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Asymptotic of the terms of the Gegenbauer polynomials on the
unit circle and applications to the inverse of Toeplitz matrices..

Philippe Rambour*

Abstract

Asymptotic of the terms of the Gegenbauer polynomials on the unit circle
and applications to the inverse of Toeplitz matrices.
The first part of this paper is devoted to the study of the orthogonal polynomials on the
unit circle, with respect of a weight of type f, : 0 — 22%(cos 0 — cos )?*c; with 6y €0, 7],
—% <a< % and ¢; a sufficiently smooth function. In a second part of the paper we obtain

an asymptotic of the entries (T fa)l;il,l 41 for a > 0 and for sufficiently large values of
k,l, with k # [.
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Primary 15B05, 33C45; Secondary 33D45, 42C05, 42C10.
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1 Introduction

The study of the orthogonal polynomials on the unit circle is an old and difficult problem (see
[16], [17] or [18]). The Gegenbauer polynomials on the torus are the orthogonal polynomials
on the circle with respect to a weight of type f : 8 +— 22%(cosf — cos fp)?**c; with a > —%
and c; a positive integrable function. In this paper we assume —% <a< % and c¢; sufficiently
smooth regular function. It is said that a function k is regular if k() > 0 for all § € T and
k € LYT). In a first part we are interested in the asymptotic of the coefficients of these
polynomials (see Corollary 3). The main tool to compute this is the study of the Toeplitz
matrix with symbol f. Given a function h in L'(T) we denote by Tn(h) the Toeplitz matrix

of order N with symbol A the (N + 1) x (N + 1) matrix such that
(Tn(R))ig1,541 = h(j—i) Vi,j 0<i,j<N

where 7(s) is the Fourier coefficient of order s of the function m (see, for instance [3] and
[4]). There is a close connection between Toeplitz matrices and orthogonal polynomials on
the complex unit circle. Indeed the coefficients of the orthogonal polynomial of degree N with
respect of h are also the coefficients of the last column of T *(h) except for a normalisation (see
[11]). Here we give an asymptotic expansion of the entries (T (fo[)),;l_l’1 (Theorem 4). Using
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the symmetries of the Toeplitz matrix Tn(f,), we deduce from this last result an asymptotic
of (TN(fa))Xfl—kH,NJrl (corollary 3).
The proof of Theorem 4 often refers to results of [15]. In this last work we have treated
the case of the symbols hydefined by 6 — (1 — cosf)®c whith —% <a< % and the same
hypothesis on ¢ as on ¢;. We have stated the following Theorem which is an important tool
in the demonstration of Theorem 4.

Theorem 1 ([15]) If —1 < a <1, a#0 we have for c € A(T,3) and 0 <z < 1

- - 1 a— [e a—
c(1) (TN(ha))[]\}le,l =N*® IF(a)x 11— 2)® + o(No71).

uniformly in x for x € [01,02] with 0 < §; < dy < 1,
with the definition

Définition 1 For all positive real T we denote by A(T,T) the set

A(T,7) = {h € L*(T)| ) _ |s"h(s)| < oo}
SEZ

This theorem has also been proved for v € N* in [14] and for a €]1, +-00[\N* in [13].

The second part of the present paper is devoted to the inversion of a class of Toeplitz
matrices. We give an asymptotic expansion of (TN(fC“))l;—ll—Ll-i—l for o €0, 4] and % - x,
% —yand 0 < x # y < 1. First we obtain these entries as a function of cos(l — k) and
(TN(ha)),;iLl 41+ It is Theorem 6. With the same hypothesis as for Theorem 1 we have stated

in [15] the following Theorem

Theorem 2 ([15]) For 0 < o < 3 we have

_ o 1 o
C(l) (TN(ha))[]\}m]+17[Ny]+1 = N2 1P2(04) Ga(x, y) + 0(N2 1)

uniformly in (z,y) for0 <6 <z #y<1.

Theorem 2 has been proved for a« € N* in [14], for o = 3 in [15] and for o €]3, +oo[\N* in
[13]. The quantities G (z,y) is the integral kernel on L?(0,1) of Corollaries 5.

A direct consequence of theorems 6 and 2 is that, for o > 0 the entries of (T (f))™" are
functions of cos(l — k)0 and the integral kernel Gy (x,y) (see corollaries 5).

The results of this paper are of interest in the analysis of time series. Indeed it is known that
the n-th covariance matrix of a time series is a positive Toeplitz matrix. If ¢ is the symbol
of this Toeplitz matrix, ¢ is called the spectral density of the time series. The time series
with spectral density is the function f, are also called GARMA processes. For more on this
processes we refer the reader to [2, 1, 6] and to [7, 8, 9, 2, 5, 10, 12] for Toeplitz matrices in
times series.

Predictor polynomial



Now we have to precise the deep link between the orthogonal polynomials and the inverse of
the Toeplitz matrices.

Let T, (f) a Toeplitz matrix with symbol f and (®,),en the orthogonal polynomials with
respect to f ([11]). To have the polynomial used for the prediction theory we put

\ (Tt
Br(z) =) e 2= (1)
=0 (Ta(f))N1,n 41
We define the polynomial ®} (see [16]) as

2;(2) = "B (2) )

that implies, with the symmetry of the Toeplitz matrix

* () = = (Tn(f))/;-il-l,lzk 5=
2 )—%7@”“))1& 2= (3)

The polynomials P, = &} /(T,,(f ))f& are often called predictor polynomials. As we can see

in the previous formula their coefficients are, up to a normalisation, the entries of the first
column of T, (f) .

The proof of Theorem 6 uses the important following theorem ([11]),

Theorem 3 If h a non negative symbol with a finite set of zeroes, and P, the predictor
polynomial of degree n of h, we have, for all integers s such that —n < s < n,

ﬁ(@ — is).

It implies

Corollary 1 For a fonction h as in Theorem 38 we have

T, <ﬁ) — T(h).

