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À Jean-Pierre Jouanolou, avec admiration et amitié

We first provide here a very short proof of a refinement of a theorem of Kodiyalam

and Cutkosky, Herzog and Trung on the regularity of powers of ideals. This result

implies a conjecture of Hà and generalizes a result of Eisenbud and Harris

concerning the case of ideals primary for the graded maximal ideal in a standard

graded algebra over a field. It also implies a new result on the regularities of

powers of ideal sheaves. We then compare the cohomology of the stalks and the

cohomology of the fibers of a projective morphism to the effect of comparing the

maximums over fibers and over stalks of the Castelnuovo–Mumford regularities

of a family of projective schemes.

1. Introduction

An important result of Kodiyalam and Cutkosky, Herzog and Trung states that the

Castelnuovo–Mumford regularity of the power I t of an ideal over a standard graded

algebra is eventually a linear function in t . The leading term of this function has

been determined by Kodiyalam in his proof.

This result was first obtained for standard graded algebras over a field, and later

extended by Trung and Wang to standard graded algebras over a Noetherian ring.

We first provide here a very short proof of a refinement of this result.

Theorem 1.1. Let A be a positively graded Noetherian algebra, M 6= 0 be a finitely
generated graded A-module, I be a graded A-ideal, and set

d := min{µ | there exists p, (Iµ)I
p M = I p+1 M}.

Then
lim

t!1
(end(H i

A+
(I t M))+ i − td) 2 Z [ {−1}

exists for any i , and is at least equal to the initial degree of M for some i.
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The end of a graded module H is end(H) := sup{µ | Hµ 6= 0} if H 6= 0 and −1

otherwise. Recall that for a graded A-module N , reg(N )= maxi {end(H i
A+
(N ))+i}.

Very interesting examples showing hectic behavior of the value of

ai (t) := end(H i
A+
(I t))

as t varies were given in [Cutkosky 2000]. These examples point out that the

existence of the limit quoted above does not imply that all of the functions ai (t)
are eventually linear functions of t . It only implies that at least one of them is

eventually linear in t . For instance, in the examples given by Cutkosky, the limit in

the theorem is −1 for all i 6= 0.

More recently, Eisenbud and Harris proved that in the case of a standard graded

algebra A over a field, for a graded ideal that is A+-primary and generated in a single

degree, the constant term in the linear function is the maximum of the regularity

of the fibers of the morphism defined by a set of minimal generators. In a recent

preprint, Huy Tài Hà [2011, 1.3] generalized this result by proving that if an ideal is

generated in a single degree d , a variant of the regularity (the a⇤-invariant) satisfies

a⇤(I t)= dt + a for t ) 0, where a can be expressed in terms of the maximum of

the values of a⇤ on the stalks of the projection ⇡ from the closure of the graph of

the map defined by the generators to its image. He conjectures that a similar result

holds for the regularity.

In Theorem 5.3 we prove this conjecture of Hà. More precisely, we show that

the limit in the theorem above is the maximum of the end degree of the i-th local

cohomology of the stalks of ⇡ , for ideals generated in a single degree. This holds

for graded ideals in a Noetherian positively graded algebra.

An interesting, and perhaps surprising, consequence of this result is the following

result on the limit of the regularity of saturation of powers, or equivalently of powers

of ideal sheaves, in a positively graded Noetherian algebra:

Corollary 1.2. Let I be a graded ideal generated in a single degree d. Then,

lim
t!1

(reg((I t)sat)− dt)

exists and the following are equivalent:

(i) the limit is nonnegative,

(ii) the limit is not −1,

(iii) the projection ⇡ from the closure of the graph of the function defined by minimal
generators of I to its image admits a fiber of positive dimension.

This can be applied to ideals generated in degree at most d , replacing I by I≥d .

It gives a simple geometric criterion for an ideal I generated in degree (at most)

d to satisfy reg((I t)sat)= dt + b for t ) 0: This holds if and only if there exists a
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subvariety V of the closure of the graph that is contracted in its projection to the

closure of the image (that is, dim(⇡(V )) < dim V ). A very simple example is the

following. In a polynomial ring in n + 1 variables, any graded ideal generated by

n forms of the same degree d satisfies reg((I t)sat)= dt + b for t ) 0, with b ≥ 0.

The same result holds if a reduction of the ideal is generated by at most n elements

(in other words, if the analytic spread of I is at most n).

The result of Eisenbud and Harris is stated in terms of regularity of fibers. For

a finite morphism, there is no difference between the regularity of stalks and the

regularity of fibers. This follows from the following result that is likely part of

folklore, but that we didn’t find in several of the classical references in the field:

Lemma 1.3. Let (R,m, k) be a Noetherian local ring, S := R[X1, . . . , Xn] be a
polynomial ring over R with deg X i > 0 and M be a finitely generated graded
S-module. Set d := dim(M ⌦R k). Then H i

S+
(M) = 0 for i > d and the natural

graded map H d
S+
(M)⌦R k ! H d

S+
(M ⌦R k) is an isomorphism.

