Ionut Mugurel

Andreica

Nicolae Tapus
email: nicolae.tapus@cs.pub.ro

2345526777829ABCDEF2CA2D2C2FABF2C2ABA829ABCCDE2BD267772C2A2DFEA2DB2F2DAB2CAC2E2FE2BBAE2DB2BA2AF2EE2 BABEEBACE2C2FABF2DB2FABCE2DB2BDDDEF2BDCAC2BAFE2EA 2DAA2 DB!C2DB2BACFA2DB2BACBDE2D2CABABC2DB2CC2DB2BACA2D2 FE2DBA2DDEAE2D2C2 DB!2E2DAB2 DB!C82

The Transmission Control Protocol (TCP) uses a sliding window in order to enforce flow control. The receiver advertises its available buffer space to the sender, which cannot transmit more data than the advertised space. Transmitted data is first copied from application buffers into TCP buffers and from there it is sent through the network. In this paper we propose a model which characterizes the sender's behavior throughout the duration of a TCP conversation. The model is suitable in the case of powerful, but variably loaded senders, slow receivers, fast connections and moderate amounts of data transmitted. For this model we present an O(n1log 2 n) algorithm which computes the minimum processing time spent by the sender, if the window sizes advertised by the receiver and the sender's load are known in advance. The solution is based on an algorithmic framework for the segment tree data structure, which we introduce in this paper. 12345526777829ABCDEF2CA2D2C2FABF2C2ABA829ABCCDE2BD267772C2A2DFEA2DB2F2DAB2CAC2E2FE2BBAE2DB2BA2AF2EE2 BABEEBACE2C2FABF2DB2FABCE2DB2BDDDEF2BDCAC2BAFE2EA 2DAA2 DB!C2DB2BACFA2DB2BACBDE2D2CABABC2DB2CC2DB2BACA2D2 FE2DBA2DDEAE2D2C2 DB!2E2DAB2 DB!C82

Introduction

TCP uses a sliding window mechanism in order to enforce flow control and not overwhelm the receiver with too much data. This mechanism is particularly useful when a fast, powerful sender communicates with a slow receiver or with one having limited resources (small amounts of buffer space). However, these situations are rather stressful for the sender, which needs to copy data from application buffers into TCP buffers many times. If the sender is loaded by many applications performing different tasks, copying data between buffers might not always take the same amount of time. Because of this, it might happen that the sender becomes a performance bottleneck.

In this paper we propose a model for characterizing the sender's behavior throughout the life time of a TCP connection. Based on this model, we developed an O(n1log 2 n) algorithm for computing the minimum total processing time for the sender when the window sizes advertised by the receiver and the system load of the sender are known in advance. The algorithm can only be used offline, either when accurate estimates of the required parameters are known, or when detailed traces of TCP conversations are available.

The rest of the paper is structured as follows. In Section 2 we present our model for the sender's behavior and, based on it, we define the problem of minimizing the total processing time. In Section 3 we present the algorithm which computes the minimum total processing time on the sender side. In Section 4 we present related work, while in Section 5 we draw some conclusions and present future work.

The TCP Sender Behavior Model

After the initial three-way handshake, the TCP sender sends only as much data as the last window size advertised by the receiver. We will assume that throughout the TCP conversation, the receiver advertised its window size n times. The window size at the i th advertisement is w i 20. After each advertisement i is received, the sender sends the next w i bytes of data to the receiver and waits for the next advertisement. We will assume that the total amount of transmitted bytes is equal to the sum of the window sizes.

When receiving the i th advertisement, the sender already has in its TCP buffer the next bb i 20 bytes to be sent. If bb i <w i , the sender will copy cb i bytes (w i -bb i 3cb i) into its TCP buffer and then send w i bytes to the receiver. The sender may choose to copy some bytes into the TCP buffer even when bb i 2w i . The time needed to copy x bytes into the TCP buffer at the time of the i th advertisement is