2 Main results

2.1 Main notations

In all the paper we consider the symbol defined by @ + 22%(cos 6 — cos )**c; where ¢; = %

with P, @ € R[X], without zeros on the united circle and —% <a< % and 0 < 0y < w. We have
c1 = 01715171 with 1,1 = g ObViOllSly €1,1 € H2+(T) since H2+(T) = {h S LQ(T)’U, <0 =
h(u) = 0}. If x is the function 6 — € and if xo = /% we put ga.ge.c, = (X — X0)* (X = X0)“c1.1
and g0, = (X — x0)*(x — X0)* since(2(cos § — cos ))** = |x — xo/**|x — Xo**. Clearly
Gobo.crs Jabo € H?T(T) and 22%(cos 0 — cos00)?“C1 = Ga.00.c10000.010 2°%(cos O — cos fp)?* =
9a,009a,0,- Then we denote by ﬁl%)o, ., the Fourier coefficient of g;}go’ , and by 512?20 the one

=)

of g;éo. Without loss of generality we assume ﬁ(()ogo e, = 1. We put also B,(f) = go (k) with
Ja = (1 - X)a'



2.2 Orthogonal polynomials

Theorem 4 Assume 0y €]0,7[ and —% <a< % Then we have for all integers k, % — x,
0 < x <1, the asymptotic
(T5" (Ix = x0 **Ix — %o |2°‘C1))k+171 =
=1 q,09,c, COS (kHO + Wa,@o) (Tj;l (’X - 1’20{))]94_171 (1 + 0(1))

uniformly in k for x € [09,01], 0 < dy < 01 < 1, and with we g, = aby+arg (c1,1(6p)) — 5+ and

2
Ko o0, = 2_0‘+1(sin 90)_0‘\/0171()(0) .

Then the following statement is an obvious consequence of Theorems 4 and 1.
Corollary 2 With the same hypotheses as in Theorem 4 we have
(Tﬁl (Ix = xo **|x = Xo ’2acl))k+1,1 =
= Kato.cr cos (kg + wa.g,) K11 — ﬁ)o‘ + o(N*h)
') o N
uniformly in k for x € [0p,1] 0 < dg < 01 < 1.

Moreover the equalities (2) and (3) provide
N

Corollary 3 Let & = Z(ijj be the orthogonal polynomial of degree N (Gegenbauer poly-
j=0

nomial) with respect to the weight 6 — 22*(cos§ — cosbp)c1(6), with —3 < o < . Then we

have, for & — x, 0 <z <1,

J

K
6_] — NailMCOS (N—]GO +wa,90)ja(1 - N

I(a)

uniformly in j for x € [dg,01], 0 < dp < 61 < 1.

)afl + O(Nafl).

We can also point out the asymptotic of the coefficients of order k of the predictor polynomial
when % — 0.

k
Theorem 5 With the same hypotheses as in Theorem 4 we have, if N — 0 when N goes to
the infinity
— _ 1
(Tw (I = x0 PP = Xo Pe1)) 0y = B, +O(5)-
Lastly when a approaches 1 we obtain the entries of the last column of T (2(cos 6 — cos 6g)cy ).

Corollary 4 Assume 0y €]0,7[. Then for all integers k for % — 2z, 0 <z <1, we have the
asymptotic

(5" (Ix = xo0 |Ix — Xo \01))“171 =

1 1
:K1/27€07cl cos (kao + w1/2,90) \/; + O(W)

uniformly in k for x € [0p,d1], 0 < g < 01 < 1.

Remark 1 This corollary implies that the coefficient of order k of the orthogonal polynomial
with respect of 0 — 2(cos 0 — cos p)c1(0) is K129, cos (ko + wi/2,9,) (+ - %)_1 + o(v/N)



2.3 Application to Toeplitz matrices
Theorem 6 Assume 0y €)0,7[ and 0 < a < 3. For £ w2, L Sy and0 <z #y < 1, we
have asymptotic
(15" (=30 P =0 )10 =
:|Ka,90701|2 cos (Oo(k — 1)) ( (|X - 1|2a))k+1,l+1 + 0(N2a71)

uniformly for k,l such that 0 < 01 < T #y < do < 1.

At it has been said in the introduction this statement and the results of [15] provides the next
corollary.

Corollary 5 Assume « €]0, %] and 6y €]0,7[. Let G, be the function defined on 0 < x #y <
1 by

Galey) = 28 /1 (o)t —y)*" ),

PQ( ) max(x,y) t2

With the same hypothesis as in Theorem 6 we have the asymptotic
—1 2 — 2
=N K gy 1| cos (6o([Na] — [Ny])) Galz,y) + o(N**7)

uniformly in k,1 for 0 < 01 <z #y < dy < 1.

2.4 Jacobi polynomial (in a particular case)
We note that in Theorem 6 one passes from the zeroes yo and Xg to two zeroes y; = €1 and
X2 = €92 with |6 — 05| €]0, 7[. Namely it is easy to see that
Tt (Ix — xalx - X2\2a01) =
-1
1/2_1/2 127 1212 1/2_1/2
A(X / X2/ ) (|X / |2a|X1 / / |2acl7w) A~ (Xl/ Xo / )

with A(X1/2X1/2) is the diagonal matrix defined by <A<X1/2Xl/2)>z = 01if i # j and

(AW));,; = 0a"*x*).

From this and Equation (2) we deduce the following proposition

)

Proposition 1 Let 19 = Z ijj be the orthogonal polynomial (Jacobi polynomial) with re-
§=0

spect to the weight |x —x1|**|x—x2|**, with a €]—1,]. Let Ko, 0, be the real 27+ sin(6; —

62)|7. Then we have, for & — z, 0 <z < 1.

01 — 69
2

J*(1 =)

I(a)

0j = N Ko 0,0, ((x1x2)/2) 7 cos <( )N —j) + wa,mGz) +o(N7),

uniformly in j for x € [do,01], 0 < dg < 91 < 1.



3 Inversion formula

3.1 Definitions and notations

Let H**(T) and H?~(T) the two subspaces of L?(T) defined by H?*(T) = {h € L*(T)|u <
0 = h(u) =0} and H2(T) = {h € L3(T)|u > 0 = h(u) = 0}. We denote by 7 the
orthogonal projector on H2*+(T) and 7_ the orthogonal projector on H2~(T). It is known (see
[9]) that if f >0 and In f € LY(T) we have f = gg with g € H>**(T). Put &y = %XNH. Let
Hg, and Hg  be the two Hankel operators defined respectively on H 2+ and H?>~ by

Hy H?*(T) » H* (T),  Hay(y) =n_(®n1),

N

and

Hgy : H?7(T) = H*(T),  Hj,(¢) =74 (Pn0).