For morphisms that are not finite or flat, the situation is more subtle — see

Proposition 6.3. We show that for families of projective schemes that are close to

being flat (if the Hilbert polynomial of any two fibers differ at most by a constant,

in the standard graded situation), the maximum of the regularities of stalks and the

maximum of the regularities of fibers agree. Also the maximum regularity of stalks

bounds above the one for fibers under a weaker hypothesis. Putting this together

provides a collection of results that covers the results obtained in [Eisenbud and

Harris 2010; Hà 2011]. See Theorem 6.11.

To simplify the statements, we introduce the notion of regularity over a scheme,

generalizing the usual notion of regularity with reference to a polynomial extension

of a ring. This is natural in our situation: The family of schemes given by the

closure of the graph over the parameter space given by the closure of the image of

our map, considered as a projective scheme, is a key ingredient of this study.

2. Notation and general setup

Let R be a commutative ring and S a polynomial ring over R in finitely many

variables.

If S is Z-graded, R ⇢ S0, and X1, . . . , Xn are the variables with positive degrees,

the Čech complex #
•
(S+)
(M) with

#
0
(S+)
(M)= M and #

i
(S+)
(M)=

M

j1<···< ji

MX j1 ···X ji
for i > 0

is graded whenever M is a graded S-module.



4 Marc Chardin

There is an isomorphism H i
(S+)
(M)' H i (#•

(S+)
(M)) for all i , which is graded if

M is. One then defines two invariants attached to such a graded S-module M :

ai (M) := sup{µ | H i
(S+)
(M)µ 6= 0}

if H i
(S+)
(M) 6= 0 and ai (M) := −1 otherwise, and

b j (M) := sup{µ | TorS
j (M, S/(S+))µ 6= 0}

if TorS
j (M, S/(S+)) 6= 0 and b j (M) := −1 otherwise. Notice that ai (M)= −1

for i > n and b j (M)= −1 for j > n. The Castelnuovo–Mumford regularity of a

graded S-module M is then defined as

reg(M) := max
i

{ai (M)+ i} = max
j

{b j (M)− j} + n − σ

where σ is the sum of the degrees of the variables with positive degrees. Other

options are possible, in particular when S is not standard graded (when σ 6= n).

Another related invariant is

a⇤(M) := max
i

{ai (M)} = max
j

{b j (M)} − σ.

The following classical result is usually stated for positive grading.

Theorem 2.1. Let S be a finitely generated Z-graded algebra over a Noetherian
ring R ✓ S0 and M be a finitely generated graded S-module. Assume S is generated
over R by elements of nonzero degree. Then, for any i ,

(i) ai (M) 2 {−1} [ Z,

(ii) the R-module H i
(S+)
(M)µ is finitely generated for any µ 2 Z.

Proof. S is an epimorphic image of a polynomial ring S0 over R by a graded

morphism. Considering M as an S0-module, one has H i
(S+)
(M)' H i

(S0
+)
(M) via the

natural induced map, so that we may replace S by S0 and assume that

S = R[Y1, . . . , Ym, X1, . . . , Xn]

with deg Yi  −1 and deg X j ≥ 1 for all i and j . We recall that H i
(S+)
(S) = 0 for

i < n and H n
(S+)
(S)= (X1 · · · Xn)

−1 R[Y1, . . . , Ym, X−1
1 , . . . , X−1

n ], and notice that

H n
(S+)
(S)µ is a finitely generated free R-module for any µ.

Let F• be a graded free S-resolution of M with Fi finitely generated. Both

spectral sequences associated to the double complex #
•
(S+)

F• degenerate at step 2

and provide graded isomorphisms

H i
(S+)
(M)' Hn−i (H

n
(S+)
(F•)),
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which shows that H i
(S+)
(M)µ is a subquotient of H n

(S+)
(Fn−i )µ and hence a finitely

generated R-module that is zero in degrees greater than −n + bn−i , where b j is the

highest degree of a basis element of F j over S. ⇤

3. Regularity over a scheme

Local cohomology and the torsion functor commute with localization on the base R,

providing natural graded isomorphisms for a graded S-module M :

H i
(S⌦R Rp)+

(M ⌦R Rp)' H i
S+
(M)⌦R Rp

and

Tor
S⌦R Rp

i (M ⌦R Rp, Rp)' TorS
i (M, R)⌦R Rp.

Hence ai (M)= supp2Spec(R) ai (M ⌦R Rp) and b j (M)= supp2Spec(R) b j (M ⌦R Rp).

It follows that the regularity is a local notion on R:

reg(M)= sup
p2Spec(R)

reg(M ⌦R Rp).

These supremums are maximums whenever reg(M) < +1, for instance if R is

Noetherian and M is finitely generated. The same holds for a⇤(M).
In the following, this definition is extended in a natural way to the case where

the base is a scheme.

Definition 3.1. Let Y be a scheme, % be a locally free 2Y -module of finite rank,

and ^ be a graded sheaf of SymY (%)-modules. Then

ai (^) := sup
y2Y

ai (^ ⌦2Y 2Y,y) and reg(^) := max
i

{ai (^)+ i}.

If % is free, SymY (%)= 2Y [X1, . . . , Xn], and the definition of regularity above

makes sense for nonstandard grading.

