
HAL Id: hal-00874243
https://hal.science/hal-00874243

Preprint submitted on 17 Oct 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Playing with Parameters: Cross-parameterization in
Graphs

Nicolas Bourgeois, Konrad Kazimierz Dabrowski, Marc Demange, Vangelis
Paschos

To cite this version:
Nicolas Bourgeois, Konrad Kazimierz Dabrowski, Marc Demange, Vangelis Paschos. Playing with
Parameters: Cross-parameterization in Graphs. 2013. �hal-00874243�

https://hal.science/hal-00874243
https://hal.archives-ouvertes.fr

la
m
sa

d
e

LAMSADE

Laboratoire d’Analyses et Modélisation de Systèmes pour
l’Aide à la Décision

UMR 7243

Septembre 2013

Playing with parameters:
Cross-parameterization in Graphs

N. Bourgeois, K.K. Dabrowski, M. Demange, V.Th. Paschos

CAHIER DU
 342

Playing with Parameters:

Cross-parameterization in Graphs∗

N. Bourgeois(a) K.K. Dabrowski(b) M. Demange(b)

V. Th. Paschos(c)

September 20, 2013

Abstract

When considering a graph problem from a parameterized point of view,
the parameter chosen is often the size of an optimal solution of this prob-
lem (the “standard”). A natural subject for investigation is what happens
when we parameterize such a problem by the size of an optimal solution of
a different problem. We provide a framework for doing such analysis. In
particular, we investigate seven natural vertex problems, along with their
respective parameters: α (the size of a maximum independent set), τ (the
size of a minimum vertex cover), ω (the size of a maximum clique), χ (the
chromatic number), γ (the size of a minimum dominating set), i (the size
of a minimum independent dominating set) and ν (the size of a minimum
feedback vertex set). We study the parameterized complexity of each of
these problems with respect to the standard parameter of the others.

1 Introduction: cross-parameterization

Parameterized complexity has been widely studied over the past few years. The
main motivation for this area is to study the tractability of a problem with
respect to the size of some of its parameters besides the size of the instance. In
particular, some NP-hard problems may become more tractable for instances
with small parameter value (see the books [5, 8, 12] for more details about
parameterized complexity). From a practical point of view this may be interest-
ing when the considered parameter has a strong dependence on the underlying
model, in which case instances with low parameter value are relevant. Most

∗This work was supported the French Agency for Research under the DEFIS program

TODO, ANR-09-EMER-010
(a)Université Paris 1, SAMM, nbourgeo@phare.normalesup.org
(b)ESSEC Business School, {dabrowski,demange}@essec.edu
(c)PSL Research University, Université Paris-Dauphine, LAMSADE CNRS, UMR 724 and

Institut Universitaire de France, paschos@lamsade.dauphine.fr

1

of the time in the related literature, the main parameter used for an optimiza-
tion problem is the optimal value itself. This causes two limitations: first, it
sometimes becomes difficult to compare the parameterized complexity of two
different problems, each of them dealing with a specific parameter. Second, it
may happen that instances with small parameter value but large optimal value
are relevant and in this case an approach with this specific parameter allows us
to solve such instances efficiently.

In this paper we propose a framework for considering the complexity of any
problem with respect to any kind of parameter. Considering the parameterized
complexity of a problem with respect to several parameter gives more informa-
tion and deeper insight to the real tractability of a problem. It also provides
a more stable framework for comparing the tractability of different problems.
If we consider standard parameters for a series of problems, then it could be
relevant to study parameterized complexity for each of the problems considered
with respect to the standard parameters of the others. This is what we call
cross-parameterization, in what follows. Here, we draw a first framework for
addressing this question and we test its relevance by considering seven very nat-
ural combinatorial optimization problems on graphs, leading to seven related
parameters. Our aim here is to study the tractability of each problem under
each considered parameter (see Table 1). However, this can be done for any
other combinatorial problem and any parameter.

When handling optimization problems, three different versions of a problem
can be considered: either computing, for any instance, an optimal solution (the
constructive version), calculating the optimal value (the non-constructive case)
or solving the decision version of a problem. We include this distinction in our
general framework (see Section 2), defining a general notion of FPT reducibility
and proving the equivalence between these different approaches for a wide range
of problems including our seven basic graph problems. Then, in Section 3, we
prove the results of Table 1, considering first tractability and then intractability
results. Some of the proofs in this section rely on results given in Section 2.

1.1 Notation

As a first attempt to draw such a general cross-parameterization framework, we
have selected seven basic vertex parameters in graphs:

α: the size of a maximum independent set;

τ : the size of a minimum vertex cover;

ω: the size of a maximum clique;

χ: the chromatic number;

γ: the size of a minimum dominating set;

i: the size of a minimum independent dominating set;

ν: the size of a minimum feedback vertex set.

2

We also write n for the number of vertices and ∆ for the maximum degree.
All these values are integer graph-parameters and we will use p to refer to any
general graph parameter, i.e. p is any computable function that takes a graph
as input and outputs an integer value. Here we will mainly consider parameters
with non-negative integral values. For a graph G, p(G) denotes the value of the
related parameter for G.

For any such parameter p, there is an associated combinatorial problem Πp,
which is that of computing the parameter for a given graph. Here, the considered
parameters are in fact the value of the optimization problem Πp and in Section 2
we will distinguish between computing the parameter itself and computing a
corresponding optimal solution. A graph problem asking for a value, solution
or answer to a decision question is said to be fixed-parameter tractable (FPT)
with respect to a parameter p (or simply FPT(p)) if there is an algorithm that
solves the problem in O(g(p(G))P (n(G)) time on input graph G, where g is a
computable function and P is a polynomial function. Without loss of generality
we assume that g is non-decreasing (otherwise replace g(p) by maxp′6p g(p

′)).
When no ambiguity occurs, we writeO(f(p)P (n)) = O∗(f(p)). We say that such
an algorithm is an FPT algorithm and runs in FPT time. We will sometimes
write (Π, p) to refer to the problem Π parameterized by p.