3.2 A generalised inversion formula

We have stated in [15] for a precise class of non regular functions which contains cos®(6 —6y)c1
and (cos 0 — cos fp)” ¢; the following lemma (see the appendix of [15] for the demonstration),

Lemma 1 Let f be an almost everywhere positive function on the torus T such that In f, f,
and % are in LY(T). Then f = gg with g € H**(T). For all trigonometric polynomials P of
degree at most N, we define G ¢(P) by

1 P 1 N s = P
GNJ(P) = —T4 <T> - T4 @NZ (Hq)NH‘I)N) 7T+(I)N7T+ <T> .
9 "\g/) g — g
For all P we have
o) . B P
o The serie Z (H$NH<I>N) TPy <7> converges in L*(T).
g
s=0
o det (Tn(f)) #0 and
(Tn(f))"' (P) = G s(P).
An obvious corollary of Lemma 1 is

Corollary 6 With the hypotheses of Lemma 1 we have

- YRS o (7 sz XN g (X
(TN ()igrpe1 = <7T+ (T) ‘ <T>> - <Z (Hi\ Hoy) 7 Pymy <T> “I)N <T>>
g g pord 7 g
Lastly if vy 00 = za’zo (u) we obtain as in [15] the formal result
b0
Xk k (@) 00 o)
* m = _
(Hy Hoy) " mi®nms (T) = Zﬁfgmcl Z (Z V= (N+14n14n0),0,00
g u=0 no=0 \ni1=1
o o
Z Y—(N+1+ni1+n2),a,00 " ° Z 7—(N+1+n2m71+n2m72),04790
no=0 nom—1=1

o0
_ no
Z 7(N+1+n2m—1+n2m)704,907(u(N+1+n2m),0!790)> X

n2m=0



3.3 Application to the orthogonal polynomials

With the corollary 6 and the hypothesis on ﬁéag)o ., the equality in the corollary 6 becomes,
for I =1, and for f = |x — Xo[**|x — Xo[**c1

(T () 1k bl = keo,cl Zﬁk w,60,c1 HN (1) (4)

with

+o0o 00 0
HN(U) = Z (Z 7N+1+n0,a700 (Z 7—(N+1+n1+n0),a700

m=0 \nog=0 n1=0
o0
E :77(N+1+n1+n2),a790“' E V= (N+14n2m—14n2m—2),2,00
n2=0 Nn2m—1=0

o
Z V=(N+1+n2m-1 +n2m),a7907(u—(N+1+n2m)704790> )

Nn2m =0

Our proof consists in the computation of the coefficients Bz(ffe)o, 1 Yuap and H ~(u) which
appear in the inversion formula. For each step we obtain the corresponding terms for the
symbol 24(1 — cos §)c; multiplied by a trigonometric coefficient. That provides the expected
link with the formulas in Theorems 1, 2.

4 Demonstration of Theorem 4
4.1 Asymptotic of 51(9(,10)0,c1

Remark 2 In the rest of this paper we denote by ci,1 the function in H?T(T) such that
c1 = c11¢11- In all this proof we put ¢o = arg (c1,1(6p))

Property 1 For —% <a< % and 0y €0, 7n[ we have, for sufficiently large k and for the real
B defined byﬁ:a—% ifa<0and B=a ifa >0,

a—1

k
_ 51
ﬁk Ho,c1 — Ko 00,0, cos(kby + wq 90)—F(a) +o(k”77)

uniformly in k. With Ky, = \/%Q*O‘H(Sinﬁo)*a and wqag, as in the statement of
c1(xo
Theorem 4.

First we have to prove the lemma

Lemma 2 For —3 < a < 3 and 0y €]0, [ we have, for a sufficiently large k.

ka—l 3
ﬁk 60 = Ka00 Cos((k:%—a)ﬁo—l—wa)m —|—0(k:5 b,
uniformly in k, with K, g, = 27 (sin0y) ™%, w, = —7*, and 3 as in Property 1.



Remark 3 In these two last statements “uniformly in k ” means that for all € > 0 we have
an integer k. such that for all k > k.

a—1
() , k g1
‘ﬁkﬂo — Kq 0, cos((k + )b + wa)F(a) ‘ < ek

and

. ka—l B
‘/Bl(c,e)o,q - Ka,eo,cl COS((k + O‘)HO + wa)—r(a) ‘ < kP,
Proof :  With our notations we can write
k ~ ~
B =37 B (o) B, (xa)
u=0

Put kg = k7 with 0 < v < 1 such that for u > ko we have

B(a) — uail + O(k,oz—Q) (5)
B CY)
uniformly in u (see [19]). Writting for k > ko
k _ ~ ko _ _
3B (x0) B, () T = ST A (x0) B, (o)
u=0 u=0
k—ko—1 ~ _
+ 3 B (o) B, (o)
u=ko+1

k
+ 3 B 0) B, (o)

u=k—ko
The first sum is also
ko . 3 3
> AP )" (B - B + B ) )
u=0
We observe that
ko kO
(o u [ pla ala 1 o— oa— Ao
DB 00 (B = 87| < gy 2o 0k =™ = B (6)
u=0 u=0

Consequently

ko 5 - (a ko kafl
3B (x0) B, (o) = (Z B <><o>2“> by B
u=0

+o0o B +o0 ~ ka_l
Z@(ﬁ) (x0)*" — Z B (x0)™ XSW + R’



with Ry = O(k®~277) if « < 0 and Ry = O(k“~27%) if @ > 0. Then Lemma 9 implies

+o00
| Z Bz(za)(XO)Qﬂ < |B( 2u| + Z |18u+1 u |’ -
u=ko

that is

Z /B(a 2u (ka 1)

u=ko
Finally we get
ST (@) (oybu _ KT (a—1)(741)
2(a upla) (—Nk—u __ — 2\ —« a—1)(~y+1
u§:0 B (x0)"B_,(X0)" " = o) Xo (1—xp)" “+0 <k‘ i ) + Ry.