A closed subscheme Z of Proj(SymY (%)) corresponds to (Z , a unique graded

SymY (%)-ideal sheaf saturated with respect to SymY (%)+. We set

ai (Z) := sup
y2Y

ai (2Y,y[X0, . . . , Xn]/((Z ⌦2Y 2Y,y))

(notice that a0(Z)= −1) and reg(Z) := maxi {ai (Z)+ i}.

The following proposition is immediate from the definition and the corresponding

results over an affine scheme.

Proposition 3.2. Assume Y is Noetherian, % is a locally free coherent sheaf on Y
and ^ 6= 0 is a coherent graded sheaf of SymY (%)-modules. Then reg(^) 2 Z. If
Z 6= ∅ is a closed subscheme of P

n−1
Y , then reg(Z)≥ 0.
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4. First result on cohomology of powers

We now prove the first statement of our text on cohomology of powers of ideals. It

refines earlier results on the regularity of powers [Kodiyalam 2000; Cutkosky et al.

1999; Trung and Wang 2005]. The argument is based on Theorem 2.1 applied to a

Rees algebra and a lemma due to Kodiyalam.

Theorem 4.1. Let A be a positively graded Noetherian algebra, M 6= 0 be a finitely
generated graded A-module, I be a graded A-ideal, and set

d := min{µ | there exists p, (Iµ)I
p M = I p+1 M}.

Then

lim
t!1

(ai (I t M)+ i − td) 2 Z [ {−1}

exists for any i , and is at least equal to indeg(M) for some i .

Proof. Set J := Id and write J = (g1, . . . , gs) with deg gi = d for 1  i  m and

deg gi < d otherwise. Let

5J :=
L
t≥0

J (d)t =
L
t≥0

J t(td) and 5I :=
L
t≥0

I (d)t =
L
t≥0

I t(td),

and S0 := A0[T1, . . . , Tm], S := S0[Tm+1, . . . , Ts, X1, . . . , Xn], with deg(Ti ) :=

deg(gi )−d . Setting bideg(Ti ) := (deg(Ti ), 1) and bideg(X j ) := (deg(X j ), 0), one

has Jdeg(gi ) = (5J )deg gi −d,1 and hence a bigraded onto map

S ! 5J , Ti 7! gi .

As M5I is finite over 5J according to the definition of d , the bigraded embedding

5J ! 5I makes M5I a finitely generated bigraded S-module.

The equality of graded A-modules H i
(S+)
(M5I )(⇤,t)= H i

A+
(M5I )(⇤,t) shows that

H i
(S+)
(M5I )(µ,t) = H i

A+
((M5I )(⇤,t))µ = H i

A+
(M I t)µ+td .

By Theorem 2.1(i), ai (M5I ) <+1 and the equalities above show

ai (M I t) td + ai (M5I ),

and that equality holds for some t .
Furthermore, Theorem 2.1(ii) shows that Ki,µ := H i

(S+)
(M5I )(µ,⇤) is a finitely

generated graded S0-module (for the standard grading deg(Ti )= 1). It follows that

H i
(S+)
(M5I )(µ,t) = 0 for t ) 0 if and only if Ki,µ is annihilated by a power of

n := (T1, . . . , Tm). Hence

lim
t!+1

(ai (M I t)− td)= −1
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if Ki,µ is annihilated by a power of n for every µ ai (M5I ), and otherwise

lim
t!+1

(ai (M I t)− td)= max{µ | Ki,µ 6= H 0
n (Ki,µ)}.

As reg(M I t)≥ end(M I t/A+M I t), the last claim follows from the next lemma,

due to Kodiyalam. ⇤

Lemma 4.2. With the hypotheses of Theorem 4.1,

end(M I t/A+M I t)≥ indeg(M)+ td for all t.

Proof. The proof goes along the same lines as in the proof of [Kodiyalam 2000,

Proposition 4]. The needed graded version of Nakayama’s lemma does apply. ⇤

5. Cohomology of powers and cohomology of stalks

The following result is a more elaborated, and more technical, version of Theorem 4.1

that essentially follows from its proof. It implies a conjecture of Hà on the regularity

of powers of ideals, and refines the main result in [Hà 2011]. We will see later that,

combined with a result on the regularity of stalks and fibers of a morphism, it also

implies the result in [Eisenbud and Harris 2010].

Proposition 5.1. Let A be a positively graded Noetherian algebra, M be a finitely
generated graded A-module, I be a graded A-ideal and J ✓ I be a graded ideal
such that J I p M = I p+1 M for some p.

Assume that the ideal J is generated by r forms f1, . . . , fr of respective degrees
d1 = · · ·= dm > dm+1 ≥ · · ·≥ dr . Set d := d1, deg(Ti ) := deg( fi )−d , bideg(Ti ) :=

(deg(Ti ), 1) and bideg(a) := (deg(a), 0) for a 2 A. Consider the natural bigraded
morphism of bigraded A0-algebras

S := A[T1, . . . , Tr ]
 

−! 5I :=
L
t≥0

I (d)t =
L
t≥0

I t(dt),

sending Ti to fi , and the bigraded map of S-modules

M[T1, . . . , Tr ]
1M⌦A 
−−−−! M5I :=

L
t≥0

M I t(dt).

