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Introduction

Literature

Krugman's theory of economic geography states that instead of spreading out evenly around the world, production will tend to concentrate in a few countries, regions, or cities, which will become densely populated but also have higher levels of income. Empirical evidence brings out that jobs and industries are highly clustered in a limited number of regions. There are several forces that induce economics agglomeration. First of all, plants locate near to each other because of agglomeration spillovers (localization economies and urbanization economies) or local amenities. Returns to scale induce industries to concentrate their production in a small number of business units and there is interdependence between rm's location choice (snowball eect mechanism). Note that similar questions arise in other disciplines: for example in ecology when studying spatial concentration of biomass from trees and plants locations and sizes.

There are numerous motivations for studying the geographic concentration of economic sectors.

Such a measure allows to understand the determinants of localization, compare dierent sectors with respect to agglomeration/dispersion and predict the evolutions of localization. A similar question is that of co-localization and interactions between sectors for which measures can be generally derived from the former. Another related issue is cluster detection but we do not consider this problem in the present paper.

Until 2000, all studies about geographic concentration of economic activity use areal data for measuring spatial concentration. The precise location of rms is not available and the data only consists in aggregated counts over administrative zones. There is a large literature on this topic with many measures including the Herndahl index, the locational Gini index (which is the Gini index of the localization ratio), the Ellison-Glaeser index, the Maurel-Sédillot's index and many others. However these measures depend upon the aggregation level (Modiable Areal Unit Problem) and most importantly they do not take geography into account in the sense that a permutation of the sites does not aect the measure. A good description of the drawbacks of these approaches is found in [START_REF] Arbia | Modelling the geography of economic activities on a continuous space[END_REF].

A new vein of this literature arises in the years 2000 considering the treatment of micro-geographic data. This type of data usually consists in the precise location of rms together with a size measure such as the number of employees. [START_REF] Duranton | Testing for localization using micro-geographic data[END_REF] introduce a measure based on the distribution of inter-distances between rms that we will refer to as the DO index. Marcon andPuech (2003, 2010) introduce another measure based on Ripley's K-function that we will refer to as the MP index. weighted version of Ripley's K function that we will refer to as the EGA index.

Basic requirements

First of all, we should make clear that the problem is not that of measuring rm's locations geographic concentration. The classical Ripley's K function can be used for this purpose. A more dicult problem here is to take into account rm's sizes in the measure. Indeed a mass characteristic is attached to each rm (like the number of employees or the capital) and the question of interest is that of geographic mass concentration and not geographic location concentration. • Requirement [DO1] The index must be comparable from one sector to the other. This implies that the measure should not depend upon the number of rms of a given sector neither upon the scale of the rm's sizes.

• Requirement [DO2] The index must take into account the overall manufacturing geographical pattern. Indeed, the absence of concentration should not correspond to spatial homogeneity of locations because obviously geographic and demographic factors inuence industrial location.

• Requirement [DO3] The index must control for industrial concentration. Indeed, the problem of measuring the concentration of the rm's sizes should be distinguished from that of theirs spatial concentration.

• Requirement [DO4] The index must be independent of the geographical scale of observation. This is related to the so called Modiable Areal Unit Problem (MAUP): the fact that aggregations over dierent geographical subdivisions of space may lead to diverging conclusions about the concentration pattern. This pleads for a method based on micro-geographic data versus the classical indices based on areal data.

• Requirement [DO5] The index must be assorted with a level of statistical signicance.

In this paper, we introduce four additional requirements which are the following

• Requirement [BT1] The index must be an empirical measure associated to a well identied theoretical characteristic. The satisfaction of this requirement allows for correct statistical inference about the signicance of the results (see Combes and Overman, 2005).

• Requirement [BT2] The index must take into account spatial inhomogeneity of a particular sector. The factors inuencing the inhomogeneity of locations can vary from sector to sector (think about shing for example).

• Requirement [BT3] For testing concentration, a null hypotheses must be correctly specied.

• Requirement [BT4] The index must have a known and constant benchmark in the absence of concentration (under the null hypotheses). This requirement is stated by [START_REF] Combes | The spatial distribution of economic activities in the European Union[END_REF].

We will see that the DO index as well as the MP index and the EGA index are all inspired from the marked point process theory. are not satisfactory for testing concentration and will argue that there is no clear denition of the null assumption in their work. We propose an alternative approach for this purpose.