Analogously we obtain

k
S B () B, () = x

u=k—ko

(1-x5)“+0 (k(a—W“)) + Ry,

with R2 as Rl.
For the third sum an Abel summation provides

k—ko—1
> A ) B () = " (Bl Bk oo
u=ko+1
k—ko—2
+ Z ,BQ,B u+1'8k uU— 1)0- +B/(§Oi)ko—1ﬁ~l(c:)ak—k0
u=ko

with o, = 14 x3 + - + x&’. This last sum is also equal to Xo* (A4 B), with

|A| (ﬁko Bk > (ka lka 1) (k(afl)("hLl))

and
k—ko—2 X2u+2

a—1 a—1 a—1 0

F2 (k—u) —(u+ 1) (k—u-—1) )1_X0.

u=ko

The main value Theorem implies

k—ko
Bl < ME (3 w2k —0)* 2 5)

v=ko

with M no depending from k. With the Euler and Mac-Laurin formula it is easyly seen that

k:—k;() k*ko
> vk =)~ kT — ko) BT (ke — ko) + / 72 (k — t)*2dt.
v=ko ko



The decomposition

k—ko k‘/2 k—ko
/ 12 (ke — ) 2dt = / t92(k — ) 2dt + / t72(k — ) 2dt

ko ko k/2

provides the estimation |B| = O(k$™'k~1) = Okl DOF)) If o > 0and 0 < v < 1 we
have

kozl
I(a)

B o = (X_0(1 —Xg) "+ xs(1 - X_8)7a> +o(k*" 1)

Ifa<0and7:§vveget

fQ— 1
I(a)

with § = «a — % On the another hand we have

Bk 0o = <X_§(1 —x3) "+ xo(1 - x_é)‘“) +o(kP1)

ka—l ) . -
ﬁk b = F(a) R (eilkeo (1 — cos(260y) — isin(26p)) > + o(kP1)
a—1 )
= 21_0‘];(a) R <e_lk0° (sin(fp) (sin By — i cos 00))_0‘> + o(kﬁ_l)

Since 6y €]0, 7| we have (sinf(sin g — i cosp))~* = (sin f) ez ~%)
This last remark gives the definition of w,. The equations (6), (7), (8), imply the uniformity
that completes the proof of the lemma. O

To ends the proof of the property we need to obtain Bk bo.c1 from Bk o for a sufficiently large
k. We can remark that a similar case has been treated in [13] for the function (1 — x)%c.
Here we develop the same idea than in this last paper. Let ¢, the coefficient of Fourier of
order m of the function cl_% The hypotheses on ¢;,; imply that cl_% is in A(T p) ={h €

LX(T)| Y ez uP|h(u)| < oo} for all positive integer p. We have, 3 n?eo o Zﬁm 9, Cm—s- For
s=0
0 <v <1 we can write

m— m
Z Seocm s = Z Bseocm_s—i_ Z ﬁs&ocm s

s=0 s=m—mVY+1

Lemma 2 provides

Z Bs gocm s = < a,bo Z P COS S + 04)00 + wa) Cm—s)

=m—mVY+1 s=m—mY
m
+omP) Y Jemsl
s=m—mY+1
and, since Y ., |cs| < 00, we have
oz— m Sa_ X
Z 5860 m—s — aGOFa FO[ COS S+a)90 +Wa)6m73+0(m57 )
=m—mY+1 s=m—mV

10



We have always

n m
‘ Z (804—1 - ma_l)cm_s < (1 B a)mu-i-oz—? Z ‘Cm—s’- (9)
s=m—mY s
The convergence of (¢g) implies
m a—1 a—1 a—1
s —mT 4 m
Ko 0, Z ) (@) (cos ((s + )by + wa) Cm—s
S=m—m
moz—l m
s=m—mY

For all positive integer p the function ¢;; A(p,T)). Hence one can prove first

[oe)
3 e_ivgcv‘g (m )3 e (10)
v=mVY+1 SEZ

and secondly

m m
s=m—mY —

=m—m

m
+ ( Z e—isgocms> e—i(Goa—l—wa)
s=

1 ) .
(cos ((s + )b + wa) Cm—s = 2 ( elseocm—“i) etfoatwa)
S 1%

Since ¢; 1(ei%) = ¢, 1(e~) that last formula provides

> (cos (s + )b + wa) em—s = /€1 (x0) cos ((m + @)y + wa + ¢o) + O(m ") (11)
and

S me~l

Z 5s,eocm78 = Ka,ﬁom c1 " (xo) cos ((m + )b + wa + ¢o)

+ O(ma—l—pu) + O(ma—2+u) —i—o(mﬁ_l).

s=m—mY+1
On the other hand we have (because 01_,% in A(T,p))

m—mY
‘ § /Bs,acmfs
s=0

For a good choice of p and v we obtain the expected formula for 3, g, .,. The uniformity is
provided by Lemma 2 and the equation (9) and (10).

1

S m2l/

D (a)
Z vP ey @€a§(|58,90 )-

VEZ

11



ga,GO

4.2 Estimation of the Fourier coefficients of

a,fg

Property 2 Assume —% <a< % and 0y €]0, [ then we have for all integer k > 0 sufficiently
large
Gabo (—k) = 2 sin(ra)

_ Ok -+ 20 kmin(a—l,—l)
— — cos(bok + 2w, 4,) + o( )

a,0p

. . . o o c1, 0, o x2-1\¢
uniformly in k and with w,, 5 = ¢a + ¢ where ¢y = arg (61_1) (€0 and ¢, = arg <>€§*1) .
First we have to prove the lemma

Lemma 3 For —% <a< % and 0y €0, 7w[ we have, for all integer k sufficiently large

2 sin(o)

Vg = k: cos (Ook + 04)) + o(kzmin(o‘_l’_l)),

Oxxo—D*(xxo—1)*
(xxXo—1)*(xxo—1)*"

uniformly in k and where v, is the coefficient of order k of the function

Proof of Lemma 3:  In all this proof we denote respectively by i, v1,x, 72,1 the Fourier co-

=D Oxo—1)*  (xxo—1)® sin(ra) 1 _ kA _
(x—1)= 1 (x)zg_l)aa (Xxg—l)“ 1 kta YLk = X0k V2,k =

()Zo)kﬁk. Assume also k > 0. We have v_, = Z Y,uY2,0- For an integer , kg and kg = k7,

efficient of order k& of . Clearly 4, =

vtu=—*k
0 < 7 < 1 we can split this sum into
—k+ko —ko—1
Z YuV2,—k—u + Z TuV2,—k—u + Z Y1,uV2,—k—u
u<—k—ko u=—k—ko u=—k+ko+1
ko
+ Z M uY2,k—u + Z Y1,u72,—k—u-
u=—ko u>ko
Write
k:() k‘O
> ek = Y 1alX0) T (Tokmu = ok A-k)-
u=—ko u=—ko
Since
ko sin(ma) il u
- \k+tu/x ~ - \k+u —
ke — Y—k) = ———— 12
uz_:ko'Yl,u(XO) (V—k—u — k) - uz_:kom,u(Xo) FTutakia) (12)

12



it follows that

k‘o k‘O
> ek =Tk P, a(Xo) T+ Okok™?)

u=—ko u=—ko
2 (7
o~ k Xp—1
st (i)
+ 3k (x0)" Y vuxt + O(kok ™)

[ul>ko

2 o
-k (x0)" (&‘5%) + O ((kok)™) + O(kok™2)

2 @
= -k(x0)* (&3%) +O(k2).

