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Abstract

Though conventional coronary angiography (CCA) has been the standard of reference for diagnosing coronary artery disease in
the past decades, computed tomography angiography (CTA) has rapidly emerged, and is nowadays widely used in clinical prac-
tice. Here, we introduce a standardized evaluation framework to reliably evaluate and compare the performance of the algorithms
devised to detect and quantify the coronary artery stenoses, and to segment the coronary artery lumen in CTA data. The objec-
tive of this evaluation framework is to demonstrate the feasibility of dedicated algorithms to: 1) (semi-)automatically detect and
quantify stenosis on CTA, in comparison with quantitative coronary angiography (QCA) and CTA consensus reading, and 2) (semi-
)automatically segment the coronary lumen on CTA, in comparison with expert’s manual annotation. A database consisting of 48
multicenter multivendor cardiac CTA datasets with corresponding reference standards are described and made available. The algo-
rithms from 11 research groups were quantitatively evaluated and compared. The results show that 1) some of the current stenosis
detection/quantification algorithms may be used for triage or as a second-reader in clinical practice, and that 2) automatic lumen
segmentation is possible with a precision similar to that obtained by experts. The framework is open for new submissions through
the website, at http.//coronary.bigr.nl/stenoses).

Keywords: standardized evaluation framework, coronary arteries, Computed Tomography Angiography (CTA), Quantitative
Coronary Angiography (QCA), stenoses, detection, quantification, lumen segmentation, multicenter, multivendor

*Corresponding author. P.O. Box 2040, 3000 CA Rotterdam, the Nether-
lands.
Email address: coronarystenoses@bigr.nl (T. van Walsum) URL: www.bigr .nl (T. van Walsum)

Preprint submitted to Medical Image Analysis September 11, 2014



1. Introduction

Coronary artery disease (CAD) is a major cause of death
worldwide (Roger et al., 2012). Oxygen and nutrients, which
are required for normal heart function, are supplied to the
myocardium (the muscular tissue responsible for the contrac-
tion of the heart) by the blood traveling through the coro-
nary arteries. If a coronary artery becomes narrowed or oc-
cluded owing to the build-up of plaque (e.g. calcium, fat and
cholesterol), the amount of blood flowing to the myocardium
is reduced and, thus, less oxygen and nutrients are delivered
to these myocardial regions. The restriction in blood and
oxygen is called ischemia; atherosclerosis is the condition in
which plaques build-up in the coronary artery, and the nar-
rowing of a vessel is referred to as stenosis. Atherosclerotic
plaques can either be stable or unstable (also called vulnerable);
the latter are prone to rupture (Virmani et al., 2006; Achen-
bach, 2008). Stable atherosclerotic plaques may cause tem-
porary changes to ischemic myocardial regions, while unsta-
ble/vulnerable atherosclerotic plaques may induce irreversible
defects to the myocardium, and result in myocardial infarction
(heart attack). Though identification of stenoses prone to cause
ischemic events through rupture is difficult (Achenbach, 2008),
it is crucial to detect coronary artery plaques in an early stage.

Various cardiovascular imaging techniques are used to assess
and quantify the presence and state of coronary artery stenoses.
The choice of which cardiovascular imaging techniques to per-
form is determined by the patient’s history and current symp-
toms. In current clinical practice, conventional coronary an-
giography (CCA) is the gold standard imaging technique to
diagnose CAD. With CCA, the location, number and sever-
ity of the stenoses can be assessed. Computed tomography
coronary angiography (CTA) is gaining popularity (Weustink
and de Feyter, 2011). From 2006 to 2008, the number of
coronary CTA scans (with and without quantitative evalua-
tion of coronary calcium) performed in the U.S. has doubled,
growing from 35,578 to 71,122 utilizations (Medicare, Shaw
et al. (2010)). CTA is less invasive than CCA, provides high-
resolution three-dimensional (3D) images of the cardiac and
coronary artery anatomy, and allows the interpreter to assess the
presence, extent and type (calcified or non-calcified) of coro-
nary plaques. CTA has evolved as a reliable gatekeeper of
CCA in patients with low to intermediate pre-test probability
of CAD!(Achenbach et al., 2012).

CTA images are currently interpreted using several visual-
ization techniques (Raff et al., 2009). Transaxial image stacks
are the basic visualization mode, and consist of a series of 2-
dimensional (2D) axial images stacked in the longitudinal (i.e.
cranio-caudal) direction. Such a visualization is characterized
by minimal distortion and maximum resolution; however, 3-
dimensional (3D) anatomical information, such as the coronary
artery lumen morphology, is to be “mentally” reconstructed by
the interpreter. As a complement, (curved) multi-planar refor-
matted (MPR/cMPR) images permit to visualize the coronary

IPre-test probability of obstructive CAD are estimated using the Duke risk
score (Pryor et al., 1993)
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Figure 1: Visualization techniques used to interpret CTA images: transaxial
(left) and multi-planar images (cross-sectional view at the upper-right, longitu-
dinal view at the bottom right). Left anterior descending artery (LAD), right
coronary artery (RCA) and left circumflex artery (LCX). This patient (training
dataset #05) presents a moderate mixed plaque in segment #8 of the LAD.

artery in orthogonal and oblique planes; such visualizations are
especially recommended to delineate the morphology of the lu-
men (Figure 1). Maximum intensity projection (MIP) images
may also be used to visualize vessels that run out of a given
plane; MIP images are obtained by projecting the voxels with
maximum intensity within a slab volume onto a plane. Cur-
rently, eyeballing (visual inspection and quantification) of CTA
is the standard procedure in clinical practice to assess the coro-
nary arteries.

The CTA interpretation is then summarized into a report(Raff
et al.,, 2009), which contains, beside patient’s clinical data,
technical procedure information (i.e. image acquisition, im-
age quality), clinical scan findings and interpretation. For each
coronary artery lesion present in one of the modified 17-AHA-
segments (American Heart Association, Fig. 2), the interpreter
reports: 1) the stenosis location (origin, proximal, mid, distal,
end) 2) the stenosis severity (mild, moderate, severe, occluded),
3) the stenosis plaque type (non-calcified, mixed, calcified), 4)
the overall image quality / artifacts, and 5) the confidence in
the interpretation. The final clinical decision making is based
on these reported coronary findings; it is thus crucial to accu-
rately detect or rule out significant CAD on CTA. Various stud-
ies investigated the diagnostic accuracy of CTA as compared to
CCA (Meijboom et al., 2008; den Dekker et al., 2012). It has
been demonstrated that CTA is 1) highly sensitive for detect-
ing and ruling out significant CAD, and 2) moderately specific,
even with severe coronary calcification (64-slices scanners and
above).

The purpose of our work is to investigate to what extent auto-
mated approaches can be used to interpret cardiac CTA data for
the presence of CAD. This paper has two main contributions:
first, we introduce a framework to evaluate (semi-)automatic
methods for coronary artery stenosis detection and quantifica-
tion, and lumen segmentation, and second, we report on the
results of this evaluation framework, comparing several state-
of-the art coronary artery stenosis detection, quantification and
segmentation algorithms.
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Figure 2: Coronary segmentation diagram - Axial coronary anatomy definitions
derived, adopted, and adjusted from Austen et al. (1975)

Table 1: Quantitative stenosis grading and stenosis types

Grade Description
0  Normal Absence of plaque and no luminal stenosis
1 Mild Plaque with 20% - 49% stenosis
2 Moderate Plaque with 50% - 69% stenosis
3 Severe Plaque with 70% - 99% stenosis
4 Occluded Complete occlusion of the lumen

Type Description

Non-calcified  Plaque without calcium
Calcified Plaque with > 50% calcium
Mixed Plaque with < 50% calcium

In Section 2, we discuss previous work on detection and
quantification of stenoses in CTA images. The evaluation
framework is presented in Section 3. It includes a publicly
available multicenter multivendor database of CTA data (Sec-
tion 3.1), two reference standards derived from CCA and CTA
(Section 3.4), a set of well-defined evaluation measures (Sec-
tion 3.5), and an on-line tool to compare methods’ perfor-
mances (3.9). Section 4 gives a description of the first use
of the framework during a MICCAI workshop, and includes
a short description of the methods that were tested. The results
of these methods as produced by the framework are presented
in Section 5 and discussed in Section 6. Concluding remarks
are made in Section 7.

2. Previous work

Here, we give an overview of the previously published steno-
sis detection, quantification and grading methods, and report
how they were evaluated; we refer readers to Lesage et al.
(2009) for an extensive review on vessel lumen segmentation
methods.

Recently, the number of publications presenting and/or eval-
uating coronary artery stenosis detection and quantification

techniques in cardiac CTA datasets is growing, thus increasing
the need for a standardized evaluation framework.

Table 2 gives an overview of the previously published meth-
ods, evaluated against CTA and/or QCA. As presented in Fig-
ure 3, these methods can be categorized into two groups: 1)
the ones that use accurate lumen segmentation together with
either an intensity threshold or an estimation of the healthy ves-
sel diameter to detect stenoses (Wesarg et al., 2006; Khan et al.,
2006; Saur et al., 2008; Zhou et al., 2010; Kelm et al., 2011;
Arnoldi et al., 2010; Halpern and Halpern, 2011; Xu et al.,
2012) , and 2) the ones that use feature extraction computed
along a centerline to directly detect plaque (TeBmann et al.,
2009; Mittal et al., 2010; Zuluaga et al., 2011). Note that the
latter methods focus on plaque detection rather than stenosis
detection. In their evaluation stage, binary (healthy or diseased)
labels were assigned to each cross-section by the observers,
based on the presence of plaque rather than based on the pres-
ence/severity of lumen narrowing.

Most algorithms were quantitatively evaluated mainly on
their detection rate (i.e. how accurately can a significant steno-
sis be detected by the algorithm); two articles (Halpern and
Halpern, 2011; Xu et al., 2012) introduced more granular-
ity (more grades) in the stenosis quantification. Moreover,
solely three algorithms (Khan et al., 2006; Boogers et al., 2010;
Halpern and Halpern, 2011) were compared to QCA.

To the best of our knowledge, the only commercially avail-
able system that automatically detects significant coronary
artery stenosis in CTA is the COR Analyzer (Rcadia Medical
Imaging Ltd., Haifa, Israel). The summary of 14 clinical tri-
als evaluating the system is available in Goldenberg and Peled
(2011). The system reports location and type (calcified, soft,
mixed) of significant coronary lesions (> 50% stenosis). It is
positioned as a computer-aided simple triage (CAST) system
(Goldenberg et al., 2012) to rule out significant coronary artery
disease. It may also serve as a second opinion diagnostic aid
and as a prioritization tool for high volume practices. The QAn-
gio CT RE system (Medis Specials, Medis Medical Imaging
bv, Leiden, the Netherlands; www.medisspecials.com) is com-
mercially available, but is currently used for research purposes.
This system has been evaluated in Boogers et al. (2010, 2012);
it addresses the three tasks (detection, quantification, lumen
segmentation) in a fully automatic fashion, but is intended to
be used with minimal user interaction.

Since a few years, the number of initiatives that set up a pub-
licly available evaluation framework in the medical image anal-
ysis community is growing (http:/www.grand-challenge.org/).
For instance, in the cardiovascular domain, Schaap et al.
(2009a) and Hameeteman et al. (2011) successfully com-
pared algorithms for coronary artery centerline extraction
(http:/lcoronary.bigr.nl/centerlines) and for carotid artery lumen
segmentation and stenosis grading (http://cls2009.bigr.nl/) in
CTA datasets. Up to now, no standardized evaluation method-
ology has been published to reliably evaluate and compare the
performance of existing or newly developed stenosis detec-
tion/quantification and lumen segmentation algorithms. The
proposed evaluation framework will provide such a large-scale
standardized evaluation methodology and reference database.



