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Abstract. The paper considers robust parametric optimization problems using
multi-point formulations and makes the link with momentum based formulations.
Optimal sampling issues are discussed and a procedure is proposed to quantify the
confidence level on the robustness of the design. We also discuss incomplete sen-
sitivity evaluations to take into account the computational complexity constraint.
This permits to take advantage of what was previously developed for efficient
mono-point design where the cost of the optimization is comparable to one state
evaluations. The proposed algorithm is fully parallel and the time-to-solution is
comparable to mono-point situations. Concepts are introduced through simple
examples and the paper ends with the design of the shape of an aircraft robust
over a range of transverse winds.

1. INTRODUCTION

The performance of a system designed for given functioning conditions often se-
riously degrades when these conditions are modified. Typical situations of interest
involve a few (typically one or two) parameters describing the functioning of the
system. Momentum based and multi-point optimizations are two widely used ap-
proaches to address robustness issues in engineering because of their conceptual
simplicity. Both require several evaluations of the functional and its gradient if a
descent method is considered for minimization.

Our domain of interest is aerodynamic shape optimization and we illustrate our
purpose on analytical and model problems before targeting such. The question of
interest is: can we propose an aircraft shape designed to have similar performances
over a given range of some functioning parameters (e.g. cruise Mach numbers,
sideslip angle, etc), and can we do that modifying as less as possible an existing
mono-point optimization shape design loop ? and also, is it possible for the time-to-
solution cost of this parametric shape design to remain comparable to the mono-point
situation ?

These questions are important as today industrial robust design mainly relies on
reduced order modelling and intelligent sampling [2, 3, 4, 6] which either does not
use high-fidelity simulations during design or uses lower accuracy than what would
be affordable in a mono-point optimization. Our aim is to propose a plausible
alternative.

Key words and phrases. low complexity, robust optimization, reliability, uncertainty, incomplete
sensitivity, sampling size.
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One issue in the paper is how to formulate the robustness when only a few func-
tioning parameters are involved. We see how to introduce in this formulation what
we would like for the outcome of the design through a target-based weighting in the
functional. We also discuss how to take advantage of the incomplete sensitivity con-
cept to perform robust optimizations without the linearization of the state equation
[1]. This cost reduction is important despite our algorithm is naturally parallel.

Because we are interested by optimization over intervals of functioning parame-
ters optimal sampling issues are also of importance and will be discussed together
with how to provide some quantitative confidence level, through Gram-Schmidt or-
thonormalization, on the quality of our search direction in the context of multiple
gradients evaluation.

Another important issue here is the sampling size of the functioning parameter
range which from the theory [11, 9, 10] should be larger by one than the size of
the control space. This is presented as a necessary and sufficient condition in [11].
But, this worst-case hypothesis is only necessary if all the associated gradients (i.e.
evaluated at the sampling points) are linearly independent which is never the case
in optimizations involving a state equation. This is because the governing equa-
tions introduce continuity features in the behavior of the state with respect to the
functioning parameters: one expects, mainly, a small perturbation in a functioning
parameter to introduce a small perturbation in the state. Again, Gram-Schmidt
procedure will show that large dimensional parametric optimization problems can
be treated with very small sampling of the functioning parameters range with mar-
ginal losses on the gradient informations. As a consequence, the ’plus one the size
of the control space’ condition for the sampling is neither necessary nor sufficient for
the search space based on this sampling to be exhaustive.

Finally, it is important to notice that there is no randomness involved in this prob-
lem in the sense that for a given choice of the functioning parameter, the simulation
loop is fully deterministic.

2. Robust parametric optimization

We are interested by a class of optimization problem where the cost function
involves a parameter α not considered as design parameter (denoted by x):

(1) min
x∈Oad

j(x, α), α ∈ I ⊂ IRn,Oad ⊂ IRN , n << N.

Oad is the optimization admissible domain. Usually, the functioning parameters α
are just a few. Typical situations of interest are where n = 1 or n = 2.

2.1. Choice of the functional. One classical approach to robust optimization is
to control first and second momentum (i.e. mean and variance) of the functional:

(2) min
x∈Oad

µ = IE(j(x, α)), such that σ2 = IE(j2(x, α))− IE2(j(x, α)) 6 TOL.