In the same way we have

kS (x0)* —1\“
> raekeu =F-k(x0) " (27_1> +O(k™2).
u=—k—ko X0

Now using Lemma 9 it is easy to see that

> w2 ku < Mi(kok)™! (13)
u<—k—ko
Z VYo, —k—u < Ma(kok)™! (14)
u>ko
—ko—1
with M7 and Ms no depending from k. For the sum S = Z M1,uY2,—k—u We can remark,
u=—k+ko+1
using an Abel summation, that
! 1 1
S| < Ms(kok) ™! | -
151 Ma(kok) ™" + Z (u+a)k—u+a) (W+l+a)k—u—1+a)
u=—k+ko+1

M3 no depending from k. Consequently the main values theorem provides

S| < My (kok) ™! + kzozl k2 (15)
>~ 3\~h0O .
u=—k+ko+1 (k —u)?u?

with M3 no depending from k. Then Euler and Mac-Laurin formula provides the upper bound

—ko—1 k —2u
S| < O ((kok)™" +/ .
’ ’ (( 0 ) ) ko1 (k—u)2u2

Since

/—ko—l k—2u 3k TRl
du < / —du
ko1 (B —u)?u? (k +ko)? J_pqrgr1 u?

13



we get

—ko—1
> mrzhu =0 ((kok)™)
u<—k+ko+1
and 5
sin(a
Y = o () cos (6pk + ¢a) —|—O((k‘0k3)_1) —|—O(k:o‘_2).
Then with a good choice of 7 we obtain the expected formula. The uniformity is a direct
consequence of the equations (12), (13), (14), (15). O

The rest of the proof of Lemma 3 can be treated as the end of the proof of property 1.
4.3 Expression of (T (22*(cosf — cosby)* Cl))k+1 .
First we have to prove the next lemma

Lemma 4 For a €] — 1, 1[ we have a function Fy,, € C1[0,8] for all § €]0,1], such that
i)
1+«
o)

Vze[0,0] |Fna(2)] < Ko(1+]|In(l—z+
where Ky is a constant no depending from N.
ii) F and F) have a modulus of continuity no depending from N.
i11)

(Ty" (Ix - X0|2a|X - Xo|**e1 ))k+1,1 =

U
— ( e fo.c1 — Zﬁk w1 oéN(N) cos(u00)> + RNo

uniformly in k, 0 < k < N, with

-1 u .
Ry < Zﬂk w,00,c1 aN(N)> if a>0

and

u=0

k
— a (] .
RN,CV =0 (Na ' Z 5[5;_)u,60701FO{,N(N)> lf a < 0

Remark 4 This lemma and the continuity of Fy o in zero imply directly Theorem 5.

Remark 5 Lemma 4 and the continuity of the functz’on F, imply that

(TJQ1 (220‘(005 6 — cos 90)2a01)) 50 o.cr T ﬁo o, CIFN@(O) (1+0(1)).

Since Fno(0) = a? + o(1) (see [15]) the hypothesis oy, = 1 means that the coefficients of
the predictor polynomial are (TJQ1 (22*(cos 6 — cos 6?0)2acl))k+1 L (T+0(1)) uniformly in k (it
is a direct consequence of the equality (3).Indeed these of the orthogonal polynomial are

(TN" (222(cos ) — cos 90)2&01))N—k+1,1 (1+0(1))

(we can refer to the equations 3 and 2).

14



Proof of the lemma 4: In the rest of the paper we slighty change of notation and denote by

i the Fourier coefficient of order k of the function E;;gjgzgigjgz;i by k. As for [15] and
using the inversion formula and Corollary 6 we have to consider the sums

Hyp N (u) = <Z Vo(N+14n0) D V= (Nt 1tmtmg) O V—(N-+1tnitng) X ***

no=0 n1=0 no=0
o o
X Z V—(N+14n2m—2+n2m—1) Z V—(N+14n2m—1+n2m) Vu—(N+14+n2m)
Nn2m—1=0 n2m =0
If
o0
Som = Z V=(N+14n2m—1+n2m) Yu—(N4+1+n2m)
n2m=0

we can write, following the previous Lemma, So,, = Sop, 0 + Som,1 with

sin(ra) 2
SQm,O =4 T
o.0]
Z coS ((N + 14+ nom—1 + nom)bo + 2w;790) cos ((N + 14+ n9m) —u)bo+ 2w(;,90)
n2m =0
1 1

X
N+1+4+nogp—1+nem+aN+1+ny, —u+ta

_ 9 <sin(7roz)>2 i cos (Nom—1 + u)0p) 1
T e :ON+1+n2m—1+n2m—|—aN_|_1_|_n2m_u_|_a

+ Z coS ((2(N + 1+ noy, +4w)) + nom_1 — u)) 90)

nom=0

1 1
X
N—|—1—i—n2m1+n2m+aN+1+wn2m—u+a>
Let us study the order of the second sum. To do this we can evaluate the order of the expression

M 1 1

J
;XON+1+n2m_1+j+OéN+1+j—u+a

where M goes to the infinity and N = o(M). As for the previous proofs it is clear that this
sum is bounded by

> xrems : 1 e
SN +24nom 1+ N+2+j—u Ntl+ngma+jN+1+j—u

Obviously
‘ 1 1 1 1 ‘
N+2+nyma+jN+2+j—u N+1+nya+jN+14+j—u
<‘ 2N+2+2j+n2m_1—u

(N+1+4+nom-1+J)*(N+14j—u)?

15



and

‘ 2N—{—2—|—2j—i—n2m,1—u ‘

(N+1+ngm_1+7)?(N+1+j—u)?

_‘ 1 N 1 ‘ 1

N+ 1+j4+nma N4+1+j—ul(N+1+j+n2m1)(N+1+4j—u)
1 1

< — .