Table 2: Overview of the previously published stenoses detection, quantification and grading methods. The analyses were performed in at least the 4 main arteries
(left main, LAD, LCX, RCA), and possibly in the first-order arterial branches (diagonal, ramus, obtuse marginal, or posterior descending artery). The reported
evaluation measures were computed lesion-based. TP, FP, FN, TN are the true positive, the false positive, the false negative and the true negative detections; PPV
and NPV are the true positive value and false positive value; sens. and spec. refer to sensitivity and specificity and acc. to the accuracy.

. Patients . . Used
Article Observe 1{ s Reference Quantification? Type evaluation measures
Wesarg et al. (2006) 10/1 CTA - Calcified TP, FP, FN
Khan et al. (2006) 50/1 CTA/QCA > 50% All sens., spec.
Saur et al. (2008) 127/1 CT/CTA - Calcified & mixed TP, FP, PPV
TeBmann et al. (2009) 45/1 CTA - All TP, FP, FN, PPV
Mittal et al. (2010) 165/1 CTA - Calcified PPV
Arnoldi et al. (2010) 59/2 QCA > 50% All sens., spec., acc., PPV, NPV
Zhou et al. (2010) 20/2 CTA > 50% All FP, FN
Halpern and Halpern (2011) 207/1 CTA 3 grades All TP, FP
Kelm et al. (2011) 229/3 CTA > 50% Non-calcified sens., FP
Boogers et al. (2010) 100/1 CTA/QCA All All Bland-Altman (% stenosis)
Zuluaga et al. (2011) 9/2 CTA - All sens., spec., acc., Kappa
Xu et al. (2012) 13/3 CTA 4 grades All Kappa
3. Evaluation framework
In this section, we describe the datasets, the reference stan-
dards, the evaluation measures, as well as the ranking, used in
our evaluation framework.
3.1. Cardiac CTA data
Study design. The study was designed to include image data
of symptomatic patients who presented either stable or un-
CTA image stable anginal syndromes, and who underwent both CTA and
CCA examinations. Datasets were retrospectively acquired in
r three university hospitals, and evaluated anonymously. Thus,
Centerline extraction no IRB approval was required, according to the ethics com-
A mittee guidelines of the involved medical centers: the Eras-
v L 2 mus University Medical Center (ErasmusMC, Rotterdam, the
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Figure 3: Overview of the building blocks and workflow of the previously pub-
lished algorithms for coronary artery plaque detection and stenosis detection &
quantification in CTA images.

Netherlands), the University Medical Center Utrecht (UMCU,
Utrecht, the Netherlands) and the Leiden University Medical
Center (LUMC, Leiden, the Netherlands).

Patient selection. Patients were selected such that they are rep-
resentative of the population undergoing CTA examination for
the assessment of obstructive CAD. According to the AHA
guidelines (Budoff et al., 2006) and to the alternative diagnostic
algorithm of Weustink and de Feyter (2011), patients with a low
to intermediate pre-test probability of disease and an Agatston
coronary calcium score (CCS) between 0 and 400 are, in cur-
rent clinical practice, likely to undergo a CTA test. Therefore,
patients were selected based on their CCS, and distributed over
five CCS risk categories (Table 3); the number of patients in-
cluded in each category was derived from the work of Nieman
et al. (2009).

Our study population consists of 48 symptomatic patients,
aged between 41 and 80 years old (58.76 = 8.71 y.o.), enrolled
in three university hospitals between June 2005 and June 2011;
patients’ characteristics are listed in Table 4. Patients with
a previous history of percutaneous coronary stent placement,
coronary artery bypass surgery, pacemaker, an impaired renal



Table 3: Distribution of patients (percentage of males) per coronary calcium score (CCS) category and per vendor. CCS refers to the Agatston score. The distribution
of patients over the CCS categories was deduced from the work of Nieman et al. (2009), who reported on incidence of the different groups.

CCS
Center  Vendor  Scanner 0 0.1-10  11-100  101-400  +400  TotalN
Low Minimal Mild Moderate High (% males)
EMC  SIEMENS Somatom Definiion 6 (100%) 1(100%) 3 (80%)  4(50%) 2(50%) 16 (75%)
UMCU PHILIPS Brillance 64 3 (33%) 3 (66%) 5 (80%) 3(B3%) 2((50%) 16 (56%)
LUMC TOSHIBA Aquilion ONE 320 2 (50%) 2 (0%) 6 (80%) 4(75%) 2 (50%) 16 (68%)
Al 11(72%)  6(50%) 14 (78%) 11(55%) 6(50%) 48 (67%)

function (serum creatinine >120 pmol/l), persistent arrhyth-
mias, an inability to perform a breath hold of 15 s, a known al-
lergy to iodinated contrast material, or a CTA of non-diagnostic
image quality (motion artifacts) were excluded from our study.

Scan protocol. The CTA data was acquired on : 1) a dual-
source CT scanner (Somatom Definition, Siemens, Forchheim,
Germany) at the ErasmusMC, 2) a 64-slice CT scanner (Bril-
lance 64, Philips Medical Systems, Best, the Netherlands) at
the UMCU, and 3) a 320-slice CT scanner (Aquilion ONE 320,
Toshiba Medical Systems, Tokyo, Japan) at the LUMC. The ef-
fective radiation dose was 11.3 + 4.3 mSv for Siemens data,
18.4 + 3.2 mSv for Philips data, and 3.8 + 1.8 mSv for Toshiba
data. A non-enhanced CT scan was performed before the CTA;
the total calcium scores of all patients were calculated using
dedicated software in each center. A bolus-tracking technique
was used to synchronize the start of image acquisition with the
arrival of contrast agent in the coronary arteries.

Image reconstruction. A single image per patient was used, re-
constructed at the mid-to-end diastolic phase (350 ms before
the next R-wave or at 65% to 70% of the R-R interval), with
either retrospective (Siemens and Philips data) or prospective
(Toshiba data) electrocardiographic gating.

3.2. Training and testing datasets

Eighteen of the 48 CTA images, together with the CTA and
CCA reference standards, were made available for training; the
remaining thirty datasets were used for testing the algorithms;
for those, only the CTA images were made available. The train-
ing and testing datasets were selected with respect to the dif-
ferent vendors, the CCS categories, and the disease prevalence,
i.e. distribution of stenoses over the different degrees and coro-
nary arteries; the distribution is shown in Figure 4 and Table 5.
The 26% and 32% of the lesions are significant (> 50% luminal
narrowing) for training and test datasets respectively.

3.3. Sub-challenges

In our framework, three sub-challenges are defined: 1) coro-
nary artery stenosis detection, 2) coronary artery stenosis de-
tection & quantification, and 3) coronary artery stenosis detec-
tion & quantification and coronary artery lumen segmentation.
Coronary artery stenosis detection is a mandatory task, as it is
the focus of the evaluation framework. As some of the meth-
ods can also output, next to the stenosis detection, the stenosis

Table 5: Distribution of the coronary artery lesions (= 20%) for the training
and testing datasets. A lesion is considered as being significant if the luminal
narrowing is > 50%.

Artery

RCA LAD LCX IMB Al

Training
CTA
>20% 36 51 12 4 103
> 50% 12 10 5 0 27

Testing
CTA
>20% 50 73 18 2 143
> 50% 18 22 7 0 47

grade and/or the lumen segmentation, we additionally provide
the possibility to evaluate those two outputs.

Generally, semi-automatic algorithms may be used as aids
for visual inspection of studies by clinicians; therefore, mainly
accurate stenosis quantification is important. Fully automatic
systems, on the other hand, may be used for triage, and there-
fore, should be able to identify patients without CAD with high
specificity (usually above 60%, to not overwhelm the expert
with a considerable amount of false positive detections and
speed-up the diagnostic process), while maintaining very high
sensitivity (usually above 90%). Every miss would then result,
in the best case, in a delayed treatment for the patient.

3.4. Reference standard

3.4.1. Reference standard from CTA

The multicenter multivendor CTA scans were analyzed at the
Erasmus MC, University Medical Center Rotterdam (Rotter-
dam, the Netherlands).

Stenoses detection/quantification. Three independent experi-
enced observers (A.S.D., W.B.M., S.L.P.), unaware of the re-
sults of the CCA, graded the CTA datasets; a unique reference
standard was then derived from the three observers’ grades fol-
lowing the protocol outlined in Figure 5.

A dedicated tool implemented in MeVisLab was used
(http:/fwww.mevislab.de) by the observers for the annotations.
The axial source images, as well as MPR and cMPR views,
were used to evaluate the CTA datasets for the presence of
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Table 4: Patient’s information

All EMC UMCU LUMC
Scan date
min 06/2005 08/2006 06/2005 06/2008
max 06/2011 12/2008 06/2006 06/2011
Age
mean + std 58.76 +8.71 5881 +11.05 5731+725 60.17+7.05
[min, max] [41, 80] [43, 80] [41, 69] [52, 74]
Gender
males (%) 32(67%) 12(75%) 11(69%) 10(63%)
CV risk factors
Obesity 6 (13%) 0 (0%) 3 (19%) 3 (19%)
Smoking 20 (42%) 3 (18%) 8 (50%) 9 (56%)
Hypertension 21 (44%) 7 (44%) 6 (38%) 8 (50%)
Diabetes 5 (10%) 0 (0%) 1 (6%) 4 (25%)
Fam. Hist. 23 (48%) 9 (56%) 6 (38%) 8 (50%)
9
TRAINING TESTING
8
7
2 1 K]
6 4
5 2
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Figure 4: Distribution of 18 training and 30 testing datasets with respect to the different CCS categories and vendors.



coronary obstructions (i.e. lesions with > 20% luminal nar-
rowing). For each lesion with visually > 20% luminal narrow-
ing, the observers had to report the location, the plaque type
(non-calcified, calcified, mixed), and the degree, according to
the categories of Table 1. All segments from the 17 modified
AHA segment model (Figure 2), which are present and have a
diameter greater than 1.5 mm, were included in the analysis. Fi-
nally, each segment was scored as having significant CAD if at
least one stenosis with > 50% luminal narrowing was reported
during the visual assessment.

3 observers' grade

! |

3 observers
agree

All observers
disagree

2 observers
agree

—

3rd obsever is off
by 1 category

3rd obsever is off
by 22 category

—

Consensus reading with
the 3 observers

|
1

Add the lesion to the CTA reference standard

Figure 5: CTA stenoses detection/quantification reference standard protocol.
Consensus reading with the 3 observers was necessary in 3% of the cases.

Lumen segmentation. Three independent experienced ob-
servers (A.S.D., W.B.M., A.D.), unaware of the results of the
CCA, segmented a set of selected vessel segments in CTA im-
ages. All segments presenting a significant stenosis (> 50%
luminal narrowing), as well as three additional segments (one
in each of the main vessels) were randomly selected to be
segmented; segments with a complete occlusion in the CTA
stenoses detection/quantification reference standard were ex-
cluded. Figure 6 gives the details per vendor and per vessel
of the number of segments being considered in the lumen seg-
mentation evaluation. For the annotation process, we followed
the same procedure as was used in the cls2009 challenge pre-
sented in Hameeteman et al. (2011). First, one observer an-
notated the centerline of each of the 17-segments of the modi-
fied AHA model (Figure 2) by clicking points in axial, sagittal
and coronal views, followed by a centerline refinement step in
cross-sectional views and cMPR images. Subsequently, using
this centerline, three observers independently drew lumen con-
tours in six cMPRs. These longitudinal contours were then used
to construct cross-sectional contours on cross-sectional images
sampled along the centerline. As a final refinement step, these

cross-sectional contours could be manually edited. This pro-
cedure resulted in a set of cross-sectional contours along the
vessel centerline, for each vessel segment selected and for each
observer. These contours determine the reference standard for
the evaluation of the lumen segmentations. An example of the
CTA reference standard is presented in Figure 7.

Mild stenoses
20%-49%

Figure 7: Example of CTA reference standard. Training dataset 08 presents
five mild stenoses (one in RCA1, two in RCA2, one in RCA3, one in LCX12)
and one severe stenosis (LAD7). Thus, segment LAD7 is selected to be seg-
mented, as well as three other random segments in each of the main arteries,
i.e. segments RCA2, LAD10 and LCX12.