When n is large Monte Carlo simulations permit to recover these momentum with an
error decreasing as σ/

√
M with M the number of functional evaluations. One sees

that the convergence rate is independent of n. But, for n < 8, classical numerical
integration over-performs Monte Carlo simulations in term of complexity based on
the number of functional evaluations to recover at a given accuracy these momentum.
As we are interested by small values of n, this latter should therefore be preferred
which eventually leads to the optimization of a weighted sum under constraint.
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Let us assume a uniform probability density function (PDF) for each of the α
component and a uniform sampling IM of I and define µ and σ as:

(3) µ =
1

M

∑
αk∈IM

j(x, αk), σ
2 =

1

M − 1

∑
αk∈IM

(j(x, αk)− µ)2.

With a different PDF, the sampling IM should have been chosen accordingly. But
for the sake of simplicity, let us consider uniform PDF for the sequel.

Better accuracy can be achieved at given M with a numerical integration on a
non uniform grid introducing weights ωk through:

(4) µ∗ =
1

Ω

∑
αk∈I∗M

ωkj(x, αk), Ω =
M∑
k=1

ωk.

The non uniformity, which is linked to adapted grid I∗M , requires some knowledge of
j: we are in the context of adaptive numerical integration and mesh adaptation. We
would like to consider this idea of introducing weights even working with uniform
grids (i.e. I∗M = IM) and with the weights ωk accounting for the kind of performance
we eventually want for the design: constant performance over the functioning pa-
rameters ranges.

Another point of interest is regularity. We would like the design to have a regular
behavior with respect to α. Something which is not necessarily achieved when
controlling the variance expressed through expression (3). Hence, supposing that the
components of α are uncorrelated, we propose to consider the following alternative
easy to achieve for small n, instead of the variance by (3):

(5) σ2
∗ =

1

2

∑
αk∈I∗M

< ∇αj(x, αk),∇αj(x, αk) >,

where <,> is the Euclidean scalar product. For small n computing ∇αj is a very
easy task using finite differences, for instance.

Such an approximation is also used in First-Order Second Moment (FOSM) meth-
ods [5] to provide local estimation of the variance necessary in the definition of the
local reliability index (ratio of the local mean estimation to local variance estima-
tion). σ2

∗ is therefore the sum of the FOSM variance over our sampling I∗M . So
this choice can be seen as a variance estimator better addressing regularity issues.
Numerical examples will show the impact on the design of considering functionals
of the form µ∗ + βσ∗, β > 0.

3. Algorithmic considerations and complexity

A typical iterative descent algorithm for the minimization of J = µ∗+βσ∗ involv-
ing a direct simulation chain linking the parameters (x, α) to the state U solution
of a state equation and to the functional j is:



4

(6)

x0, β, ρ, IM , lmax, TOL = given,

optimization iterations l = 1, ..., lmax

M parallel state equation solutions F (U(q(xl), αk)) = 0, αk ∈ IM ,

M parallel evaluations of j(xl, αk), αk ∈ IM ,

M parallel solutions of the adjoint state V equation V tFU(U(q(xl), αk)) = jtU , αk ∈ IM ,

M parallel evaluations of ∇xj(xl, αk) = jx + (V tFx)
t, αk ∈ IM ,

define d the descent direction, d = ∇xµ∗ + β∇xσ∗,

xl+1 = xl − ρd,
Stop if ‖d‖ 6 TOL,

where

(7) ∇xµ∗ =
1

Ω

∑
αk∈IM

ωk∇xj(x, αk),

(8) ∇xσ∗ =
∑
αk∈IM

< ∇αj(x, αk),∇αxj(x, αk) > .

∇xαj(x, αk) is obtained from ∇xj(x, αk) by finite differences on IM , component by
component, following what has been done for ∇αj.

Despite the natural presence of parallelism in this algorithm in the M indepen-
dent evaluations of the state, functional and its gradient, computational complexity
remains an issue. We will discuss the reduction of the sampling size and the use of
incomplete sensitivity concept in the evaluation of the gradients. This latter per-
mits to avoid the solution of the M adjoint equations. This is particularly suitable
when using black-box state equation solvers not providing the adjoint of the state
variables.

4. Reducing the sampling size

Handling fine samplings is very costly for realistic situations. We would like
therefore to reduce the size of the sampling and have a quantitative confidence
indicator during optimization on the pertinence of this reduction. Previous works
suggest that the sampling size M should be larger (by one) than the size of the
control space N [11] (which is also the number of components of ∇xj). This analysis
relies on the fact that one needs N vectors to fill a vector space of dimension N
and with N + 1 there is, therefore, no more direction left for descent. But, to
make sure to fill a design search space of dimension N, the gradients ∇xj(x, αk)
generated at the sampling points αk, k = 1, .., N should be linearly independent.
Therefore, a criteria on the size alone is not enough. It should be completed by a
condition on the linear independence of the gradients. Hence, the crucial point is
rather to make sure the sampling is such that the associate gradients are linearly
independent in order to fill the largest possible variation space and increase the
sampling size as far as one finds new independent directions. In that sense, for
large N , N + 1 is definitely a worst-case scenario and, for small N , there is no
guarantee that the gradients at a uniform sampling of size N + 1 are independent.
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This can be summarized as: if N >> 1 and ∇xj(x, αk) ∈ IRN (has N components),
limp→∞ dim(Span(∇xj(x, αk), αk=1,..p)) << N .