TN(N+14+j+negm-1)(N+1+j—u)

In the other hand we have, for a €]0, ]

o0
1 1
S =0
2m;1 <n2ZON+1+7”L2m_1+n2m+OéN+1+n2m—u+a>

and for o €] — 1, 0].

o
1 1
Soma =o [ N“ '
2m,1 0< Z N+1+n2m_1+n2m+aN+1+n2m_u+a>

n2m =0

Hence we can write

Som = Sh,, (cos (Bp(n2m—1 + 1)) + T'ma) ,

with
o o :ON+1+n2m71+n2m+aN+1+’l’L2m—u+Oé.
and

Tma = o(1) if a G]O,%
Tma = Oo(N®) if a €] — %,

For z € [0,1] we define F, n,o(2) by

00 1 o 1
F, = 8
m,N,CV(Z) Z_ N +1+ng Z_ N +1+w; +wo
nQ—O n1=0
00

1
x 2.
N +1+n9m—2+nom1+a

Nn2m—1=0

o
1 1
><ZN+1+ + Ngp + a1 2 4 2w 0
S —— Nom—1 +Nom T &1 + == + F# — 2
Repeating the same idea as previously for the sums on no,,—1,- -+ ,ng we finally obtain
2 [sin(ra))?" U
Honl) = 5 () Foial) cos(uth) + Rava)

with Ry, as announced previously.
We established in [15] the continuity of the function F,, y, and the uniform convergence

16



o) . 2m
in [0,1] of the sequence Z (sm(wa)) FoNo(2). Let us denote by Fyo(2) the sum
T

m=0

+oo 2m

Z (sm ﬂa) Fp N.o(2). The function Fy 4 is defined, continuous and derivable on [0, 1]
m=

(see

[ 5] Lemma 4). Moreover for all z € [0,0] , 0 < § < 1 we have the inequality

1
1+%+TM—ZS1+HT‘1—5'
Hence
( 14 e 5 >2< 14 e _§
1+4epnem ) — 14 1o nm
and

1 1 1
< .
<1+HTa+me—z> I R R

These last inequalities and the proof of Lemma 4 in [15] prove that Fi 4 is in C1[0,1].
Always in [15] we have obtained that, for all z in [0, 1],

‘FNQ ‘ < K, <1+‘ln (1-z+ 1;‘)‘)() (16)

where K is a constant no depending from /NV.

Now we have to prove the point ii) of the statement. For z, 2" € [0, ]
z—2

o

that implies, with the inequality (16)

Ko (1+(1n(1—5+”T°‘)
T

) )

[FNa(2) = Fra(2) | < |z = 2|

In the same way we have

o[ R o)+ (4 e 4 e — )
(1+ 452 + % — 220+ 152 + % — 2)?
1
<2z — 2

and always with the inequality (16)

— Ita
IFly () = Flo () | < 27 — ’KO(H‘ln(l o N)) 18
N, Z) N,oc(z)’— ‘Z Z’ (1_5)2 . ( )

17



Using (17) and (18) we get the point 7).
To achieve the proof we have to remark that the uniformity in k in the point 7ii) is a direct
consequence of Property 2. O

We have now to state the following lemma

Lemma5f0r%—>x,0<x<1wehcwe

k
u ~(a u o
2 § :/Bk u,00,c1 cos UHO)FN@C(N) = Ka,@g,cl COS(kHO + wOf,@O) E :512—)uFNOC(N) + O(k 1)7

u=0

uniformly in k for x in all compact of |0, 1]
Remark 6 This Lemma and Lemma 4 imply the equality

Tx' (Ix = xol*x — >_<0|2a61),€+1,1 =
Ka,@o,m COS(k% + Wa,@o)Tjgl (‘1 - X‘Za)/ﬁ_l,l + O(ka_l)

with (see [15] Lemma 3)

Tﬁl (‘1 _X’2a)k+1,1 = ( kTN Zﬁ IVl ) :

Proof of lemma 5:  With our notation assume z € [0,6], 0 < § < 1. Put ko = N7 with v €

(63 — u
Jmax(F, %), 1[if o < 0, and v €]0, 1[if o > 0. We can splite the sum QZﬁk “90701FN’Q(N) cos(ubp)

0
k—ko -
into 2 Z ﬁk w.60.01 NQ(N)COS(UHO andQZ ﬁk .60 CIFNQ(N)COS(UHQ) Property 1 and
u=k—ko u=0

the assumption on 8 show that
k—ko____ u
2 Z /Bk wbo,c1 L (N) cos(ubl) = 2Ka,0,,c,

k—ko
u
X Z 5k ,, Cos((k — u)by + wag,) cos(ué?o)FN,a(N) + o(k™)

k—ko
= Kogyer <Z B cos(kBo + Wagy) Fal~)

u=0

Z|e

k—ko

+ > By, cos((k — 2u)fo) + wa,g,) Fva )) + o(k),

=|=

uniformly in k. It is known that the second sum is also

k—ko

Z M cos((k — 2u)bp) + WQ,GO)FN,a(ﬁ

u=0

18



uniformly in k& with the equation (5). Then an Abel summation provides that the quantity
k—ko

‘ Z (k — )t cos((k — 2u)fy + wa7¢O)FN7a(%) is bounded by
u=0
ko u+1 u
MkS 14 Z |(k —u— 1)1 Fyn of ~ )—(k— u)a_lFN@(Nﬂ with M;j no depending from
u=0

k. Moreover

o u+1 o U
Z| = 1) Py () — (k= ) Fyva(o)

kko
u

< Z (b = w=1)°"" = (k= w)* ™| Fxa(3)

kko

u _
+ Z |FNa FN,a(N)H(k‘—U—l)a Y

From the inequality 16 (we have assumed 0 < % < 0) we infer

k—ko k

Stk —u— 1) = (k=) [ Fya(u)] < My 3 v

u=0 w=ko
with Ms no depending from k. We finally get

k—ko k

Stk —u— 1" — (k=) Eyaw)] =0 | 3 02

u=0 w=ko

Identically Lemma 4 and the main value theorem provides

k—ko u—l— 1 U k&
a—1 _ «@
> Faa(*37) = Pl = w17 < Mgy = ok

with M3 no depending from N. By definition of ky and with Property 1 we have easily the
existence of a constant My, always no depending from k, such that for a > 0

u
‘ Z /Bk wfper L (N)COS(UGO) < Muykg.
u=k—ko

Consequently for e > 0
u
QZﬁk wb0.c1 L (N)Cos(uﬁo)

k
~(a U
= K4 00.c c0s((k — )00 + wa,0,) Z ﬁ;i,)uFNﬂ(—

2 N) + o(k“).
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uniformly in £ with the definition of the constants M;, 1 < i < 4 and we get the Lemma for
a> 0.
Since We have the result for the positive case we assume in the rest of the demonstration that

a €] — 3,0[. Recall that now v €] max(3, %), 1[.
k _
First we have to evaluate the sum Z B,(:i)u 0., COS(ublo) Fy(u). Since Fi o € C10,6] we
u=k—ko
have for k;\,ko <% < % < 6 < the formula Fi, v(5) — FaN( )+ FaN( ) = a,N(%) +

O(k—NO) = Fo n(£) + o(k*) uniformly in k (see once a more the definition of ).

