

7th Asia-Pacific Informatics Olympiad

Hosted by

National University of Singapore, Singapore

Saturday, 11 May, 2013

	

	

HAPPY	
 PROGRAMMING!	

Task	
 name	
 ROBOTS	
 TOLL	
 TASKSAUTHOR	

Time	
 Limit	
 1.5s	
 2.5s	
 Not	
 Applicable	
 	

Heap	
 Size	
 128MB	
 128MB	
 Not	
 Applicable	

Stack	
 Size	
 32MB	
 32MB	
 Not	
 Applicable	

Points	
 100	
 100	
 100	

Number	
 of	
 subtasks	
 4	
 5	
 8	

Remark	
 Submit	
 a	
 program	
 Submit	
 a	
 program	
 Submit	
 a	
 data	
 file	

	
 for	
 each	
 subtask	

Language	
 Compiler	
 version	
 Compiler	
 options	

C	
 gcc	
 version	
 4.4.7	
 -­‐O2	
 -­‐lm	

C++	
 g++	
 version	
 4.4.7	
 	
 -­‐O2	
 -­‐lm	

Pascal	
 fpc	
 version	
 2.4.0	
 -­‐O2	

Task 1: ROBOTS
The engineers at VRI (Voltron Robotics Institute) have built a swarm of n robots. Any two
compatible robots that stands on the same grid can merge to form another composite robot.

We label the robots with number 1 to n (n ≤ 9). Two robots are compatible if they have
labels that are consecutive. Originally, each of the n robot has one unique label. A composite
robot that is formed after merging two or more robots is assigned two labels, consisting of the
minimum and maximum label of the robots that merge into the composite robot.

For example, robot 2 can only merge with robot 3 or robot 1. If robot 2 merges with robot
3, a composite robot 2-3 is formed. If robot 2-3 merges with robot 4-6, a composite robot 2-6
is formed. The robot 1-n is formed when all robots have merged.

The engineers place n robots in a room consisting of w×h grids, surrounded by walls. Some
grids are occluded and cannot be accessed by the robots. Each grid can hold one or more robots,
and a robot always occupies exactly one grid. Initially, each robot is placed on a different grid.

The robots are rather primitives. They can move only in a straight line along either the x-
axis or y-axis after being pushed by an engineer. After it is pushed in one of the four directions
parallel to the x- and y-axis, the robot continues moving, in the direction it is pushed in, until
it is blocked either by an occlusion or a wall. After the robot stops moving, it scans for other
compatible robots occupying the same grid, and merge with any compatible robot it finds into
a larger robot. The merging process continues until no further merging is possible.

To help the robots change direction, the engineers have placed rotating plates in some of
the grids. The rotating plates can either rotate in a clockwise or anti-clockwise direction. A
robot that moves into a grid with the rotating plate always changes its moving direction by 90
degree in the same direction as the rotating plate. If a robot is being pushed while resting on
top of a rotating plate, it rotates by 90 degree before moving off in a straight line, in a direction
perpendicular to the direction it is pushed in.

Only one robot can move at one time.
You task is to find the minimum number of pushes such that all n robots are merged together

(if possible).

Input
Your program must read from the standard input. The first line of the input file contains three
integers, n, w, and h, separated by a space.

The next h lines of the input file describe the room, each line contains w characters. Each
of these w × h characters represent a grid in the room.

A numeric character (’1’ to ’9’) indicates that there is a robot labeled with the corresponding
number in the grid. A character ‘x’ indicates that there is an occlusion in the grid. A character
‘A’ or ‘C’ indicates that there is a rotating plate in the grid. ‘A’ indicates that the plate is rotating
anti-clockwise. ‘C’ indicates that the plate is rotating clockwise. All other grids are represented
with a character ‘.’

APIO 2013 Asia-Pacific Olympiad in Informatics—Singapore 2

Output
Your program must write to the standard output, either a single number indicating the minimum
number of pushes needed to merge all n robots, or -1 if merging is not possible.

Subtasks
Your program will be tested on four sets of input instances as follow:

1. (10 points) The instances satisfy n = 2, w ≤ 10, h ≤ 10, with no rotating plates.