With respect to [BT4], the MP index has a constant benchmark but not the DO one. In Espa et al. ( 2010) the benchmark value depends upon some parameters and hence is not constant.

In section 2, we present the mathematical tools of the spatial point process theory. In section 5, we present our family of indices. We show how this family is related to the DO, MP and EGA indices and how this relation sheds light on the mentioned imperfections. We show how this new point of view allows to introduce a modied version of the DO index which has a clear benchmark.

This relationship also allows to make a minor correction in the EGA index which appears as an homogeneous version of the BT index for a particular weighting scheme.

We discuss the testing framework. Finally in section 7, we present some simulated examples to illustrate our arguments.

2 The relevance of random spatial point patterns theory Two important aspects of the description of these processes are spatial inhomogeneity and spatial interaction. Spatial inhomogeneity relates to the fact that some regions may have a mean number of points higher than others, for example when studying the spatial distribution of population, mountainous zones may be less populated. Spatial interaction relates to the dependence between points locations pairs. For example, the competition for food may generate repulsion between animals positions, whereas when looking at infectious disease cases, contagion generates attraction between spatial occurrences of a disease.

Spatial interaction is illustrated in Figure 1 with simulated realizations of such processes. In the center, the process is a homogeneous Poisson process which is the model for homogeneity and absence of interaction between points. On the right of Figure 1 is an aggregated process with interaction between the locations of an attraction kind. On the left of Figure 1 is a regular process with interaction between the locations of a repulsion kind. The circles on this gure will be commented later. A PP is isotropic if its law is invariant under the rotations of the congurations. Figure 2 illustrates with simulations the notion of non stationarity on the left panel and the notion of anisotropy on the right panel. Because we need to model the mark process together with the position process, we need marked point process theory. Let M be a space of marks and for each conguration X let m X be a random variable with values in M . Then one says that (X, m X ) is a marked PP with mark space M . In practice, we consider the case M nite, or M subset of R p .

Figure 3 presents a realization of an inhomogeneous marked Poisson PP with independent marks.

The circles show the mark through their radius.

Characteristics of a PP

As for other types of stochastic elements, one can dene characteristics of order one and two for point processes. The order one characteristic of a PP is given by its intensity. For a subregion B of X , let N X (B) be the number of points of the PP X in B. The intensity measure for a subregion B is dened by the expected number of points of X in B

Λ(B) = E(N X (B)).
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Λ(B) = B λ(u)du,
and can be interpreted as follows: λ(u)du is the probability of occurrence of a point in the innitesimal ball of center u and radius du. In the homogeneous Poisson model, there is a relationship between the density of points regarded as i.i.d. realizations and the intensity function: the intensity is the product of the density by the expected total number of points.

The order two characteristic of a PP can be specied by the order two factorial moment measure i.e. the mean number of points pairs with a point in A and the other in B:

Λ (2) (A × B) = E   u,v∈X:u =v 1(u ∈ A, v ∈ B)   When Λ (2)
is absolutely continuous with respect to the Lebesgue measure, one can write

Λ (2) (A × B) = A B ρ(u, v)dudv
where ρ(u, v)dudv can be interpreted as the probability of joint occurrence of a point in the innitesimal ball of center u with radius du and of a point in the innitesimal ball of center v and of radius dv. The function ρ is named the second order product density function.

Another way of characterizing the second order structure is through the pair correlation function

which is related to ρ by g(x, y) = ρ(x, y) λ(x)λ(y) (1)
with the convention a 0 = 0 if a ≥ 0. A PP is said to be second order reweighted stationarity when the function g is translation invariant.

At last, a third way of characterizing the second order structure is through the Ripley's K function.

If X is second order reweighted stationary, the Ripley's K function is dened by

K(r) = π r 0 ug(u)du,
In the stationary case, λK(r) is the mean number of points within radius r of the origin given that the origin belongs to the conguration (λ being the constant intensity). On Figure 1, a circle of radius r centered on a conguration point illustrates the fact that the K-function counts the mean number of points within a given radius of a point of the conguration.

The assumption of complete spatial randomness or CSR is embodied by the Poisson homogeneous process or PPP for which we have K(r) = πr 2 and g(r) ≡ 1.