12345526777829ABCDEF2CA2D2C2FABF2C2ABA829ABCCDE2BD267772C2A2DFEA2DB2F2DAB2CAC2E2FE2BBAE2DB2BA2AF2EE2 BABEEBACE2C2FABF2DB2FABCE2DB2BDDDEF2BDCAC2BAFE2EA 2DAA2 DB!C2DB2BACFA2DB2BACBDE2D2CABABC2DB2CC2DB2BACA2D2 FE2DBA2DDEAE2D2C2 DB!2E2DAB2 DB!C82 t copy,i (x)=t setup,i + t byte,i 1x , x>0. (1)
There are two components comprised in the copy time. The first one (t setup,i) is the setup time needed to initiate the transfer. The second one (t byte,i) is the time required for copying a byte from the application buffer into the TCP buffer. If no byte is copied, then the copy time is 0 (t copy,i (0)=0). The two time parameters (t setup,i and t byte,i) depend on the system load, which is variable. We will call a time step the moment when a window size advertisement is received. Given the values w i , t setup,i and t byte,i for each of the n time steps, the processing time depends on the number of bytes cb i copied between the application buffer and the TCP buffer at each step. We will assume that the TCP buffer capacity is very large (infinite) compared to the total number of bytes transferred. Thus, it would be possible for the sender to copy all the bytes in the TCP buffer during the first time step, if such a strategy were considered convenient. Although buffer space may be large enough for the data transferred on a single TCP connection, we must consider the fact that this buffer might be shared by several connections. We will take this into consideration by adding another parameter sc i to every time step. This parameter represents the cost of storing one byte in the TCP buffer from time step i to time step i+1. sc i will also be expressed in time units, because using up one byte of the TCP buffer increases the processing times of other TCP connections, which will have less buffer space at their disposal. Thus, this parameter represents the amount by which the processing times of other TCP conversations increase if one byte is stored for the current connection in the TCP buffer from time step i to the next. The total processing time of the sender is:

11 1 = - = - = - ⋅ + = n i i j j j i n i i i copy w cb sc cb t TPT 2 1 1 1 1 ,) () (.
(2) Given the values of all the parameters at each time step, the total processing time depends only on the number of bytes copied at each step. The values cb i for which TPT is minimum define an optimal sender buffer management strategy. It is interesting that, with another meaning given to the parameters, this problem is equivalent to the economic lot sizing problem [START_REF] Bitran | Computational complexity of the capacitated lot size problem[END_REF][START_REF] Federgruen | A simple forward algorithm to solve general dynamic lot sizing models with n periods in O(nlogn) or O(n) time[END_REF][START_REF] Wagelmans | An O(nlogn) algorithm that runs in linear time in the Wagner-Whitin case[END_REF].

An Efficient Algorithm

Solving the problem starts with a non-trivial observation. Let's assume that at the end of time step j, the TCP buffer contains X bytes (after copying the cb j bytes planned for that time step). Let's also assume that among these X bytes, X 1 >0 were copied in the buffer at time step i 1 and X 2 >0 were copied in the buffer at time step i 2 . The processing times incurred by the X 1 and X 2 bytes are given by the equations below, where A 1 , B 1 , A 2 and B 2 can be inferred easily:

PT 1 =A 1 +(t byte,i1 +sc i1 + sc i1+1 +…+sc j-1)

1X 1 = A 1 +B 1 1X 1 , 03A 1 3t setup,i1 , B 1 20 , (3)
PT 2 =A 2 +(t byte,i2 +sc i2 +sc i2+1 +…+sc j-1)

1X 2 = A 2 +B 2 1X 2 , 03A 2 3t setup,i2 , B 2 20 . (4)
The processing time incurred by the X 1 +X 2 bytes is PT 12 =PT 1 +PT 2 . If all the X 1 +X 2 bytes had been copied in the TCP buffer at time step i 1 , the processing time would have been PT A =A 1 +B 1 1(X 1 +X 2). Similarly, if all the X 1 +X 2 bytes had been copied in the TCP buffer at time step i 2 , the processing time would have been PT B =A 2 +B 2 1(X 1 +X 2). We will show that either PT A or PT B must be less than or equal to PT 12 . We have

PT A -PT 12 =B 1 1X 2 -B 2 1X 2 -A 2 =(B 1 -B 2)1X 2 -A 2 , (5
) PT B -PT 12 =(B 2 -B 1)1X 1 -A 1 .
(6) It is obvious that either B 1 -B 2 30 or B 2 -B 1 30, i.e. either PT A 3PT 12 or PT B 3PT 12 . Thus, in an optimal solution, the time steps 1,…,n can be split in a number K of intervals [l 1 =1, r 1], [l 2 =r 1 +1, r 2], …, [l K =r K -1+1, r K =n], such that at every time step l i , the number of bytes copied in the TCP buffer is

1 = = i i i r l j j l w cb (7)
At the time steps j which are not the first time steps of some interval, no bytes will be copied in the TCP buffer and the required bytes will already be there. We will first present a simple O(n 2) dynamic programming solution. Then, we will introduce the segment tree data structure and we will show how we can use it in order to improve the time complexity to O(n1log 2 n).