For a graph G with a vertex x, the set N(x) denotes the neighbourhood of x,
i.e. the set of vertices adjacent to x. We set N [x] = N(x) ∪ {x}, the closed
neighbourhood of x. If D is a set of vertices, N [D] denotes the union of the
closed neighbourhoods of vertices in D. Finally, V (G) denotes the vertex set
of G and for V ′ ⊂ V (G), G[V ′] denotes the sub-graph of G induced by V ′.

1.2 Our results

To date, research has mostly focused on the complexity of a problem when
parameterized by the solution size, so we can already fill the diagonal line of
Table 1. Some problems have been shown to be fixed parameter-tractable: Πτ

and Πα are FPT(τ) [1], and Πν is FPT(ν) [7].
On the other hand, Πω (resp. Πα) is a classic example of a problem which is

W[1](ω)-complete (resp. W[1](α)-complete) [6], while Πγ and Πi are W[2](γ)-
complete and W[2](i)-complete, respectively [4]. Problem Πχ is /∈XP(χ) since
chromatic number remains NP-hard when the optimum is 3 [11, 14]. Here, we
take /∈XP to mean that the problem is not in the class XP (assuming P 6=
NP). Note that a any vertex cover is consists of vertices whose removal leaves
an independent set (and vice versa). Therefore, any minimum vertex cover
consists of precisely those vertices that are not in some maximum independent
set. Therefore, any results for the complexity of Πα will also apply to the
complexity of Πτ and vice versa(as suggested in Table 1).

The overall results are summarized in Table 1 where, for a complexity class C,
C-c (resp. C-h) means C-complete (resp. C-hard).

3

Πω Πχ Πγ Πi Πν Πα/Πτ

ω W[1]-c /∈XP /∈XP /∈XP /∈XP /∈XP
χ W[1]-h /∈XP /∈XP /∈XP /∈XP /∈XP
γ /∈XP /∈XP W[2]-c /∈XP /∈XP /∈XP
i /∈XP /∈XP W[2]-h W[2]-c /∈XP /∈XP
ν FPT FPT FPT FPT FPT FPT
τ FPT FPT FPT FPT FPT FPT
α /∈XP /∈XP W[2]-h W[2]-h W[1]-h W[1]-c

Table 1: A summary of our results. The columns represent graph problems.
The rows represent parameters.

2 Constructive vs. non-constructive computation

Before going into the proofs of the main results reported in Table 1, we first
revisit, in the context of the present framework, the question of equivalence
between computing an optimal solution of an optimization problem, computing
its optimal value and the related decision problem. In particular, we will make
use of this distinction in the proof of Proposition 11.

Definition 1. Any instance of an optimization problem Π can be expressed as a
mathematical program of the form below with objective function f and constraint
set C: {

max or min f(x)
x ∈ C

(1)

When dealing with such optimization problem several frameworks can be
considered, leading to three different versions of the problem. The constructive
version Πc asks us to compute an optimal solution for the input instance, while
the non-constructive (or value) version Πv only asks us to compute an optimal
value. Finally, the decision version Πd asks us to decide, for any value k, whether
there is some feasible solution x ∈ C satisfying f(x) > k (if Π is a maximization
problem) or f(x) 6 k (if Π is a minimization problem). When needed, we will
denote any problem with its version Πt, with t ∈ {c, v, d}; when this subscript
is not specified, we will consider the constructive version t = c.

This distinction, along with the relative complexity of the different versions
has been considered several times in the literature, in particular for the classical
complexity framework [13] and for the framework of polynomial approxima-
tion [3]. This same distinction can be considered in the frame of parameterized
complexity. Most often, negative results are stated for the value-version while
positive results are stated for the constructive version. Note that the value
version is not more difficult than the constructive one as long as the objective
function can be computed in reasonable time. More precisely if f can be com-
puted in polynomial time (resp. FPT time) then any polynomial (resp. FPT)
algorithm for the constructive version can immediately be turned into a poly-
nomial (resp. FPT) algorithm for the value version. The same holds between

4

the value version and the decision version, the former being at least as difficult
as the latter if f can be efficiently computed.

In this paper we only consider problems for which f can be computed in
polynomial time and consequently the constructive version is at least as hard as
the non-constructive one, which itself is also as hard as the decision version. An
interesting question is whether or not these versions are equivalent in complexity.
To study the relative complexity of problems and, in particular of the different
versions of a problem, the notion of reduction is useful. Many kinds of reductions
(mainly polynomial ones) have been introduced in the literature, allowing us
to compare tractability of different problems and even between the different
versions of a given problem. The notion of FPT reduction able to transfer
FPT algorithms from one problem to another one has also been introduced (see
e.g. [5, 8, 12]). Here, we somewhat enhance it in order to integrate the possibility
of considering any kind of parameters for the considered problems.

