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We start recalling with critical eyes the mathematical methods used in gauge theory and prove that they are not coherent with continuum mechanics, in particular the analytical mechanics of rigid bodies or hydrodynamics, though using the same group theoretical methods and despite the well known couplings existing between elasticity and electromagnetism (piezzoelectricity, photoelasticity, streaming birefringence). The purpose of this paper is to avoid such contradictions by using new mathematical methods coming from the formal theory of systems of partial differential equations and Lie pseudogroups. These results finally allow to unify the previous independent tentatives done by the brothers E. and F. Cosserat in 1909 for elasticity or H. Weyl in 1918 for electromagnetism by using respectively the group of rigid motions of space or the conformal group of space-time. Meanwhile we explain why the Poincaré duality scheme existing between geometry and physics has to do with homological algebra and algebraic analysis. We insist on the fact that these results could not have been obtained before 1975 as the corresponding tools were not known before.

Introduction

It is usually accepted today in the literature that the physical foundations of what we shall simply call (classical) "gauge theory" (GT) can be found in the paper [START_REF] Yang: R | Conservation of Isotopic Gauge Invariance[END_REF] published by C.N. Yang and R.L. Mills in 1954. Accordingly, the mathematical foundations of GT can be found in the references existing at this time on differential geometry and group theory, the best and most quoted one being the survey book [START_REF] Kobayashi | Foundations of Differential Geometry[END_REF] published by S. Kobayashi and K. Nomizu in 1963 (See also [START_REF] Bleecker | Gauge Theory and Variational Principles[END_REF][START_REF] Drechsler | Fiber Bundle Techniques in Gauge Theories[END_REF][START_REF] Gockeler | Differential Geometry, Gauge Theories and Gravity[END_REF][START_REF] Yang | Magnetic Monopoles, Fiber Bundles and Gauge Fields[END_REF]). The pupose of this introduction is to revisit these foundations with critical eyes, recalling them in a quite specific and self-contained way for later purposes.

The word "group" has been introduced for the first time in 1830 by Evariste Galois (1811-1832). Then this concept slowly passed from algebra (groups of permutations) to geometry (groups of transformations). It is only in 1880 that Sophus Lie (1842-1899) studied the groups of transformations depending on a finite number of parameters and now called Lie groups of transformations.

Let X be a manifold with local coordinates x = (x 1 , ..., x n ) and G be a Lie group, that is another manifold with local coordinates a = (a 1 , ..., a p ) called parameters with a composition G × G → G : (a, b) → ab, an inverse G → G : a → a -1 and an identity e ∈ G satisfying:

(ab)c = a(bc) = abc, aa -1 = a -1 a = e, ae = ea = a, ∀a, b, c ∈ G Then G is said to act on X if there is a map X × G → X : (x, a) → y = ax = f (x, a) such that (ab)x = a(bx) = abx, ∀a, b ∈ G, ∀x ∈ X and, for simplifying the notations, we shall use global notations even if only local actions are existing. The action is said to be effective if ax = x, ∀x ∈ X ⇒ a = e. A subset S ⊂ X is said to be invariant under the action of G if aS ⊂ S, ∀a ∈ G and the orbit of x ∈ X is the invariant subset Gx = {ax | a ∈ G} ⊂ X. If G acts on two manifolds X and Y , a map f : X → Y is said to be equivariant if f (ax) = af (x), ∀x ∈ X, ∀a ∈ G. For reasons that will become clear later on, it is often convenient to introduce the graph X × G → X × X : (x, a) → (x, y = ax) of the action. In the product X × X, the first factor is called the source while the second factor is called the target.

We denote as usual by T = T (X) the tangent bundle of X, by T * = T * (X) the cotangent bundle, by ∧ r T * the bundle of r-forms and by S q T * the bundle of q-symmetric tensors. Moreover, if ξ, η ∈ T are two vector fields on X, we may define their bracket [ξ, η] ∈ T by the local formula ([ξ, η]) i (x) = ξ r (x)∂ r η i (x) -η s (x)∂ s ξ i (x) leading to the Jacobi identity [ξ, [η, ζ]] + [η, [ζ, ξ]] + [ζ, [ξ, η]] = 0, ∀ξ, η, ζ ∈ T allowing to define a Lie algebra. We have also the useful formula [T (f )(ξ), T (f )(η)] = T (f )([ξ, η]) where T (f ) : T (X) → T (Y ) is the tangent mapping of a map f : X → Y . Finally, when I = {i 1 < ... < i r } is a multi-index, we may set dx I = dx i1 ∧ ... ∧ dx ir and introduce the exterior derivative d : ∧ r T * → ∧ r+1 T * : ω = ω I dx I → dω = ∂ i ω I dx i ∧ dx I with d 2 = d • d ≡ 0 in the Poincaré sequence:

∧ 0 T * d -→ ∧ 1 T * d -→ ∧ 2 T * d -→ ... d -→ ∧ n T * -→ 0
In order to fix the notations, we quote without any proof the "three fundamental theorems of Lie" that will be of constant use in the sequel (See [START_REF] Pommaret | Partial Differential Equations and Group Theory[END_REF] for more details):

FIRST FUNDAMENTAL THEOREM 1.1: The orbits x = f (x 0 , a) satisfy the system of PD equations ∂x i /∂a σ = θ i ρ (x)ω ρ σ (a) with det(ω) = 0. The vector fields θ ρ = θ i ρ (x)∂ i are called infinitesimal generators of the action and are linearly independent over the constants when the action is effective.

In a rough way, we have x = ax 0 ⇒ dx = dax 0 = daa -1 x and daa -1 = ω = (ω τ = ω τ σ (a)da σ ) is thus a family of right invariant 1-forms on G called Maurer-Cartan forms or simply MC forms.

SECOND FUNDAMENTAL THEOREM 1.2: If θ 1 , ..., θ p are the infinitesimal generators of the effective action of a lie group G on X, then [θ ρ , θ σ ] = c τ ρσ θ τ where the c = (c τ ρσ = -c τ σρ ) are the structure constants of a Lie algebra of vector fields which can be identified with G = T e (G) the tangent space to G at the identity e ∈ G by using the action as we already did. Equivalently, introducing the non-degenerate inverse matrix α = ω -1 of right invariant vector fields on G, we obtain from crossed-derivatives the compatibility conditions (CC) for the previous system of partial differential (PD) equations called Maurer-Cartan equations or simply MC equations, namely:

∂ω τ s /∂a r -∂ω τ r /∂a s + c τ ρσ ω ρ r ω σ s = 0 (care to the sign used) or equivalently [α ρ , α σ ] = c τ ρσ α τ .
Using again crossed-derivatives, we obtain the corresponding integrability conditions (IC) on the structure constants and the Cauchy-Kowaleski theorem finally provides:

THIRD FUNDAMENTAL THEOREM 1.3: For any Lie algebra G defined by structure constants c = (c τ ρσ ) satisfying :

c τ ρσ + c τ σρ = 0, c λ µρ c µ στ + c λ µσ c µ τ ρ + c λ µτ c
µ ρσ = 0 one can construct an analytic group G such that G = T e (G) by recovering the MC forms from the MC equations. EXAMPLE 1.4: Considering the affine group of transformations of the real line y = a 1 x+a 2 , the orbits are defined by x = a 1 x 0 + a 2 , a definition leading to dx = ((1/a 1 )da 1 )x + (da 2 -(a 2 /a 1 )da 1 ). We obtain therefore θ