Indeed, experiences show that in large applications, such as the 3D shape opti-
mization problem we will discuss in 9, generating the whole search space is actually
possible with a sampling of size much less than the size of the control space as the
rank of the subspace generated by the gradients of the functional at the different
sampling points is small compared to the number of control parameters. This is
an important reduction in complexity as in a 3D shape optimization problem with
hundreds of shape control parameters, M + 1 will be too large for a practical imple-
mentation.

4.1. Link with Gram-Schmidt orthonormalization . The previous discussion
on the optimal sampling size can be linked with the Gram-Schmidt orthonormaliza-
tion of the set of the gradient of the functional generated on a fine sampling of the
functioning parameter range. The best sampling is the one with the smallest size
and with the gradient vectors still generating the design search space. This latter is
unknown, but it is a subset of IRN .

Suppose one has a very fine sampling of I called I∞. Our aim is to find the smallest
M such that:

S∞ = Span(∇xj(x, αk), αk ∈ I∞) = Span(∇xj(x, αk), αk ∈ IM) = SM .
One indication on M is by Gram-Schmidt orthonormalization (in practice modi-

fied Gram-Schmidt for numerical stability) where M will be the rank at which the
rest after successive projections vanishes, or rather is small enough:

(9)



I∞, S∞, TOL = given,

u1 = ∇xj(x, α1),

iterations k = 1, ...

uk = ∇xj(x, αk)−
∑k−1

j=1
<∇xj(x,αk),uj>

<uj ,uj>
uj,

until ‖uk‖ < TOL,

M = k.

This is of course out of reach exactly in practice as it requires S∞. It is also subject to
the choice of α1 and the way αk are sorted. The approach gives, however, indications
on how to proceed to have some confidence level on the quality of a partial search
space due to a partial sampling. By verifying, for instance, if a new direction built
for a randomly chosen new α is still linear combination of previous directions. If not,
one should redefine the multi-point optimization including this new sample point.
Hence, one could start with a sampling IM ′ and make sure during optimization that
we always have M < M ′ such that:

SM = Span(∇xj(x, αk), αk ∈ IM) ⊆ Span(∇xj(x, αk), αk ∈ IM ′) = SM ′ .
We show in problem 9 an example of how Gram-Schmidt orthonormalization can

be used to determine M the size of the free subspace, defined for a given accuracy
TOL, in the space of all the gradients generated for the chosen sampling IM ′ . Doing
so at each iteration of the optimization gives a clear indication on the quality of our
sampling used to define the multi-point formulation.
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5. Sensitivity analysis

In algorithm 3, at each iteration of minimization we need to provide ∇xj(xl, αk)
for different values of αk. This is computer intensive even if it is fully parallel.
Our aim is to see how to reduce the complexity of this optimization problem using
incomplete sensitivity as in the case of mono-point optimization without linearizing
the state equation.

We briefly recall the Hadamard incomplete sensitivity approach [1, 7]. Consider
a general simulation loop linking the independent parameter x to a functional j:

(10) j(x) : x→ q(x)→ U(q(x))→ j(x, q(x), U(q(x))),

where q and U are dependent variables. In our discussion, the difference between the
two is mainly on the cost of getting them. See, for instance, q as geometrical quan-
tities and U representing state related variables, solution of some costly governing
equation. The gradient of j with respect to x is obviously∇xj = j,x+(j,q+j,UU,q)q,x.
The major part of the cost of this evaluation is due to U,q. Hadamard incomplete
sensitivity addresses the following context:

• the cost function j and control x have the same domain of definition D(x)
(e.g. a shape and an aerodynamic coefficient defined over it),
• j is a product of functions such as j(x) = f(x, q(x)) g(U(q(x))).

If these requirements hold, we can use an incomplete evaluation of this gradient,
neglecting the sensitivity with respect to the state, leading to the approximation
∇xj = j,x + j,Uq,x = ∇xfg. This is very interesting as ∇xf can be analytically
calculated in most situations. These are also locally defined on the domain of defini-
tion D(x) of x and do not involve the full domain of definition of the state variable
U or even q. For instance, in the case of a shape optimization problem such as in
problem 9, there will be no field variable linearized as everything will be defined on
the shape. This locality issue is very important in parallel computing where data
locality is aimed as much as possible to reduce the communications.