12345526777829ABCDEF2CA2D2C2FABF2C2ABA829ABCCDE2BD267772C2A2DFEA2DB2F2DAB2CAC2E2FE2BBAE2DB2BA2AF2EE2 BABEEBACE2C2FABF2DB2FABCE2DB2BDDDEF2BDCAC2BAFE2EA 2DAA2 DB!C2DB2BACFA2DB2BACBDE2D2CABABC2DB2CC2DB2BACA2D2 FE2DBA2DDEAE2D2C2 DB!2E2DAB2 DB!C82

An O(n 2) dynamic programming solution

We will compute an array mintpt, where minpt[i] is the minimum total processing time if i were the last time step. For each step i, all the possible steps j are considered, such that j is the first time step of the interval ending at i. For each value of j, the total processing time is computed and the minimum value is maintained. The pseudocode is given below:

mintpt[0]=0 for i = 1 to n mintpt[i]=+Infinity; wtotal=0; storagept=0 for j = i downto 1 storagept=storagept+sc j 1wtotal wtotal=wtotal+w j totalpt=t setup,j +t byte,j 1wtotal+mintpt[j-1]+storagept if (totalpt<mintpt[i]) then mintpt[i]=totalpt

The Segment Tree Data Structure

The segment tree [START_REF] Bentley | Solutions to Klee's Rectangle Problems[END_REF] is a binary tree structure used for performing operations on an array v with n cells. Each cell i (13i3n) contains a value v i . Each node p of the tree has an associated interval ,c). We must also have uFunc(x,y)=uFunc(y,x). Only values v i with O(1) size are considered (numbers and tuples with a fixed number of elements). In order to use the segment tree, we introduce here an algorithmic framework, consisting of the functions from Table 1 In order to perform a range update, we call the STrangeUpdate function with the root of the segment tree as the node argument, the update parameter and the update interval. If the update interval is equal to the node's interval, then the STrangeUpdateNodeFit function is called; otherwise, if the intersection between the interval of one of the node's sons and the update interval is non-empty, the function is called with that son as the node argument and with the interval intersection as the update interval. The function visits O(log(n)) tree nodes. A range query (STrangeQuery) works similarly. A point query (STpointQuery) or update (STpointUpdate) on a position i traverses the tree upwards, from the leaf with the interval [i,i] towards the root. The leaf node is either found directly or by traversing the tree downwards from the root towards the leaf. When using range queries and range updates together, we must also have a "multiplication" operator mop which computes the effects of an update upon the result of a query on a range of points. qFunc and uFunc must be able to handle uninitialized values. If one of their two Each node of the tree has a pointer to its parent (this pointer is null for the root of the tree) and stores two values: uagg, an update aggregate and qagg, a query aggregate. node.uagg is the aggregate value of all the update