1 = x∂ x , θ 2 = ∂ x ⇒ [θ 1 , θ 2 ] = -θ 2 and ω 1 = (1/a 1 )da 1 , ω 2 = da 2 - (a 2 /a 1 )da 1 ⇒ dω 1 = 0, dω 2 -ω 1 ∧ ω 2 = 0 ⇔ [α 1 , α 2 ] = -α 2 with α 1 = a 1 ∂ 1 + a 2 ∂ 2 , α 2 = ∂ 2 .
GAUGING PROCEDURE 1.5: If x = a(t)x 0 + b(t) with a(t) a time depending orthogonal matrix (rotation) and b(t) a time depending vector (translation) describes the movement of a rigid body in R 3 , then the projection of the absolute speed v = ȧ(t)x 0 + ḃ(t) in an orthogonal frame fixed in the body is the so-called relative speed a -1 v = a -1 ȧx 0 + a -1 ḃ and the kinetic energy/Lagrangian is a quadratic function of the 1-forms A = (a -1 ȧ, a -1 ḃ). Meanwhile, taking into account the preceding example, the Eulerian speed v = v(x, t) = aa -1 x + ḃ -ȧa -1 b only depends on the 1-forms B = ( ȧa -1 , ḃ -ȧa -1 b). We notice that a -1 ȧ and ȧa -1 are both 3 × 3 skewsymmetric time depending matrices that may be quite different. REMARK 1.6: A computation in local coordinates for the case of the movement of a rigid body shows that the action of the 3 × 3 skewsymmetric matrix ȧa -1 on the position x at time t just amounts to the vector product by the vortex vector ω = 1 2 curl(v) (See [START_REF] Arnold | Méthodes Mathématiques de la Mécanique Classique, Appendice 2 (Géodésiques des métriques invariantes à gauche sur des groupes de Lie et hydrodynamique des fluides parfaits)[END_REF][START_REF] Arnold | Sur la Géometrie des Groupes de Lie de Dimension Infini et ses Applications {a l'Hydrodynamique des Fluides Parfaits[END_REF]3,[START_REF] Pommaret | Arnold's Hydrodynamics Revisited[END_REF] for more details).

The above particular case, well known by anybody studying the analytical mechanics of rigid bodies, can be generalized as follows. If X is a manifold and G is a lie group (not acting necessarily on X), let us consider maps a : X → G : (x) → (a(x)) or equivalently sections of the trivial (principal) bundle X × G over X. If x + dx is a point of X close to x, then T (a) will provide a point a + da = a + ∂a ∂x dx close to a on G. We may bring a back to e on G by acting on a with a -1 , either on the left or on the right, getting therefore a 1-form a -1 da = A or daa -1 = B with value in G. As aa -1 = e we also get daa -1 = -ada -1 = -b -1 db if we set b = a -1 as a way to link A with B. When there is an action y = ax, we have x = a -1 y = by and thus dy = dax = daa -1 y, a result leading through the first fundamental theorem of Lie to the equivalent formulas:

a -1 da = A = (A τ i (x)dx i = -ω τ σ (b(x))∂ i b σ (x)dx i ) daa -1 = B = (B τ i (x)dx i = ω τ σ (a(x))∂ i a σ (x)dx i ) Introducing the induced bracket [A, A](ξ, η) = [A(ξ), A(η)] ∈ G, ∀ξ, η ∈ T , we may define the 2- form dA -[A, A] = F ∈ ∧ 2 T * ⊗ G
by the local formula (care again to the sign):

∂ i A τ j (x) -∂ j A τ i (x) -c τ ρσ A ρ i (x)A σ j (x) = F τ ij (x)
This definition can also be adapted to B by using dB + [B, B] and we obtain from the second fundamental theorem of Lie: THEOREM 1.7: There is a nonlinear gauge sequence:

X × G -→ T * ⊗ G MC -→ ∧ 2 T * ⊗ G a -→ a -1 da = A -→ dA -[A, A] = F
Choosing a "close" to e, that is a(x) = e + tλ(x) + ... and linearizing as usual, we obtain the linear operator d :

∧ 0 T * ⊗ G → ∧ 1 T * ⊗ G : (λ τ (x)) → (∂ i λ τ (x)
) leading to: COROLLARY 1.8: There is a linear gauge sequence:

∧ 0 T * ⊗ G d -→ ∧ 1 T * ⊗ G d -→ ∧ 2 T * ⊗ G d -→ ... d -→ ∧ n T * ⊗ G -→ 0
which is the tensor product by G of the Poincaré sequence:

It just remains to introduce the previous results into a variational framework. For this, we may consider a lagrangian on T * ⊗ G, that is an action W = w(A)dx where dx = dx 1 ∧ ... ∧ dx n and to vary it. With A = a -1 da = -dbb -1 we may introduce λ = a

-1 δa = -δbb -1 ∈ G = ∧ 0 T * ⊗ G with local coordinates λ τ (x) = -ω τ σ (b(x))δb σ (x) and we obtain δA = dλ -[A, λ] that is δA τ i = ∂ i λ τ -c τ ρσ A ρ i λ σ in local coordinates. Then, setting ∂w/∂A = A = (A i τ ) ∈ ∧ n-1 T * ⊗ G, we get: δW = AδAdx = A(dλ -[A, λ])dx
and therefore, after integration by part, the Euler-Lagrange (EL) equations [START_REF] Poincare | Sur une Forme Nouvelle des Equations de la Mécanique[END_REF][START_REF] Pommaret | Lie Pseudogroups and Mechanics, Gordon and Breach[END_REF][START_REF] Pommaret | Partial Differential Equations and Group Theory[END_REF]:

∂ i A i τ + c σ ρτ A ρ i A i σ = 0
Such a linear operator for A has non-constant coefficients linearly depending on A. However, setting δaa -1 = µ ∈ G, we get λ = a -1 (δaa -1 )a = Ad(a)µ while, setting a ′ = ab, we get the gauge transformation

A → A ′ = (ab) -1 d(ab) = b -1 a -1 (dab + adb) = Ad(b)A + b -1 db, ∀b ∈ G.
Setting b = e + tλ + ... with t ≪ 1, then δA becomes an infinitesimal gauge transformation. Finally,

a ′ = ba ⇒ A ′ = a -1 b -1 (dba + adb) = a -1 (b -1 db)a + A ⇒ δA = Ad(a)
dµ when b = e + tµ + ... with t ≪ 1. Therefore, introducing B such that Bµ = Aλ, we get the divergence-like equations ∂ i B i σ = 0.

In 1954, at the birth of GT, the above notations were coming from electromagnetism (EM) with EM potential A ∈ T * and EM field dA = F ∈ ∧ 2 T * in the relativistic Maxwell theory [START_REF] Ougarov | Théorie de la Relativité Restreinte[END_REF]. Accordingly, G = U (1) (unit circle in the complex plane)-→ dim(G) = 1 was the only possibility to get pure 1-form A and 2-form F when c = 0. However, "surprisingly", this result is not coherent at all with elasticity theory and, a fortiori with the analytical mechanics of rigid bodies where the Lagrangian is a quadratic expression of 1-forms as we saw because the EM lagrangian (ǫ/2)E 2 -(1/2µ)B 2 is a quadratic expression of the EM field F as a 2-form satisfying the first set of Maxwell equations dF = 0. The dielectric constant ǫ and the magnetic constant µ are leading to the electric induction D = ǫ E and the magnetic induction H = (1/µ) B in the second set of Maxwell equations. In view of the existence of well known field-matter couplings (piezoelectricity, photoelasticity) [START_REF] Pommaret | Lie Pseudogroups and Mechanics, Gordon and Breach[END_REF][START_REF] Pommaret | Group Interpretation of Coupling Phenomena[END_REF][START_REF] Pommaret | Spencer Operator and Applications: From Continuum Mechanics to Mathematical Physics[END_REF], such a situation is contradictory as it should lead to put on equal footing 1-forms and 2-forms but no other substitute could have been provided at that time, despite the tentatives of the brothers Eugene Cosserat (1866Cosserat ( -1931) ) and Francois Cosserat (1852Cosserat ( -1914) ) in 1909 [START_REF] Cosserat | Théorie des Corps Déformables[END_REF][START_REF] Pommaret | Lie Pseudogroups and Mechanics, Gordon and Breach[END_REF][START_REF] Pommaret | Parametrization of Cosserat Equations[END_REF][START_REF] Pommaret | Spencer Operator and Applications: From Continuum Mechanics to Mathematical Physics[END_REF] or of Herman Weyl (1885Weyl ( -1955) ) in 1918 [START_REF] Pommaret | Lie Pseudogroups and Mechanics, Gordon and Breach[END_REF][START_REF] Weyl | Space, Tilme, Matter[END_REF] .