3.4.2. Reference standard from CCA

The reference standard from CCA for the detection and quan-
tification of stenoses was obtained with quantitative coronary
angiography (QCA). One experienced cardiologist (K.N.), un-
aware of the results of the CTA scoring results, identified and
analyzed all coronary segments using the modified 17-segment
AHA classification (Figure 2) on a separate workstation. Seg-
ments were visually classified as normal (smooth parallel or ta-
pering borders, visually <20% narrowing) or as having coro-
nary obstruction (visually >20% narrowing). The stenoses
in segments visually scored as having >20% narrowing were
quantified using the validated QCA algorithm (Cardiovascular
Angiography Analysis System II, CAASII, Pie Medical Imag-
ing Maastricht, the Netherlands) (Haase et al., 1993). Stenoses
were evaluated in the worst (available) angiographic view (Fig-
ure 8) and classified as significant if the lumen diameter reduc-
tion exceeded 50%.

3.5. Evaluation measures

The evaluation measures for the coronary artery stenosis de-
tection and quantification are reported per coronary calcium
category (Figure 4) and over all patients, as providing the errors
per dataset may reveal information about the reference steno-
sis grades. The final evaluation measure (as reported in Ta-
ble 9 and 10) is obtained over all patients. The evaluation mea-
sures for the lumen segmentation are communicated per patient,
and the number and identity of evaluated segments remains hid-
den.
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Figure 6: Overview of the segments considered for the lumen segmentation evaluation. Diseased segments are segments presenting in CTA consensus with at
least one significant stenosis (>50%). Healthy segments are segments presenting in CTA consensus with no significant stenosis (<50%). Occluded segments were
excluded from the lumen segmentation evaluation. The training set consists of 18 datasets and the testing set of 30 datasets.
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Figure 8: Quantitative coronary angiography (QCA). For each acquired X-ray
imaging plane, the minimal luminal diameters (d,,) are measured and compared
to the reference diameter (d,) of the vessel immediately adjacent. Given the
minimal (projected) diameter, the percentage of stenosis can be calculated, in
plane 2 in the given example.

3.5.1. Stenosis detection

Two metrics are used to evaluate the performance of the
coronary artery stenosis detection algorithms: the sensitivity
(Eq.(1)) and the positive predictive value (Eq.(2)).

TP

§=—" 1
TP+ FN W
TP
PPV = ———— )
TP+FP

where TP, FN, FP are the true positive, false negative and false
positive detections, respectively. Table 6 defines the TP, FN, FP
and TN.

The evaluation as compared to the CTA reference standard
is lesion-based. The stenoses considered here are the union of
the stenoses in the reference standard and in those detected by
the algorithm. An example of stenosis detection is presented in
Figure 9 for training dataset#10 and results of observer#1, and
more details about the matching procedure can be found in the
Appendix B.

The evaluation as compared to the CCA reference standard is
segment-based. The segments considered here are all anatom-
ically present segments from the modified 17-AHA-segments
model (Fig. 2), with a minimal lumen diameter greater than 1.5
mm.



Table 6: Stenosis detection, as compared to CTA and CCA reference standard. Descriptions of true-positive (TP), false-negative (FP), false-positive (FP) and

true-negative (TN) detection.

Detection
Description for segment-based and lesion-based analysis
TP Both the reference standard and the algorithm stenosis/segment have a grade > 50%.
FN The reference standard stenosis/segment has a grade > 50% while the algorithm stenosis/segment has a grade < 50%.
FP The reference standard stenosis/segment has a grade < 50% while the algorithm stenosis/segment has a grade > 50%.
TN Both the reference standard and the algorithm stenosis/segment have a grade < 50%.
Description for patient-based analysis
TP At least 1 significant stenosis in a patient detected by both the reference standard and the algorithm,
regardless of location of stenosis
FN No significant stenosis detected by the algorithm and at least 1 significant stenosis detected by the reference standard.
FP Significant stenosis detected by the algorithm and no significant stenosis detected by the reference standard.
TN No significant stenosis in a patient detected either by the reference standard and the algorithm.
3.5.2. Stenosis quantification
As compared to the reference standard derived from CCA,
two metrics are used to evaluate the performance of the coro-
nary artery stenosis quantification algorithms, per segment: the
absolute average difference (AAD, Eq.(3)) and the root mean
squared difference (RMSD, Eq.(4)).
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Figure 9: Detection example for training dataset10 and results of observer#1.
The patient presents 8 stenoses (grey-scale segments) and the observer#1 de-
tected 14 stenoses (grey-scale spheres). Reference stenoses #1, #2, #3, #4 and
#6 are TN detections, i.e. the observer assigned a mild grade (< 50%). Refer-
ence stenoses #5 (severe) and #8 (moderate) are TP detections, i.e. the observer
assigned a moderate grade (> 50%). Reference stenosis #7 (occlusion) is also
a TP because the observer’s average grade (severe + occluded) is > 50%. The
observer detected two FP moderate lesions in LAD and LCX. For more details
about the grades, see Table 1; grey-scale from white to black correspond to
healthy, mild, moderate, severe and occlusion.

with g"/ the reference standard stenosis grade, g the estimated
stenosis grade, and S the number of considered segments in the
evaluation.

When evaluating the performance of the coronary artery
stenosis quantification algorithms per lesion as compared to the
CTA reference standard, close misses (e.g. grading a stenosis
as being mild while the reference standard indicates it is mod-
erate) should be less heavily penalized than misses that are fur-
ther apart (e.g. grading a stenosis as being severe or occluded
while the reference standard indicates it is mild). Therefore,
we use the linearly weighted Cohen’s Kappa metric (Cohen,
1968). It measures how much different the observed agreement
is from the expected agreement, and is standardized to take val-
ues between -1 and 1, where 1 is perfect agreement, O is exactly
what would be expected by chance, and negative values indicate
agreement less than chance, i.e. potential systematic disagree-
ment between the reference standard and the algorithm.

To fairly compare the Kappa values of different algorithms,
the Kappa must be computed using the same number of
stenoses. However, in the CTA reference standard, true nega-
tive (TN) detections are not reported, while required to compute
the Kappa value. We accommodate this issue by estimating an
average TN per dataset as follows: given the 48 datasets, we
measured a total arterial segments length of 22080 mm, among
which 2120 mm are diseased sections (i.e. presenting lesions



with > 20% obstruction). As there are 246 lesions, the aver-
age length of a lesion is of 8.6 mm. At the end, the 19960 mm
of healthy vessel can be interpreted as 2321 TN, and thus, as
48 (TN+FP) per dataset. In the case that an algorithm would
report (on average) more than 48 (TN+FP) lesions per dataset,
its Kappa value is set to -1 (less than chance agreement), as
exceeding this limit does not make sense. More details about
the computation of the Kappa statistics are provided in Sec-
tion 3.6.2.

3.5.3. Lumen segmentation

The segmentation is evaluated by comparing the result with
the lumen contours that were manually drawn by three ob-
servers (see Section 3.4.1). The segmentations are compared
to the reference standard using three measures: the Dice sim-
ilarity index (Dice), the mean distance (MSD), and the Haus-
dorff distance (MaxD). Each metric is determined for each
cross-sectional contour of the observer annotations, thus in 2D,
and the results of all contours of a vessel segment are com-
bined, yielding three scores per vessel segment per observer. To
perform the 2D metric calculation, for each observer contour,
the segmentation was intersected with the corresponding cross-
sectional contour plane. From the intersection result (i.e. a set
of segmentation contours), the segmentation contour closest to
the observer contour and not too far away from it, is assumed to
be the valid segmentation contour. If a valid segmentation con-
tour is found, it is linearly resampled to ensure that the points
along the contour are sufficiently close. Subsequently, the true
positive area (overlap area), the false negative area (missed lu-
men) and the false positive area (segmentation outside lumen)
are determined for this contour, by applying a 2D scan conver-
sion algorithm to both contours. Also, the distances from each
observer contour point to the segmentation contour, and vice
versa, are determined and summed over the contours, and also
the maximum distance is determined. True positive area, false
negative area and false positive area are summed over all con-
tours of the vessel segment, after which the Dice index is de-
termined. Similarly, the mean squared distance is the average
of all contours’ mean squared distance of the vessel segment,
and the Hausdorft distance is the maximum of the contours’
Hausdorff distance. If no segmentation contour is sufficiently
close to the observer contour, it is assumed that the segmenta-
tion does not contain this part of the vessel segment. In that
case, the complete lumen area is counted as false negative area,
the mean distance is equal to the mean radius of the manual
contour, and the Hausdorff distance is equal to the maximum
distance between the manual contour and its center.

3.6. Ranking the algorithms

In order to rank the different algorithms for coronary artery
stenosis detection, stenosis quantification and lumen segmen-
tation, the evaluation metrics presented in the previous section
have to be combined. This is achieved by first assigning to each
algorithm a rank for each evaluation metric. The rank is be-
tween 1 (best) and N (worst), N being the number of observers
and algorithms to be compared. The final rank is then obtained
by averaging the ranks over the evaluation metrics.
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It should be noted that it is possible for method A to have bet-
ter average measures than method B, while still having a worse
average rank.

3.6.1. Stenosis detection

The detection algorithms are ranked based on the overall sen-
sitivity and positive predictive value achieved as compared to
the CTA and CCA reference standards, as follows:

kCCA

CTA
Sens K

CTA
Sens K

CcCA
+ rank 5y, + ran PPV

5

" 5)
with rankggfy and rankgg(} respectively the sensitivity and PPV
ranks achieved over all data as compared to the CCA reference
standard, and rank§’4 and rank$’% respectively the sensitivity
and PPV ranks achieved overall data as compared to CTA ref-

erence standard.

ran + ran

D=

3.6.2. Stenosis quantification

The quantification algorithms are ranked based on their AAD
and RMSD of the degree of stenosis as compared to the CCA
reference standard (segment-based), and on their weighted Co-
hen’s Kappa coefficient as compared to CTA reference standard
(lesion-based), as follows:

rankggg + rankgl% pt2: rankiggpa
Ry = 1 (6)
with rankggg and rankgl% p respectively the AAD and RMSD

ranks achieved over all data as compared to the CCA refer-
ence standard, and rank%ﬁpa the linearly weighted Kappa rank
achieved over all data as compared to the CTA reference stan-
dard. We added a weight of 2 to the rankgﬁpa to make the total
weight for the CTA rank equal to the total weight for the CCA
ranks.

3.6.3. Lumen segmentation

The segmentation algorithms are ranked based on the over-
lap, the mean distance, and the Hausdorff distance (average
over the 3 observers’ reference annotations), while making dis-
tinction between segments having non-significant and signifi-
cant stenoses, as follows:

1 ZN: S rank? o >3 rank/
N 3 3

@)
p=1

where w” = 1 if patient p has evaluation metrics computed for

diseased segments (i.e. segments with significant stenoses), and

w? = 0 otherwise, N being the number of patients.

First, for each algorithm, a rank rank/, is computed per pa-
tient p and evaluation metric m. Then, an average rank rank” is
obtained by averaging the three (if the patient does not present
any significant stenosis) or six (if the patient presents at least
one significant stenosis) rank?’, ranks; this leads to N ranks. The
final rank is obtained by averaging of the N rank” patient ranks.

3.7. Algorithm categories

Depending on the amount of user-interaction, we distinguish
two different categories of algorithms:



Fully automatic. Fully automatic methods detect and quantify
coronary artery stenosis and segment the lumen without user-
interaction. The CTA image is the only input used by the
method.

Minimal user-interaction. Methods with minimal-user interac-
tion are allowed to use two additional points per vessel: 1) one
point S at the ostium (start of the vessel), and 2) one point E
at the end of each vessel. Points S and E are provided with the
data.

