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Abstract In this article, we focus on the design of code division multiple access fil-

ters (used in data transmission) composed of a particular optical fiber called sampled

fiber Bragg grating (SFBG). More precisely, we consider an inverse problem that con-

sists in determining the effective refractive index profile of an SFBG that produces

a given reflected spectrum. In order to solve this problem, we use an original multi-

layers semi-deterministic global optimization method based on the search of suitable

initial conditions for a given optimization algorithm. The results obtained with our

optimization algorithms are compared, in term of complexity and final design, with

those given by an hybrid genetic algorithm (the method generally considered in the

literature for designing SFBGs).

Keywords Global optimization · Genetic algorithms · Descent algorithms · Optical

code division multiple access · Sampled fiber Bragg grating design

1 Introduction

The use of optical fibers offering huge bandwidth in the telecommunication sector has

known important developments in the last decade (Skaar and Risvik 1998; Yang et al.

1999) with applications such as cable television or cell phones (Takeshi and Makoto
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Fig. 1 Multiple access technique principle: Users A, B and C send at the same time a message in a

communication device. The multiple access technique allows to properly deliver each message

2007; Yang 2008). The advantages of optical fibers are numerous as, for instance,

they offer: large communication capacity, low transmission loss, low cost and easy

hybridization with other optical devices (Yin and Richardson 2009). However, to be

fully efficient, the fibers should allow multiple access. This means allowing various

persons (called users) to send and receive messages in the fiber at the same time (see

Fig. 1).

There exist three main schemes of multiple access: Time Division Multiple Access

(TDMA) (Kyeo-Eun et al. 2005) which allows to consider a great number of users

but requires fast synchronization, Wavelength-Division Multiplexing (WDM) (Bock

and Prat 2005) which sometimes requires precise adjustments, and Code Division

Multiple Access (CDMA) (Viterbi 1995) which primarily allows a great flexibility

in multiple accesses. This last technique, which consists in allocating individualized

codes to represent the messages of each user, exhibits various advantages such as

high fidelity and high resistance to signal perturbations, secured communications and

low power consumption (Jung et al. 1993).

Focusing on CDMA, an efficient and low-cost way to implement this approach is

to consider an optical spectral representation of the user codes (Kavehrad and Za-

ccarin 1995; Lam and Yablonovitch 1995). This implementation is called optical

CDMA (OCDMA). Those codes are then generated by optical guides, and in par-

ticular by sampled fiber Bragg gratings (SFBG) (Fang et al. 2003; Yin and Richard-

son 2009). SFBGs are optical fibers based on a periodic perturbation of their refrac-

tive effective index, obtained by exposing it to UV radiations (Chuang et al. 2004;

Erdogan 1997; Malo et al. 1995). The objective of SFBGs is to reflect predetermined

wavelengths and to let other wavelengths pass (Chow et al. 1996; Wei et al. 2000).

In a OCDMA device we are interested in designing SFBGs that reflect part of the

wavelengths corresponding to the code representing a particular user. This objective

can be mathematically reformulated as an inverse problem that consists in determin-

ing the effective refractive index profile of an SFBG knowing a priori its reflected

spectrum. To solve this inverse problem we consider global optimization algorithms
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(Skaar and Risvik 1998). Currently, one of the most used optimization methods in

this domain are genetic algorithms (GA) (Etezad et al. 2011; Cheng et al. 2008;

Tremblay et al. 2005).

In this paper, we focus on the design of a CDMA filter, composed of an SFBG,

used to reflect the whole spectral CDMA code of a user. As previously said, we

could solve this problem by considering a GA. However, we would like to see if the

target can be achieved with a lower computational effort by using an original multi-

layers semi-deterministic global optimization method (Ivorra 2006; Ivorra et al. 2007,

2009). This approach is based on the reformulation of the optimization problem as

a sub-optimization problem that consists in finding a suitable initial condition for a

given optimization algorithm called core optimization algorithm (COA). This new

problem is then solved using a multi-layers algorithm based on line search methods.

Here, we use two particular implementations of our approach by considering the

steepest descent (Luenberger 1984) and genetic algorithms (GA) (Goldberg 1989;

Forrest 1993) as COAs. In order to check the efficiency of our algorithms on the

considered SFBG design problem, we compare their results with those given by a

traditional GA.