2. (20 points) The instances satisfy n = 2, w ≤ 10, h ≤ 10.

3. (30 points) The instances satisfy n ≤ 9, w ≤ 300, h ≤ 300.

4. (40 points) The instances satisfy n ≤ 9, w ≤ 500, h ≤ 500.

Sample Input
4 10 5
1.........
AA...x4...
..A..x....
2....x....
..C.3.A...

Sample Output
5

Description of the sample input/output
The following 5 steps optimally merge the robot.

1. Push robot 3 rightward. The robot moves right, meets a rotating plate, turns anti-clockwise,
and continues its movement up. The robot eventually stops in front of the wall.

2. Push robot 4 upward. The robot moves up, stops in front of the wall, and merges with
robot 3 to form robot 3-4.

3. Push robot 2 upward. The robot moves up, meets a rotating plate, turns anti-clockwise,
hits a wall and stops.

4. Push robots 2 rightward. The robot rotates anti-clockwise, moves up, stops at the corner,
and merges with robot 1 to form robot 1-2.

5. Push robot 3-4 leftward. The robot moves left, stops at the corner, and merges with robot
1-2.

APIO 2013 Asia-Pacific Olympiad in Informatics—Singapore 3

Task 2: TOLL
Happyland can be described by a set of N towns (numbered 1 to N) initially connected by M
bidirectional roads (numbered 1 to M). Town 1 is the central town. It is guaranteed that one
can travel from town 1 to any other town through these roads. The roads are toll roads. A user
of the road i has to pay a toll fee of ci cents to the owner of the road. It is known that all of
these ci’s are distinct. Recently, K additional new roads are completed and they are owned by a
billionaire Mr Greedy. Mr Greedy can decide the toll fees (not necessarily distinct) of the new
roads, and he has to announce the toll fees tomorrow.

Two weeks later, there will be a massive carnival in Happyland! Large number of partici-
pants will travel to the central town and parade along the roads. A total of pj participants will
leave from town j and travel toward the central town. They will only travel on a set of selected
roads, and the selected roads will be announced a day before the event. By an old tradition, the
roads are to be selected by the richest person in Happyland, who is Mr Greedy. Constrained by
the same tradition, Mr Greedy must select a set of roads that minimizes the sum of toll fees in
the selected set and yet at the same time allow anyone to travel from town j to town 1 (hence,
the selected roads form a “minimum spanning tree” where the toll fees are the weights of the
corresponding edges). If there are multiple such sets of roads, Mr Greedy can select any set as
long as the sum is minimum.

Mr Greedy is well-aware that the revenue he received from the K new roads does not solely
depends on the toll fees. The revenue from a road is actually the total fee collected from people
who travel along the road. More precisely, if p people travel along road i, the revenue from the
road i is the product cip. Note that Mr Greedy can only collect fees from the new roads since
he does not own any of the old roads.

Mr Greedy has a sneaky plan. He plans to maximize his revenue during the carnival by
manipulating the toll fees and the roads selection. He wants to assign the toll fees to the new
roads (which are to be announced tomorrow), and select the roads for the carnival (which are to
be announced a day before the carnival), in such a way that maximizes his revenue from the K
new roads. Note that Mr Greedy still has to follow the tradition of selecting a set of roads that
minimizes the sum of toll fees.

You are a reporter and want to expose his plan. To do so, you have to first write a program
to determine how much revenue Mr Greedy can make with his sneaky plan.

Input
Your program must read from the standard input. The first line contains three space-separated
integers N , M and K. The next M lines describe the initial M roads. The ith of these lines
contains space-separated integers ai, bi and ci, indicating that there is a bidirectional road be-
tween towns ai and bi with toll fee ci. The next K lines describe the newly built K additional
roads. The ith of these lines contains space-separated integers xi and yi, indicating that there is
a new road connecting towns xi and yi. The last line contains N space-separated integers, the
j-th of which is pj , the number of people from town j traveling to town 1.

The input also satisfies the following constrains.

APIO 2013 Asia-Pacific Olympiad in Informatics—Singapore 4

• 1 ≤ N ≤ 100000.

• 1 ≤ K ≤ 20.

• 1 ≤M ≤ 300000.

• 1 ≤ ci, pj ≤ 106 for each i and j.

