
HAL Id: hal-00874062
https://hal.science/hal-00874062

Submitted on 17 Oct 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Optimal Offline TCP Sender Buffer Management
Strategy

Mugurel Ionut Andreica, Nicolae Tapus

To cite this version:
Mugurel Ionut Andreica, Nicolae Tapus. Optimal Offline TCP Sender Buffer Management Strategy.
1st IARIA/IEEE International Conference on Communication Theory, Reliability, and Quality of
Service (CTRQ), Jun 2008, Bucharest, Romania. pp.41-46, �10.1109/CTRQ.2008.11�. �hal-00874062�

https://hal.science/hal-00874062
https://hal.archives-ouvertes.fr

�������������	ABCDEF���CA�D�����C��F�AB�F���C��AB����A���	AB��CC�DE��BD���������C���A�D��F�EA���DB�F���D��AB��CAC���E�FE����BBAE��DB�����BA��A��F���E�����E��
BA�B�E��E��BA�����C��E�����C��F�AB�F���DB�F��AB��C�E��DB��BD�D��DEF����B�DCAC���BAF��E��EA ��D��A����A� DB!C���DB�BACF�A�DB�BA��C�B�����DE��D�CAB�ABC�DB���C�C��DB�BA�CA�D��

FE���D��B����A���D��DEAE��D�����C� DB!��E�D��AB� DB!C��

Optimal Offline TCP Sender Buffer Management Strategy

Mugurel Ionut Andreica*, Nicolae Tapus*

* Politehnica University of Bucharest, Computer Science Department, Bucharest, Romania

{mugurel.andreica, nicolae.tapus}@cs.pub.ro

Abstract

The Transmission Control Protocol (TCP) uses a sliding window in order to enforce flow control. The receiver

advertises its available buffer space to the sender, which cannot transmit more data than the advertised space.

Transmitted data is first copied from application buffers into TCP buffers and from there it is sent through the

network. In this paper we propose a model which characterizes the sender’s behavior throughout the duration of a

TCP conversation. The model is suitable in the case of powerful, but variably loaded senders, slow receivers, fast

connections and moderate amounts of data transmitted. For this model we present an O(n�log
2
n) algorithm which

computes the minimum processing time spent by the sender, if the window sizes advertised by the receiver and the

sender’s load are known in advance. The solution is based on an algorithmic framework for the segment tree data

structure, which we introduce in this paper.

1. Introduction

TCP uses a sliding window mechanism in order to enforce flow control and not overwhelm the receiver with too

much data. This mechanism is particularly useful when a fast, powerful sender communicates with a slow receiver or

with one having limited resources (small amounts of buffer space). However, these situations are rather stressful for

the sender, which needs to copy data from application buffers into TCP buffers many times. If the sender is loaded

by many applications performing different tasks, copying data between buffers might not always take the same

amount of time. Because of this, it might happen that the sender becomes a performance bottleneck.

In this paper we propose a model for characterizing the sender’s behavior throughout the life time of a TCP

connection. Based on this model, we developed an O(n�log
2
n) algorithm for computing the minimum total processing

time for the sender when the window sizes advertised by the receiver and the system load of the sender are known in

advance. The algorithm can only be used offline, either when accurate estimates of the required parameters are

known, or when detailed traces of TCP conversations are available.

The rest of the paper is structured as follows. In Section 2 we present our model for the sender’s behavior and,

based on it, we define the problem of minimizing the total processing time. In Section 3 we present the algorithm

which computes the minimum total processing time on the sender side. In Section 4 we present related work, while in

Section 5 we draw some conclusions and present future work.

2. The TCP Sender Behavior Model

After the initial three-way handshake, the TCP sender sends only as much data as the last window size advertised

by the receiver. We will assume that throughout the TCP conversation, the receiver advertised its window size n

times. The window size at the i
th

 advertisement is wi�0. After each advertisement i is received, the sender sends the

next wi bytes of data to the receiver and waits for the next advertisement. We will assume that the total amount of

transmitted bytes is equal to the sum of the window sizes.