Definition 2. Let (Π1
t1
, p1), (Π

2
t2
, p2) be two optimization problems parame-

terized by p1 and p2 respectively, with t1, t2 ∈ {c, v, d}. An FPT-reduction
from (Π1

t1
, p1) to (Π2

t2
, p2) is an algorithm solving A1 in FPT time with re-

spect to parameter p1 using an Oracle O2 for Π2
t2

such that for any instance I1
of Π1

t1
, any call on O2 is made on instances I ′2 for Π2

t2
whose size is polynomi-

ally bounded with respect to I1 and which satisfy p2(I
′
2) 6 h(p1(I1)) for some

function h. We then say that (Π1
t1
, p1) FPT-reduces to (Π2

t2
, p2) and denote this

by (Π1
t1
, p1) 6FPT (Π2

t2
, p2). If the reduction is polynomial, we denote it by

Π1
t1

6P Π2
t2

(no parameter needs to be specified).

Note that, since A1 is FPT, the number of calls to Oracle O2 is bounded
by an FPT function with respect to parameter p1 and consequently if O2 is an
FPT algorithm with respect to p2, then the conditions on p2(I

′
2) and on the size

of I ′2 ensures that the reduction leads to an FPT algorithm for Π1
t1
with respect

to parameter p1. In other words, such a reduction is able to transform an FPT
algorithm for Π2

t2
with respect to parameter p2 into an FPT algorithm for Π1

t1

with respect to parameter p1.
Note that the decision version and the non-constructive version are equiva-

lent for a very large class of problems, as stated by the following proposition:

Proposition 1. Let Π be an optimization problem, an instance of which is
defined as in Definition 1, with parameter p satisfying:

1. f has integral values;

2. the output value associated to some feasible input can be found in polyno-
mial time;

3. there is a polynomial function P and a function ℓ such that ∀x, y ∈
C, |f(x)− f(y)| 6 2ℓ(p)P (n).

Then (Πv, p) 6FPT (Πd, p).

In particular, this holds for integral non-negative objective functions boun-
ded by 2ℓ(p)P (n).

5

Proof. The reduction is easily done by binary search. Without loss of gener-
ality we assume that Π is a maximization problem (the minimization case is
similar). We start by finding a feasible output value. Next, we try to find a
K 6 2ℓ(p)P (n)+1 such that the optimal value lies in [λ, λ +K]. Note that ℓ(p)
may not be explicitly known. We ask the Oracle O for the problem Πd, whether
∃x ∈ C, f(x) > λ+ 2k for successive values of k > 1, or not. Let K be the first
value for which the answer is NO. We know that K 6 2ℓ(p)P (n)+1 by hypothesis.
We then find the optimal value by binary search in the interval [λ, λ+K], using
Oracle O.

This process is FPT with respect to parameter p since the number of calls
to Oracle O is at most 2ℓ(p)P (n) + 4, each time for the same Π-instance.

For any optimization problem Π and parameter p, we let Π|p−bounded denote
the sub-problem of Π restricted to instances where p 6 K for a fixed bound K.
In [13] a general process was proposed to reduce the constructive version Πc

of an optimization problem Π to its non-constructive version Πv. The main
idea is to transform Π into Π′ by transforming the objective function f into a
one-to-one function f ′ such that ∀x, y ∈ C, f(x) 6 f(y)⇒ f ′(x) 6 f ′(y).

Moreover, one needs to suppose that the inverse function f ′−1 can be com-
puted in polynomial time. In particular, this holds when f has integral values,
there is a polynomial-time computable bound B such that |C| 6 B and there
is a total order on C such that the related rank-function r as well as its inverse
function r−1 are both polynomially computable. Typically, for C ⊂ {0, 1}P (n),
where P is a polynomial function, the lexicographic order can be computed and
inverted in polynomial time.

We can then take f ′(x) = (B+1)f(x)+r(x). Note that if such a function f ′

does exist and if Πd ∈ NP , then Π′d ∈ NP .

Proposition 2. Suppose Πd ∈ NP , (Π|p−bounded)d is NP-complete for a pa-
rameter p and there is a polynomial function P such that any instance of Π
satisfies C ⊆ {0, 1}P (n). Then (Πc, p) 6FPT (Πv, p).

Proof. We have Πc 6P Π′c since both problems have exactly the same feasible
solutions and any optimal solution to Π′c is also optimal for Πc. Π′c 6P Π′v by
definition of Π′ (see above).

Taking the bound B = 2P (n) we get Π′v 6P Π′d and since Π′d is in NP
and (Π|p−bounded)d is NP-complete, Π′d 6P (Π|p−bounded)d. Given an instance
of (Πc, p), the reduction (see Definition 2) simply computes an equivalent in-
stance of ((Π|p−bounded)d, p), where p 6 K, for a constant K, h is the constant
function equal to K and O is an oracle for (Π|p−bounded)d. Note that any FPT
algorithm for (Π, p) leads to a polynomial-time algorithm for (Π|p−bounded)d,
and consequently such a reduction transforms an FPT algorithm into a polyno-
mial time one.

Proposition 3. We have (Πc, p) 6FPT (Πv, p) for:

1. Πα,Πχ,Πγ ,Πi,Πν and p ∈ {ω, χ};

6

2. Πω,Πχ and p = α;

3. Πi and p = γ;

4. Πα,Πτ ,Πω,Πχ,Πν and p ∈ {γ, i}.

Proof. All these results are the consequence of Proposition 2. For all these
problems C ⊆ {0, 1}P (n) for some polynomial function P and the decision version
is known to be in NP. So, we need to show that in each case the problem
(Π|p−bounded)d is NP-complete.

1. This follows from the inequality ∆(G) + 1 > χ(G) > ω(G). We simply
recall that all these problems remain NP-complete on graphs of degree 3 [9],
and that 3-colouring is NP-complete [9].