6. An analytical example

Let us illustrate our purpose on the multi-point definition of the functional and
on the nonuniform weighting using a simple analytical example where α is a scalar
and
(11)

j(x, α) =
1

2

N∑
i=1

(xi − α)2, −0.5 = αmin 6 α 6 αmax = 0.5, −5 6 xi 6 5, N = 40.

The optimality condition for j(x, α) gives obviously xi = α, i = 1, .., 40.
Let us solve our problem by a gradient method and minimize the functional µ∗ +

βσ∗ with β = 0 or 1 where µ∗ and σ∗ are given by (4) and (5). As we said, the
weights ωk can be modified to account for the kind of performance we eventually
want for the design: constant performance over the range of α.

Suppose one has performed a first optimization with a uniform weighting (ωk =
0.1) and the observed performance is as presented in figure 1. A choice of ωk giving
more weight to regions away from where the best performance is achieved could be:

(12) ωk = (1− exp(−a(αk − αopt)2) + b, 0 < b << 1,
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with a = 1/(αmax − αmin) = 1 and , b = 0.1 and αopt = 0.
Figure 1 shows the distribution of j(x, αk) after these minimization with M = 40.

The solution to the first minimization problem is the center of Oad which is a rather
non robust design. The second minimization produces a much flatter functional
over the range of α. In this case, this is achieved only through degradation in the
performance of the design. In the sequel, we will see that this is not necessarily
always the case.
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Figure 1. Robust minimization: j(xopt, α) given by (11) vs. α where
xopt is solution after minimizing µ∗+βσ∗ for β = 0 and regular weight-
ing (continuous) and β = 1 and non uniform weighting (dashes).

7. Parametric optimality condition analysis on a model problem

Let us consider a situation where optimality conditions can be derived and the
optimal solutions expressed without applying an optimization procedure. Consider
a cost function given by:

j(x, α) = xmuy(y = x, α), x ∈ [−0.1, 0.1], α ∈ [0.2, 5], m ∈ IN∗

and as state equation the following convection-diffusion equation with our α being
the Peclet number:

uy − α−1 uyy = 0, on ]x, 1[, u(y = x, α) = 0, u(y = 1, α) = 1.

The solution of this equation is

(13) u(y, α) =
exp(α x)− exp(α y)

exp(α x)− exp(α)
.

Hence

uy(y, α) =
−α exp(α y)

exp(α x)− exp(α)
,

(uy),x(y = x, α) =
(α exp(α x))2

(exp(α x)− exp(α))2
= u2

y(y = x).

j,x(y = x, α) = xm−1uy(x, α)(m+ xuy(x, α)).
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The first optimality condition for J(x) =
∑

αk∈IM ωk j(x, αk) with IM a regular
sampling of [0.2, 5], the chosen range for α, gives critical points when:

(14)
∑
αk∈IM

ωk x
m−1uy(x, α)(m+ xuy(x, α)) = 0.

For m > 1, x = 0 is always the optimal solution. For m = 1, there is no unique op-
timal solution for all α. But, as shown in Figure 2, the proposed formulation always
reduces the sensitivity of the functional with respect to the functioning parameter
α. Figure 2 shows J ′x(x) and j′x(x, α) with a 40×40 sampling of the (x, α) parameter
space using uniform and non-uniform weightings. From figure 2, one sees that the
nonuniform weighting (12) used in problem 6 can be again applied here.

The second term between parenthesis in (14) is the state linearization contribu-
tion. Dropping it leads to what we call the incomplete sensitivity. Figure 3 shows the
absolute error one commits dropping this contribution. One sees that the approxi-
mation is better for large m. Also the incomplete optimality condition gives the same
optimal solution for m > 1. As we said, this approximation only holds for special
functionals made as products of control by state functions: j(x, α) = f(x)g(u(x, α))
[1].

8. Shape optimization with a reduced-order fluid model

Let us consider a situation with α being of dimension two. One considers a flow
problem in two dimension in space where the pressure distribution along the shape
Γ(x) follows the so-called Newton law:

(15) p(Γ(x), α) =
1

2
ρ∞‖u∞(α)‖2

(
u∞(α)

‖u∞(α)‖
.n(Γ(x))

)2

=
1

2
ρ∞(u∞(α).n(Γ(x)))2,

where subscribe ∞ denotes inflow quantity for the density and velocity and n the
local outward normal to the shape. This relation gives satisfactory prediction of the
pressure distribution over a simple shape (such a cylinder) in a very low-speed flow.