For a marked PP, one needs to extend the characteristics denitions. These extensions are introduced and studied in the homogeneous case by [START_REF] Schlather | On the second-order characteristics of marked point processes[END_REF] and [START_REF] Illian | Statistical analysis and modelling of spatial point patterns[END_REF].

Let (X, M ) be a marked PP, homogeneous for positions. Let k(m), q(m) be univariate weight functions and f (m 1 , m 2 ) be a bivariate weighting function which will be specied functions of the marks.

An order one characteristic called the mark-sum intensity measure Λ k is given by

Λ k (B) = E u∈X k(m u )1 I B (u).
For example for k(m) = m, Λ k (B) is the expected number of employees in B whereas Λ(B) was the expected number of rms in D. If Λ k (B) = B λ k (u)du then λ k is the weighted intensity function for weighting function k.

In the case when the weighting scheme is multiplicative f (m 1 , m 2 ) = k(m 1 )q(m 2 ), we dene similarly a weighted version of the second order factorial moment measure Λ (2) is given by

Λ (2) f (A × B) = E   u,v∈X:u =v k(m u )q(m v )1 I A (u)1 I B (v)   .
When Λ (2) is absolutely continuous with respect to the Lebesgue measure, one can write

Λ (2) f (A × B) = A B ρ f (u, v)dudv
then ρ f is called second order product density of X for weighting scheme f . A weighted version of (1) yields a weighted version of the pair correlation function

g f (x, y) = ρ f (x, y) λ k (x)λ q (y) (2)
and a weighted version of the the Ripley's K function

K f (r) = π r 0 ug f (u)du.
(3)

Estimating the theoretical characteristics

The estimation of these theoretical characteristics has been extensively studied under several assumptions and we refer the reader to [START_REF] Moller | Statistical inference and simulation for spatial point processes[END_REF] and [START_REF] Illian | Statistical analysis and modelling of spatial point patterns[END_REF] for details. Let us just recall here the basic estimators that will be used in the sequel. Under the assumption of isotropy and homogeneity, one can estimate the constant intensity λ from one realization of the process by

λ = N | W | , ( 4 
)
where N is the total number of points in W . Similarly one can estimate in this case the Ripley's K-function by

K(r) = | W | N (N -1) N i=1 N j=1,j =i w i,j 1( x i -x j ≤ r)
where w i,j is a boundary correction factor to take into account disks partially included in the region given by

w i,j = 1 |W ∩ (W -x i + x j )| . ĝ(r) = | W | 2πrN 2 N i=1 N j=1,j =i w i,j 1 h κ r -x i -x j h . (5) 
In the isotropic inhomogeneous case, one can estimate the intensity by

λinhom (x) = N i=1 1 h κ( x -x i h ) ( 6 
)
where κ is a given kernel density function and h a given bandwidth. Note that one can also use some covariates when available to model the intensity. In the same conditions, the following is an estimator of the inhomogeneous Ripley's K-function

Kinhom (r) = 1 | W | N i=1 N j=1,j =i w i,j 1( x i -x j ≤ r) λinhom (x i ) λinhom (x j )
and the pair correlation function can be estimated by

ĝ(r) = 1 2πr N i=1 N j=1,j =i w i,j 1 h κ r-x i -x j h λinhom (x i ) λinhom (x j ) .
In the marked PP case, assuming that marks are independent from positions we have that λ k (x) = λ(x)E(k(m X )), and one can thus estimate the weighted intensity function for example by

λk (x) = λ(x)k(m X ), (7) 
where λ can be understood as (4) in the homogeneous positions case and as [START_REF] Grabarnik | Correct testing of mark independence for marked point patterns[END_REF] in the inhomogeneous positions case.

Similarly in the second order reweighted stationary and isotropic case, one can estimate the weighted version of the pair correlation function by

ĝf inhom (r) = 1 2πr N i=1 N j=1,j =i h -1 w r-x i -x j h k(m i )q(m j ) |W ∩ (W -x i + x j )| λk (x i ) λq (x j ) , (8) 
where λ can take the two dierent forms (4) or ( 6) leading to two versions of this estimators ĝf inhom and ĝf hom and the weighted version of the Ripley's K function by

Kinhom f = N i=1 N j=1,j =i k(m i )q(m j )1 I( x i -x j ≤ r) |W ∩ (W -x i + x j )| λk (x i ) λq (x j ) (9) 
3 The dierent faces of spatial concentration

In this section, we discuss the denition of spatial concentration and distinguish between several types. We can dene spatial concentration of rms as the fact that rms are more aggregated in space than in the random case and the reverse situation of inhibition as the fact that rms are more scattered than in the random case. As for mass concentration, it can be described as the fact that the mean mass displays some heterogeneity over space.
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(i = 1, • • • , n) of sector s (s = 1, • • • S)
and let m i,s be the corresponding mark (to illustrate we will speak about the number of employees for example).

