
HAL Id: hal-00874044
https://hal.science/hal-00874044

Submitted on 17 Oct 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Smart Grid Voltage Sag Detector using an
EEMD-Based Approach

Yassine Amirat, Mohamed Benbouzid

To cite this version:
Yassine Amirat, Mohamed Benbouzid. A Smart Grid Voltage Sag Detector using an EEMD-Based
Approach. 2013 IEEE IEMDC, May 2013, Chicago, United States. pp.1300-1304. �hal-00874044�

https://hal.science/hal-00874044
https://hal.archives-ouvertes.fr


A Smart Grid Voltage Sag Detector 

using an EEMD-Based Approach 
 

Yassine Amirat, Member, IEEE and Mohamed Benbouzid, Senior Member, IEEE 

 

Abstract—Smart grids have become a focal point in renewable 

energy source researches. Sustainability and viability of 

distributed grids are highly dependent on the reduction of the 

operational and maintenance costs. The most efficient way of 

reducing these costs would be to continuously monitor the 

condition of these systems. This allows for early detection of the 

power quality degeneration, and facilitating a proactive response, 

prevent a fault ride-through the renewable energy conversion 

system, minimizing downtime, and maximizing productivity. 

This paper provides then the assessment of an advanced signal 

processing technique (demodulation tool) using the instantaneous 

power for voltage sags detection in smart grids. 

 
Index Terms—Smart grid, voltage sag detection, power 

quality (PQ), ensemble empirical mode decomposition (EEMD). 

 

I. INTRODUCTION 
 

Renewable energy conversion systems are the fastest-

growing sources of new electric generation in the world and it 

is expected to remain so for sometimes, and those sources are 

becoming a reliable competitor of classical power generation 

systems, which are facing to constantly changing operating 

parameters, such as fuel cost, multiple fuel tradeoffs and 

maintaining older systems becomes more costly; and actually 

a volte-face is made against nuclear power station that can 

cause human disaster. These systems offer an alternative and 

emerging solution by deploying hybrid power plant offshore 

or onshore, where there are substantial renewable resources, 

leading to a best electricity generating opportunities. With the 

deployment of distributed renewable power generation; the 

electricity networks are undergoing wholesale changes both 

from generation and the user sides. Unlike the classic power 

plants which are far from the user, the actual tendency is to 

move generation system nearby the distribution level and this 

can be achieved by using a set of micro grids and energy 

islands based on renewable sources, connected to the main 

grid as illustrated in Fig. 1 [1-2]. 
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Hence, this topology allows micro grids parallel operation to 

main grid or isolated as an energy island. This philosophy 

requires flexible micro grids that will be able to meet the 

power demand needs and have islanding fast capabilities when 

a fault occurs such as voltage sags or power outage; this is 

known as a smart grid. So, key considerations when deploying 

smart grids are their availability, reliability, and profitability; 

in order to fulfill power demand according to PQ standards. In 

this context, voltage sags automated detection is indexed as an 

essential requirement for a condition monitoring system in 

order to meet PQ standards [3-4]. So, a deep knowledge about 

all the phenomena involved during the occurrence of voltage 

sag constitutes an essential background for the development of 

any condition monitoring systems. Regarding a fault as a 

particular input acting on a power system (grid), a detection 

system must be able to detect its occurrence, as well as to 

isolate it from all other inputs such as disturbances and 

controls affecting the behavior of the system. 

It is therefore obvious that monitoring is a key issue that 

needs to be addressed to make a grid more intelligent. This 

requires much more sophisticated computer-oriented 

monitoring than in a classical grid [1]. In this context, signal 

processing is certain to play a significant role in dealing with 

the complexity and uncertainty associated with a smart grid 

[5]. This paper provides then the assessment of an advanced 

signal processing technique; namely the ensemble empirical 

mode decomposition (EEMD). EEMD is mainly a signal 

processing technique to extract distinctive features; namely 

intrinsic mode functions (IMFs). Feature selection requires a 

series of calculations based on statistics such as maxima, 

minima, singular value, standard deviation, and mean [6]. The 

instantaneous power will be used as the electrical quantity for 

voltage sag detection. 

 

II. VOLTAGE SAGS 
 

Voltage sags are defined as a deviation of the RMS supply 

voltage from a reference value with typical dip depths ranging 

from 0.9 to 0.5 pu of a 1 pu nominal [7]; lasting from few 

milliseconds to few cycles, unlike under voltage or over 

voltage that occur for long periods. Voltage sags are therefore 

a transient voltage amplitude deviation. They are caused by 

abrupt increases in loads such as phase to phase or phase to 

ground short circuits, they are also caused by abrupt increases 

in source impedance, typically caused by a loose connection. 

The most usual voltage sags signatures are depicted in Fig. 2 

[4]. During a voltage sag three-phase system balanced 

conditions are no longer valid leading to possible disastrous 

consequences on the user end-loads and on the smart grid itself. 



 
 

Fig. 1. A smart grid topology [© SAET]. 

 

 
 

Fig. 2. Voltage sag main signatures [4]. 

 

Voltage sag characterization concerns events 

quantification through a limited number of parameters. These 

parameters depend on the field of study. However, main 

characterization methods use two parameters to determine the 

severity of a voltage sag: magnitude (or “remaining voltage”) 

and duration [3]. In the context of a smart grid, it is therefore 

important to know whether voltage sag exists and afterward 

estimate its duration. 

III. EEMD-BASED VOLTAGE SAG DETECTION TECHNIQUE 
 

For voltage sag detection, there is a wide range of 

technology and methods derived from contemporary power 

systems where condition monitoring systems use pre-installed 

sensors that are managed together in different architectures 

and coupled with algorithms to allow a smart grid efficient 

monitoring [8-11]. 