The paper is organized as follows. Section 2 briefly describes the CDMA filter

based on SFBG, its mathematical modeling and the associated design problem. Sec-

tion 3 presents the optimization methods used to solve previous problem. Finally, in

Sect. 4, we consider a particular case and compare the results obtained by the differ-

ent optimization algorithms in term of precision and computational time.

2 CDMA filter design problem

In this section, we first introduce some basic principles of CDMA and the SFBG to

be designed. Then, we recall some previous works on SFBG optimization. Next, we

present the mathematical model that allows to compute the reflected spectrum of an

SFBG and we reformulate the design problem as an inverse problem.

2.1 CDMA principle and implementation

In the basic technique of CDMA, the bits ‘1’ or ‘0’ of a binary message, send by a

user, are replaced at the level of the transmitter by two codes attributed to this user

(Viterbi 1995). For instance, we can consider CDMA binary codes of length Ncode ∈

N. The code for the bit ‘1’ of a particular user ‘A’ is denoted by cA
1 ∈ {0,1}Ncode and

its complement, denoted by cA
0 = −(cA

1 − 1), is used for ‘0’ (e.g., if Ncode = 8, two

possible codes are cA
1 = ‘10110011’ and cA

0 = ‘01001100’). During this work, we

only focus on this binary CDMA coding method used, for example, when considering

the so-called Gold codes (El-khamy and Balamesh 1987).

In order to implement this approach, Kavehrad et al. (Kavehrad and Zaccarin

1995) and later Lam (Lam and Yablonovitch 1995) suggested to use spectra com-

posed of a set of wavelengths Λ = (λi)
Ncode

i=1 to transmit CDMA binary codes of

length Ncode trough optical devices (such as optical fibers). In that case, we repre-

sent a particular CDMA code c by a spectrum Λc whose reflectivity at wavelength



B. Ivorra et al.

Fig. 2 Example of spectra representing the CDMA binary codes ‘10101’ (left) and ‘11010’ (right), when

Ncode = 5

λi is equal to c(i), for i = 1, . . . ,Ncode, and zero elsewhere. For instance, assuming

Ncode = 5, the spectrum showed in Fig. 2(left) represents the code ‘10101’ whereas

the one depicted by Fig. 2(right) corresponds to the code ‘11010’.

One way to generate such a spectrum is to consider CDMA filters composed of

SFBGs (Fang et al. 2003; Yin and Richardson 2009). As said in Sect. 1, SFBGs are

optical fibers with a periodic perturbed effective refractive index that reflect predeter-

mined wavelengths and let other wavelengths pass. When applied to CDMA filters,

their objective (obtained by combining the effect of various SFBGs) is to reflect the

spectrum Λc corresponding to the CDMA code c of a particular user.

In this work, we are interested in designing, by considering an optimization ap-

proach, an SFBG that reflects the whole spectrum associated to a CDMA code. The

advantages of such an approach in comparison to other ones (for instance, combining

various SFBGs) is the reduction of time and cost of CDMA filter fabrication (Pille

2005).

2.2 Previous works on SFBG optimization

Nowadays, the range of industrial applications of SFBGs is wide (Hill and Meltz

1997). For instance, they can be used as: dispersion compensation (Williams et al.

1994), sensors (Kersey 1996), network monitoring (Chan et al. 1997) or wavelength

selective devices (as in this article).

Considering this last domain, the SFBG can be employed as a pass-band filter

(Tremblay et al. 2005) or a multichannel filter (Chow et al. 1996; Wei et al. 2000).

There is therefore an important demand for optimization methods generating SFBGs

giving a desired reflectivity spectrum (Rothenberg et al. 2002). Furthermore, those

method need to perform global optimization as it is observed that the considered

functionals usually have multiple minima (Skaar and Risvik 1998).