The control space (shape parameterization) is of dimension 3 and the functional in-
volves pressure target over the shape Γ(x) described by the parameter x = (x1, x2, x3).
More precisely, the shape Γ(x) is given by:

Γ(x) = {(y1, y2), such that y1 ∈ [−π, π], y2 = Πi=1,3 cos(xiy1)}.
One would like to realize best a target pressure distribution pdes, taken constant

here, over a given range of the inflow velocity intensity (Uin) and its incidence (θ)
defined by α = (Uin, θ). Using the notations above, we have:

(16) j(x, α) =
1

2

∫
Γ(x)

(p(Γ(x), α)− pdes)2 dγ.

We use a gradient method to minimize the functional µ∗ + βσ∗ for β = 0 and
a regular weighting and then for β = 1 and a non uniform target-based weighting
derived from the outcome of the first design. Figure 4 shows the performances with
the uniform weighted sum and a non uniform weighting together with regularity
control through (4) for a 30× 30 sampling of the two dimensional functioning space
(flow incidence in degree and intensity in cm/s). We see from this figure that the
weighting correction should mainly account for the variations due to the angle of
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Figure 2. From the top m = 1, 2 and 3 in problem 7. J ′x(x) (left
column) and j′x(x, α) (right column) for a 40 × 40 sampling of the
parameter space (x, α) with a uniform (dashed) and the proposed
corrections (continuous). For m > 1, xopt = 0 for all α and is given
by both weightings.

incidence and that the inflow intensity has less impact on the functional according
to this model. We introduce therefore an anisotropic metric in the definition of ωk:

(17) ωk = (1− exp(−‖αk − αopt‖2
∗) + b, 0 < b << 1,

‖αk − αopt‖2
∗ = (αk − αopt)tA(αk − αopt),

with A a 2× 2 positive definite matrix which permits an anisotropic distance defi-
nition in the domain of variation of α = (Uin, θ). In this example we consider:

A = diag(
0.01

Umax
in − Umin

in

,
1

θmax − θmin
), b = 0.1, and αopt = (1.5, 0),

with Umax
in = 1.6cm/s, Umin

in = 1.3cm/s, θmax = 2o, θmin = −2o. The new optimal
solution appears more stable as all the components of∇αj(xopt, α) have been reduced
and the functional is almost flat over the ranges of the parameters. Figure 4 also
shows the shapes obtained from the two optimizations. This is non intuitive as one
would have expected that the most robust shape to be also the simplest.
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Figure 3. Absolute error between the sensitivity and its incomplete
evaluation for J ′x(x) (top) and j′x(x, α) (bottom) for problem 7. The
error decreases with m increasing.

8.1. Incomplete sensitivity . To discuss incomplete sensitivity analysis, let us for
simplicity consider both x and α as scalar quantities and write in short Γ(x) = x
and write the functional (16) as a point-wise quantity:

j(x, α) =
1

2
(p(x, α)− pdes)2.

This functional is not in the validity domain of incomplete sensitivities as it is not
made of a product of a function of the state variable by a function of geometrical
quantities. Its gradient with respect to x gives:

j′x = (p(x, α)− pdes)p′x.

The incomplete sensitivity is therefore zero when dropping the state linearization
contribution.

Let us consider another situation which will also be considered in 3D in problem 9.
Neglecting viscous effects, designing a shape with minimum drag involves an integral
on the shape of p(x, α)(u∞(α) ·n(x)). Suppose the pressure is given by formula (15).
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Figure 4. Robust shape optimization with uniform weighting and
based on (12) with regularity control with j(x, α) given by (16). Up-
per: functional (16) vs. Uin inflow velocity and θ angle of attack of
the design by uniform weighting and with the proposed corrections on
a 30 × 30 sampling. Middle: |∂Uin

j(xopt, α)| + |∂θj(xopt, α)|, a mea-
sure of robustness. Lower: the two final shapes (dashed by uniform
weighting).

We have therefore

p(x, α)u∞(α) · n(x) =
1

2
ρ∞(u∞(α) · n(x))3.

Its derivative with respect to x is

(p(x, α)u∞(α) · n(x))′x = pu∞ · n′ + p′x(u∞ · n).
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The first term in the right-hand-side is the incomplete sensitivity and the second
term involves the linearization of the pressure. Adding the two, we have:

(p(x, α)u∞(α) · n(x))′x =
3

2
ρ∞u∞(u∞ · n)2n′.

