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Abstract 
 

The Transmission Control Protocol (TCP) uses a sliding window in order to enforce flow control. The receiver 

advertises its available buffer space to the sender, which cannot transmit more data than the advertised space. 

Transmitted data is first copied from application buffers into TCP buffers and from there it is sent through the 

network. In this paper we propose a model which characterizes the sender’s behavior throughout the duration of a 

TCP conversation. The model is suitable in the case of powerful, but variably loaded senders, slow receivers, fast 

connections and moderate amounts of data transmitted. For this model we present an O(n�log
2
n) algorithm which 

computes the minimum processing time spent by the sender, if the window sizes advertised by the receiver and the 

sender’s load are known in advance. The solution is based on an algorithmic framework for the segment tree data 

structure, which we introduce in this paper. 

 

1. Introduction 
 

TCP uses a sliding window mechanism in order to enforce flow control and not overwhelm the receiver with too 

much data. This mechanism is particularly useful when a fast, powerful sender communicates with a slow receiver or 

with one having limited resources (small amounts of buffer space). However, these situations are rather stressful for 

the sender, which needs to copy data from application buffers into TCP buffers many times. If the sender is loaded 

by many applications performing different tasks, copying data between buffers might not always take the same 

amount of time. Because of this, it might happen that the sender becomes a performance bottleneck. 

In this paper we propose a model for characterizing the sender’s behavior throughout the life time of a TCP 

connection. Based on this model, we developed an O(n�log
2
n) algorithm for computing the minimum total processing 

time for the sender when the window sizes advertised by the receiver and the system load of the sender are known in 

advance. The algorithm can only be used offline, either when accurate estimates of the required parameters are 

known, or when detailed traces of TCP conversations are available. 

The rest of the paper is structured as follows. In Section 2 we present our model for the sender’s behavior and, 

based on it, we define the problem of minimizing the total processing time. In Section 3 we present the algorithm 

which computes the minimum total processing time on the sender side. In Section 4 we present related work, while in 

Section 5 we draw some conclusions and present future work. 

 

2. The TCP Sender Behavior Model 
 

After the initial three-way handshake, the TCP sender sends only as much data as the last window size advertised 

by the receiver. We will assume that throughout the TCP conversation, the receiver advertised its window size n 

times. The window size at the i
th

 advertisement is wi�0. After each advertisement i is received, the sender sends the 

next wi bytes of data to the receiver and waits for the next advertisement. We will assume that the total amount of 

transmitted bytes is equal to the sum of the window sizes. 

When receiving the i
th

 advertisement, the sender already has in its TCP buffer the next bbi�0 bytes to be sent. If 

bbi<wi, the sender will copy cbi bytes (wi-bbi�cbi) into its TCP buffer and then send wi bytes to the receiver. The 

sender may choose to copy some bytes into the TCP buffer even when bbi�wi. The time needed to copy x bytes into 

the TCP buffer at the time of the i
th

 advertisement is 
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tcopy,i(x)=tsetup,i + tbyte,i�x , x>0.        (1) 

There are two components comprised in the copy time. The first one (tsetup,i) is the setup time needed to initiate the 

transfer. The second one (tbyte,i) is the time required for copying a byte from the application buffer into the TCP 

buffer. If no byte is copied, then the copy time is 0 (tcopy,i(0)=0). The two time parameters (tsetup,i and tbyte,i) depend on 

the system load, which is variable. We will call a time step the moment when a window size advertisement is 

received. Given the values wi, tsetup,i and tbyte,i for each of the n time steps, the processing time depends on the number 

of bytes cbi copied between the application buffer and the TCP buffer at each step. We will assume that the TCP 

buffer capacity is very large (infinite) compared to the total number of bytes transferred. Thus, it would be possible 

for the sender to copy all the bytes in the TCP buffer during the first time step, if such a strategy were considered 

convenient. Although buffer space may be large enough for the data transferred on a single TCP connection, we must 

consider the fact that this buffer might be shared by several connections. We will take this into consideration by 

adding another parameter sci to every time step. This parameter represents the cost of storing one byte in the TCP 

buffer from time step i to time step i+1. sci will also be expressed in time units, because using up one byte of the TCP 

buffer increases the processing times of other TCP connections, which will have less buffer space at their disposal. 