2. Using the previous results in G we get the NP-completeness of Πω
d in

graphs whose maximum independent set is of size 3. A colouring in G induces
a clique partition in G. The decision version of minimum clique partition is
NP-complete in graphs of maximum degree 3 [2], and thus in graphs of maximum
clique 4. Thus, Πχ

d is NP-complete in graphs whose maximum independent set
is of size 4.

3. Let G = (V,E) be an arbitrary non-empty graph. Let G0 and G1 be
disjoint copies of G. We form the graph G′ by taking the disjoint union of G0

and G1, adding a vertex u which dominates the vertices of G0, adding a ver-
tex v which dominates G1 and joining u to v with an edge. Then γ(G′) = 2
(since {u, v} is a dominating set and there is no dominating vertex). Consider
an independent dominating set I in G′. It cannot contain both u and v. If it
contains neither, then |I| > 2i(G) > i(G) + 1. If it contains exactly one of u
and v (without loss of generality v), then it must contain an independent domi-
nating set for G1, so |I| > i(G)+1. But any independent dominating set of G1,
together with u is an independent dominating set of G′. Thus i(G′) = i(G)+ 1,
so Πi

d is NP-complete, even for graphs with γ = 2.

4. Suppose G = (V,E) is a non-empty graph. Let G̃ be the graph obtained
from G by adding a new vertex v adjacent to all of V . Then we have the
following:

• α(G̃) = α(G);

• ω(G̃) = ω(G) + 1;

• χ(G̃) = χ(G) + 1;

• τ(G̃) = τ(G) + 1;

• ν(G̃) = ν(G) + 1.

The first three items are obvious. The fourth follows from the fact α + τ = n.
For the last one, it is clear that ν(G̃) 6 ν(G) + 1, since adding the dominating

vertex to any feedback vertex set of G yields a feedback vertex set of G̃. Consider
a minimal feedback vertex set F of G̃. Let v be the dominating vertex of G̃. We

7

want to show that |F | > ν(G) + 1. If v ∈ F , then F \ {v} is a feedback vertex
set of G, and we are done. Suppose v 6∈ F . Then G \ F must be a stable set

(otherwise two adjacent vertices in G, together with v would form a C3 in G̃).
Let w be an arbitrary vertex in F . Then F \ {w} must be a feedback vertex set
in G, since NG\(F\{w})(w) is an independent set. Thus |F | > ν(G) + 1 for all

minimal feedback vertex sets of G̃, i.e. G̃ > ν(G) + 1.

Note also that γ(G̃) = i(G̃) = 1 and consequently the decision version of Πα,
Πτ , Πω, Πχ and Πν all remain NP-complete in graphs with γ = i = 1. This
completes the proof.

Another case where equivalence between constructive and non-constructive
cases can be easily stated is the hereditary case. A property h : 2V =⇒ {0, 1}
for a finite set V is hereditary if h(U ′) > h(U), ∀U ′ ⊂ U ⊂ V . We then consider
an hereditary maximization problem, an instance of which can be written

{
max f(U)
h(U) = 1, U ⊆ 2V

(2)

The size of this instance is |V | and any subset V ′ ⊂ V also defines an instance
of Π.

Proposition 4. Let Π be an hereditary maximization problem and consider an
non-decreasing parameter p, meaning that U ′ ⊂ U ⇒ p(U ′) 6 p(U). Then
(Πc, p) 6FPT (Πv, p).

Proof. Considering an instance V of Πc and let S = ∅. The reduction consists
of taking any element v ∈ V and testing the value of the instance V \ {v}. If
it is smaller than the value of the instance V , then every optimal solution must
include v, in which case we add it to a set S. If after removing v, the optimal
value is unchanged, there must be an optimal solution which does not contain v,
in which case we delete v from the graph. We continue this process, deleting
vertices from the graph where possible until all remaining vertices belong to S.
Then S is an optimal solution. In all, we will need O(|V |) requests to an
Oracle O for Πv on sub-instances of V . The hypothesis on the parameter makes
the whole process FPT with respect to p if the oracle is also FPT. This concludes
the proof.

Corollary 1. It holds that (Πc, p) 6FPT (Πv, p) for Π ∈ {Πα,Πω,Πν ,Πτ} and
p ∈ {α, ω, χ, ν, τ}.

Note also that for any constructive problem that can be solved in FPT
time with respect to a given parameter p, the FPT equivalence between non-
constructive and constructive versions (Πc, p) and (Πv, p) is trivial and conse-
quently, this holds for all problems considered in this paper under the parame-
ters τ and ν.

Proposition 5. (Πc, p) 6FPT (Πv, p) for Π = Πγ , p ∈ {α, γ} and Π = Πi,
p ∈ {α, i}.

8

Proof. Here we need explicit reductions. Consider a graph G = (V,E) and a
vertex v ∈ V . We consider the graph G′ obtained from G by adding a vertex v′

connected to v. We then have γ(G′) = γ(G) if and only if there is a minimum
dominating set in G containing v. Indeed, suppose γ(G′) = γ(G) and consider
a minimum dominating set DS′ of G′. If v′ ∈ DS′, then DS′ \ {v′} ∪ {v} is a
minimum dominating set of G′ and a dominating set of G containing v. Since
it is of value γ(G), it is minimum in G. Conversely, suppose that there is a
minimum dominating set DS of G containing v. It is a dominating set in G′

and moreover γ(G′) > γ(G) since N [v′] ⊆ N [v]. So, an oracle for γv allows
us to decide whether there is a minimum dominating set containing v. Since
α(G′) 6 α(G) + 1 and γ(G′) 6 γ(G) + 1, an FPT oracle with respect to α
or γ remains FPT with respect to the instance G when applied to G′. Using
this, one can identify a first vertex v which occurs in some optimal solution
of the dominating set problem. Then, for any vertex w 6= v, we consider the
graph G′′ obtained by merging v and w (i.e. replacing the vertices by a new
vertex whose neighbourhood is (N(v)∪N(w))\{v, w}). Using similar arguments,
there is a minimum dominating set of G containing both v and w if and only
if γ(G′) = γ(G′′) + 1. Note also that α(G′′) 6 α(G′) and γ(G′′) 6 γ(G′).
By iterating this second reduction, we can identify an optimal solution. By
construction, this will take γ(G)− 1 such iterated reductions.