4.1

The DO, MP and EGA indices

The Duranton-Overman index is dened for each sector separately hence we drop momentarily the sector index. It is a non cumulative index dened for any r > 0 by

i DO (r) = Ns i=1 Ns j=1,j =i h -1 κ r-x i -x j h m i m j Ns i=1 Ns j=1,j =i m i m j ,
When the mark is a count, which is the case for the number of employees, it can be compared to the Parzen-Rosenblatt density estimator associated to a replicated point process of positions (number of replications equal to the mark) considering that the points positions are i.i.d.

Marcon and Puech (2010) note that i DO does not account for order one inhomogeneity of locations.

They propose to perform this correction by using the union of all the available sectors as a reference.

I M P (r) = Ns i=1 Ns j=1,j =i m j 1I( x i,s -x j,s ≤ r) N j=1,j =i m j 1I( x i,s -x j ≤ r) / Ns i=1
Ns j=1,j =i m j N j=1,j =i m j , I M P (r) > 1 indicates that there are proportionally more employees close to plants of sector s within a radius r than in the whole area. Note that I M P (r) can be written J M P (r)/J M P (∞) where

J M P (r) = Ns i=1 Ns j=1,j =i m j 1I( x i,s -x j,s ≤ r) N j=1,j =i m j 1I( x i,s -x j ≤ r)
.

J M P (r) is the average proportion of employees of sector s among all sectors within a given radius r.

The weighted Ripley's K function from Espa et al. ( 2010) is dened as follows for any r > 0

I EGA (r) = Ns i=1 Ns j=1,j =i m i m j 1I( x i -x j ≤ r) |W ∩ (W -x i + x j )|N λμ 2 , ( 10 
)
where W is an observation window, μ is an estimator of the mean value of the mark and λ is an estimator of the mean value of the intensity of locations. A formula for the theoretical EGA is derived in closed form in the framework of a particular log-Gaussian Cox model.

The imperfections of the classical indices

There are a number of other weaknesses, namely 1. except for EGA, these indices are introduced as purely empirical quantities and there are no theoretical characteristics clearly associated to them hence they do not satisfy requirement

[BT1].
2. with respect to the [DO2] requirement, one can consider that the DO index takes location inhomogeneity into account in the fact that locations remain unchanged in the simulation framework but it certainly does not incorporate inhomogeneity in the formula of the index itself. The MP index tries to take it into account in the measure itself but we will show in section 5.4 that this correction is not entirely satisfactory.

3. DO and EGA do not take into account inhomogeneity of location intensity of a particular sector hence do not satisfy requirement [BT2]. MP do it but not correctly.

4. there is no clear benchmark for DO (cf [BT4]); the benchmark for EGA depends upon some parameters 5. there is no edge correction for DO (which implies bias for large r)

6. there is an underlying assumption, in the way the simulations under H 0 are done, that all sectors are issued from the same type of process ("overall manufacturing") 7. the null assumption is not clearly specied (BT4)

We will discuss further the imperfections of their testing strategy in section. 9

In order to correct these imperfections, we present an approach using some theoretical characteristics of spatial marked point processes which will allow us to cast the previous approaches in a same mould and to point at their respective weaknesses. In this paper, we will consider that marks can be assumed to be independent from positions. We develop a more general approach in Bonneu and Thomas-Agnan (2013). We propose to construct the indices as estimators of the following two characteristics to measure spatial mass concentration: a non cumulative measure corresponding to the weighted pair-correlation function ( 2) and a cumulative measure corresponding to the weigthed Ripley's K function [START_REF] Combes | The spatial distribution of economic activities in the European Union[END_REF].