Thus, this parameter represents the amount by which the processing times of other TCP conversations increase if one 

byte is stored for the current connection in the TCP buffer from time step i to the next. The total processing time of 

the sender is: 
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Given the values of all the parameters at each time step, the total processing time depends only on the number of 

bytes copied at each step. The values cbi for which TPT is minimum define an optimal sender buffer management 

strategy. It is interesting that, with another meaning given to the parameters, this problem is equivalent to the 

economic lot sizing problem [4,5,6]. 

 

3. An Efficient Algorithm 
 

Solving the problem starts with a non-trivial observation. Let’s assume that at the end of time step j, the TCP 

buffer contains X bytes (after copying the cbj bytes planned for that time step). Let’s also assume that among these X 

bytes, X1>0 were copied in the buffer at time step i1 and X2>0 were copied in the buffer at time step i2. The 

processing times incurred by the X1 and X2 bytes are given by the equations below, where A1, B1, A2 and B2 can be 

inferred easily: 

PT1=A1+(tbyte,i1+sci1 + sci1+1+…+scj-1)�X1= 

A1+B1�X1, 0�A1�tsetup,i1, B1�0 , 

(3) 

PT2=A2+(tbyte,i2+sci2+sci2+1+…+scj-1)�X2= 

A2+B2 �X2, 0�A2�tsetup,i2, B2�0 . 

(4) 

The processing time incurred by the X1+X2 bytes is PT12=PT1+PT2. If all the X1+X2 bytes had been copied in the 

TCP buffer at time step i1, the processing time would have been PTA=A1+B1�(X1+X2). Similarly, if all the X1+X2 

bytes had been copied in the TCP buffer at time step i2, the processing time would have been PTB=A2+B2�(X1+X2). 

We will show that either PTA or PTB must be less than or equal to PT12. We have 

PTA-PT12=B1�X2-B2�X2-A2=(B1-B2)�X2-A2 ,         (5) 

               PTB-PT12=(B2-B1)�X1-A1.                     (6) 

It is obvious that either B1-B2�0 or B2-B1�0, i.e. either PTA�PT12 or PTB�PT12. Thus, in an optimal solution, the 

time steps 1,…,n can be split in a number K of intervals [l1=1, r1], [l2=r1+1, r2], …, [lK=rK-1+1, rK=n], such that at 

every time step li, the number of bytes copied in the TCP buffer is 
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   (7) 

At the time steps j which are not the first time steps of some interval, no bytes will be copied in the TCP buffer 

and the required bytes will already be there. We will first present a simple O(n
2
) dynamic programming solution. 

Then, we will introduce the segment tree data structure and we will show how we can use it in order to improve the 

time complexity to O(n�log
2
n). 
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3.1. An O(n
2
) dynamic programming solution 

 

We will compute an array mintpt, where minpt[i] is the minimum total processing time if i were the last time step. 

For each step i, all the possible steps j are considered, such that j is the first time step of the interval ending at i. For 

each value of j, the total processing time is computed and the minimum value is maintained. The pseudocode is given 

below: 

mintpt[0]=0 

for i = 1 to n 

  mintpt[i]=+Infinity; wtotal=0; storagept=0 

  for j = i downto 1 

    storagept=storagept+scj�wtotal 

    wtotal=wtotal+wj 

    totalpt=tsetup,j+tbyte,j�wtotal+mintpt[j-1]+storagept 

    if (totalpt<mintpt[i]) then 

      mintpt[i]=totalpt 

 

3.2. The Segment Tree Data Structure 
 

The segment tree [7] is a binary tree structure used for performing operations on an array v with n cells. Each cell 

i (1�i�n) contains a value vi. Each node p of the tree has an associated interval [p.left, p.right], corresponding to an 

interval of cells. If the node p is not a leaf, then it has two sons: the left son (p.lson) and the right son (p.rson). The 

interval of the left son is [p.left, mid] and the right son’s interval is [mid+1, p.right], where 

mid=floor((p.left+p.right)/2). 