For Πi we devise the following reduction for deciding whether there is a
minimum independent dominating set in G containing v: consider G′′′ obtained
from G by removing N [v]. Then i(G) = i(G′′′) + 1 if and only if v belongs to
some optimal solution. Indeed, suppose i(G) = i(G′′′) + 1 and take a minimum
independent dominating set IDS′′′ of G′′′. Then IDS′′′∪{v} is an independent
dominating set of G of value i(G). Conversely, if an optimal solution IDS
contains v, then IDS \ {v} is an independent dominating set of G′′′. Note
moreover that α(G′′′) 6 α(G) and that i(G′′′) 6 i(G) + 1 for any considered
graph G′′′. Here we simply need to iterate the process on the remaining graph.

Both reductions satisfy the conditions of Definition 2, which concludes the
proof.

Note that the previous reduction does not work for (Πγ , i), which needs a
different reduction.

Proposition 6. (Πγ
c , i) 6FPT (Πγ

v , i).

Proof. Consider a graph G = (V,E) and a set of vertices V ′ ⊂ V . We consider
the graph GV ′ obtained from G by adding a stable set V ′′, |V ′′| = |V ′| and a
perfect matching between V ′ and V ′′. Then, using similar arguments to those
for Proposition 5, we have: γ(GV ′) = γ(G) if and only if there is a minimum
dominating set containing V ′. If such a V ′ is known and |V ′| < γ(G), then one
can find a new vertex v /∈ V ′ to include in the solution by testing the value of
γ(GV ′∪{v}). Since for all considered cases i(GV ′) 6 |V ′|+ i(G) 6 γ(G)+ i(G) 6
2i(G) this provides the required reduction.

To summarize, in this section we have shown the equivalence between con-
structive and non-constructive optimization for all problems and parameters

9

considered in Table 1.
Note that, if (Πc, p) 6FPT (Πv, p), then positive (FPT) and hardness results

equivalently hold for one or the other version. Consequently, in the two following
sections, the version is not specified in the results. So, by Proposition 1, we can
consider that FPT results hold for the constructive version and hardness results
hold for the decision version.

3 Main results

3.1 Tractability results

We first recall the following inequalities, which will be useful in many of the
proofs in this section.

α+ τ = n

α > i > γ

∆+ 1 > χ > ω

τ > ν

Proposition 7. Πν ,Πω,Πα,Πτ and Πχ are FPT(τ) and FPT(ν).

Proof. Since τ > ν, we only need to prove that these problems are FPT(ν).
The problem Πν , it is known to be FPT(ν) [7]. For all of the remaining

problems, we start by finding a minimum feedback vertex set F ∗ in running
time O∗(f(ν)).

Next, we consider the maximum clique problem Πω. A clique contains at
most two vertices from the forest V \F ∗. For each subset C ⊂ F ∗ which induces
a clique, we search for two adjacent vertices v, v′ which are also adjacent to every
vertex of C, and add them to C. If we cannot find such a pair, we look for a single
vertex adjacent to every vertex of C, and add it to C. If we cannot find such a
vertex, we simply keep C. Finally, we return the largest clique constructed in
this way. This algorithm has running time bounded above by O∗(f(ν)2ν).

Next, we consider the problem Πα. For each subset S ⊂ F ∗ which is indepen-
dent, we can discard N(S) and use a greedy algorithm to compute a maximum
independent set on the remaining forest in polynomial time. This algorithm has
running time bounded above by O∗(f(ν)2ν). Since τ = n− α, this also proves
the corresponding result for Πτ .

Finally, we show how to solve Πχ. Notice that χ(F ∗) 6 χ(G) 6 χ(F ∗)+2 6

ν + 2. We take each value of k = 1, . . . , ν + 2 in turn and test if G has a k-
colouring. To do this, we first find every k-colouring of F ∗ (which can be done
in O∗(kν) time). For each such colouring, we test if it extends to a k-colouring
of G. To do this, we try to find a k list-colouring of the forest V \F ∗. The list of
admissible colours of a vertex L(v) is those for which no neighbour u ∈ N(v) is
of that colour. This list-colouring problem can be solved in polynomial time [10].

10

Note that the algorithm will always find a valid k-colouring when k = ν+2. This
whole procedure runs in FPT time when parameterized by ν. This completes
the proof.

Suppose T1 and T2 are vertex-disjoint trees rooted at v1 and v2, respectively.
Let T1 ← T2 be the tree rooted at v1 obtained by taking the disjoint union of T1

and T2 and then joining v1 to v2 with an edge. Note that every rooted tree
can be built from its vertex set using just this operation. Moreover, such a
representation for a tree can easily be computed in linear time.

Proposition 8. Πγ and Πi are FPT(ν) and FPT(τ).

Proof. Again, we need only to prove that the problems are FPT(ν). We start
with the Πγ case. Consider a graph G = (V,E). Since Πν ∈ FPT(ν), we can
compute a feedback vertex set F ∗ with running time O∗(f(ν)). Fix some subset
D ⊂ F ∗, that we assume to be the restriction of the minimum dominating set
to F ∗.