Property 1 provides ﬂkf)u fo.c1 = B,(fi)u Oocr T o(k#~1). Hence we can write, uniformly in k,

Chup  k .
2 Y A o, () =27 | A S A g (o) Fal5e) | +o0(h?)
u=k—ko u=k—ko

_ 2§R< Zﬁv ) (X (ﬁ)) T o(k?)

oS L .
=2k (b D0 A0 Falyp) | + ok,
v=ko+1

Moreover we have, uniformly with Property 1,

o
2 Z B Y o (0)" = Kagpe, Y B (ez'(veowa,eo)+efz(veo+wa,90)) 0 4 o(kE).
v=ko+1 v=ko+1

Consequently v €] max(g, 1=%), 1[ infer that

o o0
2 3 8L L (0) = Kage Y. B <ez’(veo+wa,eo) n efz'(veowa,eo)) e~ | o).
v=ko+1 v=ko+1

We have

Z B oz) z (v0o+wa,0,) +e Z(UGO‘H'Ja,GO))e—iUGO

v= k0+1
Z Ba) zwago +e z(2v90+wago))
v=ko+1
()
Z Béa)ei(wa’eo) +R.
v=ko+1

An Abdel summation provides |R| < Myk$ ™" = o(k®) uniformly in k.
Hence we have

k 00
o u ~o¢ k o
2 D By 0SB0 Fa(55) = ~ Ky 08 (ko + wagy) D B Fwalp) +olk?)

u=k—ko v=ko+1
ko i
= Ka.00.c; €08 (kbp + wWa.g,) ZO ﬁga)FN,a(ﬁ) + o(k%).
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With Lemma 4 we obtain, as previously

k ko
~(a) u, (o k o
;k /Bk—uFa(N) = Zoﬁq(; )FN,a(N) + o(k®)
u=k—ko v=

uniformly in k. Since we have seen that the sum

k—ko

2 Z 5k 0.1 F (;\L[)cos(uﬁo)

is equal to
k—Fko

~(a u o
Ko 00,¢, cos(kby + wa0,) Z ﬁl(c—)uFN,a(N) + o(k)
u=0

we can also conclude, as for a > 0
u
ZZﬁk w60, 61 (N)Cos(uﬁo)

= N 0g,c1 COS(kao—i-wa 90 Zﬂ FNOé( ) +0(ka)'

N
u=0

The uniformity is clearly provided by the uniformity in Lemma 4 and by the previous remarks.
This last remark is sufficient to prove Lemma 5. O

Then Theorem 4 is a direct consequence of the inversion formula and of Lemma 5.

5 Proof of Theorem 6

Let us recall the following formula, which can be related with the Gobberg-Semencul formula.

N
Lemma 6 If P = Z%XU a trigonometric polynomial of degree N. Then we have, if k <1
u=0
_ 1
(TNl (P—)) S e zaN N
’ ’ k+1,04+1 u=0

Let Py o0, and Py, be the predictor polynomials of |x — xo|>*|xXo|c1 and |1 — x|**. We put
N N

Pn a6, = Z 65020 X" and Py o = Z Sq(f‘) x". Following Formula (3) we have
u=0 u=0

Tr' (22%(cos 6 — cos (90)0‘01)11+1 L

\/Tﬁl (22@(0050 — cos 90)0‘01)1,1

5(04) —

u790

and .
Ty (1 —cos0)%1), 111

\/TJQ1 (1 —cosf)¥1);, |

HO

u
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Then Remark 5 and the hypothesis ﬁg 9o.c; Sive the equalities

5(04) — T];l (22Q(COS 9 — COS Ho)acl)u+171 (1 —|— 0(1))
and for the same reasons
04 = Tyt (1= cosf)er) oy 1 (14 0(1)).
According to Lemma 6 we have to treat the two sums (with the hypothesis * < y) S1 =

Z 5u 905l(ak+u o and Sy o = Z 5N ket 9055\?{”“790. For a sufficiently large integer kg we can

u=0
R @ s(e) @
. . (07 (07 (6% O[
split the sum Sy ,, into Z d,, 006l .00 and Z 0, 0 o k-tu.00° We have
u=0 u=ko+1

(a) ¢(a) Ka,@ N a— -k o
Z(Su%él hubo = Wo)l(l—k) 1 ) Mko.

with M = max{5 4+ Assume now kg = N7 with 0 <y < a. We get

25u90 — k+u90 (N2a 1) (19)

In the other hand we have, following Theorem 4

k
Z 5u .00 l k+u 6o — ‘Ka,€0’2 Z cos (uby +wa790)cos (I = k)b +wa700)
u=ko+1 u=ko+1
- e et LR
(1—- )" =k+w)* (1 ) ok
As previously we obtain, with an Abel summation, that
235 5l ()
u,00 " l—k+u,00
u=ko+1
k
|Ka,9 ,C |2 — U |, o l—k+u N
=iy s (=Rt) 3w (= )=k 4w T (- ) + S
u=ko+1
with
k
1S1al =0 > lon(u+1) = py(u)|
u=ko+1
and .
_ a—1 v _ a—1 — u
pn(u) = u* (1 N) (= k+w)* (1= %)
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With the main value theorem we can write

k

Sial=01 > NI w<e<u+l.
u=ko+1

Hence

4
a’ — ZE N2a 1)

j=0
Finally we obtain
[
IR
u=ko+1
2 k
- Cpfshcos(@-m) 30 w1 10—kt - R o

As for the equation (19) we get Z 5(0‘ 5l(ak 4 Consequently we can conclude

u=0
St,a = [Ka,0, 61| cos ( Z 6(a 6l(ak+u + O(N%{il)' (20)
k—k1—1
As previously we can split the sum S5 ,, into Z 5(a kb, Goé(a) I+u.60 and Z 5(a kb, Goé(a) I+u.60"
u=0 u=k—k