• ci 6= ci′ , if i 6= i′.

• Between any two towns, there is at most one road (including newly built ones).

Output
Your program must write to the standard output a single integer, which is the maximum total
revenue obtainable.

Sample Input and Output
Input Output
5 5 1
3 5 2
1 2 3
2 3 5
2 4 4
4 3 6
1 3
10 20 30 40 50

400

APIO 2013 Asia-Pacific Olympiad in Informatics—Singapore 5

In this sample, Mr Greedy should set the toll fee of the new road (1,3) to be 5 cents. With this
toll fee, he can select the roads (3,5), (1,2), (2,4) and (1,3) to minimize sum of toll fees, which
is 14 cents. 30 people from town 3 and 50 people from town 5 will pass through the new road
to town 1 and hence he can collect an optimal revenue of (30 + 50)× 5 = 400 cents.

If, on the other hand, the toll fee of the new road (1,3) is set to be 10 cents. Now, constrained
by the tradition, Mr Greedy must select (3,5), (1,2), (2,4) and (2,3) as this is the only set that
minimizes the sum of toll fees. Hence, no revenue will be collected from the new road (1,3)
during the carnival.

Subtasks
Your program will be tested on 5 sets of instances as follow:

1. (16 points) N ≤ 10,M ≤ 20 and K = 1.

2. (18 points) N ≤ 30,M ≤ 50 and K ≤ 10.

3. (22 points) N ≤ 1, 000,M ≤ 5, 000 and K ≤ 10.

4. (22 points) N ≤ 100, 000,M ≤ 300, 000 and K ≤ 15.

5. (22 points) N ≤ 100, 000,M ≤ 300, 000 and K ≤ 20.

APIO 2013 Asia-Pacific Olympiad in Informatics—Singapore 6

Task 3: TASKSAUTHOR
There are many programming contests in the world today. Setting a good programming contest
task is not easy. One challenge is the setting up of test data. A good test data should be able to
differentiate a code that meets the goals, from another seemingly correct code that fails in some
special cases.

In this task, your role in a contest is reversed! As an experienced programmer, you are
helping the Happy Programmer Contest’s committee in setting up their test data. The committee
has selected two graph problems with a total of 8 different subtasks, and has written a few codes
that seemingly solve the graph problems. In designing a subtask, the committee has the intention
that some of the codes would get all the points, whereas some would gain zero or some points.
You are given all those codes in C, C++ and Pascal versions1. For each subtask, your job is to
produce a test data X that differentiates two given codes, code A and code B. More specifically,
the following two conditions must be met:

1. On input X , code A must not lead to Time Limit Exceeded (TLE).

2. On input X , code B must lead to TLE.

In addition, the committee prefers smaller test data, with a target of at most T integers in the
test data.

The two problems selected by the committee are the Single-Source Shortest Paths (SSSP)
problem, and a graph problem we called the Mystery problem. The pseudo-codes of the codes
written by the committee are listed in the appendix and the C++ and Pascal implementations
can be found in the attached zip file that accompany task 3 in the grading server.

Subtasks
Please refer to Table 1. Each row describes a subtask. Note that subtask 1 to 6 are on the SSSP
whereas subtask 7 & 8 are on the Mystery problem. The number of points allocated for the
subtasks are listed in column S.

Subtask Points S Target T Problem Code A Code B
1 3 107 SSSP ModifiedDijkstra FloydWarshall
2 7 2222 SSSP FloydWarshall OptimizedBellmanFord
3 8 105 SSSP OptimizedBellmanFord FloydWarshall
4 17 157 SSSP FloydWarshall ModifiedDijkstra
5 10 1016 SSSP ModifiedDijkstra OptimizedBellmanFord
6 19 143 SSSP OptimizedBellmanFord ModifiedDijkstra
7 11 3004 Mystery Gamble1 RecursiveBacktracking
8 25 3004 Mystery RecursiveBacktracking Gamble2

Table 1: The 8 Subtasks.
1All codes implement algorithms that are permitted inside the IOI syllabus.