Let B := A0[T1, . . . , Tm] and B 0 := B/ annB(ker(1M ⌦A  )).
Then,

lim
t!+1

(ai (M I t)− td)= max
q2Proj(B 0)

{ai (M5I ⌦B 0 B 0
q)}.

Proof. First remark that in the proof of Theorem 4.1 we only need the equality

J I p M = I p+1 M for some p (as a consequence, for all p big enough). We have

shown there that

lim
t!+1

(ai (M I t)− td)= −1, (⇤)
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if and only if the finitely generated B-module H i
(S+)
(M5I )(µ,⇤) is supported in

V (T1, . . . , Tm) for any µ. As local cohomology commutes with flat base change

and elements in B have degree 0,

H i
(S+)
(M5I )(µ,⇤) ⌦B 0 B 0

q = H i
(S+)
(M5I ⌦B 0 B 0

q)(µ,⇤);

hence (⇤) holds if and only if H i
(S+)
(M5I ⌦B 0 B 0

q) = 0 for any q 2 Proj(B 0). On

the other hand, if this does not hold, there exists µ0 the maximum value such that

H i
(S+)
(M5I )(µ0,⇤) is not supported in V (T1, . . . , Tm), and choosing q 2 Proj(B 0)\

Supp(H i
(S+)
(M5I )(µ0,⇤)) shows that both members in the asserted equality are equal

to µ0. ⇤

Remark 5.2. In the proposition above, as well as in other places in this text, we

localize at homogeneous primes q 2 Proj(C) for some standard graded algebra C ,

in other words, at graded prime ideals that do not contain C+. We may as well

replace these localizations by the degree zero part of the localization at such a

prime ideal, usually denoted by C(q): The multiplication by an element ` 2 C1 \ q

induces an isomorphism (Cq)µ ' (Cq)µ+1 for any µ. Hence, for any C-module M ,

M ⌦C Cq = 0 if and only if M ⌦C C(q) = 0.

In the equal degree case, the following corollary, which we state in a more

geometric fashion, implies the conjecture of Hà [2011].

Theorem 5.3. Let A := A0[x0, . . . , xn] be a positively graded Noetherian algebra
and I be a graded A-ideal generated by m+1 forms of degree d. Set Y := Spec(A0)

and X := Proj(A/I )⇢ Proj(A)✓ P̃
n
Y . Let φ : P̃

n
Y \ X ! P

m
Y be the corresponding

rational map, W be the closure of the image of φ, and

0 ⇢ P̃
n
W ✓ P̃

n
P

m
Y

= P̃
n
Y ⇥Y P

m
Y

be the closure of the graph of φ. Let ⇡ : 0 ! W be the projection induced by the
natural map P̃

n
P

m
Y

! P
m
Y . Then

lim
t!+1

(ai (I t)− dt)= ai (0).

Proof. Choose J := I and M := A in Proposition 5.1. The equality

lim
t!+1

(ai (I t)− dt)= ai (0)

directly follows from the conclusion of Proposition 5.1 according the definition of

ai (0) for 0 ⇢ P̃
n
W given in Definition 3.1. ⇤
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6. Cohomology of stalks and cohomology of fibers

We will now compare the cohomology of stalks and of fibers of a projective

morphism, in order to compare their Castelnuovo–Mumford regularities. It will

need results on the support of Tor modules. These are likely part of folklore.

However, we include a proof as we did not find a reference that properly fits our

exact need.

Lemma 6.1. Let R ! S be a homomorphism of Noetherian rings, M be a finitely
generated S-module and N be a finitely generated R-module.

Then the S-modules TorR
q (M, N ) are finitely generated over S and

(i) SuppS(TorR
q (M, N ))✓ SuppS(M ⌦R N ) for any q,

(ii) if further (R,m) is local, S = R[X1, . . . , Xn], with deg X i > 0 and M is a
graded S-module, then SuppS(TorR

q (M, R/m))✓ SuppS(TorR
1 (M, R/m)) for

any q ≥ 1.

Proof. First the modules TorR
q (M, N ) are finitely generated over S by [Bourbaki

1980, X §6 N◦4 Corollaire]. Second,

SuppS(M ⌦R N )= SuppS(M)\'
−1(SuppR(N )),

where ' : Spec(S)! Spec(R) is the natural map induced by R ! S, by [Bourbaki

1985, II §4 N◦4, Propositions 18 and 19], since M ⌦R N = M ⌦S (N ⌦R S). For

P 2 Spec(S), set p := '(P). Then TorR
q (M, N )P = Tor

Rp

q (MP, Np) vanishes if

either MP = 0 or Np = 0.

For (ii), we can reduce to the case of a local morphism by localizing S and M

at m+ S+. In this local situation, TorR
1 (M, R/m)= 0 if and only if M is A-flat by

[André 1974, Lemme 58], which proves our claim by localization at primes P such

that '(P)= m. ⇤

Let R be a commutative ring, N be a R-module, S := R[X1, . . . , Xn] be a

positively graded polynomial ring over R and M be a graded S-module. For a

S-module M, we will denote by cdS+
(M) the cohomological dimension of M with

respect to S+, which is the maximal index i such that H i
S+
(M) 6= 0 (and −1 if all

these local cohomology groups are 0). The following lemma is a natural way for

comparing cohomology of stalks to cohomology of fibers.