We now run a dynamic programming algorithm. Note that G[V \ F ∗] is a
forest. For a rooted tree T (with root vertex v) which is a subtree of a tree in
G[V \F ∗], a set S ⊆ F ∗ and a value d ∈ {0, 1, 2}, we define A(T, S, d) to be the
minimum size of a set D′ ∈ V (T) such that N [D ∪D′] ∩ F ∗ = S, and:

• if d = 0, D′ includes the vertex v and D ∪D′ dominates every vertex in
T ;

• if d = 1, D′ does not include the vertex v, but D ∪ D′ dominates every
vertex in T ;

• if d = 2, D∪D′ dominates every vertex in T \ {v}, but does not dominate
v.

If, for some choice of T, v, S, d no such set D′ exists, we set A(T, S, d) =∞.
Now, for each tree T in the forest G\F ∗, we choose an arbitrary root vertex v

and find a decomposition of T using ← operations.
Let T ′ be a subtree (rooted at v′) of T that occurs in the decomposition.

We will show how to calculate the value of A(T ′, S, d) for every possible choice
of S and d.

First, as a base case, we suppose that T ′ consists of only a single vertex v′. If
d = 0, this corresponds to the case where D′ = {v′}. Thus we set A(T ′, S, 0) = 1
if S = N [D∪{v′}]∩F ∗ and A(T ′, S, 0) =∞ otherwise. If d = 1, this corresponds
to the case where D′ = ∅ and v′ has a neighbour in D. Thus if v′ has a
neighbour in D, we set A(T ′, N [D] ∩ F ∗, 1) = 0. If v′ has no neighbour in D
or S 6= N [D] ∩ F ∗, we set A(T ′, S, 1) = ∞. If d = 2, this corresponds to the
case where D′ = ∅ and v′ does not have a neighbour in D. Thus if v′ has no
neighbour in D, we set A(T ′, N [D] ∩ F ∗, 2) = 0. If v′ has a neighbour in D or
S 6= N [D] ∩ F ∗, we set A(T ′, S, 2) =∞.

Now suppose that T ′ (rooted at v′) contains more than one vertex. Then
T ′ = T1 ← T2 for some T1, T2 rooted at v1, v2 respectively, say. Note that

11

v1 = v′, by definition of←. We now show how to calculate A(T ′, S, d) given the
values for A(T1, S

′, d′) and A(T2, S
′, d′) for all possible choices of S′ and d′.

If d = 0, this corresponds to the case where D′ contains v′. Consider the
restriction of D′ to T1. We must have that T1 is dominated by (D′∩V (T1))∪D
and that it contains the root vertex of v1. In other words, this restriction must
correspond to the A(T1, S1, 0) case for some S1. In this case, any valid D′

for T ′ must dominate all of T1 and all of T2. Since v′ ∈ D′, we know that v2
is dominated by v′. Now consider the restriction of D′ to T2. We must have
that (D′ ∩ V (T2)) ∪D dominates V (T2) \ {v2}. Since v1 is adjacent to v2 and
is present in D′, vertex v2 may or may not be present in D′ and it may or may
not be dominated by (D′ ∩ V (T2)) ∪ D. This corresponds to the A(T1, S2, d

′)
case for some S2 and some d′ ∈ {0, 1, 2}. We therefore set A(T ′, S, 0) to be the
minimum of {A(T1, S1, 0) +A(T2, S2, d

′)|d′ ∈ {0, 1, 2}, S1 ∪ S2 = S}.
If d = 1, this corresponds to the case where v1 6∈ D′, but v1 is domi-

nated by a member of D′. This dominating vertex must either be in D ∪
(V (T1) ∩ D′) or it must be v2. The restrictions of D′ to T1 and T2 therefore
correspond to A(T1, S1, 1) and A(T2, S2, d

′) for some d′ ∈ {0, 1} and some S1

and S2 or they correspond to A(T1, S1, 2) and A(T2, S2, 0) for some S1 and S2.
Therefore, A(T ′, S, 1) is the minimum of {A(T1, S1, d1)+A(T2, S2, d2)|(d1, d2) ∈
{(1, 0), (1, 1), (2, 0)}, S1 ∪ S2 = S}.

If d = 2, this corresponds to the case where T ′ \ {v1} is dominated by
D ∪D′, but v1 is not dominated by D ∪D′. This means that neither v1 nor v2
are present in D′. The restriction of D′ to T1 must be such that D ∪ (D′ ∩
V (T1)) does not dominate v1, which corresponds to the A(T1, S1, 2) case, for
some S1. However, v2 must be dominated by a vertex in D ∪ (D′ ∩ V (T2)).
This corresponds to the A(T2, S2, 1) case. Thus A(T ′, S, 2) is the minimum of
{A(T1, S1, 2) +A(T2, S2, 1)|S1 ∪ S2 = S}.

Using the above recursion, we can calculate the value of A(T ′, S, d) for every
rooted tree T ′ in G[V (G)\F ∗] in FPT time (with parameter ν). We label these
trees T1, . . . , Tk.