The leaves are those nodes whose associated interval contains only one cell. The interval of the root node is [1,n]. 

It is obvious that the height of the segment tree is O(log(n)). The tree can be built in O(n) time. Query operations 

consist of computing a function on the values of a range of cells [a,b] (range query) or on retrieving the value of a 

single cell (point query). 

Range Query(a, b): compute ),...,,( 1 baa vvvqFunc
+

. 

Analogously, we have point and range updates: 

Range Update(u, a, b): vi=uFunc(u, vi), a�i�b. 

The qFunc function must be binary and associative, i.e. qFunc(va,..,vb)=qFunc(va,qFunc(va+1,..,qFunc(vb-1, vb)..)) 

and qFunc(a,qFunc(b,c))=qFunc(qFunc(a,b),c). We must also have uFunc(x,y)=uFunc(y,x). Only values vi with 

O(1) size are considered (numbers and tuples with a fixed number of elements). In order to use the segment tree, we 

introduce here an algorithmic framework, consisting of the functions from Table 1. 

������������������������������������	�AB�CD��E��	�AB�CD��E��	�AB�CD��E��	�AB�CD��E���FE�B���E��F�C�D��C��FE�B���E��F�C�D��C��FE�B���E��F�C�D��C��FE�B���E��F�C�D��C�����

Update Fuctions Query Functions 

STpointUpdate 

STrangeUpdate 

STpointUpdateNode 

STrangeUpdateNodeFit 

STrangeUpdateNodeIncl 

STpointQuery 

STrangeQuery 

STpointQueryNode 

STrangeQueryNodeFit 

STrangeQueryNodeIncl 

In order to perform a range update, we call the STrangeUpdate function with the root of the segment tree as the 

node argument, the update parameter and the update interval. If the update interval is equal to the node’s interval, 

then the STrangeUpdateNodeFit function is called; otherwise, if the intersection between the interval of one of the 

node’s sons and the update interval is non-empty, the function is called with that son as the node argument and with 

the interval intersection as the update interval. The function visits O(log(n)) tree nodes. A range query 

(STrangeQuery) works similarly. A point query (STpointQuery) or update (STpointUpdate) on a position i traverses 

the tree upwards, from the leaf with the interval [i,i] towards the root. The leaf node is either found directly or by 

traversing the tree downwards from the root towards the leaf. When using range queries and range updates together, 

we must also have a “multiplication” operator mop which computes the effects of an update upon the result of a 

query on a range of points. qFunc and uFunc must be able to handle uninitialized values. If one of their two 
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arguments is uninitialized, the functions must simply return the other argument. In the following examples, we will 

not present this part. 

STpointUpdate(node, u, i): 
// node is the tree leaf with the interval [i,i] 

while (node�null) do 

STpointUpdateNode(node, u)  

node=node.parent 

STpointUpdateNode(node, u): 
if (node is a leaf) then 

  node.qagg=uFunc(u, node.qagg) 

else node.qagg=qFunc(node.lson.qagg, node.rson.qagg) 

STrangeUpdate(node, u, a, b): 
if ((a=node.left) and (node.right=b)) then 

  // the update “stopped” at this node 

  STrangeUpdateNodeFit(node, u)  

else 

  lson, rson = left and right son of the current tree node 

  if ((a�lson.right) and (lson.left�b)) then 

   STrangeUpdate(lson,u,max(a,lson.left),min(b, lson.right)) 

  if ((a�rson.right) and (rson.left�b)) then 

   STrangeUpdate(rson,u,max(a,rson.left),min(b rson.right)) 