12345526777829ABCDEF2CA2D2C2FABF2C2ABA829ABCCDE2BD267772C2A2DFEA2DB2F2DAB2CAC2E2FE2BBAE2DB2BA2AF2EE2 BABEEBACE2C2FABF2DB2FABCE2DB2BDDDEF2BDCAC2BAFE2EA 2DAA2 DB!C2DB2BACFA2DB2BACBDE2D2CABABC2DB2CC2DB2BACA2D2 FE2DBA2DDEAE2D2C2 DB!2E2DAB2 DB!C82
12345526777829ABCDEF2CA2D2C2FABF2C2ABA829ABCCDE2BD267772C2A2DFEA2DB2F2DAB2CAC2E2FE2BBAE2DB2BA2AF2EE2 BABEEBACE2C2FABF2DB2FABCE2DB2BDDDEF2BDCAC2BAFE2EA 2DAA2 DB!C2DB2BACFA2DB2BACBDE2D2CABABC2DB2CC2DB2BACA2D2 FE2DBA2DDEAE2D2C2 DB!2E2DAB2 DB!C82
parameters of the STrangeUpdateNodeFit function calls on node. At any moment, node.qagg is the answer to the range query on the interval [node.left, node.right] if the updates which "stopped" at higher levels are ignored. When building the tree, qagg is set to v i (for a leaf with the interval [i,i]), while for nodes p which are not leaves, p.qagg is set to qFunc(p.lson. qagg, p.rson.qagg). qagg is modified by the update functions. In STrangeUpdateIncl, qagg is recomputed from scratch, after an update changed the qagg values of the node's sons. Alternatively, for some update and query functions, we could modify qagg directly: (u,a,b)=u, we can support range queries and updates for some bit functions (where v i =0 or 1). For uFunc(x,y)=(x or y) or uFunc(x,y)=(x and y), we can have qFunc(x,y)=(x and y) and qFunc(x,y)=(x or y). For the and update, we can also have qFunc(x,y)=(x xor y). We can support range xor updates and queries (uFunc(x,y) = qFunc(x,y) = (x xor y)), but with mop(u,a,b)=if (((b-a+1) mod 2)=0) then 0 else u. In order to obtain any combination of bit functions, we notice that the result of a query depends only on the number of 0 and 1 values (cnt 0 , cnt 1) in the query range: if (cnt 1 >0) then or returns 1; if (cnt 1 mod 2=1) then xor returns 1; if (cnt 0 =0) then and returns 1. Thus, we will work with (cnt 0 , cnt 1) tuples as values. We will also consider the conceptual values cv i , which are the numerical values we conceptually work with. We have v i =(1-cv i , cv i). A query asks for the number of 0 and 1 conceptual values in the query range and an update changes this number according to the bit function used. Any combination of point and range queries and updates is supported with the functions below: bitTupleQuery((cnt 0,x , cnt 1,x), (cnt 0,y , cnt 1,y)): return (cnt 0,x +cnt 0,y , cnt 1,x +cnt 1,y) bitTupleUpdate((1-u, u), (cnt 0 , cnt 1), func): if (func=and) and (u=0) then return (cnt 0 +cnt 1 , 0) else if (func=or) and (u=1) then return (0, cnt 0 +cnt 1) else if (func=xor) and (u=1) then return (cnt 1 , cnt 0) else return (cnt 0 , cnt 1)

For other types of operations, the framework can only support combinations like point queries with range updates or range queries with point updates. For instance, if the update function has the effect of setting all the values in a range to the same value s (range set), we will again need to work with tuples: the values v i and the update parameters u will have the form (numerical value, time_stamp). We need to have a timestamp() function which returns increasing values upon successive calls. We can use a global counter as a time stamp, which is incremented at every call. The initial numerical values are assigned an initial time stamp and every update parameter gets a more recent time stamp. The update function is: uFunc((v x ,t x),(v y ,t y)): if (t x >t y) then return (v x , t x) else return (v y , t y) With these definitions, a point query function call on a position i will return the last update parameter on the path from the leaf with the [i,i] interval, to the root.

A useful range query function (used together with point updates) is finding the maximum sum segment (interval of consecutive cells) fully contained in a range of cells [a,b] (see [START_REF] Chen | On the range maximum-sum segment query problem[END_REF] for this problem without updates). Conceptually, the value of a cell i is a number cv i , but in the framework we will use tuples consisting of 4 values: (totalsum, maxlsum, maxrsum, maxsum). Assuming that these values correspond to an interval of cells [c,d], we have the following definitions:

1 = = d c p p cv totalsum 1 = ≤ ≤ = q c p p d q 1 - c cv max maxlsum 12345526777829ABCDEF2CA2D2C2FABF2C2ABA829ABCCDE2BD267772C2A2DFEA2DB2F2DAB2CAC2E2FE2BBAE2DB2BA2AF2EE2 BABEEBACE2C2FABF2DB2FABCE2DB2BDDDEF2BDCAC2BAFE2EA 2DAA2 DB!C2DB2BACFA2DB2BACBDE2D2CABABC2DB2CC2DB2BACA2D2 FE2DBA2DDEAE2D2C2 DB!2E2DAB2 DB!C82 1 = + ≤ ≤ = d q p p 1 d q c cv max maxrsum 1 = ≤ ≤ ≤ ≤ = r q p p d r 1 - q d q c cv max maxsum
In the framework, a value v i will be a tuple corresponding to the interval [i,i]. If cv i <0, then v i =(cv i , 0, 0, 0); otherwise, v i =(cv i , cv i , cv i , cv i). The point update function changes the value of cv i of a cell i and then recomputes v i . The qFunc function is given below: qFunc((t x ,ml x ,mr x ,m x), (t y ,ml y ,mr y ,m y)): return (t x +t y , max{ml x , t x +ml y }, max{mr y , t y +mr x }, max{m x , m y , mr x +ml y })