Lemma 6.2. There are two converging spectral sequences of graded S-modules
with the same abutment H• and with respective second terms

0
2 E p

q = H p
S+
(TorR

q (M, N ))) H p−q and 00
2 E p

q = TorR
q (H

p
S+
(M), N )) H p−q .
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Let d := max{i | H i
S+
(M ⌦R N ) 6= 0}. If R is Noetherian, N is finitely generated

over R and M is finitely generated over S, then

H d
S+
(M ⌦R N )' H d

S+
(M)⌦R N

and TorR
q (H

i
S+
(M), N )= H i

S+
(TorR

q (M, N ))= 0 for any q if i > d.

Proof. Let F• be a free R-resolution of N . Consider the double complex

#
•
S+
(M ⌦R F•)= #

•
S+
(M)⌦R F•,

totalizing to T • with T i =
L

p−q=i #
p
S+
(M)⌦R Fq . It gives rise to two spectral

sequences abutting to the homology H• of T •.

One has first terms #
p
S+
(TorR

q (M, N )) and second terms H p
S+
(TorR

q (M, N )).
The other spectral sequence has first terms H p

S+
(M)⌦R Fq and second terms

TorR
q (H

p
S+
(M), N ). It provides the quoted spectral sequences.

Recall that if P is a finitely presented S-module, one has cdS+
(P 0)  cdS+

(P)
whenever Supp(P 0)✓ Supp(P). This is proved in [Divaani-Aazar et al. 2002, 2.2]

under the assumption that S is Noetherian and P 0 is finitely generated, which is

enough for our purpose.

By Lemma 6.1(i), Supp(TorR
q (M, N ))✓Supp(M⌦R N ) for any q , which implies

that H i
S+
(TorR

q (M, N ))= 0 for any q if i > d. It follows that H d = H d
S+
(M ⌦R N )

and H i = 0 for i > d .

On the other hand, choose i maximal such that H i
S+
(M) ⌦R N 6= 0. Then

TorR
q (H

p
S+
(M), N )= 0 for any q if p > i , because H p

S+
(M)µ is a finitely generated

R-module for every µ, and hence H i = H i
S+
(M)⌦R N 6= 0 and H j = 0 for j > i .

The conclusion follows. ⇤

The following statement extends a classical result on the cohomology of fibers

in a flat family; see for instance [Hartshorne 1977, III 9.3]. The hypothesis on the

cohomological dimension of Tor modules that appears in (ii) will be connected

to the variation of the Hilbert polynomial of fibers in the corresponding family of

sheaves in Lemma 6.6; it is a weakening of the flatness condition for this family.

Proposition 6.3. Let (R,m, k) be a Noetherian local ring, S := R[X1, . . . , Xn] be
a polynomial ring over R, with deg X i > 0 for all i , and M be a finitely generated
graded S-module. Set M := M ⌦R k and d := dim M. Then one has the following:

(i) The natural graded map H d
S+
(M) ⌦R k ! H d

S+
(M) is an isomorphism and

d = max{i | H i
S+
(M) 6= 0}. In particular,

ad(M)= ad(M) 2 Z.

(ii) For any integers µ and `, if cdS+
(TorR

1 (M, k)) `+ 1 then

{H i
S+
(M)µ = 0 for all i ≥ `} implies {H i

S+
(M)µ = 0 for all i ≥ `},
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and both conditions are equivalent if cdS+
(TorR

1 (M, k))  `. In particular,

reg(M) reg(M) if cdS+
(TorR

1 (M, k))1 and equality holds if depthS+
(M)>0.

Proof. We consider the two spectral sequences in Lemma 6.2,

0
2 E p

q = H p
S+
(TorR

q (M, k))) H p−q and 00
2 E p

q = TorR
q (H

p
S+
(M), k)) H p−q .

Let B := k[X1, . . . , Xn]. The module TorR
q (M, k) is a R[X1, . . . , Xn]-module of

finite type, annihilated by m and annS(M). Hence M is a graded B-module of finite

type and TorR
q (M, k) is a graded (B/ annB(M))-module of finite type, for any q.

Notice that d =cdS+
(M)=cdB+

(M). It follows that 0
2 E p

q =0 if p>d , and 0
2 Ed

0 6=0.

By Lemma 6.2, 00
2 E p

q = 0 for all q if p > d, in particular H p
S+
(M)µ ⌦R k = 0

for any µ if p > d. Hence H p
S+
(M)µ = 0 for any µ if p > d. In other words,

H p
S+
(M)= 0 for any p > d .

The same lemma shows that H d
S+
(M)= H d

S+
(M)⌦R k, and finishes the proof of (i).

For (ii), let µ be an integer. We prove the result by descending induction on `

from the case `= d, which we already proved.