Using Lemma 5 we obtain the bound

k
(@) (a)
S Z |5N—k+u,007015N—l+u,60|

k _
(o) (o)
Z 5N—k+u,906N—l+u,00

u=k—k1 u=k—k1
N—k+u v
+ Z |6N l+u90N Z |'8N k+u— UGo,clHFN,C‘f(NN
u=k—k1 v=0
+ O(NQa_l).
Assume now k; = o(N). We have
k Ik k
D B ko O gl SO [ (N =1+ BT (7)™ D0 (N —k+u)*
=k—Fk1

u=k—k1

§O<N2a1< 1__ )) N2a 1
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and

k ( 1 N—k+u v
Z ‘50‘ 4,09 N Z ’/8 —k+u— veo,qH NOJ(N)‘
u=k—kq v=0
l—k 1 a+1
— N —1+k)* ! %N‘“/l dt
o (v =145 - e S
_ 0(N2a71)
Lastly we obtain, still with an Abel summation
k—ki1—1
2 N k0N
N k—+u,00 N l4u,0p
k—ki1—1
’K0790701’ . a—1 k—u o a—1 l—wu «a
= gy s (L= k) UZ:O (N =k +u)* (=) (N = L+ u)* ()
+0(N2a_1).
Merging this last equality with (20) we obtain
k _
Sn.a = [Kagge [ cos (1 k)8o) D650, 080 1, +o (N?71). (21)
u=0

The equations (20) and (21) and Lemma 6 provide Theorem 6 for the case % > o > 0. The
uniformity is a direct consequence of Theorem 4 and Lemmas 4 and 5.

6 Proof of Corollary 4 and 5

Lemma 7 For 0 €]0,7[ and « €]0, [ we have

| T (2(cos @ — cos p)er) — Tiv (22*(cos 6 — cos fp)**cr) || < K(% —a)N

where K is a constant no depending from N.
Proof : By the main value Theorem we have
122%(cos 0 — cos 0p)?® — 2(cos O — cosby)| < 4(1 — 20)2°¥) (cos O — cos b))
with 0 < ¢o(f) < 1 — 2. Hence the function 1, — 6 — 2 (cos§ — cos 0y)>@ ¢ () is in
LY(T) . For all integer k, 0 < k < N we consider the integral
I = fo (22%(cos 6 — cos 0p)?* — 2(cos § — cos by)) c1(0)e"*do.
Assume % —a — 0and put ¢, 0 < € < 1 — 2q, for « sufficiently closed from % Put
I, = I 1 + I o + I 3 with

Oo—e ‘
Iq = / (22%(cos @ — cos 09)** — 2(cos § — cos fp)) c1(0)e”*?ah,
0

Oo+e¢ ‘
Ix o = / (220‘((:08«9 — cos 0p)?* — 2(cos § — cos 60)) c1(0)e~™*0dp,
0

0—€

2w A
I3 = / (220‘(008 6 — cos 0p)?* — 2(cos 6 — cos 00)) c1(0)e”™*qp.
Oo+e
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It is easy to see that |I; 1| and |Ij 3| are bounded by M (1 — 2a) with M is a positive real no
depending from k or N. Easily |I; 2| <1 —2al[t)o||1. Hence |I| < Ms(1 — 2a) where My is a
positive real no depending from k£ or N.

In the other hand it is well known that for a N x N matrix A we have

1
2

[A]l < ZZA

i=1 j=1
This last result achieves the proof. O

Lemma 8 Let § > 0 a fized real. For a < % such that % — « sufficiently near of zero we have
for all integer k, 0 < k < N

175" (Ix = xollx = Xoler) () = T (I = x0l*Ix = Xo*¥er) (x*) < o(N 7).
Proof :  Let us denote by 7' 5 y the matrix T&l (Ix — xollx — Xole1) and by Ti, n the matrix
Ty" (Ix = xol**Ix — x0[**c1). Obviously
Tyjon =Ta,N <Id + T(;]lv (T o8 — Ta,N)) :

Corollary 2 and Lemma 6 imply the existence of a positve real C' such that for all integers
k,l,0<Ek,l <N, we have
(TaN )y < NC. (22)
Since
oy (Taj2,n = Taw) I| < I T 3 lIT1y2,8 = Tan

the previous Lemma implies

1
1T N T2y = Tan| < (5 - a)NOF2, (23)

Put a = & — o(N=(+3)). From (23) the matrix <Id +T N(T1/2 N — TmN))_ is defined and

Tl_/;N = (Id + T N(T1/2 N — Ta,N)) Ta_]lv Then we can write, for all integer k, 0 < k < N

757400 = TN < | (14 + ATy — o)) = 1) 7406

T 5 (Ta o8 = Ta, T p O
1= T, N(T2n = Tan)|

As for the equation (22) we have obviously a constant J no depending from k or N such that
||Ta_11V(Xk)| <O(N’). Ifa = % + o( N~(CHI+3+9)) we have

175" (Ix = xollx = Xoler) () = Tt (Ix = xo0l**|x — Xo|*e1) (XF) < o(N7°)
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7 Appendix

7.1 Estimation of a trigonometric sum

Lemma 9 Let My, My two integers with0 < My < My, x # 1 and f a function in C* (]My, M|)
such that for all t €|My, My[ f(t) = O(t?) and f'(t) = O(t’~1). Then

M
: W g OoMPy i B>0
‘u%of(“)x _{ O(M(l?) it <0

U

Proof : ~ With an Abel summation we obtain, if o, =14 -+ + x%,

M, Mi—1
ST fwxt= > (flut1) = f(w) o+ fF(M)ow, + f(Mo)oa,-1
u=>My u=DMy
and
M—1 1 Mi—1 wtl
> (flus )= fa)a = O+ F00) (12 ) = 2 (Fla+ 1) - Fw) {5
u=My 1 X u=My 1 X
Mi—1 Xqul 1
= Y X sam + s0m) (1)
u=DMy X
with ¢, €]u,u+ 1[. We have
Mi—1 N Mi—1
Z f/(cu)ﬂ‘ <0 Z w1
u=My u=Mpy
hence v
: o[ OMPY i B>0
‘u%of(u)x _{ O(M;B) it <0
O
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