
  
 

 
 

Tasks 

Task 1: GLOBAL	
  WARMING 

Task 2: TRUCKING	
  DIESEL 

Task 3: FERRIES 

    
Notes: 
1. This	
  document	
  consists	
  of	
  8	
  pages	
  including	
  this	
  page.	
  	
  

2. Each	
  task	
  is	
  worth	
  40	
  marks.	
  

3. For	
   each	
   task,	
   your	
   program	
   will	
   be	
   tested	
   on	
   a	
   few	
   sets	
   of	
   input	
  
instances.	
  We	
  call	
  each	
  set	
  a	
  subtask.	
  	
  Each	
  subtask	
  is	
  worth	
  a	
  few	
  marks.	
  
For	
  each	
  subtask,	
  your	
  program	
  either	
  obtains	
  all	
  the	
  marks	
  or	
  none.	
  	
  

4. The	
   subtasks	
   vary	
   in	
   size	
   and	
   complexity,	
   leading	
   to	
   different	
   levels	
   of	
  
difficulty.	
  	
  If	
  you	
  find	
  solving	
  the	
  task	
  completely	
  difficult,	
  you	
  may	
  want	
  
to	
  focus	
  on	
  the	
  easier	
  subtasks.	
  	
  	
  

5. The	
  maximum	
  execution	
  time	
  on	
  each	
   input	
   instance	
   in	
  Task	
  1,	
  2	
  &	
  3	
   is	
  
1.0,	
  0.5,	
  1.0	
  second	
  respectively.	
  Note	
  that	
  there	
  is	
  a	
  limit	
  on	
  the	
  memory	
  
size	
  per	
   run.	
   	
   In	
  each	
   run,	
   the	
  heap	
   	
   (i.e	
   the	
  memory	
  pool	
   reserved	
   for	
  
array,	
   etc)	
   is	
   limited	
   to	
   32	
   MB,	
   and	
   the	
   runtime	
   stack	
   	
   (i.e.	
   memory	
  
storing	
  the	
  routine	
  parameters,	
  etc)	
  is	
  limited	
  to	
  8	
  MB.	
  

6. Sample	
  input	
  and	
  output	
  files	
  are	
  provided.	
  For	
  each	
  subtask	
  there	
  is	
  one	
  
sample	
  input	
  file	
  and	
  the	
  corresponding	
  output	
  file.	
  The	
  file	
  “Tx.in.y”	
  
is	
   the	
   sample	
   input	
   file	
   for	
   task	
  x,	
  subtask	
  y	
   (for	
  e.g.	
   “T1.in.2”	
   is	
   for	
  
task	
  1,	
  subtask	
  2)	
  and	
  the	
  file	
  “Tx.out.y”	
   is	
   the	
  corresponding	
  output	
  
file.	
   Filenames	
   ending	
  with	
   extension	
   “.0”	
   	
   (for	
   e.g.	
   “T1.out.0”)	
   are	
  
the	
  corresponding	
  input/output	
  files	
  	
  described	
  in	
  the	
  task	
  statement.	
  

7. Templates	
   for	
   C	
   and	
   Pascal	
   are	
   also	
   provided.	
   You	
   may	
   (but	
   not	
  
necessarily)	
  use	
  the	
  templates.	
  	
  

 

HAPPY	
  PROGRAMMING!	
  

NOI 2013 TASKS 

 



Task 1: GLOBAL WARMING
A scientist wants to study how the rising sea level changes the landscape, in particular, how
it changes the number of islands. He first investigates one-dimensional worlds. An one-
dimensional world is represented by a sequence of non-negative integers 〈h0, h1, . . . , hn−1〉,
where each integer hi is the altitude at the location i. The following figure depicts an example
of such world represented by the sequence 〈5, 6, 1, 3, 2, 9, 8〉.