  STrangeUpdateNodeIncl(node, u, a, b) 

STrangeUpdateNodeFit(node, u): 
node.uagg=uFunc(u, node.uagg) 

// update the query aggregate 

node.qagg=uFunc(mop(u,node.left,node,right),node.qagg)) 

STrangeUpdateNodeIncl(node, u, a, b): 
node.qagg=uFunc(mop(node.uagg, node.left, node.right), qFunc(node.lson.qagg, node.rson.qagg)) 

STpointQuery(node, i): 
// node is the tree leaf with the interval [i,i] 

q=node.qagg; node=node.parent 

while (node�null) do 

  q=uFunc(STpointQueryNode(node), q) 

  node=node.parent 

return q 

STpointQueryNode(node): 
return node.uagg 

STrangeQuery(node, a, b): 
if (a=node.left and node.right=b) then 

  // the query “stopped” at this node 

  return STrangeQueryNodeFit(node) 

else 

q=uninitialized 

  if ((a�node.lson.right) and (node.lson.left�b)) then 

    q=qFunc(q, STrangeQuery(node.lson, max(a, node.lson. left), min(b, node.lson.right)) 

  if ((a�node.rson.right) and (node.rson.left�b)) then 

    q=qFunc(q, STrangeQuery(node.rson, max(a,node.rson. left), min(b, node.rson.right)) 

  return uFunc(STrangeQueryNodeIncl(node, a, b), q) 

STrangeQueryNodeFit(node): 
return node.qagg 

STrangeQueryNodeIncl(node, a, b): 
return mop(node.uagg, a, b) 

Each node of the tree has a pointer to its parent (this pointer is null for the root of the tree) and stores two values: 

uagg, an update aggregate and qagg, a query aggregate. node.uagg is the aggregate value of all the update 
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parameters of the STrangeUpdateNodeFit function calls on node. At any moment, node.qagg is the answer to the 

range query on the interval [node.left, node.right] if the updates which “stopped” at higher levels are ignored. When 

building the tree, qagg is set to vi (for a leaf with the interval [i,i]), while for nodes p which are not leaves, p.qagg is 

set to qFunc(p.lson. qagg, p.rson.qagg). qagg is modified by the update functions. In STrangeUpdateIncl, qagg is 

recomputed from scratch, after an update changed the qagg values of the node’s sons. Alternatively, for some update 

and query functions, we could modify qagg directly: 

node.qagg=uFunc(mop(u, a, b), node.qagg) 

uagg and qagg are used together only when range queries are used together with range updates. In the case of 

point queries with range updates, only the uagg values are meaningful; similarly, only the qagg values are 

meaningful in the case of point updates with range queries. Common update and query functions can be easily 

integrated into the framework. For example, with uFunc(x,y)=(x+y), qFunc(x,y)=(x+y) and mop(u,a,b)= u·(b-a+1), 

we can support point and range sum queries, together with point and range addition updates. For uFunc(x,y)=x+y, 

qFunc(x,y)=min(x,y) and mop(u,a,b) =u, we can support point and range minimum queries, together with point and 

range addition updates. We can also consider point and range multiplication updates, uFunc(x,y)=x·y, with point and 

range queries: qFunc(x,y)=x·y (with mop(u,a,b)=u
b-a+1

), qFunc(x,y)= min(x,y) and qFunc(x,y)=(x+y) (with 

mop(u,a,b)=u). With mop(u,a,b)=u, we can support range queries and updates for some bit functions (where vi=0 or 

1). For uFunc(x,y)=(x or y) or uFunc(x,y)=(x and y), we can have qFunc(x,y)=(x and y) and qFunc(x,y)=(x or y). 