In the literature, various optimization algorithms have been applied to solve such

problems, considering some SFBG characteristics (explained in Sect. 2.3) as the op-
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timization parameters. For example, Navruz et al. use a Simulated Annealing ap-

proach to optimize the phase profile of a Multichannel SFBG (Navruz and Guler

2007), whereas Ngo et al. consider a Tabu Search algorithm to design the index mod-

ulation function of a pass-band SFBG (Ngo et al. 2007). However, one of the most

used method to solve SFBG design problems are GAs as in the works presented in

Cheng et al. (2008), Etezad et al. (2011), Skaar and Risvik (1998) and Tremblay et

al. (2005), where various SFBG parameters (such as the fiber length or the refractive

index modulation length) are optimized to obtain pass-band filters.

Regarding this previous literature, the optimization algorithms are only pre-

sented as a tool for SFBG design without deeper details (e.g., the algorithm pa-

rameters, the number of cost function evaluations or the numerical precision of

the solution are not given). Moreover, in each article the optimization parame-

ters and the cost function are different. Thus, comparing the results and efficiency

of an optimization approach with the ones given in those articles is difficult. For

this reason, when we started to study, in collaboration with the company “Alca-

tel” (http://www.alcatel-lucent.com) and the “Département Photoniques et Ondes”

of the Université Montpellier 2 (http://www.ies.univ-montp2.fr), SBFG design prob-

lems by using our own optimization method (presented in Sect. 3), we decided

to compare the obtained results with those provided by our own GA (as it is the

most used method in this domain). We point out that we have previously applied

this methodology to the design of optical fibers simpler (regarding the fiber struc-

ture and reflected spectra) than the ones considered in this work (Ivorra 2006;

Ivorra et al. 2006b). We obtained better results with our algorithms than with those

given by GAs (in terms of number of functional evaluations and result precision).

The work presented here is a continuation of that previous paper.

2.3 SFBG reflected spectrum evaluation model

In order to design the SFBG described in Sect. 2.1, we need to introduce the mathe-

matical model that allows us to compute its reflected spectrum.

We consider an SFBG of length L (mm). We assume that for any wavelength

λ (μm), in a considered transmission band [λmin, λmax], sent in the SFBG, part of

this wavelength is transmitted through the fiber with a varying amplitude T (z,λ) at

the position z ∈ [0,L] in the fiber and other part is reflected with a varying ampli-

tude R(z,λ). Furthermore, for each λ ∈ [λmin, λmax] and each z ∈ [0,L], we have

that T (z,λ) and R(z,λ) are coupled through the following equations (Erdogan 1997;

Ivorra et al. 2006b):

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪
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⎩

dT

dz
(z,λ) = i

(

2π
neff + δneff(z)

λ
−

π

Θ

)

T (z,λ) + i
πδneff(z)

λ
R(z,λ),

dR

dz
(z,λ) = −i

(

2π
neff + δneff(z)

λ
−

π

Θ

)

R(z,λ) − i
πδneff(z)

λ
T (z,λ),

T (0, λ) = 1,

R(L,λ) = 0,

(1)

http://www.alcatel-lucent.com
http://www.ies.univ-montp2.fr
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where neff is the unperturbed effective refractive index; Θ is the nominal grating pe-

riod (µm); and δneff(z) is the slowly varying index amplitude change over the grating

(also called, in the following, apodization) which is periodic.

System (1) is solved numerically by using a simplified transfer matrix method

(Baxter 1982).

Finally, the reflected spectrum, denoted by r , of the considered SFBG is defined

as:

r(λ) =
∣

∣R(0, λ)
∣

∣

2
. (2)

2.4 Inverse problem formulation

We consider that the code cA
1 , introduced in Sect. 2.1, is represented by the following

set of wavelengths:

Λ1
A = {λi | i = 1, . . . ,N, N ≤ Ncode, λi ∈ Λ}. (3)

Due to the fact that the considered SFBG introduced in Sect. 2.3 can only generate

symmetric reflected spectra (Gemzický and Müllerová 2008), we want to design an

SFBG that reflects Λ1
A and also the symmetrical wavelengths of Λ1

A centered around

a predefined wavelength λc. This new set of wavelengths is denoted by Λ1
A,λc

.