For a given choice of multiplicative weighting scheme, we introduce the non-cumulative BT index by

i BT (r) = ĝf (r) = 1 2πr N i=1 N j=1,j =i h -1 w r-x i -x j h k(m i )q(m j ) |W ∩ (W -x i + x j )| λk (x i ) λq (x j ) (11) 
with the weighted intensity function λ k being estimated by [START_REF] Illian | Statistical analysis and modelling of spatial point patterns[END_REF].

λk (x) = λ(x) Ê[k(M )|X]

Our index is an estimator of the theoretical g f characteristic. It is dened at any distance r > 0.

It is important to note that this index can be calculated under the assumption of homogeneity of the intensity of positions as well as under the assumption of inhomogeneity using one of the two estimators of the intensity ( 4) or [START_REF] Grabarnik | Correct testing of mark independence for marked point patterns[END_REF] and this leads to two versions of our index called i hom BT and i inhom BT thereafter. In the homogeneous case, the square of the intensity appears in the denominator and can be estimated by a slightly dierent version of (4) which is unbiased for λ 2 (see [START_REF] Illian | Statistical analysis and modelling of spatial point patterns[END_REF] namely

λ 2 = N (N -1) |W | 2 . ( 12 
)
The intensity is estimated for each sector separately so that requirement [BT2] is satised.

The Bonneu-Thomas-Agnan index: cumulative version

For a given multiplicative weighting scheme, a corresponding cumulative version of the BT index is given by the following estimator of the weighted K-function, dened at any distance r > 0

I BT (r) = Kf (r) = N i=1 N j=1,j =i k(m i )q(m j )1 I( x i -x j ≤ r) |W ∩ (W -x i + x j )| λk (x i ) λq (x j ) , ( 13 
)
where |W ∩ (W -

x i + x j )| = |(W + x i ) ∩ (W + x j )
| is a border correction term. In the case that x i -x j is small compared to the diameter of W , this term approaches |W | so that we can consider that a version without border correction is obtained by substituting |W | for |W ∩ (W -x i + x j )|.

As for the non-cumulative one, this index can be calculated under the assumption of homogeneity of the intensity of positions as well as under the assumption of inhomogeneity using one of the two estimators of the intensity (4) or [START_REF] Grabarnik | Correct testing of mark independence for marked point patterns[END_REF] and this leads to two versions of this cumulated index called I hom BT and I inhom BT thereafter.

Consequences for the Duranton-Overman index

In this section, we establish a link between the Duranton-Overman index and the theoretical weighted pair correlation function g f for the following choice of weighting scheme k(m) = m and q(m) = m. Indeed for this choice, we have the following result (see the section 9 for a proof ) when considering the homogeneous BT index without border correction

i DO (r) = 2πr |W | ĝf (r) = 2πr |W | i BT (r).
This formula induces a natural normalization of the DO index

|W |

2πr i DO (r) = i BT (r) with a clear benchmark: we will see in the next section that under our proposed H 0 assumption we have g f ≡ 1.

We can also propose a cumulative version of this index

I DO (r) = j =i m i m j 1I( x i -x j ≤ r) j =i m i m j = Kf (r) |W | 5.3
Consequences for the Marcon-Puech index

Comparing

J M P (r) = Ns i=1 Ns j=1,j =i m j 1I( x i,s -x j,s ≤ r) N j=1,j =i m j 1I( x i,s -x j ≤ r)
and

I BT (r) = Kf (r) = N i=1 N j=1,j =i k(m i )q(m j )1 I( x i -x j ≤ r) |W ∩ (W -x i + x j )| λk (x i ) λq (x j ) .
for k(m) = m and q(m) = 1, we understand that the correction for inhomogeneity of the location intensity of sector s is missing in the MP index. Moreover in the stationary case, the two indices are related by I BT (r) = |W | N J M P (r).

Consequences for the EGA index

For the weighting scheme given by f (m 1 , m 2 ) = m 1 m 2 , we compare

I BT (r) = Kf (r) = N i=1 N j=1,j =i k(m i )q(m j )1 I( x i -x j ≤ r) |W ∩ (W -x i + x j )| λk (x i ) λq (x j )
and

I EGA (r) = Ns i=1 Ns j=1,j =i m i m j 1I( x i -x j ≤ r) |W ∩ (W -x i + x j )|N λμ 2 , (14) 
We nd that

• the EGA index is an homogeneous version of the cumulative BT index

• there is a minor mistake in its denominator

| W | I EGA = I BT 6 Testing strategy 6.1
The null hypotheses

The question we want to test is that of absence of mass concentration and we need to specify a clear null hypotheses corresponding to this idealistic situation.