Assume the results hold for `+ 1. Recall that, for any p, the maps

0
r d p−r

1−r : 0
r E p−r

1−r ! 0
r E p

0 and 00
r d p

0 : 00
r E p

0 ! 00
r E p+1−r

−r

are the zero map for r ≥ 2 and r ≥ 1, respectively.

If H i
S+
(M)µ = 0, for all i ≥ `, then ( 002 E p

q )µ = 0 for p ≥ ` and all q . As 00
2 E p

q = 0

for q < 0, it follows that ( 002 E p
q )µ = 0 if p − q ≥ `.

If cdS+
(TorR

1 (M, k))`+1 then 0
2 E p

q =0 for p ≥`+2 and q>0 by Lemma 6.1(ii),

in particular the map

( 0
r d`0)µ : ( 0

r E`0)µ ! ( 0
r E`+r

r−1)µ

is the zero map for any r ≥ 2, and hence H `
S+
(M)µ = ( 0

2 E`0)µ = ( 0
1E`0)µ = 0 as

claimed.

For the reverse implication, the hypothesis implies that 0
2 E p

q = 0 if q ≥ 1 and

p ≥ `+ 1 by Lemma 6.1(ii). Hence ( 0
2 E p

q )µ = 0 for p −q ≥ ` if H `
S+
(M)µ = 0. By

induction hypothesis, H p
S+
(M)µ ⌦R k = 0 for p ≥ `+ 1. Hence

( 0
2 E p

q )µ = TorR
q (H

p
S+
(M)µ, k)= 0

for p ≥ `+ 1 and all q. It implies that H `
S+
(M)µ ⌦R k = ( 001E`0)µ = 0, and proves

the claimed equivalence.

Finally, recall that H i
S+
(M)= 0 for i < depthS+

(M). ⇤

Remark 6.4. Notice that reg(M) reg(M) does not hold without the hypothesis

cdS+
(TorR

1 (M, k))  1. To see this, consider generic polynomials of some given
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degrees d1, . . . , dr :

Pi :=
X

|↵|=di

Ui,↵ X↵ 2 k[Ui,↵][X1, . . . , Xn],

with r  n and a specialization map φ : k[Ui,↵] ! k to the field k with kernel m. Set

R := k[Ui,↵]m. As the Pi form a regular sequence in k[Ui,↵][X1, . . . , Xn], they also

form one in S := R[X1, . . . , Xn] and show that M := S/(P1, . . . , Pr ) has regularity

d1 + · · · + dr − r . On the other hand, the regularity of

M = k[X1, . . . , Xn]/(φ(P1), . . . ,φ(Pr )),

need not be bounded by d1 + · · · + dr − r .

For instance, with n = 4 and r = 3, take

φ(P1) := Xd−1
1 X2 − Xd−1

3 X4, φ(P2) := Xd
2 and φ(P3) := Xd

4

(over any field). Then one has reg(M) = d2 − 2 for d ≥ 3 (see [Chardin 2007,

1.13.6]), which is bigger than reg(M)= 3d − 3, and cdS+
(TorR

1 (M, k))= 2.

Remark 6.5. In the other direction, it may of course be that reg(M) > reg(M).
If for instance (R,⇡, k) is a DVR, one may take M := R[X ]/(⇡ Xd), so that

reg(M)= d − 1 and reg(M)= 0, with cdS+
(TorR

1 (M, k))= 1.

More interesting is the example R := Q[a, b], m := (a, b) and

M := SymR(m
3)= R[X1, . . . , X4]/(bX1 − aX2, bX2 − aX3, bX3 − aX4).

Then for any morphism from R to a field k, reg(M ⌦R k)= 0, while reg(M)= 1.

Similar examples arises from the symmetric algebra of other ideals that are not

generated by a proper sequence.

The characterization of flatness in terms of the constancy of the Hilbert polyno-

mial of fibers extends as follows.

Lemma 6.6. Let p be an integer. In the setting of Proposition 6.3, assume that R is
reduced and S is standard graded. Then the following are equivalent:

(i) dim(TorR
1 (M, k)) p.

(ii) The Hilbert polynomials of M ⌦R k and M ⌦R (Rp/pRp) differ at most by a
polynomial of degree < p, for any p 2 Spec(R).

Proof. We induct on p. The result is standard when p = 0; see for instance

[Hartshorne 1977, III 9.9; Eisenbud 1995, Exercise 20.14].

Assume (i) and (ii) are equivalent for p−1 ≥ 0, for any Noetherian local reduced

ring, standard graded polynomial ring over it and graded module of finite type.

Set K := Rp/pRp, MK :=M⌦R K , B :=k[X1, . . . , Xn] and C := K [X1, . . . , Xn].

Consider variables U1, . . . ,Un (of degree 0) and let ` := U1 X1 + · · ·+ Un Xn . By

the Dedekind–Mertens lemma,
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(a) ker(M[U ]
⇥`
−! M[U ](1))✓ H 0

S+
(M)[U ],

(b) ker(M[U ]
⇥`
−! M[U ](1))✓ H 0

B+
(M)[U ],

(c) ker(MK [U ]
⇥`
−! MK [U ](1))✓ H 0

C+
(MK )[U ], and

(d) ker(TorR
1 (M, k)[U ]

⇥`
−! TorR

1 (M, k)[U ](1))✓ H 0
B+
(TorR

1 (M, k))[U ].