When receiving the i
th

 advertisement, the sender already has in its TCP buffer the next bbi�0 bytes to be sent. If

bbi<wi, the sender will copy cbi bytes (wi-bbi�cbi) into its TCP buffer and then send wi bytes to the receiver. The

sender may choose to copy some bytes into the TCP buffer even when bbi�wi. The time needed to copy x bytes into

the TCP buffer at the time of the i
th

 advertisement is

�������������	ABCDEF���CA�D�����C��F�AB�F���C��AB����A���	AB��CC�DE��BD���������C���A�D��F�EA���DB�F���D��AB��CAC���E�FE����BBAE��DB�����BA��A��F���E�����E��
BA�B�E��E��BA�����C��E�����C��F�AB�F���DB�F��AB��C�E��DB��BD�D��DEF����B�DCAC���BAF��E��EA ��D��A����A� DB!C���DB�BACF�A�DB�BA��C�B�����DE��D�CAB�ABC�DB���C�C��DB�BA�CA�D��

FE���D��B����A���D��DEAE��D�����C� DB!��E�D��AB� DB!C��

tcopy,i(x)=tsetup,i + tbyte,i�x , x>0. (1)

There are two components comprised in the copy time. The first one (tsetup,i) is the setup time needed to initiate the

transfer. The second one (tbyte,i) is the time required for copying a byte from the application buffer into the TCP

buffer. If no byte is copied, then the copy time is 0 (tcopy,i(0)=0). The two time parameters (tsetup,i and tbyte,i) depend on

the system load, which is variable. We will call a time step the moment when a window size advertisement is

received. Given the values wi, tsetup,i and tbyte,i for each of the n time steps, the processing time depends on the number

of bytes cbi copied between the application buffer and the TCP buffer at each step. We will assume that the TCP

buffer capacity is very large (infinite) compared to the total number of bytes transferred. Thus, it would be possible

for the sender to copy all the bytes in the TCP buffer during the first time step, if such a strategy were considered

convenient. Although buffer space may be large enough for the data transferred on a single TCP connection, we must

consider the fact that this buffer might be shared by several connections. We will take this into consideration by

adding another parameter sci to every time step. This parameter represents the cost of storing one byte in the TCP

buffer from time step i to time step i+1. sci will also be expressed in time units, because using up one byte of the TCP

buffer increases the processing times of other TCP connections, which will have less buffer space at their disposal.

Thus, this parameter represents the amount by which the processing times of other TCP conversations increase if one

byte is stored for the current connection in the TCP buffer from time step i to the next. The total processing time of

the sender is:

���
=

−

=

−

=

−⋅+=

n

i

i

j

jji

n

i

iicopy wcbsccbtTPT
2

1

1

1

1

,)()(.

(2)

Given the values of all the parameters at each time step, the total processing time depends only on the number of

bytes copied at each step. The values cbi for which TPT is minimum define an optimal sender buffer management

strategy. It is interesting that, with another meaning given to the parameters, this problem is equivalent to the

economic lot sizing problem [4,5,6].

3. An Efficient Algorithm

Solving the problem starts with a non-trivial observation. Let’s assume that at the end of time step j, the TCP

buffer contains X bytes (after copying the cbj bytes planned for that time step). Let’s also assume that among these X

bytes, X1>0 were copied in the buffer at time step i1 and X2>0 were copied in the buffer at time step i2. The

processing times incurred by the X1 and X2 bytes are given by the equations below, where A1, B1, A2 and B2 can be

inferred easily:

PT1=A1+(tbyte,i1+sci1 + sci1+1+…+scj-1)�X1=

A1+B1�X1, 0�A1�tsetup,i1, B1�0 ,

(3)

PT2=A2+(tbyte,i2+sci2+sci2+1+…+scj-1)�X2=

A2+B2 �X2, 0�A2�tsetup,i2, B2�0 .

(4)

The processing time incurred by the X1+X2 bytes is PT12=PT1+PT2. If all the X1+X2 bytes had been copied in the

TCP buffer at time step i1, the processing time would have been PTA=A1+B1�(X1+X2). Similarly, if all the X1+X2

bytes had been copied in the TCP buffer at time step i2, the processing time would have been PTB=A2+B2�(X1+X2).

We will show that either PTA or PTB must be less than or equal to PT12. We have

PTA-PT12=B1�X2-B2�X2-A2=(B1-B2)�X2-A2 , (5)

 PTB-PT12=(B2-B1)�X1-A1. (6)

It is obvious that either B1-B2�0 or B2-B1�0, i.e. either PTA�PT12 or PTB�PT12. Thus, in an optimal solution, the

time steps 1,…,n can be split in a number K of intervals [l1=1, r1], [l2=r1+1, r2], …, [lK=rK-1+1, rK=n], such that at

every time step li, the number of bytes copied in the TCP buffer is

�
=

=

i

i

i

r

lj

jl wcb

 (7)

At the time steps j which are not the first time steps of some interval, no bytes will be copied in the TCP buffer

and the required bytes will already be there. We will first present a simple O(n
2
) dynamic programming solution.