For the and update, we can also have qFunc(x,y)=(x xor y). We can support range xor updates and queries 

(uFunc(x,y) = qFunc(x,y) = (x xor y)), but with mop(u,a,b)=if (((b-a+1) mod 2)=0) then 0 else u. In order to obtain 

any combination of bit functions, we notice that the result of a query depends only on the number of 0 and 1 values 

(cnt0, cnt1) in the query range: if (cnt1>0) then or returns 1; if (cnt1 mod 2=1) then xor returns 1; if (cnt0=0) then and 

returns 1. Thus, we will work with (cnt0, cnt1) tuples as values. We will also consider the conceptual values cvi, 

which are the numerical values we conceptually work with. We have vi=(1-cvi, cvi). A query asks for the number of 0 

and 1 conceptual values in the query range and an update changes this number according to the bit function used. 

Any combination of point and range queries and updates is supported with the functions below: 

bitTupleQuery((cnt0,x, cnt1,x), (cnt0,y, cnt1,y)): 
return (cnt0,x+cnt0,y, cnt1,x+cnt1,y) 

bitTupleUpdate((1-u, u), (cnt0, cnt1), func): 
if (func=and) and (u=0) then return (cnt0+cnt1, 0) 

else if (func=or) and (u=1) then return (0, cnt0+cnt1) 

else if (func=xor) and (u=1) then return (cnt1, cnt0) 

else return (cnt0, cnt1) 

For other types of operations, the framework can only support combinations like point queries with range updates 

or range queries with point updates. For instance, if the update function has the effect of setting all the values in a 

range to the same value s (range set), we will again need to work with tuples: the values vi and the update parameters 

u will have the form (numerical value, time_stamp). We need to have a timestamp() function which returns 

increasing values upon successive calls. We can use a global counter as a time stamp, which is incremented at every 

call. The initial numerical values are assigned an initial time stamp and every update parameter gets a more recent 

time stamp. The update function is: 

uFunc((vx, tx), (vy, ty)): 
if (tx>ty) then return (vx, tx) else return (vy, ty) 

With these definitions, a point query function call on a position i will return the last update parameter on the path 

from the leaf with the [i,i] interval, to the root.  

A useful range query function (used together with point updates) is finding the maximum sum segment (interval of 

consecutive cells) fully contained in a range of cells [a,b] (see [3] for this problem without updates). Conceptually, 

the value of a cell i is a number cvi, but in the framework we will use tuples consisting of 4 values: (totalsum, 

maxlsum, maxrsum, maxsum). Assuming that these values correspond to an interval of cells [c,d], we have the 

following definitions: 
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In the framework, a value vi will be a tuple corresponding to the interval [i,i]. If cvi<0, then vi=(cvi, 0, 0, 0); 

otherwise, vi=(cvi, cvi, cvi, cvi). The point update function changes the value of cvi of a cell i and then recomputes vi. 

The qFunc function is given below: 

qFunc((tx,mlx,mrx,mx), (ty,mly,mry,my)): 
return (tx+ty , max{mlx , tx+mly}, max{mry , ty+mrx}, max{mx , my , mrx+mly}) 

 

3.3. The O(n·log
2
n) solution 

 

This solution is based on the segment tree data structured, presented previously. Basically, we want to compute 

the same array mintpt as in the other solutions. When computing mintpt[i], we can choose the time step j, which is 

the beginning of the time step interval ending at i, from the set {1,2,…,i}. We will define the family of functions 

fj(x), representing the minimum total processing time for the first x time steps, if x is considered the last time step 

and j is the first time step of the interval ending at x. For each i, we will have to find the function fj whose fj(i) value 

is minimum. We will first introduce two new arrays, scp and wp, representing the prefix sums of the arrays sc and w: 
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  (9). 