The O(n•log 2 n) solution

This solution is based on the segment tree data structured, presented previously. Basically, we want to compute the same array mintpt as in the other solutions. When computing mintpt[i], we can choose the time step j, which is the beginning of the time step interval ending at i, from the set {1,2,…,i}. We will define the family of functions f j (x), representing the minimum total processing time for the first x time steps, if x is considered the last time step and j is the first time step of the interval ending at x. For each i, we will have to find the function f j whose f j (i) value is minimum. We will first introduce two new arrays, scp and wp, representing the prefix sums of the arrays sc and w:

1 = = i j j sc i scp 1] [(8), 1 = = i j j w i wp 1] [(9).
A function f j is defined on the interval [j-1,n]. The first value, f j (j-1) does not have a practical meaning, as a function f j is considered only at the time steps j,..,n; it is introduced to simplify the analysis. We have: f j (j-1)=mintpt[j-1]+t setup,j , (10) f j (j) = mintpt[j-1]+t setup,j +t byte,j 1w j = f j (j-1)+t byte,j 1w j . (11)

j x , t w 1) - (x f - (x) f (x) df 1 j byte, x j j j ≥ 2 2 3 4 5 5 6 7 + ⋅ = = 1 - = x j p p sc (12)
The difference between two consecutive values of a function f j (df j (x)) contains the processing time of copying w x bytes in the TCP buffer at time step j and the sum of processing times incurred by storing the w x bytes in the TCP buffer until time step x. Using the prefix sum arrays, the difference can be rewritten: df j (x)=t byte,j 1w

x + (scp[x-1] -scp[j-1])1w x = scp[x-1]1w x + (t byte,j -scp[j-1])1w x . (13
)
The difference is now composed of two terms: the term scp[x-1]1w x , which depends only on the point at which the function is evaluated and a term which is composed of two factors, one of which is constant for a given function f j and the other one depends only on the point where the function is evaluated. The factor which is constant for a function f j will be denoted by p j =t byte,j -scp[j-1]. (14) We will now slightly change the definitions of the functions and remove the term scp[x-1]1w x . This term does not influence the relative ordering of the values of the functions f j . After computing mintpt[n] using the new definitions of the functions, we will add at the end the sum of all the excluded terms:

1 = ⋅ - = n i i terms w i scp S 1] 1 [(15)
With the new definitions, the equation for df j (x) is df j (x)=f j (x)-f j (x-1)=p j 1w x . The initial values f j (j-1) do not change. If we associate to each time step i an x-coordinate wp[i], we can change the definitions of the functions further and obtain some new functions g j , defined on the interval [wp[j-1], wp[n]]: g j (x)=g j (wp[j-1])+p j 1(x-wp[j-1]), where g j (wp[j-1])=f j (j-1). It is easy to see that the relationship between the functions g j and f j is: g j (wp[x])=f j (x).

The functions g j are half lines and, thus, have the following useful property: the values of each function g j are the globally minimum values among all the functions either on an interval of x-coordinates [lx j , rx j] or none of its values is a global minimum. The proof is easy. Let's assume that the function g j has the globally minimum values on two disjoint intervals [lx j1 , rx j1] and [lx j2 , rx j2], with lx j2 >rx j1 . There are two possibilities: The first one is that there exists some function g k , such that g k (x)>g j (x), for x3rx j1 -4 and g k (x)<g j (x) for x2rx j1 . In order for this to happen, the function g k must have a slope p k which is smaller than the slope p j of the function g j . But if this is the case, then g k (x)<g j (x), for any x2rx j1 , so function g j can never become minimum again. The second possibility is that a function g k "started" at x=rx j1 (that is, rx j1 is the first point on its definition domain) and its values is minimum. But, from the