5	
   6	
   1	
   3	
   2	
   9	
   8	
  

sea	
  level	
  at	
  2.5	
  

Al1tude:	
  

Now, if the sea level is at altitude 2.5, there are 3 islands formed by landmass of the first
two columns, the fourth column and the last two columns. Furthermore, if the sea level is at
altitude 3.5, there are only 2 islands. When the sea level is at altitude x, landmass with altitude
x is considered to be submerged under the sea. Hence, if the sea level is at altitude 3, there are
2 islands. Note that having 3 islands is the maximum among all possible sea levels.

Given a one-dimensional world, the scientist wants to find the maximum number of islands
among all sea levels.

Input format
Your program must read from the standard input. The first line in the input contains the integer
n, the total number of integers in the sequence. Next, it is followed by n lines where each line
contains an integer. These n lines represent the sequence 〈h0, h1, . . . , hn−1〉. All numbers in the
sequence are non-negative and smaller than 230. For the above example, the input is

2



7
5
6
1
3
2
9
8

Output format
Your program must write to the standard output an integer, which is the maximum number of
islands. For the above example, the output is:

3

Template
You may use the templates provided. The templates handle the input and output, but without
the body of the following subroutines.

• C program
int gw (int N, int *H);

• Pascal program
function gw (N: LongInt; var H: array of LongInt): LongInt;

Each subroutine takes in two parameters N and H , where N is the size of the array, and H
is the array representing the one-dimensional world.

Subtasks
The maximum execution time on each input instance is 1.0 second. Your program will be tested
on sets of input instances as follow:

1. (6 marks) All instances in this set satisfy N ≤ 1, 000.

2. (6 marks) All instances in this set satisfy N ≤ 100, 000. In addition, the altitude at each
location is at most 20.

3. (7 marks) All instances in this set satisfy N ≤ 100, 000. In addition, the altitude at each
location is unique, that is, no two numbers in the input sequence are the same.

4. (10 marks) All instances in this set satisfy N ≤ 1, 000, 000. In addition, the numbers in
the input sequence are unique.

5. (11 marks) All instances in this set satisfy N ≤ 1, 000, 000.

3



Task 2: TRUCKING DIESEL1

Consider a diesel-powered truck that transports diesel fuel from a start position to a destination.
The truck does not have a separate fuel tank, but takes its fuel directly from its diesel storage.
You need to compute the maximal number of liters of diesel that the truck can bring from the
start position to the destination, without using it up along the way. If the truck cannot reach the
destination with the given fuel, your answer must be −1.

You are given a map of a terrain in form of an m rows by n columns grid of altitudes. The
altitudes are in meters, range from 0 to 4000, and are all divisible by 100. The first row of the
grid describes the Northern edge of the terrain, the last row the Southern edge, the first column
the Western edge and the last column the Eastern edge. The truck starts at the North-Western
corner (0, 0), and its destination is the South-Eastern corner (m − 1, n − 1). In one step, the
truck can only go to neighboring positions in the grid, East, South or West. Note that the truck
cannot go North and cannot go diagonally.

We assume that diesel fuel has a mass of 1.0 kg per liter. In one step, for each downhill or
flat segment, the truck uses 10 liters of diesel. For each uphill segment, the truck needs 4 liters
of additional fuel for each 100 m altitude difference of the segment and for each ton2 of its total
mass at the beginning of the segment. In this calculation, we are rounding down the mass of
the truck to next lower ton. For example, if the total mass of the truck at the beginning of the
segment is 26010 kg, and if the truck moves from an altitude of 400 m to an altitude of 700
m, then the truck will need 10 + 3 × 4 × 26 = 322 liters for that segment. At the end of the
segment, the truck will have a mass of 25688 kg.

The truck can dump (i.e throw away) diesel before every step. In the above example, the
total mass at the beginning of the segment is 26010 kg. If the truck dumps 11 liters of diesel, its
weight will decrease to 25999 kg. Now, the truck will need 10 + 3× 4× 25 = 310 liters and at
the end of the segment, the truck will have a mass of 25689 kg. Note that the number of liters
of diesel that can be dumped must be a whole number. Hence the truck is not allowed to throw
away, say 10.1 liter of diesel.

The “unladen” weight of the truck (i.e. weight without fuel) is 8 tons, and it starts out with
25000 liters of diesel fuel.