A function fj is defined on the interval [j-1,n]. The first value, fj(j-1) does not have a practical meaning, as a 

function fj is considered only at the time steps j,..,n; it is introduced to simplify the analysis. We have: 

fj(j-1)=mintpt[j-1]+tsetup,j ,            (10) 

fj(j) = mintpt[j-1]+tsetup,j+tbyte,j�wj = fj(j-1)+tbyte,j�wj . (11) 
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The difference between two consecutive values of a function fj (dfj(x)) contains the processing time of copying wx 

bytes in the TCP buffer at time step j and the sum of processing times incurred by storing the wx bytes in the TCP 

buffer until time step x. Using the prefix sum arrays, the difference can be rewritten: 

dfj(x)=tbyte,j�wx + (scp[x-1] – scp[j-1])�wx = 

scp[x-1]�wx + (tbyte,j – scp[j-1])�wx. 

(13) 

The difference is now composed of two terms: the term scp[x-1]�wx, which depends only on the point at which the 

function is evaluated and a term which is composed of two factors, one of which is constant for a given function fj 

and the other one depends only on the point where the function is evaluated. The factor which is constant for a 

function fj will be denoted by 

pj=tbyte,j-scp[j-1].                          (14) 

We will now slightly change the definitions of the functions and remove the term scp[x-1]�wx. This term does not 

influence the relative ordering of the values of the functions fj. After computing mintpt[n] using the new definitions 

of the functions, we will add at the end the sum of all the excluded terms: 
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(15) 

With the new definitions, the equation for dfj(x) is dfj(x)=fj(x)-fj(x-1)=pj�wx. The initial values fj(j-1) do not 

change.  If we associate to each time step i an x-coordinate wp[i], we can change the definitions of the functions 

further and obtain some new functions gj, defined on the interval [wp[j-1], wp[n]]: gj(x)=gj(wp[j-1])+pj�(x-wp[j-1]), 

where gj(wp[j-1])=fj(j-1). It is easy to see that the relationship between the functions gj and fj is: gj(wp[x])=fj(x). 

The functions gj are half lines and, thus, have the following useful property: the values of each function gj are the 

globally minimum values among all the functions either on an interval of x-coordinates [lxj, rxj] or none of its values 

is a global minimum. The proof is easy. Let’s assume that the function gj has the globally minimum values on two 

disjoint intervals [lxj1, rxj1] and [lxj2, rxj2], with lxj2>rxj1. There are two possibilities: The first one is that there exists 

some function gk, such that gk(x)>gj(x), for x�rxj1-� and gk(x)<gj(x) for x�rxj1. In order for this to happen, the 

function gk must have a slope pk which is smaller than the slope pj of the function gj. But if this is the case, then 

gk(x)<gj(x), for any x�rxj1, so function gj can never become minimum again. The second possibility is that a function 

gk “started” at x=rxj1 (that is, rxj1 is the first point on its definition domain) and its values is minimum. But, from the 
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way the functions are defined, the first value of a function gk is equal to the minimum value of the functions gp (p<k), 

plus tsetup,j (which is positive), so gk(rxj1) cannot be the globally minimum value. 

With the observation that each function has globally minimum values on at most one interval, we can use a 

segment tree for storing half lines. The n+1 cells for which the segment tree is built correspond to the points wp[1], 

wp[2], …, wp[n] and wp[n+1]=wp[n]+1. The queries will be point queries and the update operations will be of the 

type “range set”. Thus, each value of the segment tree consists of a pair (numerical value, timestamp). The 

pseudocode is given below: 

compute scp, wp (scp[0]=wp[0]=0) and Sterms 

mintpt[0]=0 

for i = 1 to n 

  ginit[i]=mintpt[i-1]+tsetup,i 

  p[i]=tbyte,i-scp[i-1] 