3.8. Provided centerlines

Coronary analysis methods often start with detecting a coro-
nary centerline (see Section 2). To facilitate those methods
that can do coronary analysis, but do not have a centerline ex-
traction available, three teams of the centerline extraction chal-
lenge (Schaap et al., 2009a) were asked to provide centerline
extraction results to the participants of this challenge: 1) auto-
matic and manually corrected from the LKEB group (Leiden,
the Netherlands) based on Yang et al. (2011, 2012), 2) auto-
matic from Rcadia (Haifa, Israel) based on Goldenberg et al.
(2012), and 3) automatic from VRVis (Vienna, Austria) based
on Zambal et al. (2008). The participants can then use one of
these set of centerlines as input for their method (as long as they
use the same centerline extraction algorithm for all datasets)
and submit the combined method to a category, depending on
the automation of the used centerline extraction algorithm.

3.9. Web-based evaluation framework

The proposed framework for coronary artery stenosis de-
tection & quantification and lumen segmentation in CTA im-
ages is made publicly available through a web-based interface
(http:/lcoronary.bigr.nl/stenoses/). The 48 cardiac CTA datasets,
as well as the corresponding stenosis detection, quantifica-
tion and lumen segmentation reference standard of the training
datasets, are available for download for anyone who wishes to
validate their algorithm. Furthermore, the website provide sev-
eral tools to inspect and compare the algorithms.

4. MICCAI 2012 workshop

The evaluation framework was launched during the “3D
Cardiovascular Imaging: a MICCAI segmentation challenge”
workshop that was organized in conjunction with the 15th Inter-
national Conference on Medical Image Computing and Com-
puter Assisted Intervention (MICCAI), and was held on Oc-
tober 1st, 2012 in Nice Sophia Antipolis, Cote d’ Azur, France.
Around 200 groups from academia and industry were invited by
e-mail to participate in the challenge. Seventy-five teams cre-
ated an account on our website, fifty of which sent the data con-
fidentiality form, which was required to download the datasets.
Forty-four teams downloaded the training set and twenty-nine
teams downloaded additionally the testing set. Eleven teams
submitted results: eight of them participated in the quantifica-
tion sub-challenge and five of them participated in the lumen
segmentation sub-challenge. The 11 evaluated algorithms are
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described below and more details can be found in the full paper
version that all authors submitted for the workshop, available
on our website (http.//coronary.bigr.nl/stenosesy).

4.1. Broersen et al.

The algorithm by Broersen et al. (2012) has four stages. First,
an automatic tree extraction (Yang et al., 2012) and segment la-
beling step is performed (Yang et al., 2011). Second, lumen and
vessel wall contours are detected in each vessel (running from
the ostia to the most distal point)(Boogers et al., 2012). Next,
regions with potential lesions are automatically determined for
each segment based on deviations from a regression on the lu-
men areas in the vessel representing normal vessel tapering.
Additional lesions are detected in calcified regions as well as
in regions with significant lumen intensity drops. Finally, the
lesion information from all vessels is combined into a unique
list of lesions.

4.2. Cetin et al.

The algorithm by Cetin and Unal (2012) has four stages.
First, the coronary vessels are extracted around the provided
centerline coordinates (manually refined, based on Yang et al.
(2011)) by the “vessel tractography” method presented in Cetin
et al. (2013). Second, longitudinal vessel volumes are gen-
erated for each branch to provide rotation invariance. Third,
the following features along the centerline of the vessel are ex-
tracted: intensity features based on a cylindrical sampling pat-
tern with varying radii, length and position; and a geometric
feature based on the energy of the vessel radius profile. Finally,
a random forest based classifier is utilized to detect the stenosis
coordinates along the vessel.

4.3. Eslami et al.

The algorithm by Eslami et al. (2012) has three stages. First,
the CTA is resampled with multiple cross sectional planes, em-
ploying the provided centerlines (manually refined, based on
Yang et al. (2011)) to construct a cylindrical representation of
the underlying vessel. Secondly, segmentation is performed us-
ing an inflating tube technique, starting from vessel centerline.
Finally, stenoses are detected and quantified by comparing the
extracted lumen area with the second order regression of the lu-
men area over the vessel length. Furthermore, the intensity of
boundary voxels is contrasted against the intensity of left ven-
tricle cavity and myocardium to take into account the partial
volume effect.

4.4. Duval et al.

The algorithm by Duval et al. (2012) has three stages. Firstly,
five circular Regions-of-Interest (Rol) are extracted around
each centerline point (automatic, based on (Goldenberg et al.,
2012)). Secondly, for each extracted Rols, thirteen features are
calculated based on intensity and Haar-like features using suit-
ably partitioned Rols. To combat the inherent centerline de-
tection error the same calculations are repeated on four neigh-
bors of each centerline point. Thirdly, five independent random
forests are used corresponding to the centerline point and its
neighbors. The stenosis is deemed present if all the random
forests are in agreement.



4.5. Florez-Valencia et al.

The algorithm by Flérez Valencia et al. (2012) has three
stages. First, an axis is extracted using Dijkstra’s algorithm
with costs calculated as in Giilsiin and Tek (2008). Second, a
tracking algorithm is used along this axis, smoothed by a Bezier
curve, to construct a generalized cylindrical model of the artery
from cross-sectional contours segmented using Fast-Marching
(Baltaxe Milwer et al., 2007). The parameters of the model are
deduced from these contours and corrected by a Kalman state
estimator. Finally, stenoses are detected and quantified assum-
ing that diameters of healthy arteries should decrease linearly
from the ostium. Hence, the estimated diameters are compared
to theoretical ones.

4.6. Lor et al.

The algorithm by Lor and Chen (2012) has three stages.
First, a Gaussian distribution is utilized to adaptively locate the
center of cross-sectional plaque with the variance of the poste-
rior density as the plausible size. Such a concentric model is
also applied to segment the vessel lumen. Second, the quantita-
tive evaluation of diameter stenosis is determined using Kalman
filtering. Finally, the stenosis degree is given using a Bayes
classifier based on the posterior probability of severity condi-
tioned on stenosis percentage and plaque type of the training
data. The method was evaluated based on the centerline ex-
tracted by the vascular segmentation developed by Yang et al.
(2012).

4.7. Melki et al.

The algorithm by Melki et al. (2012) has three main stages.
First, the coronary arteries tree is constructed using the pro-
vided centerlines (automatic, based on (Goldenberg et al.,
2012)). Common parts of the centerlines are merged in order
to organize the whole tree in a set of disjoint segments. Sec-
ond, a first step of stenosis candidate detection is applied using
the vessel cross section area profile. Regions showing a de-
viation higher than 50% of a synthetic lumen area profile are
flagged. Finally, they apply a false positive removal step in
order to eliminate the erroneous candidates. This step is per-
formed by inspecting the appearance properties of each flagged
region.

4.8. Mohr et al.

The algorithm by Mohr et al. (2012) has four stages. First,
initialization steps are performed including generating an or-
thogonal image stack from the provided centerlines (automatic,
based on Goldenberg et al. (2012)) and estimating the lumen
and wall segmentation. Second, calcium is identified using
Bayes Information Criterion, and lumen and wall tissue is clas-
sified by Expectation-Maximization assuming Gaussian distri-
butions in segments along the vessel. Third, the lumen seg-
mentation is refined using a level-set driven by a speed func-
tion including the a posteriori probabilities obtained from the
classification. Finally, stenoses are identified and quantified by
estimating the expected vessel profile using line fitting.
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4.9. Oksiiz et al.

The algorithm by Oksiiz et al. (2012) consists of five stages.
First pulmonary vessels are removed with thresholding and
morphological operations. Afterwards, Frangi vesselness fil-
ter (Frangi et al., 1998) is applied on the processed data. Vessel
segmentation is realized by 3D region growing and fast march-
ing, respectively. Plane fitting is performed on every centerline
point (manually refined centerline, Yang et al. (2011)), where
the corresponding vessel diameter is computed. Finally, a run-
ning window based median filtering followed by smoothing is
applied, and nominal vessel diameter is estimated by linear re-
gression. A positive difference between computed and esti-
mated diameter values is defined as stenosis at that location.

4.10. Shahzad et al.

The algorithm by Shahzad et al. (2012) has three stages.
First, centerlines are extracted using a two point minimum cost
path approach (Metz et al., 2009) and are subsequently refined,
after which bifurcations are detected. The resulting centerlines
represent the vessel segments, and are used as an initialization
for the lumen segmentation, performed using graph cuts and
robust kernel regression (Schaap et al., 2009b). Finally, the ex-
pected diameter of the healthy lumen is estimated by applying
robust kernel regression on the coronary artery lumen diame-
ter profile; stenoses are subsequently detected and quantified
by computing the difference between estimated and expected
diameter profiles.

4.11. Wang et al.

The algorithm by Wang et al. (2012) has four stages. It uses
an implicit model-guided level set method. First, a 3D ves-
sel model from a set of initial centerlines (automatic, based on
Goldenberg et al. (2012)) is generated. Second, this model is
incorporated in the level set propagation to regulate the growth
of the vessel contour. Third, new centerlines are extracted after
evolving the level set and the diameter of vessels is re-estimated
in order to generate a new vessel model. Finally, the propaga-
tion and re-modeling steps are repeated until convergence. For
detecting and quantifying stenoses, the proposed method was
run twice with different parameter settings to segment the outer
wall and the lumen.

5. Results

The results presented in this section are based on
the algorithms presented at the MICCAI’12 workshop
(http:/Jcoronary.bigr.nl/stenoses/). Since the MICCATI’ 12 work-
shop, the ranking strategy has been modified. As a conse-
quence, for each team that participated to the MICCAI’12
workshop, the public results available on our website are dif-
ferent from the one reported in their workshop paper.

Space limitations prevent us from incorporating more statis-
tics here, but the on-line evaluation framework provides the
possibilities to rank the methods on different measures or
scores, and create statistics on a subset of the data (per vendor).
The website also contains the most recent version of the results.



The on-line results can be different from the results reported in
this paper, as new submissions or method improvements may
have occurred.

In this section, result tables also contain the results of the
observers, which have been scored in the same ways as the
other evaluated methods. It should be noted that, as the CTA
reference standard was derived from a consensus reading of
the same 3 observers, the observers’ performance for coronary
stenoses detection and quantification as compared to CTA ref-
erence standard may be biased to their advantage.

5.1. Detection of stenosis

The ability of a method to discriminate significant stenoses
from non-significant ones is evaluated. Table 9 shows the av-
erage results and ranking of the 11 submissions (5 fully auto-
matic, 6 semi-automatic), 3 observers and their consensus for
stenosis detection measures: sensitivity and PPV. In the over-
all ranking, the algorithms of Cetin and Unal (2012) and Mohr
et al. (2012) rank the first, in the semi-automatic and automatic
category respectively.

As compared to QCA (segment-based analysis), the best sen-
sitivity (68%) was achieved by the method proposed by Eslami
et al. and the best PPV (50%) was obtained with the algorithm
of Wang et al..

As compared to CTA (lesion-based analysis), the best sensi-
tivity (55%) was achieved by the method proposed by Shahzad
et al. and the best PPV (33%) was obtained with the algo-
rithm of Wang et al.. Here, the results were worse than the
average observers’ performance (sensitivity of 73%, PPV of
67%). With respect to the CTA reference standard and over
all calcium categories, the approach of Mohr et al. tends to
over-estimate the degree of mild stenoses, thus increasing the
number of FP detections, and under-estimate the degree of sig-
nificant stenoses (especially moderate ones), thus increasing the
number of FN detections and, consequently, penalizing the sen-
sitivity. Their QCA sensitivity (57%) was less affected, prob-
ably because the degree of stenosis is generally over-estimated
in CTA as compared to QCA (calcified lesions, due to blooming
artifact), which compensates for under-estimation on CTA.