APIO 2013 Asia-Pacific Olympiad in Informatics—Singapore 7

To get any point for a subtask, your test data X must able to differentiate the corresponding
code A and code B. In addition, the number of points you received depends on the number of
signed integers in X . Suppose X contains F integers, S points are allocated to the subtask, and
T is the targeted size, then the number of points awarded is calculated as follow:

b0.5 + S ×min{T/F, 1}c

where b c denotes the rounding down operation. Hence, if your test data X contains not more
than T integers, the full S points are awarded.

Grading
You must name each of your eight test data as tasksauthor.outX.1where X is the subtask
number. Before submission, you are required to compress your test data files using gzip. In
Unix systems, the following command produces the compressed file:

tar -cvzf tasksauthor.tgz tasksauthor.out*.1
In Windows systems, use software like 7-Zip or Winzip to produce this tar-gzipped archive.
Submit only the file tasksauthor.tgz to the grading server.

The grading server will unpack the compressed file. For each subtask, say subtask X, the
grader carries out the following steps to determine the number of points to be awarded for
subtask X:

C1. If test data tasksauthor.outX.1 does not exist, halts and no point will be awarded.

C2. Checks the format of tasksauthor.outX.1.
If the input format is invalid, halts and no point will be awarded.

C3. Runs code A with tasksauthor.outX.1 as the input.
If TLE is triggered, halts and no point will be awarded.

C4. Runs code B with tasksauthor.outX.1 as the input.
If TLE is triggered, halts and awards a number of points calculated using the formula:

b0.5 + S ×min{T/F, 1}c

All the provided codes maintain a counter (the variable counter) that keeps track of the
number of performed operations. During the execution of a code, when the value of the counter
exceeds 1,000,000, then we consider the code has triggered TLE.

APIO 2013 Asia-Pacific Olympiad in Informatics—Singapore 8

Problem Statement 1: Single-Source Shortest Paths (SSSP)
Given a directed weighted graph G and two vertices s and t in G, let p(s, t) to be the short-
est path weight from the “source” s to the “destination” t. If t is not reachable from s, then
p(s, t) is defined to be 1,000,000,000. In this problem, the input is the graph G and a se-
quence of Q queries (s1, t1), (s2, t2), . . . , (sQ, tQ). The output is the corresponding query results
p(s1, t1), p(s2, t2), . . . , p(sQ, tQ).

Input/Output file Format

The input file consists of two blocks. The first block describes the adjacency list of a directed
weighted graph G. The second block describes shortest path queries on G.

The first block starts with an integer V in one line, which is the number of vertices in G.
The vertices are labelled as 0, 1, . . . , V − 1. Then, V lines follow where each line corresponds
to a vertex, starting from vertex 0. Each line starts with ni that describes how many outgoing-
edges the vertex i has. Next, ni pairs of integers (j, w) follow where each pair corresponds to
an outgoing-edge. The first integer j in a pair is the label of the vertex the edge points to, and
the second integer w is the edge’s weight.

The second block starts with an integer Q in one line. Next, Q lines follows. The k-th line
contains two integers sk and tk, corresponding to the source and destination vertex respectively.

Any two consecutive integers in one line must be separated by at least one space. Addition-
ally, the input satisfies the following:

1. 0 < V ≤ 300,

2. ni is a non-negative integer ∀i ∈ [0..V − 1],

3. 0 ≤ j < V ,

4. |w| < 106 where |w| denotes the absolute value of w,

5. 0 ≤
∑V−1

i=0 ni ≤ 5000,

6. 0 < Q ≤ 10,

7. 0 ≤ sk < V , 0 ≤ tk < V , ∀k ∈ [1..Q], and

8. the graph G must not have any negative weight cycle reachable from any vertex sk that
appeared in the second block.

Recall that the grading server will check for the above constraints in step C2.
The output file format is less relevant in this task. Anyway, the output consists of Q lines,

and the k-th line contains the integer p(sk, tk). For convenience, the provided codes will print
out the value of the variable counter at the end of the output.

APIO 2013 Asia-Pacific Olympiad in Informatics—Singapore 9

Sample Input File2

3
2 1 4 2 1
0
1 1 2
2
0 1
1 0

Sample Output File3

3
1000000000
The value of counter is: 5

Figure 1: Directed Weighted Graph from the Sample Input File

2There are fifteen integers in this input file, therefore F = 15.
3The value of counter is 5 when the sample input file given above is run on ModifiedDijkstra.cpp/pas.