After this long introduction, the purpose of this paper will be to escape from such a contradiction by using new mathematical tools coming from the formal theory of systems of PD equations and Lie pseudogroups, exactly as we did in [START_REF] Pommaret | The Mathematical Foundations of General Relativity Revisited[END_REF] for general relativity (GR). In particular, the titles of the three parts that follow will be quite similar to those of this reference though, of course, the contents will be different. The first part proves hat the name "curvature" given to F has been quite misleading, the resulting confusion between translation and rotation being presented with humour in [START_REF] Zou | Some Researches on Gauge Theories of Gravitation[END_REF] through the chinese saying " to put Chang's cap on Li's head ". The second part explains why the Cosserat/Maxwell/Weyl (CMW) theory MUST be described by the Spencer sequence and NOT by the Janet sequence, with a SHIFT by one step contradicting the mathematical foundations of both GR and GT. The third part finally presents the Poincare duality scheme of physics by means of unexpected methods of homological algebra and algebraic analysis.

First Part: The Nonlinear Janet and Spencer Sequences

In 1890, Lie discovered that Lie groups of transformations were examples of Lie pseudogroups of transformations along the following definition: DEFINITION 2.1: A Lie pseudogroup of transformations Γ ⊂ aut(X) is a group of transformations solutions of a system of OD or PD equations such that, if y = f (x) and z = g(y) are two solutions, called finite transformations, that can be composed, then z = g • f (x) = h(x) and x = f -1 (y) = g(y) are also solutions while y = x is the identity solution denoted by id = id X and we shall set id q = j q (id). In all the sequel we shall suppose that Γ is transitive that is

∀x, y ∈ X, ∃f ∈ Γ, y = f (x)
From now on, we shall use the same notations and definitions as in [START_REF] Pommaret | Partial Differential Equations and Group Theory[END_REF][START_REF] Pommaret | Spencer Operator and Applications: From Continuum Mechanics to Mathematical Physics[END_REF][START_REF] Pommaret | The Mathematical Foundations of General Relativity Revisited[END_REF] for jet bundles. In particular, we recall that, if J q (E) → X : (x, y q ) → (x) is the q-jet bundle of E → X : (x, y) → (x) with local coordinates (x i , y k µ ) for i = 1, ..., n, k = 1, ..., m, 0 ≤| µ |≤ q and y k 0 = y k , we may consider sections

f q : (x) → (x, f k (x), f k i (x), f k ij (x), ...) = (x, f q (x)) transforming like the sec- tions j q (f ) : (x) → (x, f k (x), ∂ i f k (x), ∂ ij f k (x), ...) = (x, j q (f )(x))
where both f q and j q (f ) are over the section f :

(x) → (x, y k = f k (x)) = (x, f (x)
) of E. The (nonlinear) Spencer operator just allows to distinguish a section f q from a section j q (f ) by introducing a kind of "difference" through the operator D :

J q+1 (E) → T * ⊗ V (J q (E)) : f q+1 → j 1 (f q ) -f q+1 with local components (∂ i f k (x) -f k i (x), ∂ i f k j (x) -f k ij (x), ...) and more generally (Df q+1 ) k µ,i (x) = ∂ i f k µ (x) -f k µ+1i (x)
. If m = n and E = X × X with source projection, we denote by Π q = Π q (X, X) ⊂ J q (X × X) the open sub-bundle locally defined by det(y k i ) = 0.

We also notice that an action y = f (x, a) provides a Lie pseudogroup by eliminating the p parameters a among the equations y q = j q (f )(x, a) obtained by successive differentiations with respect to x only when q is large enough. The system R q ⊂ Π q of PD equations thus obtained may be quite nonlinear and of high order. Looking for transformations "close" to the identity, that is setting y = x + tξ(x) + ... when t ≪ 1 is a small constant parameter and passing to the limit t → 0, we may linearize the above (nonlinear) system of finite Lie equations in order to obtain a (linear) system of infinitesimal Lie equations R q = id -1 q (V (R q )) ⊂ J q (T ) for vector fields. Such a system has the property that, if ξ, η are two solutions, then [ξ, η] is also a solution. Accordingly, the set Θ ⊂ T of its solutions satisfies [Θ, Θ] ⊂ Θ and can therefore be considered as the Lie algebra of Γ.

GAUGING PROCEDURE REVISITED 2.2 : When there is a Lie group of transformations, setting

f (x) = f (x, a(x)) and f q (x) = j q (f )(x, a(x)), we obtain a(x) = a = cst ⇔ f q = j q (f ) because Df q+1 = j 1 (f q ) -f q+1 = (∂f q (x, a(x))/∂a τ )∂ i a τ (x)
and the matrix involved has rank p in the following commutative diagram:

0 → X × G = R q → 0 a = cst ↑↓↑ a(x) j q (f ) ↑↓↑ f q X = X
Looking at the way a vector field and its derivatives are transformed under any f ∈ aut(X) while replacing j q (f ) by f q , we obtain:

η k (f (x)) = f k r (x)ξ r (x) ⇒ η k u (f (x))f u i (x) = f k r (x)ξ r i (x) + f k ri (x)ξ r (x)
and so on, a result leading to: LEMMA 2.3: J q (T ) is associated with Π q+1 that is we can obtain a new section η q = f q+1 (ξ q ) from any section ξ q ∈ J q (T ) and any section f q+1 ∈ Π q+1 by the formula:

d µ η k ≡ η k r f r µ + ... = f k r ξ r µ + ... + f k µ+1r ξ r , ∀0 ≤ |µ| ≤ q
where the left member belongs to V (Π q ). Similarly R q ⊂ J q (T ) is associated with R q+1 ⊂ Π q+1 .

In order to construct another nonlinear sequence, we need a few basic definitions on Lie groupoids and Lie algebroids that will become substitutes for Lie groups and Lie algebras. The first idea is to use the chain rule for derivatives j q (g • f ) = j q (g) • j q (f ) whenever f, g ∈ aut(X) can be composed and to replace both j q (f ) and j q (g) respectively by f q and g q in order to obtain the new section g q • f q . This kind of "composition" law can be written in a pointwise symbolic way by introducing another copy Z of X with local coordinates (z) as follows: We may also define j q (f ) -1 = j q (f -1 ) and obtain similarly an "inversion" law.