In addition, Table 7 presents the performance of the meth-
ods in terms of TP, FP, FN and TN detections, with respect to
CCA and CTA reference standard. Overall, a good TP detec-
tion rate was achieved at the expense of FP and/or FN rates,
and vice-versa. Note that for many of the methods, the num-
ber of reported FP was very large; these methods are therefore
not yet suitable for implementation in clinical practice (risk of
overwhelming the clinician). The current results highlight that
discrimination between significant and non-significant lesions
remains a challenge and that a trade-off between the ability to
detect significant lesions and the ability of ruling out disease
needs to be made.

Last, Table 8 presents the diagnostic performance of the
methods, observers and consensus for the detection of signif-
icant stenosis on QCA and CTA in a per-patient analysis. The
sensitivity, specificity, PPV and NPV, with respect to CCA and
CTA reference standard are reported. The results indicate that
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half of the methods (Eslami et al.; Flérez Valencia et al.; Lor
and Chen; Melki et al.; Mohr et al.) are not yet able to per-
form triage of the patients to rule out significant coronary artery
disease, as they achieve very low specificity. Four methods
(Broersen et al.; Duval et al.; Shahzad et al.; Wang et al.) per-
form relatively good as compared to the observers. The last two
methods (Cetin and Unal; Oksiiz et al.) have a diagnostic per-
formance close to the observer’s one, as well as sensitivity close
to 90% and high specificity; they thus may be considered to be
used as computer-aided triage systems, or as a second reader,
where a very high sensitivity is required and false positives are
reasonably acceptable.

5.2. Quantification of stenoses

Less-obstructive plaques outnumber severely obstructive
plaques (Falk et al., 1995), and most occlusions result from
progression of the former plaques. It is thus as crucial to de-
tect mildly to moderately obstructive lesions (20% to 70%) as
to detect severely obstructive plaque (> 70%). We therefore
investigated the ability of a method to correctly estimate the
degree of obstruction.

Table 10 shows the average results and ranking of 8 submis-
sions (3 fully automatic, 5 semi-automatic) and 3 observers for
stenosis quantification measures. Here, the quantification mea-
sures are computed using the union of the submitted lesions and
the reference ones (i.e. including not only the TP, but also the
FP and FN) to assess the whole system accuracy. For the Kappa
statistic, a fixed number of negative detection TN is used, and
is determined as follows:

TN =Nx48 = TNalgorithm + FPalgorithm (®
with N the number of datasets, and TNggorithm and FPyjgorithm
the true negative and false positive detections of the algorithm
respectively.

First, as the observers quantified the coronary stenoses using
semi-quantitative grades (see Section 3.4.1 and Table 1), their
grades were converted to quantitative values (number between
0 and 100) for the comparison with QCA: a stenosis reported as
being mild on CTA was assigned to be 35% on QCA, moderate
to be 60%, severe to be 80% and occluded to be 100%. This
explains the relatively large observers’ errors with respect to
QCA.

Second, some methods detect a large number of FP stenoses
in CTA (Table 7); this is consequently expressed by negative or
nul Kappa values (algorithms of Eslami et al., Lor and Chen and
Flérez Valencia et al.). Identically, detecting too many FP in
QCA would penalize the algorithm, by increasing their average
absolute and root mean square differences.

The method proposed by Shahzad et al. achieves the best
quantification results as compared to QCA, with an averaged
absolute difference of 21% and a RMS difference of 29%. This
method outperforms the observers and all the other methods.
This is due to their low number of FP detections.

The method of Shahzad et al. also achieves the best perfor-
mance with regard to the Kappa value (x = 0.28). Though their
Kappa value is positive, it remains relatively low. This may



Table 7: Performance of the 11 evaluated methods, 3 observers and their consensus for the detection of coronary artery stenoses (> 50% diameter reduction) on the
30 testing datasets. True positive (TP), false positive (FP), false negative (FN), true negative (TN), average false positive detection per patient (FP/pat). QCA analysis
is segment-based; 394 segments evaluated, prevalence of disease is 7%. CTA analysis is lesion-based. The values in bold correspond to the best performance for
each measure. Methods are listed by alphabetic order.

Method QcA CTA
TP FP FN TN TP FP FN  FP/pat

CTA consensus 23 21 5 345 47 0 0 0
Observer 1 24 36 4 330 39 25 8 0.8
Observer 2 21 20 7 346 33 8 14 0.3
Observer 3 18 24 10 342 31 21 16 0.7
Broersen et al. 7 30 21 336 13 29 34 1.0
Cetin and Unal 15 63 13 303 25 71 22 2.4
Duval et al. 16 115 12 251 20 243 27 8.1
Eslami et al. 19 183 9 183 24 570 23 19
Flérez Valencia et al. 5 54 23 312 7 140 40 4.4
Lor and Chen 14 87 14 279 15 484 32 16.1
Melki et al. 13 94 15 272 20 196 27 6.5
Mohr et al. 16 95 12 271 24 129 23 4.2
Oksiiz et al. 6 21 22 345 8 23 39 0.8
Shahzad et al. 1 7 27 359 26 71 21 2.4
Wang et al. 7 7 21 359 5 10 42 0.3

Table 8: Performance of the 11 evaluated methods, 3 observers and their consensus for the per-patient detection of coronary artery stenoses (> 50% diameter
reduction) on the 30 testing datasets. Prevalence of disease: 60%. The values in bold correspond to the best performance for each measure (sensitivity, specificity,
positive predictive value, negative predictive value). Methods are listed by alphabetic order. Results in percentage. *NA in case (TN + FN) is null.

QCA CTA

Method Cat.

Sens. Spec. PPV NPV Sens. Spec. PPV NPV
CTA consensus Manual 94 67 81 89 100 100 100 100
Observer 2 Manual 100 58 78 100 95 78 91 88
Observer 1 Manual 94 50 74 86 95 67 87 86
Observer 3 Manual 94 75 85 90 86 75 90 67
Broersen et al. Auto. 72 42 65 50 71 44 75 40
Cetin and Unal Min. user 94 50 74 86 90 33 75 60
Duval et al. Auto. 94 33 68 80 86 25 76 40
Eslami et al. Min. user 100 0 57 NA 100 0 70 NA
Flérez Valencia et al.  Min. user 100 8 62 100 100 0 63 NA
Lor and Chen Min. user 100 7 55 100 100 0 70 NA
Melki et al. Auto. 100 8 62 100 95 0 69 0
Mohr et al. Auto. 100 0 63 NA 100 0 70 NA
Oksiiz et al. Min. user 74 73 82 62 76 67 84 55
Shahzad et al. Min. user 28 92 83 46 100 44 81 100
Wang et al. Auto. 39 83 78 48 33 78 78 33
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Table 9: Performance of the 11 evaluated methods, 3 observers and their consensus for the detection of coronary artery stenoses (> 50% diameter reduction) on the
30 testing datasets. The values in bold correspond to the best performance for each measure. QCA analysis is segment-based; CTA analysis is lesion-based.
QCA CTA

Method Cat. Avg. rank
etho a Sensitivity PPV Sensitivity PPV Ve ran

%  Rank % Rank % Rank % Rank

CTA consensus Manual 82 1.0 52 1.0 100 1.0 100 1.0 1.2
Observer 2 Manual 75 3.0 51 2.0 70 3.0 81 2.0 2.5
Observer 1 Manual 86 1.0 40 5.0 83 2.0 61 3.0 2.8
Observer 3 Manual 64 5.0 43 4.0 66 4.0 60 4.0 4.2
Cetin and Unal Min. user 54 8.0 19 7.0 53 6.0 26 8.0 7.2
Mohr et al. Auto. 57 6.0 14 9.0 51 7.0 16 10.0 8.0
Wang et al. Auto. 25 11.0 50 3.0 11 15.0 33 5.0 8.5
Broersen et al. Auto. 25 11.0 189 8.0 27.7 12.0 31 6.0 9.2
Shahzad et al. Min. user 4 15.0 13 11.0 55 5.0 27 7.0 9.5
Eslami et al. Min. user 68 4.0 9 14.0 51 7.0 4 14.0 9.8
Duval et al. Auto. 57 6.0 12 12.0 43 9.0 8 12.0 9.8
Oksiiz et al. Min. user 21 13.0 22 6.0 17 13.0 26 9.0 10.2
Melki et al. Auto. 46 10.0 12 13.0 43 9.0 9 11.0 10.8
Lor and Chen Min. user 50 9.0 14 10.0 32 11.0 3 15.0 11.2
Florez Valencia et al.  Min. user 18 14.0 9 15.0 15 14.0 5 13.0 14.0

Table 10: Performance of the 8 evaluated methods, 3 observers and their consensus for the quantification of coronary artery stenoses on the 30 testing datasets. The
quantification measures are computed using the union of the submitted lesions and the reference ones, thus including not only the TP, but also the FP and FN, to
assess the whole system accuracy. The values in bold correspond to the best performance for each measure.

QCA CTA
Method Cat. Avg. Abs. Diff. R.M.S.Diff. Weighted Kappa Ave. rank
% Rank % Rank K Rank
CTA consensus Manual 28.8 3.0 34.4 3.0 1.00 1.0 2.0
Shahzad et al. Min. user 21.1 1.0 29.1 1.0 0.28 5.0 3.0
Observer 1 Manual  30.1 4.0 35.2 4.0 0.74 3.0 3.5
Observer 2 Manual 31.1 6.0 36.5 5.0 0.77 2.0 3.8
Observer 3 Manual 30.6 5.0 36.9 6.0 0.73 4.0 4.8
Wang et al. Auto. 28.8 2.0 33.7 2.0 0.18 8.0 5.0
Broersen et al. Auto. 32.5 7.0 39.3 7.0 0.27 6.0 6.5
Oksiiz et al. Min. user 47.0 9.0 53.1 9.0 0.21 7.0 8.0
Lor and Chen Min. user 38.6 8.0 427 8.0 -0.03 12.0 10.0
Mohr et al. Auto. 49.6 10.0 56.0 120 0.15 9.0 10.0
Flérez Valenciaet al. Min. user 51.6 12.0 55.6 110 0.01 10.0 10.8
Eslami et al. Min. user 50.9 11.0 55.0 10.0 -0.02 11.0 10.8

Table 11: Performance of the 5 evaluated methods for coronary artery lumen segmentation on the 30 testing datasets. The values in bold correspond to the best
performance for each measure.

DICE MSD MaxD

Method Cat. Avg. k
etho a Diseased Healthy Diseased Healthy Diseased Healthy Ve ran

% Rank % Rank mm Rank mm Rank mm Rank mm Rank

Observer 3 Manual 79 1.6 81 1.3 0.23 2.0 0.21 1.5 3.00 5.1 3.45 4.9 2.7
Mohr et al. Auto. 70 3.6 73 34 0.40 4.2 0.39 3.8 2.68 2.9 2.75 2.2 33
Observer 1 Manual 76 2.3 77 3.2 0.24 2.6 0.24 2.8 2.87 4.3 3.47 4.8 34
Observer 2 Manual 65 5.0 72 4.9 0.34 4.7 0.27 3.7 2.82 4.5 3.26 4.3 4.5
Shahzad et al. Min. user 58 6.3 66 5.8 0.49 6.5 0.43 5.3 2.81 5.0 3.05 3.0 5.2
Wang et al. Auto. 69 4.5 69 4.6 0.45 5.4 0.5 5.9 3.94 5.7 6.48 5.9 5.4
Broersen et al. Auto. 67 4.5 69 4.9 0.50 5.8 0.70 5.9 3.89 5.4 5.86 5.7 5.4
Florez Valencia et al. Min. user 42 7.8 38 7.7 0.83 7.2 1.13 7.7 3.81 4.4 6.96 5.6 6.8
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either be caused by a high number of FP or FN, or by a high
number of lesions reported with more than one grade difference
as compared to the CTA reference.

The quantification results show that current stenosis quantifi-
cation algorithms are not sufficiently reliable to be used stand-
alone in clinical practice, but could be used as a second-reader.

5.3. Lumen segmentation

Table 11 shows the average results and ranking of 5 submis-
sions (3 fully automatic, 2 semi-automatic) and 3 observers for
coronary artery lumen segmentation. The method proposed by
Mohr et al. outperforms all the other methods, as well as two
of the observers.