Then, we will introduce the segment tree data structure and we will show how we can use it in order to improve the

time complexity to O(n�log
2
n).

�������������	ABCDEF���CA�D�����C��F�AB�F���C��AB����A���	AB��CC�DE��BD���������C���A�D��F�EA���DB�F���D��AB��CAC���E�FE����BBAE��DB�����BA��A��F���E�����E��
BA�B�E��E��BA�����C��E�����C��F�AB�F���DB�F��AB��C�E��DB��BD�D��DEF����B�DCAC���BAF��E��EA ��D��A����A� DB!C���DB�BACF�A�DB�BA��C�B�����DE��D�CAB�ABC�DB���C�C��DB�BA�CA�D��

FE���D��B����A���D��DEAE��D�����C� DB!��E�D��AB� DB!C��

3.1. An O(n
2
) dynamic programming solution

We will compute an array mintpt, where minpt[i] is the minimum total processing time if i were the last time step.

For each step i, all the possible steps j are considered, such that j is the first time step of the interval ending at i. For

each value of j, the total processing time is computed and the minimum value is maintained. The pseudocode is given

below:

mintpt[0]=0

for i = 1 to n

 mintpt[i]=+Infinity; wtotal=0; storagept=0

 for j = i downto 1

 storagept=storagept+scj�wtotal

 wtotal=wtotal+wj

 totalpt=tsetup,j+tbyte,j�wtotal+mintpt[j-1]+storagept

 if (totalpt<mintpt[i]) then

 mintpt[i]=totalpt

3.2. The Segment Tree Data Structure

The segment tree [7] is a binary tree structure used for performing operations on an array v with n cells. Each cell

i (1�i�n) contains a value vi. Each node p of the tree has an associated interval [p.left, p.right], corresponding to an

interval of cells. If the node p is not a leaf, then it has two sons: the left son (p.lson) and the right son (p.rson). The

interval of the left son is [p.left, mid] and the right son’s interval is [mid+1, p.right], where

mid=floor((p.left+p.right)/2).

The leaves are those nodes whose associated interval contains only one cell. The interval of the root node is [1,n].

It is obvious that the height of the segment tree is O(log(n)). The tree can be built in O(n) time. Query operations

consist of computing a function on the values of a range of cells [a,b] (range query) or on retrieving the value of a

single cell (point query).

Range Query(a, b): compute),...,,(1 baa vvvqFunc
+

.

Analogously, we have point and range updates:

Range Update(u, a, b): vi=uFunc(u, vi), a�i�b.

The qFunc function must be binary and associative, i.e. qFunc(va,..,vb)=qFunc(va,qFunc(va+1,..,qFunc(vb-1, vb)..))

and qFunc(a,qFunc(b,c))=qFunc(qFunc(a,b),c). We must also have uFunc(x,y)=uFunc(y,x). Only values vi with

O(1) size are considered (numbers and tuples with a fixed number of elements). In order to use the segment tree, we

introduce here an algorithmic framework, consisting of the functions from Table 1.

������������������������������������	�AB�CD��E��	�AB�CD��E��	�AB�CD��E��	�AB�CD��E���FE�B���E��F�C�D��C��FE�B���E��F�C�D��C��FE�B���E��F�C�D��C��FE�B���E��F�C�D��C�����

Update Fuctions Query Functions

STpointUpdate

STrangeUpdate

STpointUpdateNode

STrangeUpdateNodeFit

STrangeUpdateNodeIncl

STpointQuery

STrangeQuery

STpointQueryNode

STrangeQueryNodeFit

STrangeQueryNodeIncl

In order to perform a range update, we call the STrangeUpdate function with the root of the segment tree as the

node argument, the update parameter and the update interval. If the update interval is equal to the node’s interval,

then the STrangeUpdateNodeFit function is called; otherwise, if the intersection between the interval of one of the

node’s sons and the update interval is non-empty, the function is called with that son as the node argument and with

the interval intersection as the update interval. The function visits O(log(n)) tree nodes. A range query