Let R0 := R(U ) be obtained from R[U ] by inverting all polynomials whose coeffi-

cient ideal is the unit ideal, and denote by N 0 the extension of scalars from R to R0

for the module N . Recall that R(U ) is local reduced with maximal ideal mR(U ),
residue field k 0 = k(U ) and that K 0 = K (U )— see for instance [Nagata 1962, page

17]. As the zero local cohomology modules above vanish in high degrees, (b)

and (c) show that M0/`M0 satisfies condition (ii) of the lemma for p − 1, R0 and

R0[X1, . . . , Xn]. Now (a) and (d) provide an exact sequence for µ) 0:

0−! TorR
1 (M

0, k 0)µ−1
⇥`
−! TorR0

1 (M
0, k 0)µ−! TorR0

1 (M
0/`M

0, k 0)µ−!0,

which shows in particular that

dim TorR0

1 (M
0/`M

0, k 0)= dim TorR0

1 (M
0, k 0)− 1 = dim TorR

1 (M, k)− 1,

if dim TorR
1 (M, k) is positive, and proves our claim by induction. ⇤

Remark 6.7. If the grading is not standard, a quasipolynomial is attached to any

finitely generated graded module, and in Lemma 6.6 property (ii) should be replaced

by the following:

(ii) The difference between the quasipolynomials of M ⌦R k and M ⌦R (Rp/pRp)

is a quasipolynomial of degree < p for any p 2 Spec(R).

The degree of a quasipolynomial is the highest degree of the polynomials that

define it. The proof of [Hartshorne 1977, III 9.9] extends to this case when p = 0,

and our proof extends after a slight modification: in the proof that (ii) implies (i),

one should take ` := U1 Xw/w1

1 + · · · + Un Xw/wn
n , where wi := deg(X i ) and w :=

lcm(w1, . . . , wn).

The local statement of Lemma 6.6 implies a global statement, by comparing

Hilbert functions at generic points of the components and at closed points. We state

it below in a ring theoretic form.

Proposition 6.8. Let p be an integer, R be a reduced commutative ring, S be a
Noetherian positively graded polynomial ring over R and M be a finitely generated
graded S-module. Then the following are equivalent:

(i) H i
S+
(TorR

1 (M, R/m))= 0 for all i > p and m maximal in Spec(R).
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(ii) For any two ideals p ⇢ q in Spec(R), the quasipolynomials of M ⌦R R/p and
M ⌦R R/q differ by a quasipolynomial of degree < p.

(iii) Over a connected component of Spec(R), the quasipolynomials of two fibers
differ by a quasipolynomial of degree < p.

In parallel to the definition of the regularity over a scheme, we define the fiber-

regularity freg as the maximum over the fibers of their regularity.

Definition 6.9. In the setting of Definition 3.1,

ãi (^) := sup
y2Y

ai (^ ⌦2Y k(y)), freg(^) := max
i

{ãi (^)+ i},

and freg(Z) := maxi≥1{ãi (SymY (%)/(Z )+ i}.

Notice that freg(^) is finite if Y is covered by finitely many affine charts and ^

is coherent. This holds since the regularity of a graded module over a polynomial

ring over a field is bounded in terms of the number of generators and the degrees

of generators and relations; see for instance [Chardin et al. 2008, 3.5].

We now return to the problem of studying the ending degree of local cohomologies

of powers of a graded ideal I in a positively graded Noetherian algebra A.

From the comparison of cohomology of stalks and cohomology of fibers, we get

from Theorem 5.3 the following result. As in Theorem 5.3 we use geometric lan-

guage and do not introduce a graded module (or a sheaf) to make the exposition more

simple. In case a more general statement is needed, it can be easily derived by using

Proposition 5.1 in place of Theorem 5.3. The six statements are not independent,

but each of them answers a question that is quite natural to ask. Notice that (iv) is

essentially equivalent to one of the main results of Eisenbud and Harris [2010, 2.2].

Remark 6.10. It follows from Theorem 5.3 that the dimension of any fiber of the

projection ⇡ of the graph to its image (see Theorem 5.3 or below for the precise

definition of ⇡) is bounded above by the cohomological dimension of A/I with

respect to A+.

Theorem 6.11. Let A := A0[x0, . . . , xn] be a positively graded Noetherian algebra
and I be a graded A-ideal generated by m+1 forms of degree d. Set Y := Spec(A0)

and X := Proj(A/I )⇢ Proj(A)✓ P̃
n
Y . Let φ : P̃

n
Y \ X ! P

m
Y be the corresponding

rational map, W be the closure of the image of φ, and

0 ⇢ P̃
n
W ✓ P̃

n
P

m
Y

= P̃
n
Y ⇥Y P

m
Y

be the closure of the graph of φ. Let ⇡ : 0 ! W be the projection induced by the
natural map P̃

n
P

m
Y

! P
m
Y . Then we have the following:

(i) limt!+1(reg((I t)sat)− dt)= maxi≥2{ai (0)+ i}.
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(ii) If ⇡ admits a fiber Z ✓ P̃
n
SpecK of dimension i − 1, then

lim
t!1

(ai (I t)+ i − td)≥ ai (Z)+ i = ãi (Z)+ i ≥ 0.