γ q : Π q (Y, Z)× Y Π q (X, Y ) → Π q (X,
DEFINITION 2.4: A fibered submanifold R q ⊂ Π q is called a system of finite Lie equations or a Lie groupoid of order q if we have an induced source projection α q : R q → X, target projection β q : R q → X, composition γ q : R q × X R q → R q , inversion ι q : R q → R q and identity id q : X → R q . In the sequel we shall only consider transitive Lie groupoids such that the map (α q , β q ) : R q → X × X is an epimorphism. One can prove that the new system ρ r (R q ) = R q+r obtained by differentiating r times all the defining equations of R q is a Lie groupoid of order q + r. Now, using the algebraic bracket {j q+1 (ξ), j q+1 (η)} = j q ([ξ, η]), ∀ξ, η ∈ T , we may obtain by bilinearity a differential bracket on J q (T ) extending the bracket on T : [ξ q , η q ] = {ξ q+1 , η q+1 } + i(ξ)Dη q+1 -i(η)Dξ q+1 , ∀ξ q , η q ∈ J q (T ) which does not depend on the respective lifts ξ q+1 and η q+1 of ξ q and η q in J q+1 (T ). One can prove that his bracket on sections satisfies the Jacobi identity and we set: DEFINITION 2.5: We say that a vector subbundle R q ⊂ J q (T ) is a system of infinitesimal Lie equations or a Lie algebroid if [R q , R q ] ⊂ R q , that is to say [ξ q , η q ] ∈ R q , ∀ξ q , η q ∈ R q . Such a definition can be tested by means of computer algebra. EXAMPLE 2.6: With n = 1, q = 2, X = R and evident notations, the components of [ξ 2 , η 2 ] at order zero, one and two are defined by the totally unusual successive formulas:

[ξ, η] = ξ∂ x η -η∂ x ξ ([ξ 1 , η 1 ]) x = ξ∂ x η x -η∂ x ξ x ([ξ 2 , η 2 ]) xx = ξ x η xx -η x ξ xx + ξ∂ x η xx -η∂ x ξ xx For affine transformations, ξ xx = 0, η xx = 0 ⇒ ([ξ 2 , η 2 ]) xx = 0 and thus [R 2 , R 2 ] ⊂ R 2 .
We may prolong the vertical infinitesimal transformations η = η k (y) ∂ ∂y k to the jet coordinates up to order q in order to obtain:

η k (y) ∂ ∂y k + ∂η k ∂y r y r i ∂ ∂y k i + ( ∂ 2 η k ∂y r ∂y s y r i y s j + ∂η k ∂y r y r ij ) ∂ ∂y k ij + ...
where we have replaced j q (f )(x) by y q , each component beeing the "formal" derivative of the previous one. Replacing j q (η) by η q as sections of R q over the target, we obtain a vertical vector field ♯(η q ) over Π q such that [♯(η q ), ♯(ζ q )] = ♯([η q , ζ q ]), ∀η q , ζ q ∈ R q over the target. We may then use the Frobenius theorem in order to find a generating fundamental set of differential invariants {Φ τ (y q )} up to order q which are such that Φ τ (ȳ q ) = Φ τ (y q ) by using the chain rule for derivatives whenever ȳ = g(y) ∈ Γ acting now on Y . Looking at the way the differential invariants are transformed between themselves under changes of source, we may define a natural bundle F → X : (x, u) → (x). Specializing the Φ τ at id q (x) we obtain the Lie form Φ τ (y q ) = ω τ (x) of R q and a section ω : (x) → (x, ω(x)) of F . If we introduce the maximum number of formal derivatives d i Φ τ that are linearly independent over the jets of strict order q + 1, any other formal derivative is a linear combination with coefficients functions of y q . Applying ♯(R q ), we get a contradiction unless these coefficients are killed by ♯(R q ) and are thus functions of the fundamental set, a result leading to CC of the form I(j 1 (ω)) ≡ A(ω)∂ x ω + B(ω) = 0. Finally, setting v = A(u)u x + B(u), we obtain a new natural bundle F 1 → X : (x, u, v) → ((x) as a vector bundle over F . THEOREM 2.7: There exists a nonlinear Janet sequence associated with the Lie form of an involutive system of finite Lie equations:

Φ • j q I • j 1 0 → Γ → aut(X) ⇉ F ⇉ F 1 ω • α 0
where the kernel of the first operator f → Φ • j q (f ) = Φ(j q (f )) = j q (f ) -1 (ω) is taken with respect to the section ω of F while the kernel of the second operator is taken with respect to the zero section of the vector bundle F 1 over F (Compare to [START_REF] Kumpera | Lie Equations[END_REF][START_REF] Vessiot | Sur la Théorie des Groupes Infinis[END_REF]).

THEOREM 2.8 : There is a first nonlinear Spencer sequence:

0 -→ aut(X) jq+1 -→ Π q+1 (X, X) D -→ T * ⊗ J q (T ) D′ -→ ∧ 2 T * ⊗ J q-1 (T )
with Df q+1 ≡ f -1 q+1 •j 1 (f q )-id q+1 = χ q ⇒ D′ χ q (ξ, η) ≡ Dχ q (ξ, η)-{χ q (ξ), χ q (η)} = 0. Moreover, setting χ 0 = A -id ∈ T * ⊗ T , this sequence is locally exact if det(A) = 0 and there is an induced second nonlinear Spencer sequence (See next section for the definition of the Spencer bundles):

0 -→ aut(X) jq -→ R q D1 -→ C 1 (T ) D2 -→ C 2 (T )
where all the operators involved are involutive and C 1 (T ), C 2 (T ) linearly depend on J q (T ) only.

Proof: There is a canonical inclusion Π q+1 ⊂ J 1 (Π q ) defined by y k µ,i = y k µ+1i and the composition f -1 q+1 • j 1 (f q ) is a well defined section of J 1 (Π q ) over the section f -1 q

• f q = id q of Π q like id q+1 . The difference χ q = f -1 q+1 • j 1 (f q ) -id q+1 is thus a section of T * ⊗ V (Π q ) over id q and we have already noticed that id -1 q (V (Π q )) = J q (T ). For q = 1 we get with g 1 = f -1 1 :

χ k ,i = g k l ∂ i f l -δ k i = A k i -δ k i , χ k j,i = g k l (∂ i f l j -A r i f l rj ) We also obtain from Lemma 2.3 the useful formula f k r χ r µ,i + ... + f k µ+1r χ r ,i = ∂ i f k µ -f k µ+1i
allowing to determine χ q inductively with χ k µ,i = -g k l A r i f l µ+1r + (order ≤| µ |) when q ≥ 1. It just remains to set χ q = τ q • A as 1-forms in order to construct C 1 and C 2 by quotients. We refer to ( [START_REF] Pommaret | Partial Differential Equations and Group Theory[END_REF], p 215) for the inductive proof of the local exactness, providing the only formulas that will be used later on and can be checked directly by the reader:

∂ i χ k ,j -∂ j χ k ,i -χ k i,j + χ k j,i -(χ r ,i χ k r,j -χ r ,j χ k r,i ) = 0 ∂ i χ k l,j -∂ j χ k l,i -χ k li,j + χ k lj,i -(χ r ,i χ k lr,j + χ r l,i χ k r,j -χ r l,j χ k r,i -χ r ,j χ k lr,i ) = 0
There is no need for double-arrows in this framework as the kernels are taken with respect to the zero section of the vector bundles involved. We finally notice that the main difference with the gauge sequence is that all the indices range from 1 to n and that the condition det(A) = 0 amounts to ∆ = det(∂ i f k ) = 0 because det(f k i ) = 0 by assumption (See [START_REF] Pommaret | Differential Galois Theory[END_REF][START_REF] Pommaret | Partial Differential Equations and Group Theory[END_REF][START_REF] Pommaret | Spencer Operator and Applications: From Continuum Mechanics to Mathematical Physics[END_REF] for more details). Q.E.D.