(STrangeQuery) works similarly. A point query (STpointQuery) or update (STpointUpdate) on a position i traverses

the tree upwards, from the leaf with the interval [i,i] towards the root. The leaf node is either found directly or by

traversing the tree downwards from the root towards the leaf. When using range queries and range updates together,

we must also have a “multiplication” operator mop which computes the effects of an update upon the result of a

query on a range of points. qFunc and uFunc must be able to handle uninitialized values. If one of their two

�������������	ABCDEF���CA�D�����C��F�AB�F���C��AB����A���	AB��CC�DE��BD���������C���A�D��F�EA���DB�F���D��AB��CAC���E�FE����BBAE��DB�����BA��A��F���E�����E��
BA�B�E��E��BA�����C��E�����C��F�AB�F���DB�F��AB��C�E��DB��BD�D��DEF����B�DCAC���BAF��E��EA ��D��A����A� DB!C���DB�BACF�A�DB�BA��C�B�����DE��D�CAB�ABC�DB���C�C��DB�BA�CA�D��

FE���D��B����A���D��DEAE��D�����C� DB!��E�D��AB� DB!C��

arguments is uninitialized, the functions must simply return the other argument. In the following examples, we will

not present this part.

STpointUpdate(node, u, i):
// node is the tree leaf with the interval [i,i]

while (node�null) do

STpointUpdateNode(node, u)

node=node.parent

STpointUpdateNode(node, u):
if (node is a leaf) then

 node.qagg=uFunc(u, node.qagg)

else node.qagg=qFunc(node.lson.qagg, node.rson.qagg)

STrangeUpdate(node, u, a, b):
if ((a=node.left) and (node.right=b)) then

 // the update “stopped” at this node

 STrangeUpdateNodeFit(node, u)

else

 lson, rson = left and right son of the current tree node

 if ((a�lson.right) and (lson.left�b)) then

 STrangeUpdate(lson,u,max(a,lson.left),min(b, lson.right))

 if ((a�rson.right) and (rson.left�b)) then

 STrangeUpdate(rson,u,max(a,rson.left),min(b rson.right))

 STrangeUpdateNodeIncl(node, u, a, b)

STrangeUpdateNodeFit(node, u):
node.uagg=uFunc(u, node.uagg)

// update the query aggregate

node.qagg=uFunc(mop(u,node.left,node,right),node.qagg))

STrangeUpdateNodeIncl(node, u, a, b):
node.qagg=uFunc(mop(node.uagg, node.left, node.right), qFunc(node.lson.qagg, node.rson.qagg))

STpointQuery(node, i):
// node is the tree leaf with the interval [i,i]

q=node.qagg; node=node.parent

while (node�null) do

 q=uFunc(STpointQueryNode(node), q)

 node=node.parent

return q

STpointQueryNode(node):
return node.uagg

STrangeQuery(node, a, b):
if (a=node.left and node.right=b) then

 // the query “stopped” at this node

 return STrangeQueryNodeFit(node)

else

q=uninitialized

 if ((a�node.lson.right) and (node.lson.left�b)) then

 q=qFunc(q, STrangeQuery(node.lson, max(a, node.lson. left), min(b, node.lson.right))

 if ((a�node.rson.right) and (node.rson.left�b)) then

 q=qFunc(q, STrangeQuery(node.rson, max(a,node.rson. left), min(b, node.rson.right))

 return uFunc(STrangeQueryNodeIncl(node, a, b), q)

STrangeQueryNodeFit(node):
return node.qagg

STrangeQueryNodeIncl(node, a, b):
return mop(node.uagg, a, b)

Each node of the tree has a pointer to its parent (this pointer is null for the root of the tree) and stores two values:

uagg, an update aggregate and qagg, a query aggregate. node.uagg is the aggregate value of all the update

�������������	ABCDEF���CA�D�����C��F�AB�F���C��AB����A���	AB��CC�DE��BD���������C���A�D��F�EA���DB�F���D��AB��CAC���E�FE����BBAE��DB�����BA��A��F���E�����E��
BA�B�E��E��BA�����C��E�����C��F�AB�F���DB�F��AB��C�E��DB��BD�D��DEF����B�DCAC���BAF��E��EA ��D��A����A� DB!C���DB�BACF�A�DB�BA��C�B�����DE��D�CAB�ABC�DB���C�C��DB�BA�CA�D��

FE���D��B����A���D��DEAE��D�����C� DB!��E�D��AB� DB!C��

parameters of the STrangeUpdateNodeFit function calls on node. At any moment, node.qagg is the answer to the

range query on the interval [node.left, node.right] if the updates which “stopped” at higher levels are ignored. When

building the tree, qagg is set to vi (for a leaf with the interval [i,i]), while for nodes p which are not leaves, p.qagg is

set to qFunc(p.lson. qagg, p.rson.qagg). qagg is modified by the update functions. In STrangeUpdateIncl, qagg is

recomputed from scratch, after an update changed the qagg values of the node’s sons. Alternatively, for some update

and query functions, we could modify qagg directly:

node.qagg=uFunc(mop(u, a, b), node.qagg)

uagg and qagg are used together only when range queries are used together with range updates. In the case of

point queries with range updates, only the uagg values are meaningful; similarly, only the qagg values are

meaningful in the case of point updates with range queries. Common update and query functions can be easily

integrated into the framework. For example, with uFunc(x,y)=(x+y), qFunc(x,y)=(x+y) and mop(u,a,b)= u·(b-a+1),

we can support point and range sum queries, together with point and range addition updates. For uFunc(x,y)=x+y,

qFunc(x,y)=min(x,y) and mop(u,a,b) =u, we can support point and range minimum queries, together with point and

range addition updates. We can also consider point and range multiplication updates, uFunc(x,y)=x·y, with point and

range queries: qFunc(x,y)=x·y (with mop(u,a,b)=u
b-a+1

), qFunc(x,y)= min(x,y) and qFunc(x,y)=(x+y) (with

mop(u,a,b)=u). With mop(u,a,b)=u, we can support range queries and updates for some bit functions (where vi=0 or

1). For uFunc(x,y)=(x or y) or uFunc(x,y)=(x and y), we can have qFunc(x,y)=(x and y) and qFunc(x,y)=(x or y).

For the and update, we can also have qFunc(x,y)=(x xor y). We can support range xor updates and queries

(uFunc(x,y) = qFunc(x,y) = (x xor y)), but with mop(u,a,b)=if (((b-a+1) mod 2)=0) then 0 else u. In order to obtain

any combination of bit functions, we notice that the result of a query depends only on the number of 0 and 1 values

(cnt0, cnt1) in the query range: if (cnt1>0) then or returns 1; if (cnt1 mod 2=1) then xor returns 1; if (cnt0=0) then and

returns 1. Thus, we will work with (cnt0, cnt1) tuples as values. We will also consider the conceptual values cvi,

which are the numerical values we conceptually work with. We have vi=(1-cvi, cvi). A query asks for the number of 0

and 1 conceptual values in the query range and an update changes this number according to the bit function used.

Any combination of point and range queries and updates is supported with the functions below:

bitTupleQuery((cnt0,x, cnt1,x), (cnt0,y, cnt1,y)):
return (cnt0,x+cnt0,y, cnt1,x+cnt1,y)

bitTupleUpdate((1-u, u), (cnt0, cnt1), func):
if (func=and) and (u=0) then return (cnt0+cnt1, 0)

else if (func=or) and (u=1) then return (0, cnt0+cnt1)

else if (func=xor) and (u=1) then return (cnt1, cnt0)

else return (cnt0, cnt1)

For other types of operations, the framework can only support combinations like point queries with range updates

or range queries with point updates. For instance, if the update function has the effect of setting all the values in a

range to the same value s (range set), we will again need to work with tuples: the values vi and the update parameters

u will have the form (numerical value, time_stamp). We need to have a timestamp() function which returns

increasing values upon successive calls. We can use a global counter as a time stamp, which is incremented at every

call. The initial numerical values are assigned an initial time stamp and every update parameter gets a more recent

time stamp. The update function is:

uFunc((vx, tx), (vy, ty)):
if (tx>ty) then return (vx, tx) else return (vy, ty)

With these definitions, a point query function call on a position i will return the last update parameter on the path

from the leaf with the [i,i] interval, to the root.