Overall, though the Dice value obtained on healthy vessel
segments is higher than the one obtained on diseased ones,
the mean square distance and maximum distance obtained on
healthy segments is higher than the ones obtained on diseased
ones, which may be caused by the smaller scale of the diseased
vessel.

Figure 10 provides a visual impression for segment LAD7
of dataset#08 of the reference standard of observer#1 (top) and
evaluated algorithms of respectively Broersen et al., Flérez Va-
lencia et al., Mohr et al., Shahzad et al., and Wang et al.. Dataset
#08 presents a severe mixed plaque in segment LAD7. While
the algorithms of Mohr et al., Broersen et al. and Wang et al.
successfully segment the diseased vessel segment as compared
to the reference from the observer #1, the last two algorithms
tend to under-segment the soft plaque. In this case, both the
algorithm of Flérez Valencia et al. and Shahzad et al. fail to
segment the mixed plaque: the first include the calcified part of
the lesion within the segmentation, while the second is attracted
towards the calcium spot. Note for this particular view of the
vessel, the method of Shahzad et al. and Broersen et al. fail to
display segmentation at some vessel position; in fact, their seg-
mentation lies in another plane, and thus, no intersection was
available.

6. Discussion

We presented a standardized evaluation framework allow-
ing the effective comparison of coronary artery stenosis detec-
tion and quantification methods, and coronary lumen segmen-
tation algorithms, on CTA images. The framework has been
used to compare 11 algorithms as part of the “3D Cardiovas-
cular Imaging: a MICCAI segmentation challenge” workshop
at MICCATI’12, and remains publicly available via the website
http:/lcoronary.bigr.nl/stenoses.

6.1. Evaluation framework

The quality of an evaluation framework critically relies on
the datasets that are made available for training and testing, and
the quality of the reference standard. In our framework, cur-
rently, 48 cardiac CTA datasets with corresponding reference
standard are available. Datasets were acquired at three different
Dutch medical centers, with CT scanners from three different
vendors (Siemens Healthcare, Philips Healthcare and Toshiba
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mixed plaque

Observer #1

Florez-Valencia et al.

Shahzad et al.

Figure 10: Lumen segmentation example for training dataset #08. Visual im-
pression of the reference standard of observer#1 and evaluated algorithms of
Broersen et al., Flérez Valencia et al., Mohr et al., Shahzad et al., and Wang
et al.. Dataset #08 presents a severe mixed plaque in segment LAD7. Note that
for this particular view of the vessel, the method of Shahzad et al. and Broersen
et al. fail to display segmentation at some vessel position; in fact, their segmen-
tation lies in another plane, and thus, no intersection was available.



Medical Systems), ensuring that algorithms would not be bi-
ased toward a specific scanner or acquisition protocol. The
datasets were carefully selected in order to be representative
of the types of pathologies which occur in clinical practice.
Unfortunately, we were not able to include datasets from one
of the remaining main CT scanner vendors (GE Healthcare)
in the current framework. Also, it may be interesting to in-
clude CTA images acquired with 1) various acquisition proto-
cols (retro/prospective ECG gating, flash mode, low-dose), 2)
different reconstruction modes (different kernels), and 3) with
different scanner models from a single vendor. Thus, the vari-
ety of CTA datasets provided in our framework could still be
improved.

In our framework we utilized two reference standards: the
performance of (semi-)automatic algorithms designed to detect
and quantify stenoses was evaluated using both CTA consensus
reading and QCA analysis of the angiograms.

Creating a reference standard with multiple observers is a te-
dious and complex task. To build the CTA reference standard,
multiple observers annotated the datasets, whose annotations
were then combined. Even though the same guidelines were
given to all the observers, their annotations were not always
consistent, thus making a merging step necessary. For instance,
defining the start and end of a lesion can be challenging, es-
pecially in case of diffuse disease. One observer may indicate
that a whole segment is diseased (leading to a single stenosis
which extends over the whole segment), while another may in-
dicate multiple smaller stenoses with varying degrees. Such
disagreements between observers were solved during the con-
sensus reading.

Another challenge is to build references from CTA and QCA
which are consistent. As two different modalities are used,
one providing 3D images and one providing 2D images, the
observers’ interpretation may considerably differ. Though the
same coronary tree nomenclature was provided to CTA and
QCA observers, mismatches between segments may occur: a
stenosis detected at the end of the proximal LAD segment
(LAD6) on the CTA image may be visualized as being in the
proximal part of the mid LAD segment (LAD7) on QCA. To
avoid such mismatch, the QCA reference has been corrected
to match the CTA reference. Second, there can be detec-
tion/quantification mismatch: a significant stenosis may be re-
ported in a certain segment on CTA, while no stenosis is re-
ported on QCA, and vice-versa. Segments presenting mild
stenoses on the CTA images usually do not present any obstruc-
tion on the CCA. Also, it may occur that, due to blooming ar-
tifacts caused by calcified plaque, motion artifacts or reduced
image quality, a stenosis is overestimated on CTA, and is thus
not present on the CCA image. Reversely, a stenosis detected
on the CCA and not visible in CTA may be caused by an er-
roneous computation of the QCA, for instance by using wrong
landmarks to estimate the “normal” vessel diameter immedi-
ately adjacent to the stenosis.

A limitation of the current evaluation framework is the point-
based definition of stenosis location. Participants should pro-
vide a single point per stenosis, which is generally the central
point. This may result in mismatches between the stenoses de-
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tected by the methods and the reference standard. If the method
returns a series of smaller stenoses while the reference indicates
a larger one, there is no mismatch: the large reference stenosis
is detected, and will be assigned the average of the grades of
the short stenoses. However, in the opposite case there will be
mismatch: in the best case, only one of the reference stenoses
will be correctly matched (i.e. if the provided point lies within
the range of one of the small reference stenoses). Potentially, a
better matching procedure could be implemented, which would
take the start and end points of the stenoses as input. However,
we believe that this situation occurs relatively infrequently. In
addition, if a series of small stenoses has been reached by con-
census, it could be argued that a method should detect this in a
similar manner.

A second limitation is the use of hard classification into cat-
egories by the observers. For example, for a specific plaque, a
method may yield a stenosis degree of 49%, while an observer
grades the lesion as being moderate and the QCA reveals a 52%
stenosis. Although the methods’ stenosis degree estimation is
close to the observers’ one, the hard detection threshold at 50%
would penalize the method, classifying its result as a FN. A po-
tential solution would be to add a borderline category, so that
the algorithm would not be punished neither for reporting nor
for missing borderline stenoses. Another solution would be
to use ROC curves for evaluating the algorithm performance.
However, we believe that this limitation has had little impact in
the overall evaluation, as in the current 48 datasets consisting
of 637 coronary artery segments, only 15 of them had a QCA
between 45% and 55%.

Last, as indicated in Section 5, the three observers perfor-
mance for coronary stenoses detection and quantification as
compared to CTA reference standard may be biased at their
advantage, as the CTA reference standard was derived from
a consensus reading of the same three observers. To allow
a fair comparison of the observers performance with both the
CTA reference standard and other evaluated methods, coronary
artery detection and quantification in CTA should be obtained
from different observers than the ones involved in the consensus
reading.

6.2. Evaluated algorithms

The aim of our standardized evaluation framework is to pro-
vide an objective methodology to compare the performance of
different algorithms for certain clinical tasks. It is hence im-
portant, that the framework is adopted by all state-of-the-art al-
gorithms. In the MICCALI challenge, 11 algorithms have been
evaluated using the proposed framework, showing the potential
of the framework to achieve this. However, not all recently pub-
lished methods have yet been evaluated with our framework.

The authors of previously published stenosis detection algo-
rithms, i.e. the ones presented in Table 2, were all invited by e-
mail to participate in our MICCALI challenge, but none of them
did and we did not further investigate why these groups did not
participate.

Since the evaluation framework remains accessible, we hope
and expect that an increasing number of algorithms will be
evaluated. From the previous challenges we organized (Schaap



et al., 2009a; Hameeteman et al., 2011), we know that this in-
deed happens. Also, for newly published methods, reviewers of
journals typically require a method to be evaluated using such
standardized frameworks.

6.3. Evaluation results

Nine of the eleven evaluated algorithms are developed fol-
lowing the work-flow of Figure 3, consisting of 1) the compu-
tation of an accurate lumen segmentation, either directly from
the input CTA image or using previously extracted centerlines,
and 2) the subsequent detection (and quantification) of coro-
nary artery stenoses by estimate of the healthy vessel (Broersen
et al., 2012; Eslami et al., 2012; Flérez Valencia et al., 2012;
Mohr et al., 2012; Oksiiz et al., 2012; Shahzad et al., 2012;
Wang et al., 2012), or by analysis of intensity and geometry
features (Lor and Chen, 2012; Melki et al., 2012). Though the
nine methods actually segment the lumen, only five of them
participated in the segmentation sub-challenge (exceptions are
Eslami et al. (2012), Lor and Chen (2012), Melki et al. (2012)
and Oksiiz et al. (2012)). The lumen segmentation results show
that the moderate detection and quantification performances of
the algorithm proposed by Flérez Valencia et al. (2012) stem
directly from the poor lumen segmentation results. To de-
tect and quantify lesions, six of the algorithms estimated a
“healthy” lumen radius using various regression approaches on
the segmented lumen radius profile (linear for the approaches of
Broersen et al. (2012), Flérez Valencia et al. (2012), Mohr et al.
(2012) and Oksiiz et al. (2012), second-order for the approach
of Eslami et al. (2012), robust for the approach of Shahzad
et al. (2012)). In the algorithm proposed by Wang et al. (2012)
only, the outer vessel wall was segmented from the CTA im-
age. Given similarly accurate lumen segmentation, the algo-
rithm proposed by Shahzad et al. (2012) outperforms the ap-
proaches proposed by Broersen et al. (2012) and Wang et al.
(2012) at the quantification stage. The results thus suggest that
robust regression seems to be a good approach to quantify le-
sions from accurate lumen segmentation. Last, the algorithm
proposed by Mohr et al. (2012) outperforms the three others at
the segmentation stage, which suggests that tissue classification
and calcium segmentation performed prior to lumen segmenta-
tion is a very promising approach.

Only one of the evaluated algorithms is not involving accu-
rate lumen segmentation, but is using features extracted from
the CTA image to detect plaques (Duval et al., 2012). Though
reasonable sensitivity is achieved, the methods’ performance is
penalized by the important amount of reported FPs detections,
and is therefore ranked just after the algorithms cited in previ-
ous paragraph (which make use of accurate lumen segmentation
and regression) for detection.

The algorithm proposed by Cetin and Unal (2012), which
makes use of both accurate lumen segmentation and feature ex-
traction to detect lesions, seems very promising as it ranks first
for detection.

Last, though the vessel lumen can be automatically seg-
mented with a precision similar to the expert’s one, detec-
tion and quantification of coronary artery stenosis is still not a
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solved problem; performance of the quantification is in general
much worse than the observers.

The evaluation of the 11 different algorithms with the stan-
dardized evaluation framework provides useful directions for
further investigations. First, it may be interesting to investigate
the robustness of the segmentation methods with regard to the
initial centerline used. Also, it would be interesting to com-
bine the best segmentation method with the best detection and
quantification method, and to combine the results of several al-
gorithms and investigate whether a combination of algorithms
outperforms the best single algorithm (Niemeijer et al., 2011).

Last, a clear limitation of our challenge remains that the eval-
uated algorithms are not available. In the future, the concept of
a challenge would benefit from a framework where the evalu-
ated algorithms become publicly available, such that it becomes
possible to run the submitted algorithms on other datasets, with-
out having to re-implement the complete pipeline, which is of-
ten tedious, if not possible at all, given that in literature often
all information and/or data required to reproduce an algorithm
is not available.