Now, for S ⊆ F ∗ and i 6 k, let B(i, S) be the size of the smallest set
D′ ∈ V (T1) ∪ · · · ∪ V (Ti) such that N [D ∪D′] ∩ (F ∗ ∪ V (T1) ∪ · · · ∪ V (Ti)) =
S∪V (T1)∪· · ·∪V (Ti). Note that B(0, S) = 0 if S = N [D]∩F ∗ and∞ otherwise.
Furthermore, for i > 1, B(i, S) is the minimum of {B(i−1, S1)+A(Ti, S2, d)|S1∪
S2 = S, d ∈ {0, 1}}. The minimum size of a dominating set whose intersection
with F ∗ is D is then |D| + B(k, F ∗). All these calculations can be done in
FPT time with parameter ν. We thus branch over all possible choices of D and
then, for each such choice, find the size of the minimum dominating set whose
intersection with F ∗ is D.

The argument for Πi is similar. Again, we start by finding a minimal feed-
back vertex set F ∗, but this time, we only considerD ⊆ F ∗ that are independent.
We define A′(T, S, d) in the same way as A(T, S, d), except that now we only
consider sets D′ such that D ∪D′ is independent.

We now explain how to calculate A′(T, S, d) for the tree T , rooted at v.
Again, we first consider the case where T contains a single vertex. If d = 0, this

12

corresponds to the case where D′ = {v}. D ∪ D′ must be independent, so v
cannot have any neighbours inD. Therefore, we set A′(T, S, 0) = 1 if S = N [D∪
{v}]∩F ∗ and v has no neighbours in D. Otherwise, we set A′(T ′, S, 0) =∞. If
d = 1, this corresponds to the case where D′ = ∅ and v has a neighbour in D.
We therefore set A′(T, S, 1) = 0 if S = N [D] ∩ F ∗ and v has a neighbour in D.
Otherwise, we set A′(T, S, 1) =∞. If d = 2, this corresponds to the case where
D′ = ∅ and v does not have a neighbour in D. We therefore set A′(T, S, 2) = 0
if S = N [D] ∩ F ∗ and v does not have a neighbour in D. Otherwise, we set
A′(T ′, S, 2) =∞.

Now consider the case where T contains more than two vertices. Again, it
must be of the form T1 ← T2, where T1 and T2 are trees rooted at v1 and v2,
respectively, say. We now show how to calculate A′(T, S, d). If d = 0, this
corresponds to the case where v1 ∈ D′. Note that D∪D′ must be independent,
so v2 6∈ D′. Vertex v1 dominates v2, so the restriction of C∪D

′ to D∪T2 may or
may not dominate v2. Therefore A′(T, S, 0) is the minimum of {A′(T1, S1, 0) +
A′(T2, S2, d

′)|S1 ∪ S2 = S, d′ ∈ {1, 2}}. If d = 1, this corresponds to the case
where v1 6∈ D′, but it is dominated by either D or v2. Therefore, as for the case
of Πγ , A′(T, S, 1) is the minimum of {A′(T1, S1, d1) + A′(T2, S2, d2)|(d1, d2) ∈
{(1, 0), (1, 1), (2, 0)}, S1 ∪ S2 = S}. Similarly, A′(T, S, 2) is the minimum of
{A′(T1, S1, 2) +A′(T2, S2, 1)|S1 ∪ S2 = S}.

Finally, we define B′(i, S) for the Πi problem as we did B(i, S) for the Πγ

problem, except that we now demand that D ∪D′ is independent. In the forest
V (G) \ F ∗, no vertex of any tree can be adjacent to a vertex in different tree.
Therefore, the algorithm for calculating B′(i, S) from A′(T, S, d) is identical to
that calculating B(i, S) from A(T, S, d) for Πγ . We complete the proof in the
same way as for Πγ .

3.2 Intractability results

We now prove the negative results claimed in Table 1.

Proposition 9. The following hold:

1. Πα, Πγ , Πχ, Πi, Πν are /∈XP(χ) and /∈XP(ω);

2. Πω and Πχ are /∈XP(α);

3. Πi is /∈XP(γ);

4. Πα,Πτ ,Πω,Πχ and Πν are /∈XP(γ) and /∈XP(i).

Proof. All these results are a consequence of the fact that these problems re-
main NP-hard if the related parameter is bounded, as shown in the proof of
Proposition 3.

Proposition 10. The following hold:

1. Πω is W[1](χ)-hard;

13

2. Πα,Πτ and Πν are W[1](α)-hard.

Proof. Claim 1 follows immediately from the W[1]-completeness of multi-co-

lour clique. This problem asks: given a graph G, and a colouring of G
with k colours, does G contain a clique on k vertices? Given an instance (G, k)
of multi-colour clique, we delete any edges both of whose endpoints are the
same colour. The resulting graph G′ has χ 6 k. Our instance of multi-colour

clique is a yes-instance if and only if G′ has a clique on k vertices.
For Claim 2, let G(V,E) be a graph and G(V,E) its complement, (i.e. e ∈

E ⇔ e /∈ E). Since α(G) = ω(G) and ω(G) = α(G), the result for Πα and Πτ

is an immediate consequence of Πω ∈W[1](ω)-hard.
We now prove the Πν case. Given a graph G = (V,E), we define G′ to be

the product of G with a single edge, i.e. G′ = (V ′, E′), where V ′ = V1 ∪ V2 and
E′ = {((v, 1), (v, 2))|v ∈ V } ∪ {((v, i), (u, i))|i ∈ {1, 2}, uv ∈ E}.

We claim that α(G′) = α(G), ν(G′) = 2(|V |−α(G)). It is straightforward to
verify that α(G′) = α(G). Moreover, for any graph G of order n, we have that
n−ν(H)

2 6 α(H), so ν(G′) > |V (G′)| − 2α(G′) = 2(|V | − 2α(G)). On the other
hand, for a stable set S of G, S × {1, 2} induces a forest (in fact a matching)
and consequently ν(G′) 6 2(|V | − α(G)). This completes the proof, since Πα is
W[1](α)-hard.