For the DO and MP approaches, the proposed test of absence of concentration is based on the following Monte Carlo framework. M permutations of the observed rms locations are randomly chosen for all sectors altogether. The marks (size in the rst case and the couples size and sector in the second) are then reallocated to the permuted locations. Both in the Duranton-Overman and the Marcon-Puech framework, the simulations are done conditionally upon the positions: marks (sector + number of employees) are randomly reassigned to the observed positions. As in [START_REF] Illian | Statistical analysis and modelling of spatial point patterns[END_REF], this procedure is used for testing the assumptions of independent marking (also called random labelling, case of uncorrelated marks) and that of geostatistical marking (case of correlated marks) but with distinct test statistics. However we argue that this approach is only valid for the case when all sectors originate from a single model. If each sector has its own intensity or dependence structure, the fact of mixing these processes generates confounding eects. For the EGA approach, H0 corresponds to the nullity of one parameter but we claim that under this assumption, the log-gaussian Cox Process may exhibit concentration.

Ideally, we would like to use g f = 1 but one does not know how to simulate under this assumption.

The Let rst recall how the classical K-function is used to test the CSR hypotheses.

6.2

Using the K-function to test for complete spatial randomness

In the introduction, we argued that CSR was not a good benchmark for studying spatial concentration of industrial location. However one needs to understand how the Ripley's K-function can be used to test for CSR in order to understand the tools introduced later. Figure 6 inhomogeneity whereas this is done using the inhomogeneous K estimator on the right panel. The fact that the curve is outside the envelope in the central panel is not due to interaction but rather due to inhomogeneity. A parallel can be done with a time series situation when the unaccounted presence of a trend may reveal a wrong serial correlation.

Using the weighted K-function to test for concentration

We simulate each point process corresponding to each sector separately with an inhomogeneous

Poisson PP model after estimating its intensity. This allows for sectors with dierent intensity driven processes. The intensity of positions λ is estimated locally by a non parametric kernel method or by an non parametric iterative and adaptative method based on Voronoï cells. In real applications, it can be modeled with covariates. The expectation of the mark is estimated by the q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q 0.00 A rst approach consists in using the local envelopes to build a global test for which we do not control the global nominal level. For a given local nominal level α, we select at each distance r the α and 1 -α/2 quantile among the M realizations of the index at r: this denes the lower and upper local envelopes. We reject the null when the observed curve gets out of the upper envelope at least once. Note that we use a single sector at a time.

A second approach is to do a deviation test. We compute for each simulated process and for the observed one the maximum over the distances of the absolute value of the dierence between the index of the process and the mean of the indices over all the simulations. We then compute an empirical signicance level for the observed deviation in the distribution of the simulated deviations and take a decision with a given nominal level.

Simulations

We simulate two sectors, non necessarily of the same type. We compare

• the DO index (original version, non cumulative)

• the cumulative MP index

• the indices BThom and BTinhom (non cumulative versions) MP, BThom and BTinhom all have a benchmark of 1 under H 0 . The envelopes are based on M = 1000 replications. The condence level is a local 5 % level.

Scenario 1

Scenario 1 has two sectors :

• sector 1 is homogeneous Poisson with intensity 100 and uniform marks on {0, • • • , 50}.

• sector 2 is inhomogeneous Poisson with uniform marks on {0, • • • , 50} with intensity function given by λ(x, y) = 500 1-exp(-5) exp(5x). (same intensity)

Figure 8 presents the graphs of the DO index for the two sectors and Figure 9 presents the MP index for the two sectors. We can see that DO and MP detect concentration of sector 2. MP concludes that sector 1 is also concentrated which is not true.

Figure 10 presents the graphs of the BThom index for the two sectors and Figure 16 presents the BTinhom index for the two sectors. We can see that BThom et BTinhom correctly detect that the origin of concentration of sector 2 comes from rst order.