This problem can be reformulated considering that each SFBG can be charac-

terized by its apodization profile δneff(z). By denoting Ωapo the search space of all

admissible apodization profiles, we define a cost function h0, to be minimized on

Ωapo, by:

h0(x) =

∫

[λmin,λmax]

(

rx(λ) − rt(λ)
)2

dλ, (4)

where rx(.) is the reflected spectrum (2) of the SFBG with an apodization profile

associated to x ∈ Ωapo and rt is the target reflected spectrum given by:

rt(λ) =

{

1 if λ ∈ Λ1
A,λc

,

0 elsewhere.
(5)

We must include some restrictions on Ωapo in order to find an SFBG with an

apodization profile with suitable characteristics for practical realization. Indeed, com-

plex profiles would require high-level and expensive mastering of the writing process

(Chuang et al. 2004). In particular, we are interested by admissible profiles which

have a low number of π -phase shifts (sign changes), are smooth and have a max-

imum index variation nmax of less than 5 × 10−4 (Pille 2005). Thus, apodization

profiles are generated by spline interpolation through a reduced number of NS points

equally distributed along the first half of their periodic pattern and completed by par-

ity and periodicity (Ivorra et al. 2006b). NS is chosen high enough to ensure enough

peaks in the reflected spectra but small enough for the profile to remain admissible

(Ivorra 2006).

Thus, the corresponding search space of the optimization problem is:

ΩNS
= [−nmax, nmax]

NS . (6)
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The discrete version of the cost function (4) on ΩNS
is defined by:

h0,Nc (x) =

Nc−1
∑

i=1

(λi+1 − λi)

2
[
(

rx(λi+1) − rt(λi+1)
)2

+
(

rx(λi) − rt(λi)
)2]. (7)

In Eq. (7), the reflected spectrum rx of the SFBG with an apodization profile as-

sociated to x ∈ ΩNS
is evaluated on Nc wavelengths equally distributed on the trans-

mission band [λmin, λmax].

Therefore, the SFBG design problem can be reformulated as the following opti-

mization problem:
⎧

⎨

⎩

Find xm ∈ ΩNS
such that

h0,Nc (xm) = min
x∈ΩNS

h0,Nc (x).
(8)

In Sect. 3, we introduce various optimization algorithms used to solve Problem

(8).

3 Global optimization methods

We consider the following minimization problem:

⎧

⎨

⎩

Find xm ∈ Ω such that

h0(xm) = min
x∈Ω

h0(x),
(9)

where h0 : Ω → R is the cost function and x is the optimization parameter belonging

to a search space Ω ⊂ R
N , with N ∈ N.

In Sects. 3.1 and 3.2, we present different optimization methods that can be applied

to solve numerically optimization problems of the form (9), such as Problem (8).

3.1 Genetic algorithms

Genetic algorithms, denoted as GA, approximate the solution of (9) through stochas-

tic processes based on an analogy with the Darwinian evolution of species (Forrest

1993).

A first family, called ‘population’, X0 = {x0
j ∈ Ω,j = 1, . . . ,Np} of Np ∈ N pos-

sible solutions of the optimization problem, called ‘individuals’, is randomly gener-

ated in Ω .

Starting from this population, we build recursively Ng ∈ N new populations

Xi+1 = {xi+1
j ∈ Ω,j = 1, . . . ,Np} with i = 0, . . . ,Ng − 1, called ‘generations’, via

three main steps:

Step 1 Selection: Each individual, xi
j , j = 1, . . . ,Np is ranked with respect to its

cost function value h0(x
i
j ) (i.e., the lower is h0(x

i
j ) the higher is its rank-

ing). Then, Np individuals are randomly selected to become ‘parents’, with a

probability depending on the previous ranking (individuals with better rank-

ing have higher chances to be selected) and with eventual repetitions.
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Step 2 Crossover: This step leads to a data exchange between two parents and the

apparition of two new individuals called ‘children’. We determine, with a

fixed probability pc ∈ [0,1], if two consecutive parents should exchange data

(the created children are projected in Ω) or if they are directly copied into the

new population.

Step 3 Mutation: This step leads to new parameter values for some individuals of

the population. For each individual, we determine with a fixed probability

pm ∈ [0,1] if it is randomly perturbed (the perturbed individual is projected

in Ω) or not.

With these three basic evolution processes, it is generally observed that the best

obtained individual is getting closer after each generation to the optimal solution of

the problem (Goldberg 1989).