Example
Let us assume m = 4, n = 4 and the following altitudes of the grid points.

0 1 2 3
0 100 200 100 0
1 400 300 100 200
2 200 300 500 500
3 400 400 300 600

1This task is a modification of the actual task used in the contest. The original version does not allow dumping
of fuel.

2Note that one ton is 1000kg.

4



Note that initially, the truck has a mass of 8000+25000 = 33000 kg. The best course would be
to go

• from the start position (0, 0) to (0, 1), requiring 10 liters for the segment, plus 1× 4× 33
for the 100 m altitude difference between 100 m and 200 m (fuel consumption: 10 + 132
= 142 liters, mass after the segment: 33000− 142 = 32858 kg),

• from (0, 1) to (1, 1), requiring 10 liters for the segment, plus 1 × 4 × 32 liters for the
100 m altitude difference between 200 m and 300 m (fuel consumption: 10 + 128 = 138
liters, mass after the segment: 32858− 138 = 32720 kg),

• from (1, 1) to (2, 1) requiring 10 liters for the segment and no extra fuel (flat segment;
fuel consumption: 10 liters, mass after the segment: 32720− 10 = 32710 kg),

• from (2, 1) to (2, 2) requiring 10 liters for the segment, plus 2×4×32 liters for the 200 m
altitude difference between 300 m and 500 m (fuel consumption: 10 + 256 = 266 liters,
mass after the segment: 32710− 266 = 32444 kg),

• from (2, 2) to (2, 3) requiring 10 liters for the segment and no extra fuel (horizontal seg-
ment; fuel consumption: 10 liters, mass after the segment: 32444− 10 = 32434 kg),

• from (2, 3) to the destination (3, 3) requiring 10 liters for the segment, plus 1 × 4 × 32
liters for the 100 m altitude difference between 500 m and 600 m (fuel consumption:
10 + 128 = 138 liters, mass after the segment: 32434− 138 = 32296 kg).

The final mass of 32296 kg translates to 32296 − 8000 = 24296 kg of diesel, which under
our assumptions corresponds to 24296 liters of diesel that the truck can transport from the start
position to the distination.

Input Format
Your program must read from the standard input. The first line of the input contains m and n.
The following m lines contain the altitudes of the grid positions. The example above corre-
sponds to the following file:

4 4
100 200 100 0
400 300 100 200
200 300 500 500
400 400 300 600

Recall that the altitudes range from 0 to 4000 and are divisible by 100.

5



Output Format
Your program must write to the standard output an integer, representing the maximal number of
liters that can be transported from (0, 0) to (m− 1, n− 1). If the truck can reach the destination
with an empty tank, the number is 0. If the truck cannot reach the destination at all, the number
is −1. For the above example, the output is:

24296

Template
You may use the templates provided. The templates handle the input and output, but without
the body of the following subroutines.

• C program
int truck (int m, int n, int **A);

• Pascal program
function truck (m, n: LongInt; var A: TwoDarray): LongInt;

The variable A is the m by n two-dimensional array of integers storing the altitudes. The
altitude at North-Eastern corner is stored in A[0][n-1] and A[0,n-1] for the C and Pascal
program respectively.

Subtasks
The maximum execution time on each input instance is 0.5 second. Your program will be tested
on sets of input instances as follow:

1. (5 marks) m = 1, n ≤ 20, that is, the map is a line and thus the truck can only move East.

2. (5 marks) m = 2, n ≤ 20.
(Hint: How many times can the truck move South?)

3. (10 marks) m ≤ 20, n ≤ 20.

4. (20 marks) m ≤ 1000, n ≤ 1000.

6



Task 3: FERRIES
Kang the Penguin lives on a group of N Antarctic islands, conveniently labelled from 1 to N .
Kang’s house is on Island 1. He is having a cold today, so he plans to visit a veterinarian who
stays on Island N .

Normally, he would swim, but due to his cold, he plans to take ferries to reach his destination
instead. There are a total of M ferries (labelled from 1 to M ), with Ferry i bringing passengers
from some island Ai to some other island Bi for Ci dollars (one direction only). There is at most
one ferry going from one island to another island, and some ferries may provide free services.
Kang wishes to travel to Island N for as little cost as possible.