COROLLARY 2.9:

There is a first restricted nonlinear Spencer sequence:

0 -→ Γ jq+1 -→ R q+1 D -→ T * ⊗ R q D′ -→ ∧ 2 T * ⊗ J q-1 (T )
and an induced second restricted nonlinear Spencer sequence:

0 -→ Γ jq -→ R q D1 -→ C 1 D2 -→ C 2
where all the operators involved are involutive and C 1 , C 2 linearly depend on R q only. This sequence is locally isomorphic to the corresponding gauge sequence for any Lie group of transformations when q is large enough. The action, which is essential in the Spencer sequence, disappears in the gauge sequence.

DEFINITION 2.10: A splitting of the short exact sequence 0 → R 0 q → R q π q 0 → T → 0 is a map χ ′ q : T → R q such that π q 0 • χ ′ q = id T or equivalently a section of T * ⊗ R q over id T ∈ T * ⊗ T and is called a R q -connection. Its curvature κ ′ q ∈ ∧ 2 T * ⊗ R 0 q is defined by

κ ′ q (ξ, η) = [χ ′ q (ξ), χ ′ q (η)] -χ ′ q ([ξ, η]
). We notice that χ ′ q = -χ q is a connection with D′ χ ′ q = κ ′ q if and only if A = 0 but connections cannot be used for describing fields because we must have ∆ = 0. İn particular (δ k i , -γ k ij ) is the only existing symmetric connection for the Killing system.

REMARK 2.11: Rewriting the previous formulas with A instead of χ 0 we get:

∂ i A k j -∂ j A k i -A r i χ k r,j + A r j χ k r,i = 0 ∂ i χ k l,j -∂ j χ k l,i -χ r l,i χ k r,j + χ r l,j χ k r,i -A r i χ k lr,j + A r j χ k
lr,i = 0 When q = 1, g 2 = 0 and though surprising it may look like, we find back exactly all the formulas presented by E. and F. Cosserat in ( [START_REF] Cosserat | Théorie des Corps Déformables[END_REF], p 123 and [START_REF] Teodorescu | Dynamics of Linear Elastic Bodies[END_REF]) (Compare to [START_REF] Kumpera | Lie Equations[END_REF]).

Finally, setting f

′ q+1 = g q+1 • f q+1 , we get Df ′ q+1 = f -1 q+1 • g -1 q+1 • j 1 (g q ) • j 1 (f q ) -id q+1 = f -1 q+1 • Dg q+1 • j 1 (f q ) + Df q+1 , ∀f q+1 , g q+1 ∈ R q+1 .
With χ q = Dg q+1 , we get the gauge transformation χ q → f -1 q+1 • χ q • j 1 (f q ) + Df q+1 , ∀f q+1 ∈ R q+1 as in the introduction, thus ACTING ON THE FIELDS χ q WHILE PRESERVING THE FIELD EQUATIONS D′ χ q = 0. Setting f q+1 = id q+1 + tξ q+1 + ... with t ≪ 1 over the source, we obtain an infinitesimal gauge transformation of the form δχ q = Dξ q+1 + L(j 1 (ξ q+1 )χ q as in [START_REF] Pommaret | Lie Pseudogroups and Mechanics, Gordon and Breach[END_REF][START_REF] Pommaret | Partial Differential Equations and Group Theory[END_REF][START_REF] Pommaret | Spencer Operator and Applications: From Continuum Mechanics to Mathematical Physics[END_REF]. However, setting now χ q = Df q+1 and g q+1 = id q+1 + tη q+1 + ... with t ≪ 1 over the target, we get δχ q = f -1 q+1 • Dη q+1 • j 1 (f q ). The same variation is obtained whenever η q+1 = f q+2 (ξ q+1 + χ q+1 (ξ)) with χ q+1 = Df q+2 , a transformation which only depends on j 1 (f q+1 ) and is invertible if and only if det(A) = 0 [START_REF] Pommaret | Lie Pseudogroups and Mechanics, Gordon and Breach[END_REF][START_REF] Pommaret | Partial Differential Equations and Group Theory[END_REF]. This result proves that J q (T ) is also associated with the groupoid Π q,1 ⊂ J 1 (Π q ) defined by det(y k 0,i ) = 0. With g 1 = f -1 1 , we have the unusual formulas:

η k = ξ r ∂ r f k , η k u = g i u f k r ξ r i + g i u ξ r ∂ r f k i .
Accordingly, THE DUAL EQUATIONS WILL ONLY DEPEND ON THE LINEAR SPENCER OPERATOR D. Moreover, in view of the two variational results obtained at the end of the introduction, THE CMW EQUATIONS CANNOT COME FROM THE GAUGE SEQUENCE, contrary to what mechanicians still believe after more than a century. EXAMPLE 2.12: We have the formulas (Compare to [START_REF] Cosserat | Théorie des Corps Déformables[END_REF] and [START_REF] Weyl | Space, Tilme, Matter[END_REF],(76) p 289,(78) p 290):

δχ k ,i = (∂ i ξ k -ξ k i ) + (ξ r ∂ r χ k ,i + χ k ,r ∂ i ξ r -χ r ,i ξ k r ) = g k v ( ∂η v ∂y u -η v u )∂ i f u δχ k j,i = (∂ i ξ k j -ξ k ij ) + (ξ r ∂ r χ k j,i + χ k j,r ∂ i ξ r + χ k r,i ξ r j -χ r j,i ξ k r -χ r ,i ξ k jr ) Setting α i = χ r r,i , we have δα i = (∂ i ξ r r -ξ r ri ) + (ξ r ∂ r α i + α r ∂ i ξ r -χ s ,i ξ r rs ).
EXAMPLE 2.13: (Projective transformations) With ξ xxx = 0, the formal adjoint of the Spencer operator brings as many dual equations as the number of parameters (1 translation + 1 dilatation + 1 elation).

σ(∂ x ξ -ξ x ) + µ(∂ x ξ x -ξ xx ) + ν(∂ x ξ xx -ξ xxx ) = -[(∂ x σ)ξ + (∂ x µ + σ)ξ x + (∂ x ν + µ)ξ xx ] +∂ x (σξ + µξ x + νξ xx ) Cosserat/Weyl equations : ∂ x σ = f , ∂ x µ + σ = m , ∂ x ν + µ = j (equivalent "momenta")

Second Part: The Linear Janet and Spencer Sequences

It remains to understand how the shift by one step in the interpretation of the Spencer sequence is coherent with mechanics and electromagnetism both with their well known couplings [START_REF] Pommaret | Lie Pseudogroups and Mechanics, Gordon and Breach[END_REF][START_REF] Pommaret | Partial Differential Equations and Group Theory[END_REF][START_REF] Pommaret | Spencer Operator and Applications: From Continuum Mechanics to Mathematical Physics[END_REF][START_REF] Pommaret | The Mathematical Foundations of General Relativity Revisited[END_REF]. In a word, the problem we have to solve is to get a 2-form in ∧ 2 T * from a 1-form in T * ⊗ R q for a certain R q ⊂ J q (T ).

For this purpose, introducing the Spencer map δ :

∧ s T * ⊗ S q+1 T * ⊗ E → ∧ s+1 T * ⊗ S q T * ⊗ E defined by (δω) k µ = dx i ∧ ω k µ+1i
, we recall from [START_REF] Pommaret | Partial Differential Equations and Group Theory[END_REF][START_REF] Pommaret | The Mathematical Foundations of General Relativity Revisited[END_REF][START_REF] Spencer | Overdetermined Systems of Partial Differential Equations[END_REF] the definition of the Janet bundles

F r = ∧ r T * ⊗ J q (E)/(∧ r T * ⊗ R q + δ(∧ r-1 T * ⊗ S q+1 T * ⊗ E)) and the Spencer bundles C r = ∧ r T * ⊗R q /δ(∧ r-1 T * ⊗g q+1 ) or C r (E) = ∧ r T * ⊗J q (E)/δ(∧ r-1 T * ⊗S q+1 T * ⊗E) with C r ⊂ C r (E).
When R q ⊂ J q (E) is an involutive system on E, we have the following crucial commutative diagram with exact columns where each operator involved is first order apart from D = Φ • j q , generates the CC of the preceding one and is induced by the extension

D : ∧ r T * ⊗ J q+1 (E) → ∧ r+1 T * ⊗ J q (E) : α ⊗ ξ q+1 → dα ⊗ ξ q + (-1) r α ∧ Dξ q+1 of the Spencer operator D : J q+1 (E) → T * ⊗ J q (E) : ξ q+1 → j 1 (ξ q ) -ξ q+1 .
The upper sequence is the (second) linear Spencer sequence while the lower sequence is the linear Janet sequence and the sum dim(C r ) + dim(F r ) = dim(C r (E)) does not depend on the system while the epimorphisms Φ r are induced by Φ = Φ 0 .