At the end of the algorithm, after Ng iterations, the GA returns an output de-

noted by A0(X
0;Np,Ng,pm,pc) = argmin{h0(x

i
j )/x

i
j ∈ Xi, i = 1, . . . ,Ng, j =

1, . . . ,Np}.

These algorithms do not require sensitivity computation, perform global and

multi-objective optimization and are easy to parallelize. However, their drawbacks

remain their computational complexity, their slow convergence and their lack of ac-

curacy. Since a fine convergence is difficult to achieve with GAs, it is recommended

when it is possible, to complete the GA iterations by a descent method (Muyl et al.

2004).

A complete description of the GA considered during tis work can be found in the

following literature (Ivorra 2006; Ivorra et al. 2009).

3.2 Multi-layers semi-deterministic global optimization method

3.2.1 General description of the method

We consider an optimization algorithm A0 : V → Ω , called core optimization algo-

rithm (COA), to solve (9).

We assume the existence of a suitable initial condition v ∈ V such that the output

returned by A0(v) approaches a solution of (9). In this case, solving numerically (9)

with the considered COA can be formulated as:

⎧

⎨

⎩

Find v ∈ V such that

v ∈ argmin
w∈V

h0

(

A0(w)
)

.
(10)

In order to solve (10), we propose to use a I -layer semi-deterministic algo-

rithm AI : V → V , with I ∈ N, based on line search methods (see, for instance,

Mohammadi and Hervé Saiac 2003) called here, for the sake of simplicity, ‘Semi-

Deterministic Algorithm’ (SDA) and built recursively as following:

For i = 1,2, . . . , I , we introduce hi : V → R by

hi(v) = hi−1

(

Ai−1(v)
)

, (11)
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and we consider the problem:

⎧

⎨

⎩

Find v ∈ V such that

v ∈ argmin
w∈V

hi(w).
(12)

Problem (12) is equivalent to (10) and is solved by using the algorithm Ai : V → V

that, for each v1 ∈ V , returns an output given by

Step 1 Choose v2 randomly in V .

Step 2 Find v ∈ argminw∈Oi(v1,v2)
hi(w), where Oi(v1, v2) = {v1 + t (v2 − v1), t ∈

R} ∩ V , using a line search method.

Step 3 Return v.

The line search minimization algorithm in Step 2 is defined by the user.

When I > 1, due to the fact that line search directions Oi(v1, v2) in Ai , for i =

1, . . . , I − 1, are constructed randomly, the algorithm AI perform a multi-directional

search of the solution of (10).

In Sects. 3.2.2 and 3.2.3, we present two particular implementations of the SDA,

considering steepest descent and genetic algorithms as COAs in the case where h0 is

a non negative function (such as the function (7) considered in this work).

A more detailed description (such as, the choice of the parameters, validation on

benchmark cases, etc.) of this method and those two particular implementations can

be found in (Ivorra 2006; Ivorra et al. 2007). Furthermore, various applications to in-

dustrial problems are presented in (Debiane et al. 2006; Carrasco et al. 2012; Gomez

et al. 2011; Hertzog et al. 2006; Isebe et al. 2008; Ivorra et al. 2006a, 2006b, 2009).

A Matlab© version of this method is included in the free optimization package

Global Optimization Platform which can be downloaded at

http://www.mat.ucm.es/momat/software.htm

3.2.2 SDA implementation with steepest descent COAs

We consider COAs that come from the discretization of the following initial value

problem (Mohammadi and Hervé Saiac 2003):

⎧

⎨

⎩

M
(

x(t), t
)dx

dt
(t) = −d

(

x(t)
)

, t ≥ 0,

x(0) = x0,
(13)

where t is a fictitious time, M : Ω × R → MN×N (where MN×N denotes the set of

matrix N ×N ) and d : Ω → R
N is a function giving a descent direction. For example,

assuming h0 ∈ C1(Ω,R), if d = ∇h0 and M(x, t) = Id (the identity operator) for all

(x, t) ∈ Ω × R we recover the steepest descent method.