  // find the interval [lxi,rxi] on which gi is globally minimum 

  [lxi, rxi]=find_interval(i) 

  if (lxi�rxi) then 

    STrangeUpdate(segment_tree_root , u(i), lxi , rxi) 

  mintpt[i]=get_min(i) 

return mintpt[n]+Sterms 

The u(i) argument of the update function is (i, timestamp()). The get_min function returns the globally minimum 

value of the functions gj at the point wp[i]. 

get_min(i): 
(k,t)=STpointQuery(leaf node with the interval [i,i], i) 

return ginit[k]+(wp[i]-wp[k-1])�p[k] 

In the find_interval function we binary search for the first time step lxi (between i and n) where the value 

gi(wp[lxi]) is the smallest among all the functions’ values. In a similar manner, the last time step rxi is binary 

searched, too. In order to find lxi, we first need to observe how the function gi’s values change relative to the globally 

minimum value of the other functions. In general (excluding particular cases), gi(wp[i-1]) is larger than the minimum 

value. Then, the difference between gi(x) and the minimum value at point x decreases until gi(x) becomes smaller 

than the former minimum value at point x. The function gi is minimum until x=rxi, after which the difference between 

gi(x) and the minimum value at point x increases, for x>rxi. This type of behavior suggests that a binary search on the 

differences between two consecutive values of the function h(x)=gi(x)-get_min(x) is appropriate. In order to handle 

values wi=0, we use an array wpnext, where wpnext[i] (i�n) is the next position j>i, such that wp[j]>wp[i], i.e. 

wpnext[i]=if (wp[i+1]> wp[i]) then (i+1) else wpnext[i+1]. We will also repeatedly decrease the value of n, until 

wn>0 (or n=0). 

left=i; right=n; lxi=n+1 

while (left�right) do 

  mid = (left+right) div 2 // integer division 

gi_mid_1 = ginit[i]+(wp[mid]-wp[i-1])�p[i] 

dg=p[i]·(wp[wpnext[mid]]-wp[mid]) 

  fmin1=get_min(mid); fmin2=get_min(wpnext[mid]) 

dmin=fmin2-fmin1 

if (gi_mid_1<fmin1) then { lxi=mid; right=mid-1 } 

  else if (dg<dmin) then left=mid+1  

  else right=mid-1 

In the end, lxi contains the left endpoint of the interval in which gi is minimum (or lxi=n+1 if such an interval does 

not exist). rxi is computed analogously. 

 

4. Related Work 
 

TCP buffer management strategies have been proposed in many papers, for optimizing different performance 

metrics [1,2]. As far as we know, TCP sender buffer management has not been addressed from the perspective 

presented in this section. The (uncapacitated) economic lot sizing problem and different variations of it were studied 

extensively in many papers [4,5,6] and optimal O(n�log(n)) algorithms were proposed for solving it. The segment 

tree data structure [7] is used for solving many problems; computational geometry, online scheduling, advance 
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reservations and optimization problems are only a few domains in which the segment tree is used. Dynamic 

programming techniques based on the use of the segment tree were presented in [8]. 

 

5. Conclusions and Future Work 
 

In this paper we introduced a new model for the behavior of the sender in a TCP conversation. Using this model, 

we presented a new O(n�log
2
n) dynamic programming algorithm which computes the sender’s minimum total 

processing time, when the receiver’s advertised window sizes and the sender’s system load are known in advance. In 

this paper we focused only on the theoretical aspects of the buffer management strategy (model definition and 

algorithm efficiency); thus, we leave the practical validation of our model for future work. Also as part of our future 

work, we intend to devise efficient, competitive, online algorithms for the problem. The model is similar to the 

uncapacitated single-item economic lot sizing problem, which was studied in many papers, but was never connected 

to the optimization of the TCP buffer management strategy. Although optimal O(n�log(n)) algorithms are known for 

this problem, our algorithm is easier to implement and the techniques employed by the algorithm are of interest by 

themselves, as they can be used for solving other problems, too. Moreover, we also introduced a novel, easy to use, 

algorithmic framework for using the segment tree data structure in any application. 
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