0 0 0 0 ↓ ↓ ↓ ↓ 0 → Θ jq -→ C 0 D1 -→ C 1 D2 -→ C 2 D3 -→ ... Dn → C n → 0 ↓ ↓ ↓ ↓ 0 → E jq -→ C 0 (E) D1 -→ C 1 (E) D2 -→ C 2 (E) D3 -→ ... Dn -→ C n (E) → 0 ↓ Φ 0 ↓ Φ 1 ↓ Φ 2 ↓ Φ n 0 → Θ → E D -→ F 0 D1 -→ F 1 D2 -→ F 2 D3 -→ ... Dn -→ F n → 0 ↓ ↓ ↓ ↓ 0 0 0 0
For later computations, the sequence J 3 (E)

D -→ T * ⊗ J 2 (E) D -→ ∧ 2 T * ⊗ J 1 (E) can be described by the images ∂ i ξ k -ξ k i = X k ,i , ∂ i ξ k j -ξ k ij = X k j,i , ∂ i ξ k lj -ξ k lij = X k lj,i
leading to the identities:

∂ i X k ,j -∂ j X k ,i + X k j,i -X k i,j = 0, ∂ i X k l,j -∂ j X k l,i + X k lj,i -X k li,j = 0
We also recall that the linear Spencer sequence for a Lie group of transformations G × X → X, which essentially depends on the action because infinitesimal generators are needed, is locally isomorphic to the linear gauge sequence which does not depend on the action any longer as it is the tensor product of the Poincaré sequence by the Lie algebra G.

The main idea will be to introduce and compare the three Lie groups of transformations:

• The Poincare group of transformations with 10 parameters leading to the Killing system R 2 :

(L(ξ 1 )ω) ij ≡ ω rj (x)ξ r i + ω ir (x)ξ r j + ξ r ∂ r ω ij (x) = 0 (L(ξ 2 )γ) k ij ≡ ξ k ij + γ k rj (x)ξ r i + γ k ir (x)ξ r j -γ r ij (x)ξ k r + ξ r ∂ r γ k ij (x) = 0 •
The Weyl group of transformations with 11 parameters leading to the system R2 :

(L(ξ 1 )ω) ij ≡ ω rj (x)ξ r i + ω ir (x)ξ r j + ξ r ∂ r ω ij (x) = A(x)ω ij (x) (L(ξ 2 )γ) k ij ≡ ξ k ij + γ k rj (x)ξ r i + γ k ir (x)ξ r j -γ r ij (x)ξ k r + ξ r ∂ r γ k ij (x) = 0 •
The conformal group of transformations with 15 parameters leading to the conformal Killing system R2 and to the corresponding Janet/Spencer diagram:

(L(ξ 1 )ω) ij ≡ ω rj (x)ξ r i + ω ir (x)ξ r j + ξ r ∂ r ω ij (x) = A(x)ω ij (x) (L(ξ 2 )γ) k ij ≡ ξ k ij +γ k rj (x)ξ r i +γ k ir (x)ξ r j -γ r ij (x)ξ k r +ξ r ∂ r γ k ij (x) = δ k i A j (x)+δ k j A i (x)-ω ij (x)ω kr (x)A r (x)
where one has to eliminate the arbitrary function A(x) and 1-form A i (x)dx i for finding sections, replacing the ordinary Lie derivative L(ξ) by the formal Lie derivative L(ξ q ), that is replacing j q (ξ) by ξ q when needed. In these formulas, ω ∈ S 2 T * with det(ω) = 0 and j 1 (ω) ≃ (ω, γ).

0 0 0 0 0 ↓ ↓ ↓ ↓ ↓ 0 → Θ j2 → 15 D1 → 60 D2 → 90 D3 → 60 D4 → 15 → 0 ↓ ↓ ↓ ↓ ↓ 0 → 4 j2 → 60 D1 → 160 D2 → 180 D3 → 96 D4 → 20 → 0 ↓ Φ 0 ↓ Φ 1 ↓ Φ 2 ↓ Φ 3 ↓ Φ 4 0 → Θ → 4 D → 45 D1 → 100 D2 → 90 D3 → 36 D4 → 5 → 0 ↓ ↓ ↓ ↓ ↓ 0 0 0 0 0
We shall use the inclusions R 2 ⊂ R2 ⊂ R2 in the tricky proof of the next crucial proposition:

PROPOSITION 3.1: The Spencer sequence for the conformal Lie pseudogroup projects onto the Poincare sequence with a shift by one step.

Proof:

Using (δ k i , -γ k ij ) as a R 1 -connection and the fact that L(ξ 2 )γ ∈ S 2 T * ⊗ T, ∀ξ 2 ∈ J 2 (T ) while setting (A k l,i = X k l,i + γ k ls X s ,i ) ∈ T * ⊗ T * ⊗ T with (A r r,i = A i ) ∈ T * and (B k lj,i = X k lj,i + γ k sj X s l,i + γ k ls X s j,i -γ s lj X k s,i + X r ,i ∂ r γ k lj ) ∈ T * ⊗ S 2
T * ⊗ T that can be composed with δ for obtaining the trace, we obtain the following commutative and exact diagram:

0 0 ↓ ↓ 0 → ĝ2 → T * → 0 ↓ ↓ 0 → R2 → R2 → T * → 0 ↓ ↓ ↓ 0 → R1 = R1 → 0 ↓ ↓ 0 0
We also obtain from the relations ∂ i γ r rj = ∂ j γ r ri and the two previous identities: → T * ⊗ T * δ → ∧ 2 T * → 0 has already been used in [START_REF] Pommaret | Spencer Operator and Applications: From Continuum Mechanics to Mathematical Physics[END_REF][START_REF] Pommaret | The Mathematical Foundations of General Relativity Revisited[END_REF] for exhibiting the Ricci tensor and the above result brings for the first time a conformal link between electromagnetism and gravitation by using second order jets (See [START_REF] Pommaret | Lie Pseudogroups and Mechanics, Gordon and Breach[END_REF][START_REF] Pommaret | Partial Differential Equations and Group Theory[END_REF] for more details). The study of the nonlinear framework is similar. Indeed, using Remark 2.11 with k = l = r, we get:

F ij = B r ri,j -B r rj,i = X r ri,j -X r rj,i + γ r rs X s i,j -γ r rs X s j,i + X r ,j ∂ r γ s si -X r ,i ∂ r γ s sj = ∂ i X r r,j -∂ j X r r,i + γ r rs (X s i,j -X s j,i ) + X r ,j ∂ i γ s sr -X r ,i ∂ j γ s sr = ∂ i (X r r,j + γ r rs X s ,j ) -∂ j (X r r,i + γ r rs X s s,i ) = ∂ i A j -∂ j A i As Cr = ∧ r T * ⊗ R2 ⊂ ∧ r T * ⊗ R2 =
ϕ ij = A s i χ r rs,j -A s j χ r rs,i = ∂ i χ r r,j -∂ j χ r r,i = ∂ i α j -∂ j α i
and we may finish as before as we have taken out the quadratic terms through the contraction.