On the other hand, the incomplete sensitivity alone gives:

(pu∞)n′ = 1/2ρ∞u∞(u∞ · n)2n′.

The two derivatives realize the same optimality condition and only differ by a factor
of 3 which is of no importance with a descent method. This has been successfully
used in mono-point drag reduction shape optimization problems [1] but in multi-
point optimizations the associated computational effort reduction will be even more
significant.

The expression above can be rewritten as pu∞.n = p|u∞| cos( u∞
|u∞| .n). The in-

complete gradient is therefore p(u∞.n)x = −p|u∞| sin( u∞
|u∞| .n) = 0 when n is aligned

with u∞. The incomplete sensitivity fails therefore for these area (e.g. area near
the leading edge for instance for an airfoil at no incidence). On the other hand,
it is exact if shape deformations are aligned with the local normal to the shape,
if ∂p/∂n = 0 boundary condition is applied along the shape. This remark is very
important and permits to access at no cost the sensitivity of the aerodynamic coef-
ficients with respect to shape deformations in the case of inviscid flows. We will use
this in example 9.

8.2. Sampling size analysis. Figure 5 illustrates the relation between sampling
and search capacity for problem 8. It shows the comparison of∇x(µ∗+βσ∗) obtained
at the same control point x for several different uniform samplings of size increasing
from 4 × 4 to 30 × 30 with a uniform weighting with β = 0 and the non uniform
one with both β = 0 and β = 1. The biggest impact comes when adding regularity
control on j(x, α) through σ∗. The non uniform weighting and this regularity control
can be added after one has performed a first optimization using a uniform weighting.
One needs this first run to be able to define the weights and β. Indeed, β should
be reduced if the functional is highly irregular in α in order for the constrained
optimization problem not to be too stiff. The gradients differ in amplitude but
indications on the search direction can be found after normalization. One sees
that with the regular weighting approach one can degrade the sampling to 5 × 5
and still have the same search direction. With the non uniform weighting and
controlling the regularity in the functional over the functioning parameter range even
coarser samplings can be used. This is interesting as the non uniform weighting is
a priori prescribed through (12) and does not need any tuning during optimization.
Something which is not easy and this is one advantage of the present formulation.
If a non uniform sampling is used, one expects being able to degrade the sampling
to size 4 = 3 + 1 (i.e. 2 × 2 or 3 × 1) to recover the theory in [11, 9]. We are back
here to what said in section 4 on the relation between the sizes of the control space
and the sampling.

9. Full aircraft robust shape optimization

This example concerns a shape optimization problem for a full aircraft in transonic
cruise condition. For such configurations, an efficient mono-point optimization is
already a difficult task as it involves several software. It also requires coherent
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geometrical manipulation of the shape parameterization and the surface and volume
meshes.

Let us briefly describe our shape optimization procedure [1, 7] where the direct
dependency chain reads:

(18) j(x, α) : (x, α)→ (q(x), α)→ U(q(x), α)→ j(x, q(x), U(q(x), α)),

where x denotes a CAD-free parameterization (CAD: Computer Aided Design) [7]
which does not require a priori local regularity assumptions on the shape as it is im-
plicitly the case in CAD-based shape definitions. q(x) denotes auxiliary unstructured
mesh related geometrical quantities and U(q(x), α) flow variables depending also on
extra parameters α not part of those involved in the definition of the shape. In ex-
ample 8, U(q(x), α) was solution of an analytical model. In this problem U(q(x), α)
denotes conservative flow variables solution of the Euler equations in conservation
form.

Several sources of variability exist for these problems where large deviations exist
between the prescribed shape and the shape during the flight. Shape deformations
during the flight, which we suppose stationary, may be due to a change in the weight
of the aircraft or due to variability in the flight conditions. In the former, the aircraft
weight differs by several tons between departure and arrival and the shape deforms
accordingly. This is even more visible on new generation of aircrafts using new
materials allowing for large shape deformation. This shape variation should therefore
be accounted for during the design through multi-point optimizations of aeroelastic
shapes. The present approach eases handling this complexity. One example of
the latter situation is when the aircraft cruises against transverse winds which are
very common. In this case, the parameter α is the sideslip angle inducing fully
3D effects on the flow around the plane making necessary the consideration of a
full aircraft during the design. Usually aircrafts are designed for a range of angle
of incidence which permits to easily recover the lift coefficient thanks to the linear
relationship between incidence and lift away from stall conditions. These designs
are usually realized with the sideslip angle set to zero. We consider the sideslip
angle α in I = [0, 10o]. Because the airplane geometry is symmetric spanwise, it is
not necessary to consider a symmetric range for the transverse wind. Our aim is to
reduce the sensitivity of the design to this wind.