APIO 2013 Asia-Pacific Olympiad in Informatics—Singapore 10

Problem Statement 2: Mystery
Given an undirected input graph G with V vertices and E edges, label each vertex in G with an
integer ∈ [0..(X − 1)] so that no two endpoints of any edge in G has the same label. The value
of X must be the lowest possible for graph G.

Input/Output file format

The input file starts with two integers V and E in one line. Then, E lines follows. Each line
contains two integers a and b that denotes an undirected edge (a, b) exists in G. In addition, the
input satisfies the following constraints (to be checked in step C2):

1. 70 < V < 1000,
2. 1500 < E < 106, and
3. for any edge (a, b), we have a 6= b, 0 ≤ a < V , 0 ≤ b < V , and it appears only once in G.

The output file starts with an integer X in one line, the smallest integer so that vertex la-
belling is feasible. The next line contains V integers that describe the integer label of vertex 0,
vertex 1, ..., vertex V − 1, and the last line is the value of counter.

Sample Input File4

4 5
0 1
0 2
0 3
1 2
2 3

Sample Output File5

3
0 1 2 1
The value of counter is: 18

Figure 2: Left: Undirected Graph from the Sample Input File; Right: Its Labels with X = 3

4There are twelve integers in this input file, therefore F = 12. However, this small sample input file is only
used for illustration. It is not valid as it’s V and E values are too small.

5The value of counter is 18 when the sample input file given above is run on RecursiveBacktracking.cpp/pas.

APIO 2013 Asia-Pacific Olympiad in Informatics—Singapore 11

Appendix: Pseudo-codes
Here are the algorithms of the provided codes. The variable counter “approximates” the
runtime by keeping track of some operations. Our grading server uses the C++ version of these
implementation codes.

FloydWarshall.cpp/pas

// pre-condition: the graph is stored in an adjacency matrix M
counter = 0
for k = 0 to V-1

for i = 0 to V-1
for j = 0 to V-1

increase counter by 1;
M[i][j] = min(M[i][j], M[i][k] + M[k][j]);

for each query p(s,t)
output M[s][t];

OptimizedBellmanFord.cpp/pas

// pre-condition: the graph is stored in an adjacency list L
counter = 0
for each query p(s,t);

dist[s] = 0; // s is the source vertex
loop V-1 times

change = false;
for each edge (u,v) in L

increase counter by 1;
if dist[u] + weight(u,v) < dist[v]

dist[v] = dist[u] + weight(u,v);
change = true;

if change is false // this is the ’optimized’ Bellman Ford
break from the outermost loop;

output dist[t];

APIO 2013 Asia-Pacific Olympiad in Informatics—Singapore 12

ModifiedDijkstra.cpp/pas

// pre-condition: the graph is stored in an adjacency list L
counter = 0;
for each query p(s,t)

dist[s] = 0;
pq.push(pair(0, s)); // pq is a priority queue
while pq is not empty

increase counter by 1;
(d, u) = the top element of pq;
remove the top element from pq;
if (d == dist[u])

for each edge (u,v) in L
if (dist[u] + weight(u,v)) < dist[v]

dist[v] = dist[u] + weight(u,v);
insert pair (dist[v], v) into the pq;

output dist[t];

Gamble1.cpp/pas

Sets X = V and labels vertex i in [0..V-1] with i;
Sets counter = 0; // will never get TLE

Gamble2.cpp/pas

Sets X = V and labels vertex i in [0..V-1] with i;
Sets counter = 1000001; // force this to get TLE

RecursiveBacktracking.cpp/pas

This algorithm tries X from 2 to V one by one
and stops at the first valid X.

For each X, the backtracking routine label vertex 0 with 0,
then for each vertex u that has been assigned a label,
the backtracking routine tries to assign
the smallest possible label up to label X-1 to its neighbor v,
and backtracks if necessary.

// Please check RecursiveBacktracking.cpp/pas to see
// the exact lines where the iteration counter is increased by 1

APIO 2013 Asia-Pacific Olympiad in Informatics—Singapore 13