 [p.left, p.right], corresponding to an interval of cells. If the node p is not a leaf, then it has two sons: the left son (p.lson) and the right son (p.rson). The interval of the left son is [p.left, mid] and the right son's interval is [mid+1, p.right], where mid=floor((p.left+p.right)/2). The leaves are those nodes whose associated interval contains only one cell. The interval of the root node is [1,n]. It is obvious that the height of the segment tree is O(log(n)). The tree can be built in O(n) time. Query operations consist of computing a function on the values of a range of cells [a,b] (range query) or on retrieving the value of a single cell (point query). Range Query(a, b): have point and range updates: Range Update(u, a, b): v i =uFunc(u, v i), a3i3b. The qFunc function must be binary and associative, i.e. qFunc(v a ,..,v b)=qFunc(v a ,qFunc(v a+1 ,..,qFunc(v b-1 , v b)..)) and qFunc(a,qFunc(b,c))=qFunc(qFunc(a,b)

 node.qagg=uFunc(mop(u, a, b), node.qagg) uagg and qagg are used together only when range queries are used together with range updates. In the case of point queries with range updates, only the uagg values are meaningful; similarly, only the qagg values are meaningful in the case of point updates with range queries. Common update and query functions can be easily integrated into the framework. For example, with uFunc(x,y)=(x+y), qFunc(x,y)=(x+y) and mop(u,a,b)= u•(b-a+1), we can support point and range sum queries, together with point and range addition updates. For uFunc(x,y)=x+y, qFunc(x,y)=min(x,y) and mop(u,a,b) =u, we can support point and range minimum queries, together with point and range addition updates. We can also consider point and range multiplication updates, uFunc(x,y)=x•y, with point and range queries: qFunc(x,y)=x•y (with mop(u,a,b)=u b-a+1), qFunc(x,y)= min(x,y) and qFunc(x,y)=(x+y) (with mop(u,a,b)=u). With mop

(node): return node.uagg STrangeQuery(node, a, b):

 arguments is uninitialized, the functions must simply return the other argument. In the following examples, we will not present this part.

	STpointUpdate(node, u, i):
	// node is the tree leaf with the interval [i,i]
	while (node2null) do
	STpointUpdateNode(node, u)
	node=node.parent
	STpointUpdateNode(node, u):
	if (node is a leaf) then
	node.qagg=uFunc(u, node.qagg)
	else node.qagg=qFunc(node.lson.qagg, node.rson.qagg)
	STrangeUpdate(node, u, a, b):
	if ((a=node.left) and (node.right=b)) then
	// the update "stopped" at this node
	STrangeUpdateNodeFit(node, u)
	// node is the tree leaf with the interval [i,i]
	q=node.qagg; node=node.parent
	while (node2null) do
	q=uFunc(STpointQueryNode(node), q)
	node=node.parent
	return q
	STpointQueryNodeif (a=node.left and node.right=b) then
	// the query "stopped" at this node
	return STrangeQueryNodeFit(node)
	else
	q=uninitialized
	if ((a3node.lson.right) and (node.lson.left3b)) then
	q=qFunc(q, STrangeQuery(node.lson, max(a, node.lson. left), min(b, node.lson.right))
	if ((a3node.rson.right) and (node.rson.left3b)) then
	q=qFunc(q, STrangeQuery(node.rson, max(a,node.rson. left), min(b, node.rson.right))
	return uFunc(STrangeQueryNodeIncl(node, a, b), q)
	STrangeQueryNodeFit(node):
	return node.qagg
	STrangeQueryNodeIncl(node, a, b):
	return mop(node.uagg, a, b)

else lson, rson = left and right son of the current tree node if ((a3lson.right) and (lson.left3b)) then STrangeUpdate(lson,u,max(a,lson.left),min(b, lson.right)) if ((a3rson.right) and (rson.left3b)) then STrangeUpdate(rson,u,max(a,rson.left),min(b rson.right)) STrangeUpdateNodeIncl(node, u, a, b) STrangeUpdateNodeFit(node, u): node.uagg=uFunc(u, node.uagg) // update the query aggregate node.qagg=uFunc(mop(u,node.left,node,right),node.qagg)) STrangeUpdateNodeIncl(node, u, a, b): node.qagg=uFunc(mop(node.uagg, node.left, node.right), qFunc(node.lson.qagg, node.rson.qagg)) STpointQuery(node, i):

way the functions are defined, the first value of a function g k is equal to the minimum value of the functions g p (p<k), plus t setup,j (which is positive), so g k (rx j1) cannot be the globally minimum value.