According to previous notations, we use V = Ω and denote by A0(x0) :=

A0(x0; t0, ǫ) the solution returned by the COA starting from the initial point x0 ∈ Ω

after t0 ∈ N iterations and considering a stopping criterion defined by ǫ ∈ R. In this
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case, Problem (10) can be rewritten as:
⎧

⎪

⎨

⎪

⎩

Find v ∈ Ω such that

v ∈ argmin
w∈Ω

h0

(

A0(w)

)

(14)

We consider a particular implementation of the algorithms Ai , i = 1, . . . , I , in-

troduced previously, to solve (14). For i = 1, . . . , I , Ai(v1) is applied with a secant

method (a low-cost method well adapted to find the zeros of a function Mohammadi

and Hervé Saiac 2003) in order to perform the line search. It reads:

Step 1 Choose v2 ∈ Ω randomly.

Step 2 For l from 1 to tli ∈ N execute:

Step 2.1 If hi(vl) = hi(vl+1) go to Step 3.

Step 2.2 Set vl+2 = projΩ (vl+1 − hi(vl+1)
vl+1−vl

hi (vl+1)−hi (vl)
) where projΩ :

R
N → Ω is a projection algorithm over Ω defined by the user.

Step 3 Return the output: argmin{hi(vm),m = 1, . . . , tli }.

In the previous algorithm, the value of tli , for i = 1,2, . . ., depends on the desired

computational complexity.

This algorithm is denoted by SDDA.

3.2.3 SDA implementation with genetic COAs

When a GA, described in Sect. 3.1, is used as the COA, Problem (10) can be rewritten

as:

⎧

⎨

⎩

Find X0 ∈ V = ΩNp such that

X0 ∈ argmin
w∈ΩNp

h0

(

A0(w)
) (15)

where A0(X
0) := A0(X

0;Np,Ng,pm,pc) with Np , Ng , pm, pc parameters of the

GA that here are considered fixed.

The solution of (15) may be determined, for instance, by using the SDA imple-

mentation presented in Sect. 3.2.1. However, a first numerical study (see Ivorra 2006

for more details) shows that the following variation of previous algorithms Ai (with

i = 1, . . . , I ) is better adapted to the GA case. Let X0
1 = {x0

1,j ∈ Ω,j = 1, . . . ,Np}.

Then Ai(X
0
1) reads:

Step 1 For l going from 1 to tli ∈ N execute:

Step 1.1 Set ol =argmin{h0(x) : x ∈ Ai−1(X
0
l )}.

Step 1.2 We construct X0
l+1 = {x0

l+1,j ∈ Ω,j = 1, . . . ,Np} as following:

∀j ∈ {1, . . . ,Np}, if h0(ol) = h0(x
0
l,j ) set x0

l+1,j = x0
l,j else set

x0
l+1,j = projΩNP (x0

l,j − h0(ol)
ol−x0

l,j

h0(ol)−h0(x
0
l,j )

) where projΩNP :

R
N×NP → ΩNP is a projection algorithm over ΩNP defined by

the user.
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Step 2 Return the output: argmin{hi(X
0
m),m = 1, . . . , tli }.

As previously, the value of tli , for i = 1,2, . . . , depends on the desired computa-

tional complexity.

This version of the algorithm intends to optimize, individual by individual, the

initial population of Ai−1. For each individual in the initial population:

– If there is a significant evolution of the cost function value between this individual

and the best element found by Ai−1, the secant method used in Step 1.2 generates,

in the optimized initial population, a new individual closer to this best element.

– If not, the secant method allows to create a new individual far from the current

solution given by Ai−1.

Numerical experiments show that this coupling reduces the computational com-

plexity of GAs (Gomez et al. 2011; Ivorra 2006; Ivorra et al. 2006b, 2006a, 2009).

In particular, this allows to consider smaller Np and Ng numbers, compared with the

case of applying GA alone. This algorithm is denoted by (SDGA).

4 Numerical test

In this section, in order to illustrate the efficiency (i.e., computational time and result

precision) of our optimization method to solve the SFBG design in comparison to the

GA approach, we apply the optimization algorithms presented in Sect. 3 to solve a

particular implementation of Problem (8) based on a realistic case. First, in Sects. 4.1

and 4.2, we introduce the parameters associated to the considered SFBG and opti-

mization algorithms, respectively. Finally, in Sect. 4.3 we present and analyze the

obtained results.