7. Conclusion

A publicly available evaluation framework to compare coro-
nary artery stenosis detection and quantification methods,
as well as lumen segmentation algorithms was presented in
this article. The results showed that current stenosis detec-
tion/quantification algorithms are not sufficiently reliable to be
used stand-alone in clinical practice, but that some could be
used for triage or as a second-reader, and that automatic lumen
segmentation is possible with a precision similar to the expert’s
one. The evaluation framework remains open for new submis-
sions at http.:/lcoronary.bigr.nl/stenoses.
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Appendix A. Reference and submission format

Appendix A.l. Reference format

The CTA reference standard Acrs consists of a set of
points in the coronary vessel tree. For every dataset, the
following information is provided, per centerline point: 1)
the (xcra,Yera, Zera) world coordinates, 2) the AHA-segment
number snrcrs (between 1 and 17), 3) the patient’s lesion num-
ber Inrcra (Inrera =0 if the point does not belong to a stenosis,
Inrcra >0 if the point belongs to a stenosis, /nrerg < N, N



being the number of lesions present in the CTA reference stan-
dard), 4) the stenosis type ¢, and 5) the CTA diameter percentage
stenosis gcra (Table 1).

The CCA reference standard Agcs consists of couples
(snrgca, 8oca) for each of the 17-AHA segment snrpcs hav-
ing a QCA diameter stenosis ggca (between 0 and 100).

Appendix A.2. Submission format

The submitted results A consist of the (x,y,z) world coor-
dinates position of each stenosis detected in the CTA image,
and optionally the estimated CTA and QCA diameter stenosis
8CTA,, and goca,,,, between 20 (mild) and 100 (complete oc-
clusion).

Appendix B. Matching procedure

As the evaluation is performed lesion-based with respect to
the CTA reference standard, and segment-based with respect to
the CCA reference standard, the reported stenoses need to be
matched to one of the 17-AHA segment snr and to a reference
stenosis Inr. The matching procedure is three-fold and is pre-
sented in Figure B.11. For all lesions VeA, j€[1,S5], S being
the number of detected stenoses, we determine 1) the 5-nearest
neighbors of I/ in Acra (K = 5 was empirically determined,
to cope with uncertainties at bifurcations for instance), 2) the
segment number sn7/, and 3) the stenosis number Inr/. Fig-
ure 9 presents a stenosis detection matching example for train-
ing dataset10 and results of observer#l1.

References

Achenbach, S., 2008. Can CT detect the vulnerable coronary plaque? Interna-
tional Journal of Cardiovascular Imaging 24, 311-312.

Achenbach, S., Schuhbaeck, A., Marwan, M., Bathina, R., Ovrehus, K., An-
ders, K., Hoffmann, U., Abbara, S., Aulbach, P., Ropers, D., Pflederer, T.,
Becker, C., Berman, D., Hausleiter, J., 2012. Multicenter evaluation of dual
source CT coronary angiography in patients with intermediaite likelihood of
coronary artery stenoses (MEDIC): Accuracy for the detection of individu-
als with significant coronary artery stenoses. Journal of American College
of Cardiology 59 (1337), 61338-2.

Arnoldi, E., Gebregziabher, M., Schoepf, U. J., Goldenberg, R., Ramos-Duran,
L., Zwerner, P. L., Nikolaou, K., Reiser, M. F., Costello, P., Thilo, C., May
2010. Automated computer-aided stenosis detection at coronary CT angiog-
raphy: initial experience. European Radiology 20 (5), 1160-1167.

Austen, W. G., Edwards, J. E., Frye, R. L., Gensini, G. G., Gott, V. L., Griffith,
L. S., McGoon, D. C., Murphy, M. L., Roe, B. B., Apr 1975. A reporting
system on patients evaluated for coronary artery disease. report of the ad hoc
committee for grading of coronary artery disease, council on cardiovascular
surgery, american heart association. Circulation 51 (4 Suppl), 5-40.

Baltaxe Milwer, M., Flérez-Valencia, L., Hernandez-Hoyos, M., Magnin, .,
Orkisz, M., aug. 2007. Fast-marching contours for the segmentation of ves-
sel lumen in CTA cross-sections. In: Proc. of the IEEE Engineering in
Medicine and Biology Society. pp. 791 —794.

Boogers, M., Broersen, A., van Velzen, J., de Graaf, F., El-Naggar, H., Kit-
slaar, P., Dijkstra, J., Delgado, V., Boersma, E., de Roos, A., Schuijf, J.,
Schalij, M., Reiber, J., Bax, J., Jukema, J., 2012. Automated quantification
of coronary plaque with computed tomography: comparison with intravas-
cular ultrasound using a dedicated registration algorithm for fusion-based
quantification. European Heart Journal 33 (8), 1007-1016.

Boogers, M. J., Schuijf, J. D., Kitslaar, P. H., van Werkhoven, J. M., de Graaf,
F. R., Boersma, E., van Velzen, J. E., Dijkstra, J., Adame, I. M., Kroft, L. J.,
de Roos, A., Schreur, J. H. M., Heijenbrok, M. W., Jukema, J. W., Reiber,
J. H. C,, Bax, J. J., Jul 2010. Automated quantification of stenosis severity

19

on 64-slice CT: a comparison with quantitative coronary angiography. JACC
Cardiovasc Imaging 3 (7), 699-709.
URL http://dx.doi.org/10.1016/j.jcmg.2010.01.010

Broersen, A., Kitslaar, P., Frenay, M., Dijkstra, J., 2012. FrenchCoast: Fast,
Robust Extraction for the Nice Challenge on COronary Artery Segmentation
of the Tree. In: Proc. of MICCAI Workshop ”3D Cardiovascular Imaging: a
MICCALI segmentation Challenge”.

Budoff, M. J., Achenbach, S., Blumenthal, R. S., Carr, J. J., Goldin, J. G.,
Greenland, P., Guerci, A. D., Lima, J. A. C., Rader, D. J., Rubin, G. D.,
Shaw, L. J., Wiegers, S. E., on Cardiovascular Imaging, A. H. A. C., Inter-
vention, on Cardiovascular Radiology, A. H. A. C., Intervention, American
Heart Association Committee on Cardiac Imaging, C. o. C. C., Oct 2006.
Assessment of coronary artery disease by cardiac computed tomography: a
scientific statement from the american heart association committee on car-
diovascular imaging and intervention, council on cardiovascular radiology
and intervention, and committee on cardiac imaging, council on clinical car-
diology. Circulation 114 (16), 1761-1791.

Cetin, S., Demir, A., Yezzi, A., Degertekin, M., Unal, G., 2013. Vessel trac-
tography using an intensity based tensor model with branch detection. IEEE
Transactions on Medical Imaging 32 (2), 348-363.

Cetin, S., Unal, G., 2012. Automatic detection of coronary artery stenosis in
cta based on vessel intensity and geometric features. In: Proc. of MICCAI
Workshop ”3D Cardiovascular Imaging: a MICCAI segmentation Chal-
lenge”.

Cohen, J., 1968. Weighted kappa: Nominal scale agreement with provision for
scaled disagreement or partial credit. Psychological Bulletin 70 (4), 213—
220.

den Dekker, M., de Smet, K., de Bock, G., Tio, R., Oudkerk, M., Vliegen-
thart, R., Dec 2012. Diagnostic performance of coronary CT angiography
for stenosis detection according to calcium score: systematic review and
meta-analysis. European Radiology 22 (12), 2688-2698.

Duval, M., Ouzeau, E., Precioso, F., Matuszewski, B., 2012. Coronary artery
stenoses detection with random forest. In: Proc. of MICCAI Workshop 3D
Cardiovascular Imaging: a MICCAI segmentation Challenge”.

Eslami, A., Aboee, A., Hodaei, Z., Moghaddam, M. J., Carlier, S., Katouzian,
A., Navab, N., 2012. Quantification of coronary arterial stenosis by inflating
tubes in CTA images. In: Proc. of MICCAI Workshop 3D Cardiovascular
Imaging: a MICCAI segmentation Challenge”.

Falk, E., Shah, P. K., Fuster, V., Aug 1995. Coronary plaque disruption. Circu-
lation 92 (3), 657-671.

Flérez Valencia, L., Orkisz, M., Corredor Jerez, R. A., Torres Gonzlez, J. S.,
Correa Agudelo, E. M., Mouton, C., Hernandez Hoyos, M., 2012. coronary
artery segmentation and stenosis quantification in ct images with use of a
right generalized cylinder model,. In: Proc. of MICCAI Workshop 3D Car-
diovascular Imaging: a MICCAI segmentation Challenge”.

Frangi, A., Niessen, W., Vincken, K., Viergever, M., 1998. Multiscale vessel
enhancement filtering. In: Proc. of MICCAI’98. Vol. .1496. pp. 130-137.
Goldenberg, R., Eilot, D., Begelman, G., Walach, E., Ben-Ishai, E., Peled, N.,
Apr 2012. Computer-aided simple triage (CAST) for coronary CT angiog-
raphy (CCTA). International Journal of Computer Assisted Radiology and

Surgery, 1-9.

Goldenberg, R., Peled, N., 2011. Computer-aided simple triage. International
Journal of Computer Assisted Radiology and Surgery 6 (5), 705-711.

Giilsiin, M. A., Tek, H., 2008. Robust vessel tree modeling. In: Proc. of the
11th international conference on Medical Image Computing and Computer-
Assisted Intervention - Part I. MICCAI *08. Springer-Verlag, Berlin, Hei-
delberg, pp. 602-611.

Haase, J., Escaned, J., Montauban van Swijndregt, E., Ozaki, Y., Gronenschild,
E., Slager, C., PW., S., 1993. Experimental validation of geometric and den-
sitometric coronary measurements on the new generation cardiovascular an-
giography analysis system (caasii). Catheterization and Cardiovascular Di-
agnosis 30, 104-114.

Halpern, E. J., Halpern, D. J. a., Mar 201 1. Diagnosis of coronary stenosis with
ct angiography comparison of automated computer diagnosis with expert
readings. Academic Radiology 18 (3), 324-333.

Hameeteman, K., Zuluaga, M. A., Freiman, M., Joskowicz, L., Cuisenaire,
0., Flérez Valencia, L., Giilsiin, M. A., Krissian, K., Mille, J., Wong, W.
C. K., Orkisz, M., Tek, H., Hernandez Hoyos, M., Benmansour, F., Chung,
A. C. S., Rozie, S., van Gils, M., van den Borne, L., Sosna, J., Berman,
P., Cohen, N., Douek, P. C., Sanchez, 1., Aissat, M., Schaap, M., Metz,
C. T, Krestin, G. P, van der Lugt, A., Niessen, W. J., van Walsum, T., Aug



2011. Evaluation framework for carotid bifurcation lumen segmentation and
stenosis grading. Medical Image Analysis 15 (4), 477-488.

Kelm, B. M., Mittal, S., Zheng, Y., Tsymbal, A., Bernhardt, D., Vega-Higuera,
F., Zhou, S. K., Meer, P., Comaniciu, D., 2011. Detection, grading and clas-
sification of coronary stenoses in computed tomography angiography. Med-
ical Image Computing and Computer-Assisted Interventions 14, 25-32.

Khan, M. F,, Wesarg, S., Gurung, J., Dogan, S., Maataoui, A., Brehmer, B.,
Herzog, C., Ackermann, H., Assmus, B., Vogl, T. J., Aug 2006. Facilitating
coronary artery evaluation in MDCT using a 3D automatic vessel segmen-
tation tool. European Radiology 16 (8), 1789-1795.

Lesage, D., Angelini, E. D., Bloch, I., Funka-Lea, G., Dec 2009. A review of
3D vessel lumen segmentation techniques: models, features and extraction
schemes. Medical Image Analysis 13 (6), 819-845.

Lor, K., Chen, C., 2012. Probabilistic model based evaluation of coronary artery
stenosis on CTA. In: Proc. of MICCAI Workshop 3D Cardiovascular Imag-
ing: a MICCAI segmentation Challenge”.