Well-established methods are those based on electrical 

quantity signatures analysis (current, voltage, power, etc.). 

Indeed, those quantities are easily accessible or evaluated 

during operation. Electrical quantities analysis usually 

involves the use of reference frame transformations such as 

Park’s vector [10] or three-phase system symmetrical 

components or space vector [4], and other techniques based 

upon them. These techniques however assume that voltage and 

current quantities are pure sine waves, while in real-world the 

electrical quantities are polluted by harmonics produced by 

power electronic devices in both sides of the smart grid, and 

transient spikes due to grid apparatus maneuvers. It is 

therefore obvious the Fast Fourier Transform (FFT), and other 

techniques based upon, are no longer valid even they has been 

used in some cases [7]. Advanced signal processing 

techniques are therefore required to deal with the complexity 

and uncertainty associated with a smart grid. In [12], a Teager-

Kaiser energy operator has been proposed for power system 

oscillations detection and analysis. However, this operator is 

highly affected by noises. 

It seems that one of the emerging methods for transient 

signal processing is the empirical modal decomposition 

(EMD) [6]. The EMD method has focused considerable 

attention and has been indexed recently for power system fault 



detection and analysis [12-13]. Indeed and contrary to well-

known decomposition techniques, EMD is intuitive and direct, 

with the basic functions based on and derived from the data. 

The EMD is an adaptive time-frequency data analysis 

method for nonlinear and non-stationary signals. It is used to 

decompose the multi-component signal into a series of IMFs 

based on the signal time-scale local characteristics. However, 

one major drawback of the EMD is the mode mixing. This 

phenomenon means that the detail related to one scale can 

appear in two different intrinsic modes. To overcome this 

drawback, the EEMD was introduced [15]. The EEMD is 

described as a new noise-added method, which mitigate 

automatically the EMD mode-mixing. It is described in the 

flowchart given in Fig. 3. 

 

IV. RESULTS AND DISCUSSIONS 
 

In order to assess the ability of the proposed approach to 

detect voltage sag, real data were used. Those data were fed by 

the DOE/EPRI National Database Repository of Power 

System Events [15]. 

Figure 4 clearly shows that voltage sag in a three-phase 

system produces a voltage dip in each phase with a sharp 

variation in the current amplitude and a phase-shift. 

Since voltage sag effect arises in voltages and currents, it 

seems more relevant to use the three-phase instantaneous 

power given by 
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to investigate voltage sag occurrence. 

For illustration, Fig. 5 clearly shows that the instantaneous 

power is a key variable to monitor a smart grid regarding 

voltage sag. Indeed, it contains the above-mentioned (§ III) 

relevant parameters (fault appearance time and duration). 

After decomposing the instantaneous power according to 

the EEMD algorithm, several IMFs were obtained. The most 

energized is the 4
th

 one. Figure 6 depicts then the 

instantaneous power and its 4
th

 IMF. In particular, it is clearly 

shown that this IMF is very sensitive to the voltage sag 

occurrence and its duration. This is confirmed when intrinsic 

modes decomposition is carried-out during a phase voltage 

cycle that corresponds to 16.66 msec or 128 samples of the 

instantaneous power. Indeed, this is illustrated by Figs 7 and 8 

that show respectively the instantaneous power amplitude and 

the 4
th

 IMF for each processing interval. 

The shortest path to the 4
th

 IMF amplitude information is 

the statistic variance σ
2 
given by 
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After the EEMD processing, the 4
th

 IMF variance is 

computed in each interval and collected in Table 1. 
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Fig. 3. EEMD algorithm flowchart. 



 
 

(a) Phase a. 
 

 
 

(a) Phase b. 
 

 
 

(a) Phase c. 

 
Fig. 4.Voltage and current before, during and after voltage sag. 

 

 
 

Fig. 5. Phase voltages, currents, and the total instantaneous power 
before, during and after voltage sag. 

 
 

Fig. 6. Instantaneous power and its 4th IMF 
before, during and after voltage sag. 

 

 
 

Fig. 7. Instantaneous power during each processing interval. 

 

 
 

Fig. 8. Instantaneous power 4th IMF for each processing interval. 

 

Table 1. 4th IMF variance. 
 

Interval 1 2 3 4 5 

σ2 3.80 % 3.80% 234.43% 11.01% 11.08% 

Interval 6 7 8 9 10 

σ2 14.25% 18.36% 14.37% 4.36% 2.05% 

 

According to the electrical quantities waveforms, for the 1
st
 

and 2
nd

 voltage cycles, normal operation is confirmed by the 

variance reduced and constant value (σ
2
 = 3.8%) in the 1

st
 and 



2
nd

 intervals. At a voltage sag occurrence (3
rd

 cycle), the 

variance obviously increases to 234.48% and remains between 

11% and 14% during the voltage sag. Afterward, it decreases 

to a small value at the 9
th

 and 10
th

 intervals. It is therefore 

clearly demonstrated that the 4
th

 IMF can be used as the prime 

variable for monitoring voltage sags in terms of detection and 

duration estimation using a grid voltage cycle as time-base. 

 

V. CONCLUSION 
 

This paper dealt with voltage sag detection in a smart grid 

using the instantaneous power quantity. This quantity was first 

decomposed into intrinsic mode functions through the EEMD. 

It was then found that the 4
th

 one is the most energized when 

voltage sag occurs. The 4
th

 IMF mode is then analyzed using a 

statistic criterion based on the variance. The achieved results 

clearly show that it can be used an effective indicator for 

voltage sag detection and smart grid monitoring. 
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