In this section, we present the solutions found for one particular numerical case

and we consider that they are representative of the general behavior of our algo-

rithms on this kind of problem. Indeed, other numerical examples, presented in part

in (Ivorra 2006), have produced similar results.

4.1 SFBG characteristics

We consider a CDMA binary codification of length Ncode = 8 represented by the set

of wavelengths Λ = {λ1 = 1.5465 µm, λ2 = 1.5473 µm, λ3 = 1.5481 µm, λ4 =

1.5489 µm, λ5 = 1.5497 µm, λ6 = 1.5505 µm, λ7 = 1.5513 µm, λ8 = 1.5521 µm}.

In this case, the particular code cA
1 = ‘10110011’ is characterized by Λ1

A =

[λ1, λ3, λ4, λ7, λ8]. We are interested in designing an SFBG that reflects Λ1
A,λc

with

λc = 1.5525 µm. This spectrum is depicted by Fig. 3.

The SFBG characteristics are set to neff = 1.45, L = 100 mm, Θ = 0.53 µm and

the period of δneff is 1.039 mm. Those values correspond to real optical fiber data

provided by our collaborators from “Alcatel” and the “Département Photoniques et

Ondes” (Pille 2005). Furthermore, the SFBG apodization profiles are generated by

NS = 9 interpolation points with nmax = 5 × 10−4 and the functional (7) is evaluated

considering Nc = 1200 wavelengths in the transmission band [1.545 µm,1.56 µm].

This set of parameters give good results (apodization profiles easy to implement)
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Fig. 3 Target reflected

spectrum of the SFBG presented

in Sect. 4.1

considering the problem of designing a multichannel optical filter of 16 peaks (Ivorra

et al. 2006b).

4.2 Parameters of the optimization algorithms

In order to solve problem (8), considering the SFBG characteristics given in Sect. 4.1,

we use the optimization methods presented in Sect. 3 (i.e., GA, SDDA and SDGA)

with the following parameters:

– For SDDA: We use a two-layer algorithm (i.e., I = 2) with t0 = 10, tl1 = 5, tl2 = 5

and ǫ = 0. The initial point v1 for A2 is generated randomly in ΩNS
. We consider

t0 = 10 iterations of the steepest descent algorithm (Mohammadi and Hervé Saiac

2003), which is used as the COA. The gradient of h0,Nc used in A0 is approximated

considering a finite difference method.

– For SDGA: we use a one-layer algorithm (i.e., I = 1) with tl1 = 25. The parameters

considered for the GA, which is used as the COA, are the following:

– The generation number and population size are set to Ng = 10 and Np = 10,

respectively.

– The selection is a roulette wheel type (Goldberg 1989) proportional to the rank

of the individuals in the population.

– The crossover is barycentric in each coordinate with a probability of pc = 0.45.

– The mutation process is non-uniform with a probability of pm = 0.35.

– A one-elitism principle, that consists in keeping the current best individual in

the next generation, has also been imposed.

– 10 iterations of the steepest descent method are performed at the end of the

SDGA starting from the obtained solution.
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Table 1 Numerical results obtained considering (left) SDDA, SDGA and GA optimization methods, (cen-

ter) value of h0,Nc
of the best element found by the optimization algorithm, (right) Number of evaluation

of the function h0,Nc
needed by the optimization algorithm

Optimization method Final cost function value Evaluation number

SDDA 2.09 3000

SDGA 2.31 2700

GA 2.37 5600

– For GA: We use the same stochastic processes than SDGA but with a different

set of parameters: Ng = 30, Np = 180, pc = 0.35, pm = 0.15. 10 iterations of

the steepest descent method are performed at the end of the GA starting from the

obtained solution.

SDDA, SDGA and GA applied with those sets of parameters have been validated

on various benchmark test cases (Ivorra 2006; Ivorra et al. 2007) and industrial ap-

plications (Debiane et al. 2006; Carrasco et al. 2012; Gomez et al. 2011; Isebe et al.

2008; Ivorra et al. 2006a, 2009), in particular on the design of pass-band and multi-

channel optical filters (Ivorra et al. 2006b).