Q.E.D.

This unification result, which may be considered as the ultimate "dream " of E. and F. Cosserat or H. Weyl, could not have been obtained before 1975 as it can only be produced by means of the (linear/nonlinear) Spencer sequences and NOT by means of the (linear/nonlinear) gauge sequences.

Third Part: The Duality Scheme

A duality scheme, first introduced by Henri Poincaré (1854-1912) in [START_REF] Poincare | Sur une Forme Nouvelle des Equations de la Mécanique[END_REF], namely a variational framewoirk adapted to the Spencer sequence, could be achieved in local coordinates as we did for the gauge sequence at the end of the introduction. We have indeed presented all the explicit formulas needed for this purpose and the reader will notice that it is difficult or even impossible to find them in [START_REF] Kumpera | Lie Equations[END_REF]. However, it is much more important to relate this dual scheme to homological algebra [START_REF] Rotman | An Introduction to Homological Algebra[END_REF] and algebraic analysis [START_REF] Pommaret | Partial Differential Control Theory[END_REF][START_REF] Pommaret | Algebraic Analysis of Control Systems Defined by Partial Differential Equations[END_REF] by using the comment done at the end of the Second Part which amounts to bring the nonlinear framework to the linear framework, a reason for which the stress equations of continuum mechanics are linear even for nonlinear elasticity [START_REF] Pommaret | Lie Pseudogroups and Mechanics, Gordon and Breach[END_REF][START_REF] Pommaret | Parametrization of Cosserat Equations[END_REF][START_REF] Pommaret | Spencer Operator and Applications: From Continuum Mechanics to Mathematical Physics[END_REF].

Let A be a unitary ring, that is 1, a, b ∈ A ⇒ a + b, ab ∈ A, 1a = a and even an integral domain, that is ab = 0 ⇒ a = 0 or b = 0. However, we shall not always assume that A is commutative , that is ab may be different from ba in general for a, b ∈ A. We say that M = A M is a left module over A if x, y ∈ M ⇒ ax, x + y ∈ M, ∀a ∈ A or a right module M B for B if the operation of B on M is (x, b) → xb, ∀b ∈ B. Of course, A = A A A is a left and right module over itself. We define the torsion submodule t(M ) = {x ∈ M | ∃0 = a ∈ A, ax = 0} ⊆ M and M is a torsion module if t(M ) = M or a torsion-free module if t(M ) = 0. We denote by hom A (M, N ) the set of morphisms f : M → N such that f (ax) = af (x). In particular hom A (A, M ) ≃ M because f (a) = af (1) and we recall that a sequence of modules and maps is exact if the kernel of any map is equal to the image of the map preceding it. When A is commutative, hom(M, N ) is again an A-module for the law (bf )(x) = f (bx) as we have (bf )(ax) = f (bax) = f (abx) = af (bx) = a(bf )(x). In the non-commutative case, things are much more complicate and we have: Proof: We just need to check the two relations:

(f b)(ax) = f (ax)b = af (x)b = a(f b)(x), ((f b ′ )b")(x) = (f b ′ )(x)b" = f (x)b ′ b" = (f b ′ b")(x).
Q.E.D.

DEFINITION 4.2:

A module F is said to be free if it is isomorphic to a power of A called the rank of F over A and denoted by rk A (F ) while the rank of a module is the rank of a maximum free submodule. In the sequel we shall only consider finitely presented modules, namely finitely generated modules defined by exact sequences of the type F 1 d1 -→ F 0 -→ M -→ 0 where F 0 and F 1 are free modules of finite ranks. For any short exact sequence 0 → M ′ f → M g → M " → 0, we have rk A (M ) = rk A (M ′ ) + rk A (M "). A module P is called projective if there exists a free module F and another (thus projective) module Q such that P ⊕ Q ≃ F . A projective (free) resolution of M is a long exact sequence ... We now introduce the extension modules, using the notation M * = hom A (M, A) and, for any morphism f : M → N , we shall denote by f * : N * → M * the morphism which is such that f * (h) = h • f, ∀h ∈ hom A (N, A). For this, we take out M in order to obtain the deleted sequence ... Let Q ⊂ K be a differential field, that is a field (a

∈ K ⇒ 1/a ∈ K) with n commuting derivations {∂ 1 , ..., ∂ n } with ∂ i ∂ j = ∂ j ∂ i = ∂ ij , ∀i, j = 1, ..., n such that ∂ i (a + b) = ∂ i a + ∂ i b and ∂ i (ab) = (∂ i a)b + a∂ i b, ∀a, b ∈ K.
Using an implicit summation on multiindices, we may introduce the (noncommutative) ring of differential operators D = K[d 1 , ..., d n ] = K[d] with elements P = a µ d µ such that µ < ∞ and d i a = ad i + ∂ i a. We notice that D can be generated by K and T = {ξ = ξ i d i | ξ i ∈ K}. Now, if we introduce differential indeterminates y = (y 1 , ..., y m ), we may → F 0 → M → 0. More generally, introducing the successive CC as in the preceding section, we may finally obtain the free resolution of M , namely the exact sequence ...

extend d i y k µ = y k µ+1i to Φ τ ≡ a τ µ k y k µ di -→ d i Φ τ ≡ a τ µ k y k µ+1i + ∂ i a τ µ k y k µ for τ =
D3 -→ F 2 D2 -→ F 1 D1 -→ F 0 -→ M -→ 0.
In actual practice, we let D r act on the left on column vectors in the operator case and on the right on row vectors in the module case. Homological algebra has been created for finding intrinsic properties of modules not depending on any presentation or even on any resolution.

We now exhibit another approach by defining the formal adjoint of an operartor P and an operator matrix D: from integration by part, where λ is a row vector of test functions and <> the usual contraction.

LEMMA 4.5: IIf f ∈ aut(X), we may set x = f -1 (y) = g(y) and we have the identity: 

∂ ∂y k ( 1 ∆(g(y)) ∂ i f k (g(y)) ≡ 0.
∧ 4 T * ⊗ ∧ 1 T ad(d) ←-∧ 4 T * ⊗ ∧ 2 T ad(d) ←-∧ 4 T * ⊗ ∧ 3 T which is locally isomorphic (up to sign) to ∧ 3 T * d ←-∧ 2 T * d ←-∧ 1
T * and the induction equations ∂ i F ij = J j are thus also invariant under any f ∈ aut(X). Indeed, using the last lemma and the identity ∂ ij f l F ij ≡ 0, we have:

∂ ∂y k ( 1 ∆ ∂ i f k ∂ j f l F ij ) = 1 ∆ ∂ i f k ∂ ∂y k (∂ j f l F ij ) = 1 ∆ ∂ i (∂ j f l F ij ) = 1 ∆ ∂ j f l ∂ i F ij
Accordingly, it is not correct to say that the conformal group is the biggest group of invariance of Maxwell equations as it is only the biggest group of invariance of the Minkowski constitutive laws in vacuum [START_REF] Ougarov | Théorie de la Relativité Restreinte[END_REF]. Finally, both sets of equations can be parametrized independently, the first by the potential, the second by the so-called pseudopotential (See [START_REF] Pommaret | Partial Differential Control Theory[END_REF], p 492 for more details). Now, with operational notations, let us consider the two differential sequences: . More generally, changing the presentation of M may change N to N ′ but we have [START_REF] Kunz | Introduction to Commutative Algebra and Algebraic Geometry[END_REF][START_REF] Pommaret | Partial Differential Control Theory[END_REF]: THEOREM 4.8: The modules N and N ′ are projectively equivalent, that is one can find two projective modules P and P ′ such that N ⊕ P ≃ N ′ ⊕ P ′ and we obtain therefore

ext i D (N ) ≃ ext i D (N ′ ), ∀i ≥ 1.
THEOREM 4.9: When M is a left D-module, then R = hom K (M, K) is also a left D-module.