Proposition 11. Πγ and Πi are W[2]-hard(α) and W[2]-hard(i).

Proof. Since i 6 α, we need only prove that the problems are W[2]-hard(α).
We prove the result for the problem Πi. Similarly to the case above, given
a graph G = (V,E), and k ∈ {1, . . . , |V |}, we define Gk = (Vk, Ek), where
Vk = V1 ∪ · · · ∪ Vk, Vi = V × {i} and Ek = E1 ∪ · · · ∪ Ek ∪ E′, where (Vi, Ei)
induce cliques and E′ = {((u, i), (v, j)), i, j ∈ {1, . . . , k}, i 6= j, v ∈ NG[u]}.

The following claims then hold:

1. if Dk is an independent dominating set of Gk and Dk ∩ Vj = ∅ for some
j ∈ {1, . . . , k} then {v, ∃i, (v, i) ∈ Dk} is an independent dominating set
of G;

2. α(Gk) 6 k;

3. if k > i(G) then i(Gk) = i(G).

The first two claims are obvious. In order to prove the third claim, note that
if {a1, . . . , ai(G)} is an independent dominating set in G, then {(aj , j), j =
1, . . . , i(G)} is an independent dominating set for Gk. Applying the first claim
completes the proof.

Thus, given an oracle O for (Πi, α), we find a minimum independent dom-
inating set for G1, G2, . . . until such a set has no vertex in some Vi. (We
can do this since the constructive and non-constructive versions are equiva-
lent, due to Proposition 6.) The process will finish for Gk, k 6 i(G) + 1 and
since for j 6 i(G) + 1, we have that α(Gj) 6 j 6 i(G) + 1, we find that
(Πi, i) 6FPT (Πi, α). Thus Πi is indeed W[2]-hard(α). The corresponding
result for Πγ follows similarly.

14

4 Conclusion

We have studied the cross-parameterization of min vertex cover, max inde-

pendent set, max clique, min coloring, min dominating set, min inde-

pendent dominating set and min feedback vertex set. We are aware of
the fact that most of the parameters handled in the paper cannot determined in
FPT time and that our study is limited to only seven problems and parameters.
However, our goal was rather structural than purely algorithmic. We have tried
to show that cross-parameterization provides a somewhat deeper insight to the
real nature of the parameterized (in)tractability of the problems handled and
helps us to better comprehend it.

As one can see in Table 1, any of the problems tackled is FPT with respect
to both τ (the standard parameter of min vertex cover) and ν (the standard
parameter of min feedback vertex set). A natural question to be studied
is whether or not there exist natural graph problems that are hard for either τ
or ν.

Finally, let us note that cross-parameterization can be applied in many cate-
gories of combinatorial optimization problems defined on several structures (and
not only on graphs). For instance, what is the parameterized complexity of min

set cover with respect to the standard parameter of max set packing or to
that of min hitting set? What are the complexities of the two latter problems
with respect to the two remaining parameters?

References

[1] J. Buss and J. Goldsmith. Nondeterminism within p. SIAM Journal on
Computing, 22(3):560–572, 1993.

[2] M.R. Cerioli, L. Faria, T.O. Ferreira, C.A.J. Martinhon, F. Protti, and
B. Reed. Partition into cliques for cubic graphs: Planar case, complex-
ity and approximation. Discrete Applied Mathematics, 156(12):2270–2278,
2008.

[3] M. Demange and J. Lorenzo. Approximating values and solutions of NP-
optimization problems: concepts and examples. Foundations of Computing
and Decision Sciences, 26(2):145–168, 2001.

[4] R. Downey and M. Fellows. Fixed-parameter tractability and completeness.
Congressus Numerantium, 87:161–178, 1992.

[5] R. G. Downey and M. R. Fellows. Parameterized complexity. Monographs
in Computer Science. Springer, New York, 1999.

[6] R.G. Downey and M.R. Fellows. Fixed-parameter tractability and com-
pleteness II: On completeness for W[1]. Theoretical Computer Science,
141(1–2):109–131, 1995.

15

[7] R.G. Downey and M.R. Fellows. Parameterized computational feasibil-
ity. In P. Clote and J. B. Remmel, editors, Feasible Mathematics II, vol-
ume 13 of Progress in Computer Science and Applied Logic, pages 219–244.
Birkhäuser Boston, 1995.

[8] J. Flum and M. Grohe. Parameterized complexity theory. Texts in Theo-
retical Computer Science. Springer-Verlag, 2006.

[9] M. R. Garey and D. S. Johnson. Computers and intractability. A guide to
the theory of NP-completeness. W. H. Freeman, San Francisco, 1979.

[10] K. Jansen and P. Scheffler. Generalized coloring for tree-like graphs. Dis-
crete Applied Mathematics, 75(2):135–155, 1997.

[11] L. Lovász. Coverings and coloring of hypergraphs. Utilitas Math., pages
3–12, 1973. Proceedings of the Fourth Southeastern Conference on Com-
binatorics, Graph Theory, and Computing.

[12] R. Niedermeier. Invitation to fixed-parameter algorithms. Oxford Lecture
Series in Mathematics and its Applications. Oxford University Press, Ox-
ford, 2006.

[13] A. Paz and S. Moran. Non deterministic polynomial optimization problems
and their approximations. Theoretical Computer Science, 15(3):251–277,
1981.

[14] L. Stockmeyer. Planar 3-colorability is polynomial complete. SIGACT
News, 5(3):19–25, July 1973.

16

	Première page cahier.pdf
	Page 1