4.3 Results and discussion

Figure 4 shows the apodization profiles obtained with SDDA, SDGA and GA and

Fig. 5 shows their associated reflected spectra. The convergence histories of each

optimization process are presented in Fig. 6. Results reported in this section are sum-

marized in Table 1.

For SDDA, the final value of the cost function h0,Nc is equal to 2.09. The total

number of functional evaluations is about 3000. SDDA optimization takes approxi-

matively 10 hours real time in a 3.4 GHz PC computer with 1 Gb Memory.

For SDGA, the final cost function h0,Nc is equal to 2.31. The total number of

functional evaluations is about 2700. SDGA optimization takes 9 hours.

For GA, the final cost function h0,Nc is equal to 2.38. The total number of func-

tional evaluations is about 5600. GA optimization takes 18 hours 40 minutes.

The three optimized apodization profiles have different shapes and are situated in

distinct attraction basins of the function h0,Nc . This points out the fact that h0,Nc is

highly non convex and the optimization problem (8) difficult to solve. This is con-

firmed by observing the convergence history of the SDDA, which shows that, during

the optimization process, the steepest descent algorithm has visited various attraction

basins and found different local minima.

From a numerical points of view, both SDDA and SDGA have found better results

than GA and are less time consuming.

From an implementation point of view, all optimized apodization profiles present

interesting characteristics:

– As we can observe on Figs. 3 and 5, the reflected spectra associated to the opti-

mized profiles correspond to good approximations of the target reflected spectrum.
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Fig. 4 Optimized apodization

profiles obtained by SDDA (up),

SDGA (middle) and GA

(bottom) optimization methods

when solving the SFBG design

problem presented in Sect. 4

– The optimized apodization profiles (see Fig. 4) are suitable for practical imple-

mentation. Indeed, the number of necessary π -phase shifts is 5 (a number easy

to implement), the index modulation of the profile is uniformly distributed along

the pattern and the maximum index variation of the profile is inferior to 3 × 10−4,

which is a reasonable level (Ivorra et al. 2006b; Pille 2005).



Design of code division multiple access filters based on sampled fiber

Fig. 5 Reflected spectrum

associated with the optimized

apodization profiles obtained by

the SDDA (up), SDGA (middle)

and GA (bottom) optimization

methods when solving the

SFBG design problem presented

in Sect. 4

– A stability analysis on the reflected spectra, when applying a random perturbation

of 10 % on the optimized apodization profiles, show that all optimized results have

a small variation of ≈4.3 % on their reflected spectrum (considering a L2 norm).
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Fig. 6 Convergence histories

obtained when solving the

SFBG design problem presented

in Sect. 4: (up) best element

convergence history vs.

iterations (—) and global

convergence history vs.

iterations (. . .) for SDDA;

(middle) best element

convergence history vs.

iterations for SDGA; and

(bottom) GA

This is important because, due to technical limitations, small perturbations could

appear in the apodization profile during the writing process.
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5 Conclusion

A particular code division multiple access filter based on sampled fiber Bragg grating

has been designed using three particular optimization algorithms: two original semi-

deterministic algorithms (SDDA and SDGA) and a genetic algorithm (GA) (consid-

ered as a classical method to design SFBG). The apodization profiles produced by

those optimization approaches exhibit good characteristics for practical implemen-

tation because they have no step variation, low maximum index modulation values

and small numbers of π -phase shifts. Also, their associated reflected spectrum are

weakly sensitive to perturbations. However, SDDA and SDGA have produced better

solutions (in term of cost function value) and need less computational time (approxi-

matively a half) than GA alone.

A next step, could be the study of the effect of combined apodization and phase

profiles optimization (Rothenberg et al. 2002) in order to avoid the symmetry in spec-

tra mentioned previously. In fact, during this work, we have been interested only by

apodization optimization to keep a grating easy to implement by any optical labora-

tory (Chuang et al. 2004; Malo et al. 1995). Indeed, phase variation requires more

complex and expansive materials.

We finally recall that a Matlab© version of the algorithms presented in this paper

are included in the free optimization package Global Optimization Platform, which

can be downloaded

http://www.mat.ucm.es/momat/software.htm
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