Unfortunately for our poor penguin, the captains of the ferries have hatched a money-making
scheme today! They know that Kang is planning to take their ferries from Island 1 to Island N ,
so they conspire to make his journey as expensive as possible. Captains of ferries starting on the
same island may permute their destinations among themselves. Due to their contract, however,
the cost that a captain charges for riding a ferry remains the same, even if the destination of the
ferry has changed. For instance, say that Ferries 1, 2, and 3 start from Island 1. They lead to
Islands 2, 3, and 4 respectively, at costs 10, 20, and 30 dollars (also respectively). Then, the
captains of Ferry 1 and Ferry 2 may swap destinations, so that now Ferry 1 leads to Island 3
(but still costing 10 dollars) and Ferry 2 leads to Island 2 (but still costing 20 dollars).

The captains, after conspiring, will announce their ferries destinations before Kang boards
any ferry, and they cannot change the destinations after the announcement. Kang is aware of
the captains’ intention but he does not know the ferries destinations before leaving his house.
Kang is asking for your help. He wants to know the least amount of money he should bring for
the ferries, and yet guaranteed that he has sufficient money to reach his doctor. In other words,
he want to find the least possible cost he needs to reach Island N , assuming that the captains
make his least cost route as expensive as possible.

Input format
Your program must read from the standard input. The first line of the input contains 2 integers:
N and M . The subsequent M lines of the input each contain 3 integers: Ai, Bi, and Ci,
representing one ferry each. An example is provided below:

4 5
1 2 2
2 4 2
1 3 10
3 4 7
1 4 7

Output format
Your program must write to the standard output a single integer, the minimum cost he needs to
reach his destination in dollars. For the above example, the output is:

7



9

Explanation of Sample Output
Ferries 1, 3 and 5 swap their destinations, so that Ferry 1 now travels to Island 3 (cost still 2
dollars), Ferry 3 to Island 4 (cost still 10 dollars) and Ferry 5 to Island 2 (cost still 7 dollars).
After the swaps, the least possible cost for Kang is 9 dollars, traveling either from 1 to 3 to 4, or
from 1 to 2 to 4. Note that there is no way to swap the destinations so that the lowest cost from
Island 1 to Island 4 is more than 9.

Template
You may use the template provided. The templates handle the input and output, but without the
body of the main subroutine.

• C/C++ program
int ferries(int N, int M, int * A, int * B, int * C)

• Pascal program
function ferries (N, M: LongInt; var A, B, C: array of LongInt):
LongInt;

Each subroutine takes in N , M , A, B and C and returns the least possible cost for Kang,
where N and M are the number of islands and number of ferries respectively, and A, B, C are
arrays representing the origins, the destinations, and the costs of the ferries, respectively.

Subtasks
The maximum execution time on each input instance is 1.0 second. Your program will be tested
on 4 sets of input instances as follow:

1. (7 marks) All instances in this set satisfy 2 ≤ N ≤ 100, 000 and M = 2N − 4. There are
N −2 ferries leaving from Island 1, going to Island 2, 3, ..., N −1 respectively. There are
another N − 2 ferries, leaving from Island 2, 3, ..., N − 1 respectively, going to Island N .

2. (10 marks) All instances in this set satisfy 2 ≤ N ≤ 100, 000 and 1 ≤ M ≤ 300, 000.
There are one or more ferries leaving from Island 1. There is exactly one ferry leaving
from Islands 2, 3, ... N − 1.

3. (11 marks) All instances in this set satisfy 2 ≤ N ≤ 100, 000 and 1 ≤ M ≤ 300, 000. In
addition, there are no cycles. In other words, once Kang has left a given island by a ferry,
there is no possible sequence of ferry rides that will bring him back to that island.

4. (12 marks) All instances in this set satisfy 2 ≤ N ≤ 100, 000 and 1 ≤M ≤ 300, 000.

All instances in all sets satisfy 0 ≤ Ci ≤ 10, 000 for each Ci.

8