With the observation that each function has globally minimum values on at most one interval, we can use a segment tree for storing half lines. The n+1 cells for which the segment tree is built correspond to the points wp [START_REF] Cohen | A dynamic approach for efficient TCP buffer allocation[END_REF], wp[2], …, wp[n] and wp[n+1]=wp[n]+1. The queries will be point queries and the update operations will be of the type "range set". Thus, each value of the segment tree consists of a pair (numerical value, timestamp). The pseudocode is given below:

// find the interval [lx i ,rx i] on which g i is globally minimum

The u(i) argument of the update function is (i, timestamp()). The get_min function returns the globally minimum value of the functions g j at the point wp [i].

get_min(i): (k,t)=STpointQuery(leaf node with the interval [i,i], i) return ginit[k]+(wp[i]-wp[k-1])1p[k]

In the find_interval function we binary search for the first time step lx i (between i and n) where the value g i (wp[lx i]) is the smallest among all the functions' values. In a similar manner, the last time step rx i is binary searched, too. In order to find lx i , we first need to observe how the function g i 's values change relative to the globally minimum value of the other functions. In general (excluding particular cases), g i (wp[i-1]) is larger than the minimum value. Then, the difference between g i (x) and the minimum value at point x decreases until g i (x) becomes smaller than the former minimum value at point x. The function g i is minimum until x=rx i , after which the difference between g i (x) and the minimum value at point x increases, for x>rx i . This type of behavior suggests that a binary search on the differences between two consecutive values of the function h(x)=g i (x)-get_min(x) is appropriate. In order to handle values w i =0, we use an array wpnext, where wpnext[i] (i3n) is the next position j>i, such that wp[j]>wp[i], i.e.

wpnext[i]=if (wp[i+1]> wp[i]) then (i+1) else wpnext[i+1].

We will also repeatedly decrease the value of n, until w n >0 (or n=0).

right=n; lx =n+1 while (left3right) do mid = (left+right) div 2 // integer division gi_mid_1 =

ginit[i]+(wp[mid]-wp[i-1])1p[i] dg=p[i]•(wp[wpnext[mid]]-wp[mid]) fmin1=get_min(mid); fmin2=get_min(wpnext[mid]) dmin=fmin2-fmin1 if (gi_mid_1<fmin1) then { lx i =mid; right=mid-1 } else if (dg<dmin) then left=mid+1 else right=mid-1

In the end, lx i contains the left endpoint of the interval in which g i is minimum (or lx i =n+1 if such an interval does not exist). rx i is computed analogously.

Related Work

TCP buffer management strategies have been proposed in many papers, for optimizing different performance metrics [START_REF] Cohen | A dynamic approach for efficient TCP buffer allocation[END_REF]2]. As far as we know, TCP sender buffer management has not been addressed from the perspective presented in this section. The (uncapacitated) economic lot sizing problem and different variations of it were studied extensively in many papers [START_REF] Bitran | Computational complexity of the capacitated lot size problem[END_REF][START_REF] Federgruen | A simple forward algorithm to solve general dynamic lot sizing models with n periods in O(nlogn) or O(n) time[END_REF][START_REF] Wagelmans | An O(nlogn) algorithm that runs in linear time in the Wagner-Whitin case[END_REF] and optimal O(n1log(n)) algorithms were proposed for solving it. The segment tree data structure [START_REF] Bentley | Solutions to Klee's Rectangle Problems[END_REF] is used for solving many problems; computational geometry, online scheduling, advance

reservations and optimization problems are only a few domains in which the segment tree is used. Dynamic programming techniques based on the use of the segment tree were presented in [START_REF] Aggarwal | Consecutive interval query and dynamic programming on intervals[END_REF].

Conclusions and Future Work

In this paper we introduced a new model for the behavior of the sender in a TCP conversation. Using this model, we presented a new O(n1log 2 n) dynamic programming algorithm which computes the sender's minimum total processing time, when the receiver's advertised window sizes and the sender's system load are known in advance. In this paper we focused only on the theoretical aspects of the buffer strategy (model definition and algorithm efficiency); thus, we leave the practical validation of our model for future work. Also as part of our future work, we intend to devise efficient, competitive, online algorithms for the problem. The model is similar to the uncapacitated single-item economic lot sizing problem, which was studied in many papers, but was never connected to the optimization of the TCP buffer management strategy. Although optimal O(n1log(n)) algorithms are known for this problem, our algorithm is easier to implement and the techniques employed by the algorithm are of interest by themselves, as they can be used for solving other problems, too. Moreover, we also introduced a novel, easy to use, algorithmic framework for using the segment tree data structure in any application.