Meijboom, W. B., Meijs, M. F. L., Schuijf, J. D., Cramer, M. J., Mollet, N. R.,
van Mieghem, C. A. G., Nieman, K., van Werkhoven, J. M., Pundziute, G.,
Weustink, A. C., de Vos, A. M., Pugliese, F., Rensing, B., Jukema, J. W.,
Bax, J. J., Prokop, M., Doevendans, P. A., Hunink, M. G. M., Krestin, G. P,,
de Feyter, P. J., Dec 2008. Diagnostic accuracy of 64-slice computed tomog-
raphy coronary angiography: a prospective, multicenter, multivendor study.
Journal of American College of Cardiology 52 (25), 2135-2144.

Melki, I, Talbot, H., Cousty, J., Pruvot, C., Knoplioch, J., Launay, L., Najman,
L., 2012. Automatic coronary arteries stenosesdetection in 3D CTA. In: Pro-
ceedings of MICCAI Workshop 3D Cardiovascular Imaging: a MICCAI
segmentation Challenge”.

Metz, C., Schaap, M., Weustink, A., Mollet, N., van Walsum, T., Niessen, W.,
2009. Coronary centerline extraction from ct coronary angiography images
using a minimum cost path approach. Medical Physics 36 (12), 5568-5579.

Mittal, S., Zheng, Y., Georgescu, B., Vega-Higuera, F., Zhou, S., Meer, P., Co-
maniciu, D., 2010. Fast automatic detection of calcified coronary lesions in
3D cardiac CT images. In: Proc. of MICCAI Workshop ”Machine Learning
in Medical Imaging” (MLMI). Vol. 6357. pp. 1-9.

Mohr, B., Masood, S., Plakas, C., 2012. Accurate stenosis detection and quan-
tification in coronary CTA. In: Proc. of MICCAI Workshop 73D Cardiovas-
cular Imaging: a MICCAI segmentation Challenge”.

Nieman, K., Galema, T. W., Neefjes, L. A., Weustink, A. C., Musters, P.,
Moelker, A. D., Mollet, N. R., de Visser, R., Boersma, E., de Feijter, P. J.,
Dec 2009. Comparison of the value of coronary calcium detection to com-
puted tomographic angiography and exercise testing in patients with chest
pain. American Journal Cardiology 104 (11), 1499-1504.

Niemeijer, M., Loog, M., Abramoff, M. D., Viergever, M. A., Prokop, M., van
Ginneken, B., 2011. On combining computer-aided detection systems. IEEE
Transactions on Medical Imaging 30 (2), 215-223.

Oksiiz, d., Unay, D., Kadipasaoglu, K., 2012. A hybrid method for coronary
artery stenosis detection and quantification. In: Proc. of MICCAI Workshop
73D Cardiovascular Imaging: a MICCAI segmentation Challenge”.

Pryor, D. B., Shaw, L., McCants, C. B., Lee, K. L., Mark, D. B., Harrell, F. E.,
Muhlbaier, L. H., Califf, R. M., Jan 1993. Value of the history and physical
in identifying patients at increased risk for coronary artery disease. Annals
of Internal Medicine 118 (2), 81-90.

Raff, G. L., Abidov, A., Achenbach, S., Berman, D. S., Boxt, L. M., Budoff,
M. J., Cheng, V., DeFrance, T., Hellinger, J. C., Karlsberg, R. P.,, 2009.
SCCT guidelines for the interpretation and reporting of coronary computed
tomographic angiography. Journal of Cardiovascular Computed Tomogra-
phy 3 (2), 122-136.

Roger, V. L., Go, A. S., Lloyd-Jones, D. M., Benjamin, E. J., Berry, J. D.,
Borden, W. B., Bravata, D. M., Dai, S., Ford, E. S., Fox, C. S., Fullerton,
H. J., Gillespie, C., Hailpern, S. M., Heit, J. A., Howard, V. J., Kissela,
B. M, Kittner, S. J., Lackland, D. T., Lichtman, J. H., Lisabeth, L. D.,
Makuc, D. M., Marcus, G. M., Marelli, A., Matchar, D. B., Moy, C. S.,
Mozaffarian, D., Mussolino, M. E., Nichol, G., Paynter, N. P, Soliman,
E. Z., Sorlie, P. D., Sotoodehnia, N., Turan, T. N., Virani, S. S., Wong,
N. D., Woo, D., Turner, M. B., Committee, A. H. A. S., Subcommittee,
S. S., Jan 2012. Heart disease and stroke statistics—2012 update: a report
from the american heart association. Circulation 125 (1), e2—e220.

Saur, S. C., Alkadhi, H., Desbiolles, L., Székely, G., Cattin, P. C., 2008. Auto-
matic detection of calcified coronary plaques in computed tomography data
sets. Medical Image Computing and Computer-Assisted Interventions 11,
170-177.

20

Schaap, M., Metz, C. T., van Walsum, T., van der Giessen, A. G., Weustink,
A. C., Mollet, N. R., Bauer, C., Bogunovi¢, H., Castro, C., Deng, X., Dikici,
E., O’Donnell, T., Frenay, M., Friman, O., Herndndez Hoyos, M., Kitslaar,
P. H., Krissian, K., Kiihnel, C., Luengo-Oroz, M. A., Orkisz, M., Smedby,
0., Styner, M., Szymczak, A., Tek, H., Wang, C., Warfield, S. K., Zambal,
S., Zhang, Y., Krestin, G. P., Niessen, W. J., Oct 2009a. Standardized eval-
uation methodology and reference database for evaluating coronary artery
centerline extraction algorithms. Medical Image Analysis 13 (5), 701-714.

Schaap, M., Neefjes, L., Metz, C., van der Giessen, A., Weustink, A., Mol-
let, N., Wentzel, J., van Walsum, T., Niessen, W., July 2009b. Coronary
lumen segmentation using graph cuts and robust kernel regression. In: Jerry
L. Prince, Dzung L. Pham, K. J. M. (Ed.), Information Processing in Medi-
cal Imaging. pp. 528-539.

Shahzad, R., van Walsum, T., Kirisli, H., Tang, H., Metz, C., Schaap, M., van
Vliet, L., Niessen, W., 2012. Automatic detection, quantification and lumen
segmentation of the coronary arteries using two-point centerline extraction
scheme. In: Proc. of MICCAI Workshop 73D Cardiovascular Imaging: a
MICCALI segmentation Challenge”.

Shaw, L., Marwick, T., Zoghbi, W., Hundley, W., Kramer, C., Achenbach, S.,
Dilsizian, V., Kern, M., Chandrashekhar, Y., Narula, J., 2010. Why all the
focus on cardiac imaging? Journal of American College of Cardiology 3 (7),
789-794.

TeBmann, M., Vega-Higuera, F., Fritz, D., Scheuering, M., Greiner, G., 2009.
Multi-scale feature extraction for learning-based classification of coronary
artery stenosis. In: Proc. of SPIE, Medical Imaging 2009: Computer-Aided
Diagnosis.

Virmani, R., Burke, A., Farb, A., Kolodgie, F., 2006. Pathology of the vulnera-
ble plaque. Journal of American College of Cardiology 47 (8), 13—18.

Wang, C., Moreno, R., Smedby, O., 2012. Vessel segmentation using implicit
model-guided level sets. In: Proc. of MICCAI Workshop 73D Cardiovascu-
lar Imaging: a MICCALI segmentation Challenge”.

Wesarg, S., Khan, M. F, Firle, E. A., Sep 2006. Localizing calcifications in
cardiac CT data sets using a new vessel segmentation approach. Journal of
Digital Imaging 19 (3), 249-257.

Weustink, A. C., de Feyter, P. J., Aug 201 1. The role of multi-slice computed to-
mography in stable angina management: a current perspective. Netherlands
Heart Journal 19 (7-8), 336-343.

Xu, Y., Liang, G., Hu, G., Yang, Y., Geng, J., Saha, P. K., Jan 2012. Quantifi-
cation of coronary arterial stenoses in CTA using fuzzy distance transform.
Computerized Medical Imaging and Graphics 36 (1), 11-24.

Yang, G., Broersen, A., Petr, R., Kitslaar, P., de Graaf, M., Bax, J. J., Reiber, J.
H. C., Dijkstra, J., 2011. Automatic coronary artery tree labeling in coronary
computed tomographic angiography datasets. Computing in Cardiology 38,
109-112.

Yang, G., Kitslaar, P,, Frenay, M., Broersen, A., Boogers, M. J., Bax, J. .,
Reiber, J. H. C., Dijkstra, J., Apr 2012. Automatic centerline extraction of
coronary arteries in coronary computed tomographic angiography. Interna-
tional Journal of Cardiovascular Imaging 28 (4), 921-933.

Zambal, S., Hladuvka, J., Kanitsar, A., Biihler, K., 2008. Shape and appear-
ance models for automatic coronary artery tracking. In: Proc. of MICCAI
Workshop 3D Segmentation in the Clinic: A Grand Challenge II.

Zhou, C., Chan, H.-P., Chughtai, A., Patel, S., Hadjiiski, L. M., Sahiner, B.,
Wei, J., Kazerooni, E. A., 2010. Automated segmentation and tracking of
coronary arteries in cardiac CT scans: comparison of performance with a
clinically used commercial software. In: Proc. of SPIE, Medical Imaging
2010: Computer-Aided Diagnosis. Vol. 7624.

Zuluaga, M. A., Magnin, 1. E., Herndndez Hoyos, M., Delgado Leyton, E. J. F.,
Lozano, F., Orkisz, M., Mar 201 1. Automatic detection of abnormal vascular
cross-sections based on density level detection and support vector machines.
International Journal of Computer Assisted Radiology and Surgery 6 (2),
163-174.



CTA reference standard CTA submission
_ Afry € Aera o U en
Vi_E [1._N].Z%TA= (XEra Yera Zerar S, iz a, Gira) vj € [1,8],1/= (xj,yf,zj,gémsub,gé,msub)
(xcraYerar 2era): the world coordinates (xJ,yJ,27) :the world coordinates
SNTery - the AHA-segment number j . ; i
; . . n ) dera - the CTA estimated lesion grade
Inrgry - the lesion number (=0 if not lesion) P ) )
9ra ‘ the lesion grade (=0 if nota lesion)  |[9oca,, - the QCAestimated lesion grade
1 1

Step 1: search for kNN in CTA reference standard
forj=1,7<5,j++

kNN; =[]
fork=1,k<5k++
if 3i € [1, N],

for which dist(l,15r,) < 5mm AND dist(1/,lkr,) = minge yyigenn, (dist (U, Ikr,))
knn{c= liCTA
kNN, = [kNN,i]

with dist(/, lLr,) = \/(xéTA — X2 Wy — YD+ (g — 27)?

1

Step 2: assigh a segment humber
forj=1,7<5j++
if Ik € [1,5]knnl= @

if 3(ky, ko, k3) € KNN3, snrlt, = snrk2 = sk, 1/ if a majority of the KNN

snrl= st // belong to a same snr
else // otherwise
snrl = smg‘TﬁN[O] /l snr of the geometrically closest
else /1'if detected lesion too far
s/ = undef;

1

Step 3: assign a lesion number
forj=1,j<5j++
if Ik € [L5] knnl# ©

if3(key, kp k3) € KNN3, lniit = Ink2, = I3, //if a majority of the kNN

Inr/= lm'g‘;A // belong to a same Inr
else I otherwise
l = argmin;cpnn (abs(glra — géTAsub ) /I Inr of the point having
Inr! = inrkr, /l the closest CTA grade

else /1 if detected lesion too far

I/ = undef;

1

CTA matched submission
VeAn
vj € [1,5] U= (xijf,zf,gémsub,gécﬂ,sub@nr}',lm'f)
(x’,y7,27)  :the world coordinates
: the estimated lesion grade in CTA snrlra: the AHA-segment number

J
Ieragy,
: the estimated lesion grade in QCA Inr}y, : the lesion number

J
'g QCAqup

Figure B.11: References and submission - Stenoses and segment matching procedure
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