A useful range query function (used together with point updates) is finding the maximum sum segment (interval of

consecutive cells) fully contained in a range of cells [a,b] (see [3] for this problem without updates). Conceptually,

the value of a cell i is a number cvi, but in the framework we will use tuples consisting of 4 values: (totalsum,

maxlsum, maxrsum, maxsum). Assuming that these values correspond to an interval of cells [c,d], we have the

following definitions:

�
=

=

d

cp

pcvtotalsum �
=

≤≤

=

q

cp

p
dq1-c

cvmaxmaxlsum

�������������	ABCDEF���CA�D�����C��F�AB�F���C��AB����A���	AB��CC�DE��BD���������C���A�D��F�EA���DB�F���D��AB��CAC���E�FE����BBAE��DB�����BA��A��F���E�����E��
BA�B�E��E��BA�����C��E�����C��F�AB�F���DB�F��AB��C�E��DB��BD�D��DEF����B�DCAC���BAF��E��EA ��D��A����A� DB!C���DB�BACF�A�DB�BA��C�B�����DE��D�CAB�ABC�DB���C�C��DB�BA�CA�D��

FE���D��B����A���D��DEAE��D�����C� DB!��E�D��AB� DB!C��

�
=

+≤≤

=

d

qp

p
1dqc

cvmaxmaxrsum �
=

≤≤

≤≤

=

r

qp

p

dr1-q
dqc

cvmaxmaxsum

In the framework, a value vi will be a tuple corresponding to the interval [i,i]. If cvi<0, then vi=(cvi, 0, 0, 0);

otherwise, vi=(cvi, cvi, cvi, cvi). The point update function changes the value of cvi of a cell i and then recomputes vi.

The qFunc function is given below:

qFunc((tx,mlx,mrx,mx), (ty,mly,mry,my)):
return (tx+ty , max{mlx , tx+mly}, max{mry , ty+mrx}, max{mx , my , mrx+mly})

3.3. The O(n·log
2
n) solution

This solution is based on the segment tree data structured, presented previously. Basically, we want to compute

the same array mintpt as in the other solutions. When computing mintpt[i], we can choose the time step j, which is

the beginning of the time step interval ending at i, from the set {1,2,…,i}. We will define the family of functions

fj(x), representing the minimum total processing time for the first x time steps, if x is considered the last time step

and j is the first time step of the interval ending at x. For each i, we will have to find the function fj whose fj(i) value

is minimum. We will first introduce two new arrays, scp and wp, representing the prefix sums of the arrays sc and w:

�
=

=

i

j

j
sciscp

1

][

(8), �
=

=

i

j

jwiwp
1

][

 (9).

A function fj is defined on the interval [j-1,n]. The first value, fj(j-1) does not have a practical meaning, as a

function fj is considered only at the time steps j,..,n; it is introduced to simplify the analysis. We have:

fj(j-1)=mintpt[j-1]+tsetup,j , (10)

fj(j) = mintpt[j-1]+tsetup,j+tbyte,j�wj = fj(j-1)+tbyte,j�wj . (11)

j x, t w 1)-(xf-(x)f (x)df
1

jbyte,xjjj ≥�
�
�

�
�
�
�

�
+⋅== �

−

=

x

jp

psc

(12)

The difference between two consecutive values of a function fj (dfj(x)) contains the processing time of copying wx

bytes in the TCP buffer at time step j and the sum of processing times incurred by storing the wx bytes in the TCP

buffer until time step x. Using the prefix sum arrays, the difference can be rewritten:

dfj(x)=tbyte,j�wx + (scp[x-1] – scp[j-1])�wx =

scp[x-1]�wx + (tbyte,j – scp[j-1])�wx.

(13)

The difference is now composed of two terms: the term scp[x-1]�wx, which depends only on the point at which the

function is evaluated and a term which is composed of two factors, one of which is constant for a given function fj

and the other one depends only on the point where the function is evaluated. The factor which is constant for a

function fj will be denoted by

pj=tbyte,j-scp[j-1]. (14)

We will now slightly change the definitions of the functions and remove the term scp[x-1]�wx. This term does not

influence the relative ordering of the values of the functions fj. After computing mintpt[n] using the new definitions

of the functions, we will add at the end the sum of all the excluded terms:

�
=

⋅−=

n

i

iterms wiscpS
1

]1[

(15)

With the new definitions, the equation for dfj(x) is dfj(x)=fj(x)-fj(x-1)=pj�wx. The initial values fj(j-1) do not

change. If we associate to each time step i an x-coordinate wp[i], we can change the definitions of the functions

further and obtain some new functions gj, defined on the interval [wp[j-1], wp[n]]: gj(x)=gj(wp[j-1])+pj�(x-wp[j-1]),

where gj(wp[j-1])=fj(j-1). It is easy to see that the relationship between the functions gj and fj is: gj(wp[x])=fj(x).