Proof: Let us define:

(af )(m) = af (m) = f (am) ∀a ∈ K, ∀m ∈ M (ξf )(m) = ξf (m) -f (ξm) ∀ξ = ξ i d i ∈ T, ∀m ∈ M
It is easy to check that d i a = ad i + ∂ i a in the operator sense and that ξη -ηξ = [ξ, η] is the standard bracket of vector fields. We finally get (

d i f ) k µ = (d i f )(y k µ ) = ∂ i f k µ -f k µ+1i
that is exactly the Spencer operator we used in the second part. In fact, R is the projective limit of π q+r q : R q+r → R q in a coherent way with jet theory [START_REF] Pommaret | Partial Differential Control Theory[END_REF][START_REF] Pommaret | Algebraic Analysis of Control Systems Defined by Partial Differential Equations[END_REF].

Q.E.D. Proof: According to the above Corollary, we just need to prove that ∧ n T * has a natural right module structure over D. For this, if α = adx 1 ∧ ... ∧ dx n ∈ T * is a volume form with coefficient a ∈ K, we may set α.P = ad(P )(a)dx 1 ∧ ... ∧ dx n when P ∈ D. As D is generated by K and T , we just need to check that the above formula has an intrinsic meaning for any ξ = ξ i d i ∈ T . In that case, we check at once: Q.E.D.

REMARK 4.12: The above results provide a new light on duality in physics. Indeed, as the Poincaré sequence is self-adjoint (up to sign) as a whole and the linear Spencer sequence for a Lie group of transformations is locally isomorphic to copies of that sequence, it follows from Proposition 4.3 that ad(D r+1 ) parametrizes ad(D r ) in the dual of the linear Spencer sequence while ad(D r+1 ) parametrizes ad(D r ) in the dual of the linear Janet sequence, a result highly not evident at first sight in view of the Janet/Spencer diagram for the conformal group of tranformations of space-time that we have presented because D r and D r+1 are totally different operators.

Conclusion

The mathematical foundations of Gauge Theory (GT) leading to Yang-Mills equations are always presented in textbooks or papers without quoting that the group theoretical methods involved are exactly the same as the standard ones used in continuum mechanics, particularly in the analytical mechanics of rigid bodies and in hydrodynamics. Surprisingly, the lagrangians of GT are (quadratic) functions of the curvature 2-form while the lagrangians of mechanics are (quadratic or cubic) functions of the potential 1-form. Meanwhile, the corresponding variational principle leading to Euler-Lagrange equations is also shifted by one step in the use of the same gauge sequence. This situation is contradicting the well known field/matter couplings existing between elasticity and electromagnetism (piezzoelectricity, photoelasticity). In this paper, we prove that the mathematical foundations of GT are not coherent with jet theory and the Spencer sequence. Accordingly, they must be revisited within this new framework, that is when there is a Lie group of transformations considered as a Lie pseudogroup, contrary to the situation existing in GT. Such a new approach, based on new mathematical tools still not known today by physicists, allows to unify electromagnetism and gravitation. Finally, the striking fact that the Cosserat/Maxwell/Weyl equations can be parametrized, contrary to Einstein equations, is shown to have quite deep roots in homological algebra through the use of extension modules and duality theory in the framework of algebraic analysis.

  Ĉr and R2 / R2 ≃ T * , the conformal Spencer sequence projects onto the sequence T * → T * ⊗ T * → ∧ 2 T * ⊗ T * → ... which finally projects with a shift by one step onto the Poincare sequence T * d → ∧ 2 T * d → ∧ 3 T * → ... by applying the Spencer map δ, because these two sequences are only made by first order involutive operators and are thus formally exact. The short exact sequence 0 → S 2 T * δ

LEMMA 4 . 1 :

 41 Given A M and A N B , then hom A (M, N ) becomes a right module over B for the law (f b)(x) = f (x)b.

d3-→ P 2 d2-→ P 1 d1-

 21 → P 0 p -→ M -→ 0 where P 0 , P 1 , P 2 , ... are projective (free) modules, M = coker(d 1 ) = P 0 /im(d 1 ) and p is the canonical projection.

d2-→ P 1 d1-PROPOSITION 4 . 3 :

 143 → P 0 -→ 0 and apply hom A (•, A) in order to get the sequence ... The extension modules ext 0 A (M ) = ker(d * 1 ) = hom A (M, A) and ext i A (M ) = ker(d * i+1 )/im(d * i ), ∀i ≥ 1 do not depend on the resolution chosen and are torsion modules for i ≥ 1.

  1, ..., p. Therefore, setting Dy 1 + ... + dy m = Dy ≃ D m , we obtain by residue the differential module or D-module M = Dy/DΦ. Introducing the two free differential modules F 0 ≃ D m0 , F 1 ≃ D m1 , we obtain equivalently the free presentation F 1 D1

DEFINITION 4. 4 :

 4 P = a µ d µ ∈ D ad ←→ ad(P ) = (-1) |µ| d µ a µ ∈ D < λ, Dξ >=< ad(D)λ, ξ > + div (...)

PROPOSITION 4 . 6 :

 46 If we have an operator E D -→ F , we obtain by duality an operator∧ n T * ⊗ E * ad(D)←-∧ n T * ⊗ F * where E * is obtained from E by inverting the transition matrix.

EXAMPLE 4 . 7 :

 47 Let us revisit EM in the light of the preceding results when n = 4. First of all, we have dA = F ⇒ dF = 0 in the sequence ∧ 1 T * d -→ ∧ 2 T * d -→ ∧ 3 T * and the field equations are invariant under any local diffeomorphism f ∈ aut(X). By duality, we get the sequence

where D 1

 1 generates all the CC of D. Then D 1 • D ≡ 0 ⇐⇒ ad(D) • ad(D 1 ) ≡ 0 but ad(D) may not generate all the CC of ad(D 1 ). Passing to the module framework, we just recognize the definition of ext 1 D (M ). Now, exactly like we defined the differential module M from D, let us define the differential module N from ad(D). Then ext 1 D (N ) = t(M ) does not depend on the presentation of M [19]

COROLLARY 4 . 10 : 1 D

 4101 if M and N are right D-modules, then hom K (M, N ) becomes a left Dmodule. Proof: We just need to set (ξf )(m) = f (mξ) -f (m)ξ, ∀ξ ∈ T, ∀m ∈ M and conclude as before. Q.E.D. As D = D D D is a bimodule, then M * = hom D (M, D)is a right D-module according to Lemma 4.1 and the module N r defined by the ker/coker sequence 0 ←-N r ←-F * * ←-F * 0 ←-M * ←-0 is in fact a right module N r = N D . THEOREM 4.11: We have the side changing procedure N = N l = D N = hom K (∧ n T * , N r ).

  α.ξ = -∂ i (aξ i )dx 1 ∧ ... ∧ dx n = -L(ξ)α by introducing the Lie derivative of α with respect to ξ, along the intrinsic formula L(ξ) = i(ξ)d + di(ξ) where i() is the interior multiplication and d is the exterior derivative of exterior forms. According to well known properties of the Lie derivative, we get : α.(aξ) = (α.ξ).a -α.ξ(a), α.(ξη -ηξ) = -[L(ξ), L(η)]α = -L([ξ, η])α = α.[ξ, η].