In our mono-point design procedure, the derivative ∇xj is computed by automatic
differentiation in reverse mode using tapenade [8] and we have optimized by hand
the reverse mode code for steady flow adjoint solutions in order to minimize memory
requirements in reverse loops [1]. As we saw in algorithm (3) we need M evaluations
of the state and functional sensitivities with respect to the shape. State evaluations
are difficult to avoid but gradient evaluations can be avoided through incomplete
sensitivity definition as explained in sections (5), (7) and (8.1). Our direct Euler code
uses time marching to the steady solution with local time steps. The corresponding
reverse (or adjoint) code can be easily used to produce the incomplete sensitivity
by setting to one the number of reverse time iterations [1]. This is interesting as
it permits to implement this approximation in existing adjoint based optimization
platform with no extra coding. Also, we saw in section (8.1) that, due to the pressure
boundary condition, in order for the incomplete sensitivity to be accurate we need
shape deformations to be aligned with the normal to the shape. The parameter x
represents shape deformations along the normal to the triangular faces of the surface
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mesh as shown in figure 6. This search space has a dimension of about 5000 (i.e.
N = 5000 here).

Let us consider a classical aerodynamic shape optimization which aims at mini-
mizing the drag coefficient Cd:

j(x, q(x), U(x, α), α) = Cd =
1

2ρ∞‖~u∞(α)‖2

∫
shape(x)

p(q(x), α)(~u∞(α).~n(q(x))dγ,

where superscript ∞ indicates inflow conditions. This minimization is usually per-
formed under equality constraints on the lift and volume of the aircraft. Let us
denotes these C1(x, q(x), U(x, α), α) = 0 and C2(x, q(x), U(x, α), α) = 0. These
quantities are either geometric or enter the validity domain of incomplete sensitiv-
ity concept where one needs the functional to be of the form j(x, q(x), U(q(x))) =∫
shape

f(x, q(x))g(U(q(x))) which is product of geometry by state functions. Sensitiv-

ity evaluation of these constraints being cheap too, one prefers not to use weighting
to define J = j +

∑
i=1,2 aiCi, ai ∈ IR+ to be minimized, but rather to compute in-

dividual gradients and use projection to define a local admissible descent direction:

d = ∇xj −
∑
i=1,2

< ∇xj,∇xCi >
∇xCi
‖∇xCi‖

.

Figure 7 shows the outcome of the Gram-Schmidt orthonormalization with two
different sorting of the vectors in Span(∇xj(x, αk), αk ∈ I200) for the initial shape.
These curves show the evolution of the sampling size M necessary for the repre-
sentation of all the gradients in S200 generated from a very fine sampling of the
sideslip angle parameter range (this plays the role of S∞). The subspace is never
free and can always be generated by a subset of vectors. If TOL = 10−3 the full
subspace can be generated with only 5 gradient vectors. This number increases with
TOL decreasing. The curve with TOL = 10−4 illustrates an unsuitable situation
where missing informations appear only after the addition of several new directions.
Surprisingly, at some point it is best to increase the required accuracy as one even-
tually needs more vectors with TOL = 10−5 than with TOL = 10−6. In cases such
behavior is observed, one should proceed to several designs with various TOL and
see the deviations between the designs. The small differences in the details in high
dimensional search directions are important when looking for very fine tuning of a
design. This is something we are currently exploring. On the other hand, one could
argue that the differences observed for TOL < 10−4 fall below our overall numerical
accuracy.

Figure 8 shows four gradient fields ∇xj(x, αk) between 200 for the sideslip angles
of αk = 1, 3, 6 and 10 degrees. One sees that the differences are mainly located
along the cabin and vertical empennage (not shown here), more sensitive to the
transverse wind. This explains why just a few gradients are suffisient to generate
Span(∇xj(x, αk), αk ∈ I200) for TOL = 10−3 in (9).

In the sequel, we consider the case of TOL = 510−4 only. Let us discuss the
sampling size issue. Above we considered a uniform fine sampling of [0, 10o] with 200
points. In principle, one should have considered a sampling of the size larger by one
than the size of the control space N = 5000. As we said, such a fine sampling is only
necessary if all the associated gradients are linearly independent which is clearly not
the case here. Indeed, the previous analysis by the Gram-Schmidt procedure showed
that even 200 is too large and that for TOL = 10−3, 5 gradients vectors on the initial
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shape were enough to generate the whole search space defined by the 200 gradients
meaning that M = dim(Span(∇xj(x, αk), αk ∈ I200) = 5, for TOL = 10−3. Let us
analyse the evolution of this dimension during optimization working with a sampling
of size 30 (the conclusions would be the same with 200, but the simulations much
more computer intensive).

