show that max sat-k, parameterized by max{k, f} is W[1]-hard.
For this, we prove the following intermediate result.

Proposition 8. 3-sat-k parameterized by max{k, f} is W[1]-hard.

Proof. Before giving our main reduction, we will first prove that max 3-sat-k
remains W[1]-hard when all variables occur the same number of times. To do so,
let f be the frequency in the input formula. Then, we add some dummy clauses
in order that all variables appear f + 2 times. For each variable x, we add a
sufficient number of clauses (x ∨ ¬x) and, if f − f(x) = 1 mod 2, one clause
(x∨¬x∨x) such that the frequency of x equals f+2. These clauses are trivially
true, for any assignment of x and thus does not change the number of variables
set to true in a solution. Since f is bounded by the number of clauses m, the
size of the new formula is polynomially bounded with respect the size of the old
formula.
Starting from an instance of max 3-sat-k where all variables occur the same

number f of times, we rewrite it in such a way that each variable appears at most
three times, as in the classical polynomial reduction (see for example [19]). More
precisely, for each variable x appearing f times in the formula, we introduce f
new variables x1, x2, . . . , xf and replace the first occurrence of x by x1, the
second by x2, and so on. Then, to enforce that all these f variables get the same
value, we add in the formula the clauses (¬x1∨x2)∧(¬x2∨x3)∧ . . .∧(¬xf ∨x1).
The number of variables and clauses in this new formula is polynomially bounded
by the number of variables and clauses in the original formula. It suffices now
to prove that there exists a solution with kf variables set to true in this formula
iff there is a solution with k variables set to true in the original formula. If
the original formula is true with k variables set to true, then, for each true
variable x, we put to true all variables x1, . . . , xf , implying that kf variables
are set to true. It is clear that the so-constructed formula is true too (the added
clauses are true by xi, if x is true, or by ¬xi if x was false, thus with 0 variables
set to true). Conversely, we see that considering our added clauses, for a given
variable x, all variables xi, 1 ≤ i ≤ f , must have the same value. The fact that
max 3-sat-k is W[1]-hard [18] concludes the proof.
Then, the following result immediately holds.

Corollary 1. max 3-sat-k parameterized by max{k, f} is W[1]-hard.

4 Some preliminary thoughts about an enhanced

weft hierarchy: the counting weft hierarchy

A natural way to generalize any problem Π where one has to find a solution
which universally satisfies a property is to define partial Π, where the solu-
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tion only satisfies the property a “sufficient number of times”. In this sense, as
mentioned max k-set cover where one has to cover at least p elements, gener-
alizes min set cover, where all the elements must be covered. Similarly max

k-vertex cover where one has to find a minimum subset of vertices which
covers at least p edges, generalizes min vertex cover, where one has to cover
all the edges; yet, max sat generalizes sat.

These partial problems come along with two parameters: the size of the
solution, frequently denoted by k and the “sufficient number of times” quantified
by p. These problems parameterized by k are shown to be either W[1]- or W[2]-
hard, but we can not do better than showing their membership in W[P]. This is
a quite important asymmetry between classical complexity theory as we know it
from the literature (see, for example, [15, 19, 20]) and parameterized complexity
theory.

Showing the completeness of a W[1]- or a W[2]-hard problem, would imply
that we can count up to p with a circuit of constant height and weft 1 or 2. The
“trick” of the input-vector weight permits to deal with cardinality constraint
problems, but it is not suitable to problems, such as max k-set cover, where
the value and the cardinality of the solution are constrained. We sketch, in what
follows, a hierarchy of circuits named counting weft hierarchy whose classes are
larger than the corresponding in the weft hierarchy. Basically, we generalize the
and gate to a counting gate.

A counting gate Cj with fan-in i and constant integer j ∈ {0, . . . , i} has fan-
out 1 and outputs 1 iff exactly j of its i inputs are 1’s. Note that Ci corresponds
to an and gate. Also, the or gate can be emulated by a negation of a gate C0.
The negation is also a counting gate as a unitary C0. A counting circuit is a
circuit with some input gates and counting gates and exactly one output gate.
Correspndingly, CW[k] is the class of problems Π parameterized by p such that
there is a constant h and an FPT algorithm (in p) A, such that A builds a
counting circuit C of constant height h and weft k, and I ∈ Π iff C(I) = 1. It
can be immediately seen that the cweft hierarchy has exactly the same definition
as the weft hierarchy up to replacing a circuit by a counting circuit.

Based upon the sketchy definition just above, the following can be proved
by just taking the usual circuits for min set cover and sat and replacing the
corresponding large and gates by gates Cp.

Proposition 9. The following inclusions hold for the counting weft hierarchy:
max k-set cover and max sat-k are in CW[2].

5 Conclusion

He have studied the parameterized complexity of max k-set cover and max

sat-k with respect to pairs of natural instance parameters as k, ∆ (the maxi-
mum set-cardinality) and f , the maximum frequency of the ground elements, for
the former, or the number of variables set to true in a feasible assignment and
the maximum number of occurrences of the variables in the input-formula, for
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the latter. For this we have used the greediness-for-parameterization technique
that seem to be very appropriate for this kind of multi-parameter studies. An
important (and pleasant) corollary of the multiparameterization studied here
for max k-set cover is that it has shown that this problem is FPT for its
standard parameterization. We have also sketched an enhancement of the clas-
sical weft hierarchy that seems to be able to help us proving completeness for
known W[·]-hard problems. Existence of such complete problems for the new
hierarchy is, to our opinion, the major open problem drawn in this paper.
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