The functions gj are half lines and, thus, have the following useful property: the values of each function gj are the

globally minimum values among all the functions either on an interval of x-coordinates [lxj, rxj] or none of its values

is a global minimum. The proof is easy. Let’s assume that the function gj has the globally minimum values on two

disjoint intervals [lxj1, rxj1] and [lxj2, rxj2], with lxj2>rxj1. There are two possibilities: The first one is that there exists

some function gk, such that gk(x)>gj(x), for x�rxj1-� and gk(x)<gj(x) for x�rxj1. In order for this to happen, the

function gk must have a slope pk which is smaller than the slope pj of the function gj. But if this is the case, then

gk(x)<gj(x), for any x�rxj1, so function gj can never become minimum again. The second possibility is that a function

gk “started” at x=rxj1 (that is, rxj1 is the first point on its definition domain) and its values is minimum. But, from the

�������������	ABCDEF���CA�D�����C��F�AB�F���C��AB����A���	AB��CC�DE��BD���������C���A�D��F�EA���DB�F���D��AB��CAC���E�FE����BBAE��DB�����BA��A��F���E�����E��
BA�B�E��E��BA�����C��E�����C��F�AB�F���DB�F��AB��C�E��DB��BD�D��DEF����B�DCAC���BAF��E��EA ��D��A����A� DB!C���DB�BACF�A�DB�BA��C�B�����DE��D�CAB�ABC�DB���C�C��DB�BA�CA�D��

FE���D��B����A���D��DEAE��D�����C� DB!��E�D��AB� DB!C��

way the functions are defined, the first value of a function gk is equal to the minimum value of the functions gp (p<k),

plus tsetup,j (which is positive), so gk(rxj1) cannot be the globally minimum value.

With the observation that each function has globally minimum values on at most one interval, we can use a

segment tree for storing half lines. The n+1 cells for which the segment tree is built correspond to the points wp[1],

wp[2], …, wp[n] and wp[n+1]=wp[n]+1. The queries will be point queries and the update operations will be of the

type “range set”. Thus, each value of the segment tree consists of a pair (numerical value, timestamp). The

pseudocode is given below:

compute scp, wp (scp[0]=wp[0]=0) and Sterms

mintpt[0]=0

for i = 1 to n

 ginit[i]=mintpt[i-1]+tsetup,i

 p[i]=tbyte,i-scp[i-1]

 // find the interval [lxi,rxi] on which gi is globally minimum

 [lxi, rxi]=find_interval(i)

 if (lxi�rxi) then

 STrangeUpdate(segment_tree_root , u(i), lxi , rxi)

 mintpt[i]=get_min(i)

return mintpt[n]+Sterms

The u(i) argument of the update function is (i, timestamp()). The get_min function returns the globally minimum

value of the functions gj at the point wp[i].

get_min(i):
(k,t)=STpointQuery(leaf node with the interval [i,i], i)

return ginit[k]+(wp[i]-wp[k-1])�p[k]

In the find_interval function we binary search for the first time step lxi (between i and n) where the value

gi(wp[lxi]) is the smallest among all the functions’ values. In a similar manner, the last time step rxi is binary

searched, too. In order to find lxi, we first need to observe how the function gi’s values change relative to the globally

minimum value of the other functions. In general (excluding particular cases), gi(wp[i-1]) is larger than the minimum

value. Then, the difference between gi(x) and the minimum value at point x decreases until gi(x) becomes smaller

than the former minimum value at point x. The function gi is minimum until x=rxi, after which the difference between

gi(x) and the minimum value at point x increases, for x>rxi. This type of behavior suggests that a binary search on the

differences between two consecutive values of the function h(x)=gi(x)-get_min(x) is appropriate. In order to handle

values wi=0, we use an array wpnext, where wpnext[i] (i�n) is the next position j>i, such that wp[j]>wp[i], i.e.

wpnext[i]=if (wp[i+1]> wp[i]) then (i+1) else wpnext[i+1]. We will also repeatedly decrease the value of n, until

wn>0 (or n=0).

left=i; right=n; lxi=n+1

while (left�right) do

 mid = (left+right) div 2 // integer division

gi_mid_1 = ginit[i]+(wp[mid]-wp[i-1])�p[i]

dg=p[i]·(wp[wpnext[mid]]-wp[mid])

 fmin1=get_min(mid); fmin2=get_min(wpnext[mid])

dmin=fmin2-fmin1

if (gi_mid_1<fmin1) then { lxi=mid; right=mid-1 }

 else if (dg<dmin) then left=mid+1

 else right=mid-1

In the end, lxi contains the left endpoint of the interval in which gi is minimum (or lxi=n+1 if such an interval does

not exist). rxi is computed analogously.