We then run 100 simulations of scenario 1 and the following table contains the percentage of error of the test based on local envelopes. q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q Figure 7: Scenario 1: the two sectors 

Conclusion

The BT index satises the ten objectives DO1 to DO5 and BT1 to BT4. The simulations show good results. The perspectives for further discussion are the choice of weighting scheme f related 

  Combes et al. (2008) survey this literature. With the tools of point process theory Espa et al. (2010) use a model-based approach to assess concentration with an index based on a

  Concerning [BT1], only Espa et al. (2010) explicitly link their measure to a well identied statistical parameter. Satisfying this requirement can allow to satisfy [DO5] without resorting to Monte Carlo methods. We will also show that the DO index as well as the MP index do not correctly satisfy [BT2]. Arbia et al. (2012) incorporate inhomogeneity in the framework of rm's location concentration (without mass characteristic) but Espa et al. (2010) do not incorporate it for mark concentration. The absence of theoretical parameter is also related to the absence of clear denition of the theoretical meaning of spatial concentration. Indeed, as stated in [BT3], a null assumption should be stated in terms of a theoretical parameter. Espa et al. (2010) use a specic point process model to reach this goal. We will explain why the simulation framework of Duranton-Overman and Marcon-Puech
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 1 Figure 1: From left to right: Regular PP, Poisson homogeneous PP, Aggregated PP

Figure 2 :

 2 Figure 2: Left : non stationarity, Right: anisotropy

(

  2012) call it true contagion.

Figure 5

 5 Figure 5 shows two other cases of concentration. In the left panel, we see a concentrated mass pattern due to the fact that constant marks have aggregated positions: Espa et al. (2010) call it clustering of rms whereas in the right panel, we see a concentrated mass due to the fact that mass is inhomogeneous but situated at homogeneously distributed positions: Espa et al. (2010) call it clustering of economic activities.

  shows a realization of a inhomogeneous Poisson process on the left panel. The central panel shows the ordinary K-function and the right panel the inhomogeneous K-function: both are displayed together with an empirical envelope obtained by Monte Carlo simulations of a process with the same intensity under the CSR assumption. The central K-curve is out of the envelope whereas the right K-curve is inside the envelope: the estimation of the K-function in the central panel does not take into account
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 6 Figure 6: Use of K to test CSR

Figure 10 :Figure 16 : 2 Figure 17 :Figure 19 : MP index for scenario 3 Figure

 1016217193 Figure 8: DO index for scenario 1
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 202 Figure 20: BThom index for scenario 3

  strategy we propose is to use as the null hypotheses a Poisson point pattern model for positions with independent marks following a constant distribution throughout space. It is the simplest one under which it is easy so simulate realizations. The intensity of the Poisson pattern of positions may be homogeneous or not under H 0 leading to two versions of the simulations scenario H hom

	0 . For the simulations under the null, we generate realizations of a Poisson PP with the intensity given by (4) if we are testing H hom and H inhom 0 0 and given by (6) if we are testing H inhom 0 . We also
	propose a procedure in two steps in order to separate concentration of order 1 from concentration
	of order 2.
	• Test H0 hom :
	1. if accept: conclude no concentration
	2. if reject: go to next step
	• Test H0 inhom :
	1. if accept: conclude signicant concentration of order 1 (apparent contagion)
	2. if reject: conclude signicant concentration of order 2 (true contagion)
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• sector 1 is homogeneous Poisson with intensity 100 and uniform marks on {0, • • • , 50}.

• sector 2 is a Matern process (parent process: homogeneous Poisson with intensity 10, children process: homogeneous Poisson in a disk of radius 0.1) and uniform marks on {0, • • • , 50} q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq Figure 12: Scenario 2: the two sectors Figure 13 presents the graphs of the DO index for the two sectors and Figure 14 presents the MP index for the two sectors. We can see that DO and MP detect concentration of sector 2. MP concludes that sector 1 is also concentrated. We then run 100 simulations of scenario 1 and the following • sector 1 is homogeneous Poisson with intensity 100 and uniform marks on {0, • • • , 50}.

• sector 2 is Non-Poisson process described in BMW2000 and such that g = 1.

Note that sector 2 satises g f = 1 but the process is not Poisson. q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q where μ is estimated by 1

N -1 N j=1,j =i m j 1I( x i,s -x j ≤ r). We have

Ns j=1,j =i m j 1I( x i,s -x j,s ≤ r) N j=1,j =i m j 1I( x i,s -x j ≤ r)