(iii) Let δ be the maximal dimension of a fiber of ⇡ . Then,

aδ+1(I t)− td = aδ+1(0)= ãδ+1(0) for all t ) 0.

(iv) If ⇡ is finite, for instance if X = ∅, then

reg(I t)= a1(I t)+ 1 = freg(0)+ td for all t ) 0

and limt!1(ai (I t)− td)= −1 for i 6= 1.

(v) If ⇡ has fibers of dimension at most one, for instance if the canonical map
X ! Y is finite, then

reg(I t)− td = reg(0)≥ freg(0) for all t ) 0,

and limt!1(ai (I t)− td)= −1 for i ≥ 2.
If furthermore A is standard graded and reduced, ⇡ has fibers of dimension

one, all of same degree, then freg(0)= reg(0),

lim
t!1

(a1(I t)− td)≥ ã1(0)

and equality holds if reg(I t)= a1(I t)+ 1 for t ) 0.

(vi) If A is reduced and, for every connected component T of W , the Hilbert
quasipolynomials of fibers of ⇡ over any two points in Spec(T ) differ by a
periodic function, then

reg(I t)= freg(0)+ td for all µ) 0.

Proof. Part (i) is a direct corollary of Theorem 5.3. Statements (ii), (iii) and (iv)

follow from Theorem 5.3 and Proposition 6.3(i).

Statements (v) and (vi) follow from Theorem 5.3, Proposition 6.3(ii) — notice

that depthS+
(5I )≥ 1 — and the equivalence of (i) and (iii) in Proposition 6.8 applied

on the affine charts covering ⇡(0). ⇤

Remark 6.12. Cutkosky, Ein and Lazarsfeld proved in [Cutkosky et al. 2001]

that the limit s(I ) := limt!1 reg((I t)sat)/t exists and is equal to the inverse of a

Seshadri constant, when A0 is a field and A is standard graded.

Using the existence of c such that reg(M I t) dt +c for all t when I is generated

in degree at most d and M is finitely generated, one can easily derive the existence

of this limit in our more general setting. Indeed, let

rp := reg((I p)sat) and dp := min{µ | (I p)sat = ((I p)sat
µ)

sat}.
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One has dp+q  dp + dq ; hence s := limp!1(dp/p) exists. For any p there exists

cp such that

reg(((I p)sat
dp
)t I q) tdp + cp for all t ≥ 1 and 0  q < p.

The inequalities dpt+q  rpt+q  tdp + cp show that limp!1(rp/p)= s and that

dp ≥ ps for all p.

The same argument applies to any graded ideal J such that Proj(A/J )! Y is

finite (that is, cdA+
(A/J ) 1). Setting r J

p := reg(I p :A J1) reg(I p) and defining

d J
p similarly to the above,

d J
p := min{µ | ((I p : J1)µ) : J1 = I p : J1},

the limits of r J
p /p and d J

p /p exist and are equal. For example, if X is a scheme

with isolated nonlocally complete intersection points, then limp!1 reg(I (p)/p)
exists, where I (p) denotes the p-th symbolic power of I .

On the other hand, when A/J has cohomological dimension 2 it may be that

reg(I : J1) > reg(I ) for J an embedded prime of I . This shows that the argument

above is not directly applicable for symbolic powers in general. It however implies

that s J := limp!1(d J
p /p) exists for any J and is equal to limp!1(⇢

J
p/p), where

⇢ J
p := min{reg(K ) | K ✓ (I p : J1), K : J1 = I p : J1}.

Remark 6.13. If I is generated in degree at most d, Theorem 6.11 implies that

s(I ) < d if and only if the morphism ⇡ corresponding to the ideal (Id) is finite.

More precisely, by Remark 6.12, ⇡ is finite if and only if Proj(A/I t) is defined by

equations of degree < dt for some t , and if not, reg((I t)sat)− td is a nonnegative

constant for t ) 0.

This has been remarked in [Niu 2013], using the definition of s(I ) as (the inverse

of) a Seshadri constant.

Theorem 6.11 also has a consequence on the dimension of the fibers. Assume

for simplicity that A0 is a field. Set X := Proj(A/I ), with I generated in degree at

most d and let 0  i  dim X .

Part (ii) in Theorem 6.11 then shows that the morphism ⇡ associated to (Id) has

no fiber of dimension greater than i if there exists p ≥ 1 and an ideal K , generated

in degree less than pd, such that Proj(A/I p) and Proj(A/K ) coincide locally at

each point x 2 Pn of dimension at least i . Indeed if this happens, then

H j
A+
(A/I ps)' H j

A+
(A/K s) for all j > i, s ≥ 1,

and therefore there exists cp such that a j (I ps) (pd −1)s + cp for all s and j ≥ i ,

showing that limt!1(a j (I t)− td)= −1 for j ≥ i .
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