4. Related Work

TCP buffer management strategies have been proposed in many papers, for optimizing different performance

metrics [1,2]. As far as we know, TCP sender buffer management has not been addressed from the perspective

presented in this section. The (uncapacitated) economic lot sizing problem and different variations of it were studied

extensively in many papers [4,5,6] and optimal O(n�log(n)) algorithms were proposed for solving it. The segment

tree data structure [7] is used for solving many problems; computational geometry, online scheduling, advance

�������������	ABCDEF���CA�D�����C��F�AB�F���C��AB����A���	AB��CC�DE��BD���������C���A�D��F�EA���DB�F���D��AB��CAC���E�FE����BBAE��DB�����BA��A��F���E�����E��
BA�B�E��E��BA�����C��E�����C��F�AB�F���DB�F��AB��C�E��DB��BD�D��DEF����B�DCAC���BAF��E��EA ��D��A����A� DB!C���DB�BACF�A�DB�BA��C�B�����DE��D�CAB�ABC�DB���C�C��DB�BA�CA�D��

FE���D��B����A���D��DEAE��D�����C� DB!��E�D��AB� DB!C��

reservations and optimization problems are only a few domains in which the segment tree is used. Dynamic

programming techniques based on the use of the segment tree were presented in [8].

5. Conclusions and Future Work

In this paper we introduced a new model for the behavior of the sender in a TCP conversation. Using this model,

we presented a new O(n�log
2
n) dynamic programming algorithm which computes the sender’s minimum total

processing time, when the receiver’s advertised window sizes and the sender’s system load are known in advance. In

this paper we focused only on the theoretical aspects of the buffer management strategy (model definition and

algorithm efficiency); thus, we leave the practical validation of our model for future work. Also as part of our future

work, we intend to devise efficient, competitive, online algorithms for the problem. The model is similar to the

uncapacitated single-item economic lot sizing problem, which was studied in many papers, but was never connected

to the optimization of the TCP buffer management strategy. Although optimal O(n�log(n)) algorithms are known for

this problem, our algorithm is easier to implement and the techniques employed by the algorithm are of interest by

themselves, as they can be used for solving other problems, too. Moreover, we also introduced a novel, easy to use,

algorithmic framework for using the segment tree data structure in any application.

6. References

[1] A. Cohen, and R. Cohen, “A dynamic approach for efficient TCP buffer allocation”, IEEE Transactions on Computers 51,

IEEE Press, 2002, pp. 303-312.

[2] D. Goldenberg, M. Kagan, R. Ravid, and M.S. Tsorkin, “Zero copy sockets direct protocol over Infiniband – preliminary

implementation and performance analysis”, Proceedings of the 13th IEEE Symposium on High Performance Interconnects, IEEE

Press, 2005, pp. 128-137.

[3] K.-Y. Chen, and K.-M. Chao, “On the range maximum-sum segment query problem”, Discrete Applied Mathematics, 155,

Elsevier, 2007, pp. 2043-2052.

[4] G.R. Bitran, and H.H. Yanasse, “Computational complexity of the capacitated lot size problem”, Manage. Sci. 28, 1982, pp.

1174-1186.

[5] A. Federgruen, and M. Tzur, “A simple forward algorithm to solve general dynamic lot sizing models with n periods in

O(nlogn) or O(n) time”, Manage. Sci. 37, 1991, pp. 909-925.

[6] A. Wagelmans, S. Van Hoesel, and A. Kolen, “An O(nlogn) algorithm that runs in linear time in the Wagner-Whitin case”,

Oper. Res. 40, 1992, pp. 145-156.

[7] J.L. Bentley, “Solutions to Klee’s Rectangle Problems”, Technical Report, Carnegie-Mellon University, 1977.

[8] A. Aggarwal, and T. Tokuyama, “Consecutive interval query and dynamic programming on intervals”, Discrete Applied

Mathematics 85, Elsevier, 1998, pp. 1-24.