Figure 9 shows the evolution of M = dim(Span(∇xj(x, αk), αk ∈ I30)) with
TOL = 5.10−4 for µ∗ + βσ∗ with β = 0 and 1 and with uniform and non uniform
weightings. This guarantees that all the informations on possible search directions
are accounted for during optimization. With the non uniform weighting M is larger
showing wider search space. In all cases, M the dimension of the free subspace
search space remains below 8 making therefore 30 a safe choice for the sampling
size.

Figure 10 shows the evolution of µ and σ2 given by (3) of j(x, αk), αk ∈ I30 during
the minimization of j = µ∗+βσ∗ with β = 0 and 1 and with uniform (dash) and non
uniform (continuous) weightings. The two final cumulative shape deformations are
quite different as shown in figure 11 but provide the same average performance. The
design with a non uniform weighting and with regularity control has less variability.

Figure 11 shows an upper-view of shape deformations for the minimization of
j = µ∗ + βσ∗ with β = 0 and 1 and with uniform and non uniform weightings.
Despite the differences in individual gradients in figure 8 were mainly located on
the cabin, the final design based on gradients defined through (7) and (8) features
sensible differences on the wings too. This indicates that for a robust design the
wings, cabin and empennage should be designed together.

10. CONCLUDING REMARKS

In order to be easily integrated to existing shape optimization platforms using de-
scent methods, robust shape optimization has been addressed through multi-point
formulations. The aim was to provide an algorithm with the same time-to-solution
characteristics than in the mono-point situation. The extra coding for this imple-
mentation is marginal as it only involves existing ingredients which need to be used
independently in parallel. Gram-Schmidt orthonormalization permits to introduce
confidence level on the quality of our search space in regard to the multi-point anal-
ysis. Hadamard incomplete sensitivity concept has been used together with the
sensitivity of the functional with respect to functioning parameters to provide the
gradient of a multi-point weighted sum without any linearization of the state equa-
tion. In order to make the multi-point analysis more efficient, the requested charac-
teristics of the target of the optimization has been introduced in the definition of the
functional through target-based weightings. The concepts have introduced through
simple examples and eventually applied to the robust design of a full aircraft in
transonic cruise condition over a range of transversal wind.

Acknowledgements The author would like to thank F. Gallard from Airbus for
his feedbacks on the aircraft optimization problem.
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Figure 5. The three components of ∇x(µ∗ + βσ∗) (left) and after
normalization (right) for problem (8) evaluated with µ∗ and σ∗ defined
on, respectively, a 4× 4, 5× 5, 10× 10, 20× 20 and 30× 30 samplings
of the functioning parameters (incidence and intensity of the flow).
The lower-right picture shows that our a priori non uniform weighting
together with regularity control in α on j(x, α) permits for∇x(µ∗+σ∗)
to be less sensitive to the choice of the sampling.
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CAD-free parameterization 

based on the surface mesh 
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Figure 6. Initial shape and a view of the triangular surface mesh
used to define shape deformations parallel to the local normal to the
shape for problem 9. This in order for the incomplete sensitivity of
aerodynamic coefficients to be exact for inviscid calculations thanks
to the pressure boundary condition ∂p/∂n = 0 over the shape.
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Figure 7. Gram-Schmidt orthonormalization with two different sort-
ing of the gradient vectors for problem 9 for different requested accu-
racy TOL in algorithm 4.1. This indicates the size of the free subspace
for different TOL. Hence, for TOL = 10−3 the full gradient space can
be generated with only 5 gradient vectors.
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Figure 8. Four gradient fields ∇xj(x, αk) for the sideslip angle αk =
1, 3, 6 and 10 degrees.
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Figure 10. Evolution of the mean µ and standard deviation σ of
j(x, αk) αk ∈ I30 during the minimization of j = µ∗ + βσ∗ with β = 0
(dashed) and 1 (continuous) and with uniform (dashed) and non uni-
form (continuous) weightings. The two final shapes are quite different
but provide the same average performance. The design with a non
uniform weighting and with regularity control has less variability.
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Figure 11. Upper-view of shape deformations for the minimization
of j = µ∗ + βσ∗ with β = 0 and 1 and with uniform and non uniform
weightings.


